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A neuroinformatics framework for the collection, curation, and visualization of imaging

biomarkers in multiple sclerosis

Anisha Keshavan

Imaging biomarkers from magnetic resonance images have provided insights into the progression of

multiple sclerosis (MS). As neuroimaging datasets grow in size to accommodate multidimensional

association studies, traditional methods for data collection and analysis are too imprecise and

ine�cient on a large scale. This dissertation addresses the challenges associated with collecting

datasets from multiple scanners with non-standardized acquisition protocols, presents software for

time and space e�cient image processing, and software for collaborative quality control. Finally, a

visualization framework is proposed to gain better intuition and understanding of high-dimensional

imaging datasets through a web-based interactive data exploration tool. This dissertation lays the

groundwork for large, multivariate studies in MS, and translational tools for the use of imaging

biomarkers in the MS clinic.
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1 Introduction

Multiple sclerosis (MS) is a central nervous system disease that a�ects 2.5 million people

worldwide, and has no cure. Precision medicine is a new disease management approach that

accounts for individual variability in genetics, environment, and clinical phenotypes, to tailor more

e�ective, personalized, treatments [1]. A precision medicine approach to treat MS requires a large

and deeply phenotyped reference dataset of MS patients, in order to quantify the di�erences in

biology that make each patient unique. Finally, e�ective methods of presenting large amounts of

data are needed, in order to empower clinicians to tailor treatments based on an individual’s specific

biological makeup.

Researchers at UCSF have been collecting a deeply phenotyped dataset of MS patients. Metrics

include genetic markers of risk burden, clinical evaluations, and MRI images. MRI imaging plays

an important role in the diagnosis of MS, and researchers have found promising MRI biomarkers

that may track with disease progression. Some examples include the location and size of lesions,

cortical atrophy patterns, spinal cord gray matter volume, and various quantitative white matter

metrics. While these imaging phenotypes have the potential to inform a precise treatment plan for an

individual with MS, there exist three major challenges: data collection from heterogeneous sources,

data curation and reproducible processing, and e�ective data visualization of large datasets.

In order to collect enough data to provide a reference dataset for precision medicine, we must be

able to combine MRI biomarkers from di�erent hospitals and research institutions. Biomarkers

derived from a variety of MRI scanners are subject to biases from di�erences in scanner hardware
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and software. Accurate measurement of these biases, along with a statistical model that accounts

for them, can help researchers plan an e�cient data collection scheme. In "Power estimation for

non-standardized multisite studies" [2], I proposed a statistical model to estimate power for the

collection of a large MRI dataset across various imaging sites. This framework enables rapid data

collection by easing the traditional standardization requirements of data acquisition.

Collecting a large MRI dataset brings about challenges that are traditionally associated with “big

data”. These include curation, quality checking, and the implementation of robust, reproducible

analyses. Proper data curation provides easy accessibility by researchers not directly involved in data

collection, minimization of processing errors, optimized use of analysis software, and aids in the

development of automated tools[3]. Ensuring the quality of processing pipeline inputs and outputs

is a vital aspect of biomarker development, and often requires manual intervention, especially with

pathological MRI scans. The curation of the automated pipelines and their associated manual edits

is implemented in PBRAINand Mindcontrol, respectively. PBRAIN is an open-source framework

for the curation of neuroimaging analysis pipelines, organization of input and output data, and the

storage data provenance. Mindcontrol is a web-based application that consists of a dashboard to

organize, quality control, annotate, edit, and collaborate on neuroimaging processing results [4, 5].

MS Imaging biomarkers, with promising predictive value, are not readily available to MS

neurologists due to many obstacles in the translation of biomarkers to the clinic. One such obstacle

is the di�culty in comprehending large amounts of data in a short time span. One way to address

this is to reduce 3D/4D data into scalar metrics that describe the image, such as brain volume, or

lesion volume. However, this loss of spatial information deprives the clinician of the crucial context

necessary to determine the nature and progression of the disease for any given individual. One

solution is to develop e�ective data visualizations. The information extracted from 4D imaging

data can be abstracted to highlight the important features of our data, in the same way a subway

map highlights connections and line routes, maintains spatial information, and hides unnecessary

information like the terrain. The final project of my dissertation is the MINDMELD project, which
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combines 3D brain visualization with clinical and imaging scalar metrics in an interactive, web-based

application.

Figure 1.1 shows the components of my research, which consists of four projects relating to the

collection, curation, and visualization of neuroimaging biomarkers in MS. My thesis concludes with

a proposal for future directions, which was funded by the Gordon and Betty Moore Foundation,

Alfred P. Sloan Foundation, and the Washington Research Foundation. I propose a crowd-sourced

quality control application to improve the precision of segmentation measures and at the same time,

engage, educate and excite the public to help advance cutting edge neuroscience research. In the age

of rapid data collection, biomarker discovery, and the development of new therapies, collaborative

informatics methods are vital to help us understand the complex disease mechanisms of multiple

sclerosis.
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Figure 1.1: Diagram for Anisha Keshavan’s dissertation. The overall goal is to develop precision
medicine tools that present imaging, clinical, and genetic biomarkers to MS neurologists.
For my PhD dissertation, I have focused on the imaging aspect of this tool. It begins with
the large-scale collection of imaging data, outlined by the PHANTOM project. Next, data
must be processed and curated, by the PBRAIN project, and quality controlled through
the MINDCONTROL project. Finally, the aggregation of all imaging biomarkers is
presented in the MINDMELD project, which provides descriptive, exploratory, and
interactive data analyses of imaging biomarkers in MS along with three-dimensional
scientific data visualization.
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2 Background

2.1 Multiple Sclerosis

Multiple Sclerosis (MS) is an immune modulated demylinating disease of the central nervous system.

The cause of MS is unknown, and is likely an interplay between environmental factors (such as viral

[6]) and genetic factors [7, 8, 9]. MS is a debilitating disease, where symptoms include a loss of

vision (optic neuritis), sensory loss, muscle cramping and spasticity, bladder and bowel dysfunction,

fatigue, and cognitive problems that include a short attention span, memory loss, and even depression

[10]. The incidence has been increasing, particularly for women, and prevalence of MS has been

increasing over time due to longer survival rates [11] from recent advances in therapeutics. Disease

modifying therapies, such as �-interferon [12] are designed with the goal of postponing long-term

disability; however, the length of a clinical trial is not su�cient to evaluate long-term outcomes. In

order to evaluate the e�cacy of a new treatment, clinical trials use short-term clinical scores along

with disease burden based on magnetic resonance imaging (MRI) [12].

2.2 Magnetic Resonance Imaging

Magnetic resonance imaging is based on quantum properties of atoms. Hydrogen protons have a

property called spin, which can be perturbed by strong magnetic fields and a sequence of magnetic

gradients and radiofrequency (RF) pulses. After an RF pulse is applied, a proton releases energy in
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the form an electromagnetic signal, which is recorded by receiver coils. Local tissue properties

a�ect the signal from protons on fat and water molecules, resulting in contrast between gray matter,

white matter, and CSF in the brain. Di�erent types of contrast can be generated based on the timing

of the RF pulses, such as the T1-weighted image and the T2-weighted structural image. The variety

of contrasts available in MR, combined with the lack of ionizing radiation during image acquisition,

gives MR a clear advantage over computed tomography (CT), which was previously used in the

diagnostic criteria of MS.

2.3 MR Imaging in MS

MRI revolutionized the diagnostic criteria for MS, enabling clinicians to diagnose and treat MS

at earlier stages. Markers of inflammation and demyelination from multiple sclerosis manifest

as focal, demyelinated scar tissue, called lesions or plaques, in the white matter of the brain and

spinal cord. The first evidence of the utility of MRI over CT in detecting MS plaques was shown in

1981 [13]. In comparing CT and MR images, [13] found that 1) MS lesions were better delineated

compared to CT 2) there were more lesions in MR that could not be seen on CT and 3) the pattern

of lesion distribution in MRI more closely matched post-mortem images. Within a decade, MR was

incorporated into the diagnostic criteria for the disease [14].

2.3.1 MS Lesions

There are three characteristic types of lesions seen in MR images based on their signal intensity in

T1 and T2 contrasts : 1) Gadolinium (Gd+) enhancing lesions, 2) T2 hyperintense lesions, and 3) T1

hypointense "black holes". MS-related inflammation causes breakdown of the blood-brain barrier,

allowing the Gd+ MR contrast agent to enter the lesion, appearing hyperintense on the T1-weighted

image. These lesions are sensitive and specific to MS [15]. On the other hand, T2 hyperintensities

are used as markers of overall disease burden but lack neurological specificity [15]. T2 lesions are

6



used in the McDonald criteria for diagnosis of MS [16], with guidelines on the location and shape

characteristics more specific to MS [15]. T1 "black holes", or hypointensities on the T1-weighted

image, are indicative of permanent axonal damage and loss [15, 17, 18, 19].

2.3.2 The Clinico-Radiological Paradox

While focal white matter lesions seen on MRI largely characterize multiple sclerosis, lesion volumes

are not strongly correlated with clinical disability [20, 21, 22]. This disconnect between clinical

disability in multiple sclerosis (MS) and structural damage seen on MRI is called the clinico-

radiological paradox [23]. Instead, many groups have found that gray matter atrophy is a better

predictor of disability[24, 25, 26, 27].

2.4 Volumetric Analysis of MRI

Automated estimation of brain atrophy has been possible due to advances in computing and image

processing algorithms. Tissue classification algorithms label each voxel (a volumetric unit of MR

signal intensity) as belonging to di�erent tissue classes, such as white matter, gray matter, CSF,

or an MS lesion. More advanced algorithms use brain atlases to parcellate di�erent regions of

brain, providing regional volume and thickness estimates of di�erent cortical regions, subcortical

structures, and the cerebellum.

2.4.1 Brain Tissue Segmentation

There are many tissue classification algorithms and software packages available to the community

(see FSL’s FAST [28], FIRST [29], ANTS’ Atropos [30], and Freesurfer [31]). Early segmentation

algorithms could classify between gray matter, white matter, and CSF, based purely on voxel

intensities. This was computed using Markov Random Field theory (MRF) [32]. MRF models
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the image as a graph, with voxels modeled as vertices and edges modeled as a relationship (such

as the euclidean distance) between the voxel and its neighbors[33]. For example, the probability

of voxel V1 belonging to tissue class c1 given that neighboring voxel V2 belonging to class c2 can

be computed based on prior, manually segmented images [34, 31]. One of the most frequently

used segmentation packages is FreeSurfer [31], because it delineates between di�erent regions of

gray matter. For delineating structures within the gray matter, the standard MRF does not work;

MRFs are isotropic, meaning that these probability distributions are equal in all directions, and

stationary, meaning that probability distributions are the same, regardless of spatial location in the

brain [34, 31]. The freesurfer team encoded spatial context into the MRF, removing the stationary

and isotropic constraints for the standard MRF, such that the amygdala, which is always anterior

and superior to the hippocampus, could be segmented from the hippocampus even though the two

structures have similar intensity distributions [34, 31].

2.4.2 Gray Matter Atrophy in MS

The automated segmentation of brain regions has led to the discovery of gray matter atrophy patterns

and their relationship to MS disease progression. The gray matter pathology of MS has been widely

studied in post-mortem brains (for a review, see [35]), and myelin immuno-staining has shown

widespread demyelination in the cortex that is independent of white matter lesion load [36]. In vivo,

decreased regional gray matter thickness in patients compared to healthy controls has been observed

by many groups, both cross-sectionally [37, 38, 39], and longitudinally [40]. In addition, regional

thickness moderately correlates with clinical disability [37]. Patients with later stages of the disease

have more advanced cortical thinning [41], and patients in the early stages of the disease showed

cortical thinning that was correlated with mild cognitive impairment [42].

The atrophy of the thalamus, in particular, has been extensively studied. Researchers found that

the thalamic volume of MS patients was 16% lower than healthy controls [43], that thalamus and

putamen atrophy was related with slower information processing speed [44], and that thalamic

8



atrophy and ventricular size is associated with the transition from a clinically isolated syndrome

to clinically definite MS [45]. Furthermore, MRI thalamic atrophy estimates were compared to

histo-pathological neuronal loss measures, and a 30-35% loss in MS was found [46]. In addition

to the thalamus, researchers found a distinct pattern of atrophy in the fronto-temporal regions of

the rapidly advancing form of MS, called secondary progressive (SPMS), which also related to

cognitive impairment [47, 38]. Atrophy of the anterior cingulate cortex was strongly related to both

lesion volume and clinical disability, showing signs even in early stages of disease [48], while the

later stages showed atrophy in the motor cortex [38]. Parcellation of the hippocampus subregions

showed that atrophy in the CA1 region was a feature of MS, with substantially worse atrophy for

SPMS patients [49].

2.4.3 MS Genetics and Gray Matter Atrophy

Understanding the relationship between MS genetics and MR phenotypes, such as brain atrophy,

is a crucial aspect of precision medicine; it could help us predict how the disease progresses

in a given individual and a�ect treatment decisions. An association between the HLA alleles

on the major histocompatibility complex (MHC) and T2 lesion load was found in patients with

primary progressive disease in a small cohort of 41 patients [50]. Genotype-phenotype correlations

were found on a larger cohort (N>500) showing a link between HLA alleles, T2 lesion load, and

normalized brain volume [51]. Recently, our group found that the same HLA genetic markers which

are related to an increased risk for MS are also associated with subcortical gray matter atrophy

in women, and an earlier age of onset (N=586) [52]. While these findings are promising, their

small sample sizes limit what we can discover. Larger sample sizes would enable us to discover

and replicate associations between more genetic loci and imaging phenotypes. However, these

studies are limited by the inherent di�culties of collecting, processing, and ensuring the accuracy of

biomarkers from large imaging datasets. Study of the field of neuroinformatics could help address

these bottlenecks.
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2.5 Neuroinformatics

Neuroinformatics is the study of the organization, curation, and computational analysis models and

methods for neurological data. There are major roadblocks that prevent the e�cient computation

of biomarkers from large imaging datasets, which are critical for precision medicine approaches.

Collecting a large dataset from a single institution takes a very long time; a collaborative, multisite

approach is more time e�cient but results in noisier data from heterogeneity in scanner hardware and

acquisition protocols. Processing large amounts of data requires advanced distributed computing

clusters and software that can seamlessly distribute tasks to the computing grid [53]. Big data studies

must employ many researchers, but collaboration and knowledge transfer can be di�cult in such a

highly specialized and multidisciplinary environment, which leads to ine�ciencies and increased

likelihood of errors [3]. Gray matter segmentation algorithms perform adequately on healthy control

data, but often error on pathological brains and require manual intervention to fix, which can take an

exorbitant amount of time on very large datasets. Solutions to these neuroinformatics problems

are critical to the success of large-scale genotype-phenotype studies, and for translation of imaging

biomarkers to the MS clinic.

This body of work contributes novel tools to the neuroinformatics field by addressing the need to

compute and validate imaging biomarkers on a large scale. First, a statistical model is proposed

to address the problem of scanner biases for large, multisite MRI datasets. The results of this

study were used to plan a multisite MS genotype/imaging phenotype study. Next, a computational

framework for the e�cient, reproducible, collaborative, and automated processing and curation of

biomarkers is presented. Finally, a quality control tool for visual inspection and manual intervention

for large datasets is proposed, followed by a visualization application to e�ciently comprehend

high-dimensional neuroimaging data. These tools provide a framework for running e�cient,

reproducible, and precise large-scale imaging studies to advance precision medicine.
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3 Power Estimation for Non-Standardized

Multisite Studies

Abstract

A concern for researchers planning multisite studies is that scanner and T1-weighted sequence-

related biases on regional volumes could overshadow true e�ects, especially for studies with

a heterogeneous set of scanners and sequences. Current approaches attempt to harmonize

data by standardizing hardware, pulse sequences, and protocols, or by calibrating across sites

using phantom-based corrections to ensure the same raw image intensities. We propose to

avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of

estimated regional volumes is scaled between sites due to the contrast and gradient distortion

di�erences between scanners and sequences. Given this assumption, we provide a new statistical

framework and derive a power equation to define inclusion criteria for a set of sites based on

the variability of their scaling factors. We estimated the scaling factors of 20 scanners with

heterogeneous hardware and sequence parameters by scanning a single set of 12 subjects at

sites across the United States and Europe. Regional volumes and their scaling factors were

estimated for each site using Freesurfer’s segmentation algorithm and ordinary least squares,

respectively. The scaling factors were validated by comparing the theoretical and simulated

power curves, performing a leave-one-out calibration of regional volumes, and evaluating the

absolute agreement of all regional volumes between sites before and after calibration. Using our

derived power equation, we were able to define the conditions under which harmonization is not

necessary to achieve 80% power. This approach can inform choice of processing pipelines and
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outcome metrics for multisite studies based on scaling factor variability across sites, enabling

collaboration between clinical and research institutions.

3.1 Introduction

The pooled or meta-analysis of regional brain volumes derived from T1-weighted MRI data

across multiple sites is reliable when data is acquired with similar acquisition parameters [54, 55,

56]. The inherent scanner- and sequence-related noise of MRI volumetrics under heterogeneous

acquisition parameters has prompted many groups to standardize protocols across imaging sites

[54, 57, 58]. However, standardization across multiple sites can be prohibitively expensive and

requires a significant e�ort to implement and maintain. At the other end of the spectrum, multisite

studies without standardization can also be successful, albeit with extremely large sample sizes.

The ENIGMA consortium, for example, combined scans of over 10,000 subjects from 25 sites

with varying field strengths, scanner makes, acquisition protocols, and processing pipelines. The

unusually large sample size enabled this consortium to provide robust phenotypic traits despite the

variability of non-standardized MRI volumetrics and the power required to run a genome wide

association study (GWAS) to identify modest e�ect sizes [59]. These studies raise the following

question: Is there a middle ground between fully standardizing a set of MRI scanners and recruiting

thousands of subjects across a large number of sites? Eliminating the harmonization requirement

for a multisite study would facilitate inclusion of retrospectively acquired data, and data from sites

with ongoing longitudinal studies that would not want to adjust their acquisition parameters.

Towards this goal, there is a large body of literature addressing the correction of geometric

distortions that result from gradient non-linearities. These corrections fall into two main categories:

phantom-based deformation field estimation and direct magnetic field gradient measurement-based

deformation estimation; the latter requires extra hardware and spherical harmonic information

from the manufacturer [60]. Calibration phantoms, such as the Alzheimer’s Disease Neuroimaging
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Initiative (ADNI) [61] and LEGO® phantoms [62], have been used by large multisite studies to

correct for these geometric distortions, which also a�ect regional volume measurements. These

studies have outlined various correction methods that significantly improve deformation field

similarity between scanners. However, the relationship between the severity of gradient distortion

and its e�ect on regional volumes, in particular, remains unclear. In the case of heterogeneous

acquisitions, correction becomes especially di�cult due to additional noise sources. Gradient

hardware di�erences across sites are compounded with contrast variation due to sequence parameter

changes. In order to properly evaluate the reproducibility of brain segmentation algorithms, these

phantoms should resemble the human brain in size, shape, and tissue distribution. Droby and

colleagues evaluated the stability of a post-mortem brain phantom and found similar reproducibility

of volumetric measurements to that of a healthy control [63]. In this study, we propose to measure

between-site bias through direct calibration of regional volumes by imaging 12 common healthy

controls at each site. Quantifying regional bias allows us to overcome between-site variability by

increasing sample size to an optimal amount, rather than employing a phantom-based voxel-wise

calibration scheme that corrects both contrast di�erences and geometric distortions.

We hypothesized that all di�erences in regional contrast and geometric distortion result in regional

volumes that are consistently and linearly scaled from their true value. For a given region of

interest (ROI), two mechanisms simultaneously impact the final boundary definition: (1) gradient

nonlinearities cause distortion and (2) hardware (including scanner, field strength, and coils) and

acquisition parameters modulate tissue contrast. Based on the results of Tardi� and colleagues,

who found that contrast-to-noise ratio and contrast inhomogeneity from various pulse sequences

and scanner strengths cause regional biases in VBM[64, 65], we hypothesized that each ROI will

scale di�erently at each site. Evidence for this scaling property can also be seen in the overall

increase of gray matter volume and decrease of white matter volume of the ADNI-2 compared to the

ADNI-1 protocols despite attempts to maintain compatibility between these protocols [66]. It was

also observed that hippocampal volumes were 1.17% larger on 3T scanners compared to the 1.5T

scanners in the ADNI study [67]. By imaging 12 subjects in 20 di�erent scanners using varying
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acquisition schemes, we were able to estimate the scaling factor for each regional volume at each

site. We also defined a framework for calculating the power of a multisite study as a function of the

scaling factor variability between sites. This enables us to power a cross-sectional study, and to

outline the conditions under which harmonization could be replaced by sample size optimization.

This framework can also indicate which regional volumes are su�ciently reliable to investigate

using a multisite approach.

Regional brain volumes are of interest in most neurological conditions, including healthy aging,

and typically indicates the degree of neuronal degeneration. In this study, we investigate a number

of well-defined regional brain volumetrics related to multiple sclerosis disease progression. Even

though focal white matter lesions seen on MRI largely characterize multiple sclerosis (MS), lesion

volumes are not strongly correlated with clinical disability [20, 21, 22]. Instead, global gray matter

atrophy correlates better with clinical disability (for a review, see [68]), along with white matter

volume, to a lesser extent [69]. In addition, regional gray matter atrophy measurements, such as

thalamus [70, 71, 72, 73] and caudate [74, 75] volumes, appear to be better predictors of disability

[24, 25, 26, 27].

3.2 Theory

Linear mixed models are common in modeling data from multisite studies because metrics derived

from scanner, protocol, and population heterogeneity may not have uncorrelated error terms

when modeled in a general linear model (GLM), which violates a key assumption [76]. In fact,

Fennema-Notestine and colleagues found that a mixed model, with scanner as a random e�ect,

outperformed pooling data via GLM[77] on a study on hippocampal volumes and aging. Since we

are only interested in the e�ect of scanner-related heterogeneity, we assume that the relationship

between the volumetrics and clinical factors of interest are the same at each site. This causes

error terms to cluster by scanner and sequence type due to variation in field strengths, acquisition
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parameters, scanner makes, head coil configurations, and field inhomogeneities, to name a few [54].

Linear mixed models, which include random e�ects and hierarchical e�ects, appropriately integrate

observation-level data based on their clustering characteristics [76]. The model we propose in this

study is similar to a mixed model, with a multiplicative e�ect instead of an additive e�ect. Our goal

is to incorporate an MRI bias-related term in our model in order to optimize sample sizes.

We first defined the true, unobserved model for subject i at site j as:

Ui j = �00 + �10Xi, j + �20Zi, j + ✏i, j (3.1)

Where Ui, j is the unobserved value of the regional brain volume of interest (without any e�ects from

the scanner), and �00, �10 and �20 are the true, unobserved, e�ect sizes. The covariates are Zi, j ,

residuals are ✏i, j , and the contrast vector, Xi, j , is given the weights Xhigh, Xlow = 0.5,�0.5 so that

�10 is computed as the average di�erence between the high and low groups. For this derivation we

assume an equal number of subjects observed at each site in the high and low groups with balanced

covariates. ✏ is normally distributed with mean 0 and standard deviation �0.

We defined a site-level model using the notation of [78], to express the relationship between a brain

metric that is scaled by aj as Yi, j = aj ⇤Ui j and high or low disease group Xi, j for subject i = 1, . . . , n

at site j as

Yi, j = b0 j + b1, j Xi, j + b2, j Zi, j + ri, j (3.2)

The site mean, disease e�ect, and covariate e�ect randomly vary between sites so the intercept and

slope coe�cients become dependent variables [78] and we assume:

bk, j = aj ⇤ �k,0 (3.3)
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where the true underlying coe�cient, �k,0 for k = 0, 1, 2 is scaled randomly by each site. The major

contributors to brain structure region of interest (ROI) boundary variability are contrast di�erences

and gradient distortions, both of which adjust the boundary of the whole ROI rather than add a

constant term. To reflect this property, we modeled the systematic error from each MRI sequence as

a multiplicative (Yi, j = aj ⇤ Yi) rather than additive (Yi j = Yi + aj) error term. Similarly, the residual

term is also scaled by site, ri, j ⇠ N(0, a2j�20 ), and the scaling factor, aj , is sampled from a normal

distribution with mean µa and variance �2a .

aj ⇠ N(µa,�
2
a ) (3.4)

For identifiability, let µa = 1. The mean disease e�ect estimate, �1, j is defined as the mean brain

metric volume di�erence in the high and low groups.

DY, j = YH
j

� YL
j

(3.5)

The unconditional variance of the disease e�ect estimate at site j is can be written in terms of the

unobserved di�erence between groups before scaling, DU, j = DY, j/aj :

var[DY, j] = var[DU, j aj] = var[DU, j]var[aj] + var[DU, j]E[aj]2 + var[aj]E[DU, j]2 (3.6)

Where we are assuming that DU, j and aj are independent, meaning that MRI-related biases are

independent of the biological e�ects being studied. For the derivation of this formula, see the

Appendix. Given the distribution of scaling factors and the variance of the true disease e�ect,

var[DU, j] = 4�20 /n, the equation simplifies to
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var[DY, j] =
4�20

n
µ2a +

4�20
n
�2a + �

2
a �

2
10 (3.7)

We standardize the equation by defining the coe�cient of variability for the scaling factors as

CV2
a = (�aµ

a

)2, and the standardized true e�ect size as � = �10�0 .

var[DY, j] = µ2a�20
⇣4
n
+ CV2

a

⇣4
n
+ �2

⌘⌘
(3.8)

Finally, the coe�cients are averaged over J sites to produce the overall estimate �̂10 = 1
J
ÕJ

j=1 DY, j ,

and

E[�̂10] =
1

J

J’
j=1

E[DY, j] =
�10
J

J’
j=1

E[aj] = �10µa (3.9)

Note that this estimator is asymptotically normally distributed when the number of centers, J, is

fixed, because it is the average of asymptotically normal estimators. When the number of subjects

per site is not equal, the maximum likelihood estimator is the average of the site-level estimates

weighted by the standard error, and this is shown in the Appendix. The variance of the overall

estimate can be expressed as

var[�̂10] =
1

J2

J’
j=1

var[DY, j] =
�20 µ

2
a

⇣
4
n + CV2

a (4n + �2)
⌘

J
(3.10)

In order to test the average disease e�ect under the null hypothesis that �1 = 0, the non-central F

distribution, F(1, J � 1; �) [78] is applied, with the non-centrality parameter defined as

� =
E[�̂10]2

var[�̂10]
=

J�2
4
n + CV2

a (4n + �2)
(3.11)

Figure 3.9 shows power curves for small to medium e�ect sizes (� = 0.2, 0.3, defined in [78]), and
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a false positive rate of ↵ = 0.002, which allows for 25 comparisons under Bonferroni correction,

where the corrected ↵ = 0.05. Power increases for larger � and maximizes at � = Jn�2
4 as CVa

approaches 0. In this case, the power equation is dominated by the total number of subjects, as is

the case for the GLM. However, even as the number of subjects per site, n, approaches infinity and

for non-negligible CVa, � is still bounded by J
CV2

a

. At this extreme, the power equation is largely

influenced by the number of sites. This highlights the importance of the site-level sample size (J)

in addition to the subject-level sample size (n) for power analyses, especially when there is larger

variability between sites for metrics of interest. In the methods section, the acquisition protocols and

the standard processing pipelines that were used to calculate CVa values of relevant regional brain

volumes for MS are described, though this framework could be applied to any MRI derived metric.

We emphasize that the use of phantom subjects does not directly contribute to the power equation

in Figure 1, as it does not account for any sort of calibration or scaling. However, it requires an

estimate for CVa, which is the variability of scaling biases between sites. The goal of this study is

to provide researchers with estimates of CVa from our set of calibration phantoms and our set of

non-standardized MRI acquisitions. For a standardized set of scanners, the values of CVa may be

considered an upper bound.

3.3 Methods

3.3.1 Acquisition

T1-weighted 3D-MPRAGE images were acquired from 12 healthy subjects (3 Male, 9 Female, ages

24-57) in 20 scanners across Europe and the United States. Institutional approval was acquired and

signed consent was obtained for each subject at each site. These scanners varied in make and model,

including all three major manufacturers: Siemens, GE, Philips. Two scans were acquired from

each subject, where the subject got out of the scanner between scans for a couple minutes, and was

repositioned and rescanned by the scanning technician of that particular site. Previously, Jovicich
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and colleagues showed that reproducible head positioning along the z axis significantly reduced

image intensity variability across sessions [56]. By repositioning in our study, a realistic measure of

test-retest variability, which includes the repositioning consistency of each site’s scanning procedure,

was captured. Because gradient distortion e�ects correspond to di�erences in z-positioning [62],

the average translation in the Z-direction between the two runs of each subject at each site was

estimated with a rigid body registration.

Tables 1 through 3.4 show the acquisition parameters for all 20 scanners. Note that the definitions of

repetition time (TR), inversion time (TI) and echo time (TE) vary by scanner make. For example,

the TR in a Siemens scanner is the time between preparation pulses, while for Philips and GE,

the TR is the time between excitation pulses. We decided to report the parameters according to

the scanner make definition, rather than trying to make them uniform, because slightly di�erent

pulse programming rationales would make a fair comparison di�cult. In addition, a 3D-FLASH

sequence (TR=20ms, TE=4.92ms, flip angle=25 degrees, resolution=1mm isotropic) was acquired

on healthy controls and MS patients at site 12, in order to compare di�erences in scaling factor

estimates between patients and healthy controls.

3.3.2 Processing

A neuroradiologist reviewed all images to screen for major artifacts and pathology. The standard

Freesurfer [79] version 5.3.0 cross-sectional pipeline (recon-all) was run on each site’s native

T1-weighted protocol, using the RedHat 7 operating system on IEEE 754 compliant hardware. Both

1.5T and 3T scans were run with the same parameters (without using the -3T flag), meaning that

the non-uniformity correction parameters were kept at the default values. All Freesurfer results

were quality controlled by evaluating the cortical gray matter segmentation and checking the linear

transform to MNI305 space which is used to compute the estimated total intracranial volume [80].

Scans were excluded from the study if the cortical gray matter segmentation misclassified parts

of the cortex, or if the registration to MNI305 space was grossly innaccurate. Three scans were
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excluded for misregistration. Two exclusions were because of data transfer errors. Because of time

constraints, some subjects were not able to be scanned. One of the 12 subjects could not travel to

all the sites, and that subject was replaced by another of the same age and gender. The details of

this are provided in the supplemental materials and the total number of scans is shown in tables

1 - 3.4. 46 Freesurfer ROIs, including the left and right subcortical ROIs, from the aparc.stats

tables, were studied. In this study we report on the ROIs relevant to the disease progression of MS,

which include the gray matter volume (GMV), subcortical gray matter volume (scGMV), cortex

volume (cVol), cortical white matter volume (cWMV), and the volumes of the lateral ventricle (LV),

amygdala (amyg), thalamus (thal), hippocampus (hipp), caudate (caud). The remaining ROIs are

reported in the supplemental materials.

Test-retest reliability, defined as ICC(1,1) [81], was computed across each site and protocol for

the selected metrics using the "psych" package in R [82]. The between-site ICC(2,1) values were

computed following the procedure from previous studies on multisite reliability [81, 54]. Variance

components were calculated for a fully crossed random e�ects model for subject, site, and run using

the "lme4" package in R. Using the variance components, between site ICC was defined as

ICCBW =
�2subject

�2subject + �
2
site + �

2
run + �

2
subject⇥site + �

2
unexplained

(3.12)

and an overall within-site ICC was defined as

ICCW I =
�2subject + �

2
site + �

2
subject⇥site

�2subject + �
2
site + �

2
run + �

2
subject⇥site + �

2
unexplained

(3.13)

Scaling factors between sites were estimated using ordinary least squares from the average of the

scan-rescan volumes, referenced to average scan-rescan volumes from the UCSF site. The OLS was

run with the intercept fixed at 0. CVa for each metric was calculated from the sampling distribution

of scaling factor estimates â as follows:

20



CVa =
std(â)

mean(â) (3.14)

3.3.3 Scaling Factor Validation

Scaling factor estimates were validated under the assumption of scaled, systematic error, in 2 ways:

first, by simulating power curves that take into account the uncertainty of the scaling factor estimate,

and second, by a leave-one-out calibration. For the simulation, we generate data for each of the 20

sites included in this study. Subcortical gray matter volumes (scGMV) for each site were generated

for two subject groups based on a small standardized e�ect size (Cohen’s d) of 0.2, which reflects

the e�ect sizes seen in genomics studies. Age and gender were generated as matched covariates,

where age was sampled from a normal distribution with mean and standard deviation set at 41 and

10 years, respectively. Gender was sampled from a binomial distribution with a probability of 60%

female to match typical multiple sclerosis cohorts.

Coe�cients were set on the intercept as 63.135 cm3, �10 as -.95 cm3, covariates ZAge as -.25

cm3/year and ZGender as 4.6 cm3. scGM volumes were generated in a linear model using these

coe�cients and additional noise was added from the residuals, which were sampled from a normal

distribution with zero mean and standard deviation 5.03 cm3. Next, the scGM volumes were scaled

by each site’s calculated scaling factor and gaussian noise from the residuals of the scaling factor fit

of that particular site were added.

scGMVsite
j

= scGMVtrue
j

⇤ aj + N(0,�2f it
j

) (3.15)

The simulated dataset of each individual site was modeled via OLS, and an F score on XGroup was

calculated following our proposed statistical model:
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FX
Group

=
(1J

Õ20
j=1 �̂ j)2

1
J2

Õ20
j=1 �

2
j

(3.16)

A power curve was constructed by running the simulation 5000 times, where power for a particular

p-value was defined as the average number of F values greater than the critical F for a set of false

positive rates ranging from 1e�4 � 1e�2. The critical F was calculated with degrees of freedom of

the numerator and denominator as 1 and 19 respectively. The simulated power curve was compared

to the derived theoretical power curve to evaluate how scaling factor uncertainty influences power

estimates. If the scaling factors of each site, which were calculated from the 12 subjects, were not

accurate, then the added residual noise from the scaling factor estimate would result in the simulated

power curve deviating largely from the theoretical curve.

The scaling factors were also validated by calibrating the regional volumes of each site in a

leave-one-out cross-validation. The calibrated volume for a particular subject i and site j was scaled

by the scaling factor estimated from all subjects excluding subject i. Within- and between-site

ICC’s were calculated for the calibrated volumes. If the scaling factor estimates were inaccurate, the

between-site ICCs of calibrated regional volumes would be worse than the between-site ICCs of the

original regional volumes. Additionally, the between-site ICC’s after calibration should be similar

to those found for harmonized studies, such as [54].

Finally, to address the concern about whether these scaling factors could apply to a disease population,

we calculated scaling factors from 12 healthy controls and 14 MS patients between 2 di�erent

sequences (3D-MPRAGE versus 3D-FLASH) at the UCSF scanner (site 12). The patients had a

mean age of 51 years with standard deviation of 11 years, mean disease duration of 15 years with a

standard deviation of 12 years, and mean Kurtzke Expanded Disability Status Scale (EDSS) [83]

score of 2.8 with a standard deviation of 2.2.

The accuracy of our scaling factor estimates depends on the accuracy of tissue segmentation, but

the lesions in MS specifically impact white matter and pial surface segmentations. Because of
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the e�ect of lesions on Freesurfer’s tissue classification, all images were manually corrected for

lesions on the T1-weighted images by a neurologist after editing by Freesurfer’s quality assurance

procedure, which included extensive topological white matter corrections, white matter mask edits,

and pial edits on images that were not lesion filled. These manual edits altered the white matter

surface so that white matter lesions were not misclassified as gray matter or non-brain tissue. The

errors in white matter segmentations most typically occurred at the border of white matter and gray

matter and around the ventricles. The errors in pial surface segmentations most typically occurred

near the eyes (orbitofrontal) and the superior frontal or medial frontal lobes. Images that were still

misclassified after thorough edits were removed from the analysis, because segmentations were not

accurate enough to produce realistic scaling factor estimates.

3.4 Results

Scan-rescan reliability for the 20 scanners is shown in tables 1 through 3.4. The majority of

scan-rescan reliabilities were greater than 80% for the selected Freesurfer-derived volumes, which

included gray matter volume (GMV), cortical white matter volume (cWMV), cortex volume (cVol),

lateral ventricle (LV), thalamus (thal), amygdala (amyg), caudate (caud), hippocampus (hipp),

and estimated total intracranial volume (eTIV). However, the thalamus at sites 3 and 16 had low

scan-rescan reproducibility, below 70%. The left hippocampus and amygdala at site 5 were also

below 70%, and the left amygdala at site 16 was also low, at 55%. In addition, the average translation

in the Z-direction across all sites was 3.5mm±3.7mm, which falls within the accuracy range reported

by [62]. The repositioning Z-translation measurements for each site separately is reported in the

supplemental materials.

Between- and within-site ICC’s are plotted with the calibrated ICC’s in Figure 3.2. The between-site

ICC’s of the 46 ROIs improved, with the exception of the right lateral ventricle, which did not

change after calibration, and the fifth ventricle, which had very low scan-rescan reliability, and is

23



shown in the supplemental materials. The within-site ICC’s of the thalamus, hippocampus, and

amygdala decreased slightly after calibration. Both calibrated and uncalibrated within-site ICC’s

were greater than 90% for the MS related ROIs listed in this paper. For the full set of within- and

between- site ICC’s of the Freesurfer aseg regions, see the Supplemental Materials.

Simulation results are shown in Figure 3.3. The simulated and theoretical curves align closely when

power is equal to 80%, but the simulated curve is slightly lower than the theoretical curve for power

below 80%. This is probably due to the uncertainty in our scaling factor estimates.

Table 3.5 shows the scaling factor variability (CVa) for the selected ROIs, which range from 2 to

8 %. The full distribution of CVa for all the Freesurfer ROIs is shown in Figure 3.7. To derive

the maximum acceptable CVa for 80% power, the theoretical power equation was solved at various

subject and site sample sizes with the standardized e�ect size we detected in our local single center

cohort (0.2). The distribution of CVa across all ROIs was plotted adjacent to the power curves

(Figure 3.7) to understand how many ROIs would need to be calibrated for each case. Finally, figures

3.4, 3.5, and 3.6 show the scaling factors from the calibration between two scanners with di�erent

sequences at UCSF. Scaling factors derived from the healthy controls (HC) and MS subjects were

identical for subcortical gray matter volume (1.05) and very similar for cortical gray matter volume

(1, 1.002 for HC, MS) and white matter volume (.967, .975 for HC, MS).

3.5 Discussion

In this study we proposed a statistical model based on on the physics of MRI volumetric biases

using the key assumption that biases between sites are scaled linearly. Variation in scaling factors

could explain why a study may estimate di�erent e�ect sizes based on the pulse sequence used. For

example, [84] found significant e�ects of RF head coils, pulse sequences, and resolution on VBM

results. The estimation of scaling factors in our model depends on good scan-rescan reliability. In

our study, scan-rescan reliabilities for each scanner were generally > 0.8 for Freesurfer-derived
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regional volumes. Volumes of cortex, cortical gray, subcortical gray, and cortical white matter

parcellation had greater than 90% reliability for all 20 sites. The subcortical regions and estimated

total intracranial volume had an average reliability of over 89%, however, some sites had much

lower scan-rescan reliability. For example, the thalamus at sites 3 and 16 had test-retest reliabilities

between 41 and 63 %. This could be explained by the visual quality control process of the segmented

images, which focused on the cortical gray matter segmentation and the initial standard space

registration only, due to time restrictions. Visually evaluating all regional segmentations may be

unrealistic for a large multisite study. On the other hand, Jovicich and colleagues [85] reported

a low within-site ICC of the thalamus across sessions (0.765 ± 0.183) using the same freesurfer

cross-sectional pipeline as this study. The poor between-site reliability (61%) of the thalamus is

consistent with findings from [86], in which a multisite VBM analysis showed poor consistency in

that region. Other segmentation algorithms may be more robust for subcortical regions in particular.

Using FSL’s FIRST segmentation algorithm, Cannon and colleagues [54] report a between-site

ICC of the thalamus of 0.95, compared to our calibrated between-site ICC of 0.78. FSL’s FIRST

algorithm [87] uses a Bayesian model of shape and intensity features to produce a more precise

segmentation. Nugent and colleagues reported the reliability of the FIRST algorithm across 3

platforms. Their study of subcortical ROIs found a good scan-rescan reliability of 83%, but lower

between-site ICCs ranging from 57% to 93% [88]. The LEAP algorithm proposed by Wolz and

colleagues [89] was shown to be extremely reliable with strong ICCs > 0.97 for hippocampal

segmentations [67]. Another factor not accounted for in our segmentation results was the e�ect of

partial voluming, which adds uncertainty to tissue volume estimates. In [90], researchers developed

a method to more accurately estimate partial volume e�ects using only T1-weighed images from

the ADNI dataset. This approach resulted in higher classification accuracy between Alzheimer’s

disease (AD) patients and mild cognitively impaired (MCI) patients from normal controls (NL).

Designing optimized pipelines that are robust for each site, scanner make, and metric, is outside

the scope of this paper. However, Kim and colleagues have developed a robust technique for tissue

classification of heterogeneously acquired data that incorporates iterative bias field correction,
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registration, and classification [91]. Wang and colleagues developed a method to reduce systematic

errors of segmentation algorithms relative to manual segmentations by training a wrapper method

that learns spatial patterns of systematic errors [92]. Methods such as those employed by Wang

and colleagues may be preferred over standard segmentation pipelines when data acquisition is not

standardized. Due to its wide range of acquisition parameters and size of the dataset, our approach

could be used to evaluate such generalized pipelines in the future.

The above derivation of power for a multisite study defines hard thresholds for the amount of

acceptable scaling factor variability (CVa) using scaled, systematic error from MRI. Many factors

contribute to the CVa cut-o�, such as the total number of subjects, total number of sites, e�ect

size, and false positive rate. In Figure 3.7, we show the distribution of experimental CVa values

across all Freesurfer aseg ROIs to reference while comparing power curves of various sample

sizes. The maximum CVa value is 9% which, with enough subjects and sites, falls well below the

maximum acceptable CVa value. However, with the minimum number of subjects and sites, the

power curves of figure 3.7 show that the maximum acceptable CV↵ must be below 5% for 80%

power. If we minimize the total number of subjects to 2260 for the 20 sites in our study, the CVa

of the amygdala does not meet this requirement (see table 3.5). One option to address this is to

harmonize protocols, which may reduce CVa values below those estimated from our sites such that

they satisfy the maximum CVa requirement. The other option is to recruit more subjects per site.

The number of additional subjects needed to overcome a large CVa can be estimated using our power

equation. In the case of the parameters defined in figure 3.7 (a small e�ect size of 0.2, false positive

rate of 0.002), 40 additional subjects beyond the initial 2260 are needed to adequately power the

study. This is easily visualized in figure 3.7: the point on the curve for the initial 2260 subjects over

20 sites lies below the harmonization zone, while that of 2300 total subjects lies above. The number

of additional subjects needed to achieve an adequately powered multisite study depends on e�ect

sizes, false positive rates, power requirements, and site-level sample size.

We have validated our scaling factors by demonstrating that a leave-one-out calibration resulted
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in increased absolute agreement between sites compared to the original, uncalibrated values for

44 out of 46 ROIs studied. Tables 3.6 and 3.7 compare these calibrated and original values to the

ICC findings of other harmonization e�orts. Table 3.6 compares our between-site ICCs before and

after scaling factor calibration to those of [54]. [54] used a cortical pattern matching segmentation

algorithm [93] for the cortical ROIs and FSL’s FIRST algorithm for the subcortical ROIs. The

between-site ICC for gray matter volume (GMV) for our study was 0.78 while [54] reported an ICC

of 0.85. This di�erence could be explained by the harmonization of scanners in [54]. After using

the scaling factors to calibrate GMV, the between-site ICC increased to 0.96, indicating that the

estimated CVa of GMV (4%) is an accurate representation of the true between-site bias variability.

Scaling calibration of the hippocampus also outperformed the between-site ICC of [54] (0.84 versus

0.79), validating the CVa estimate of 3% for both hemispheres. For the amygdala and caudate

volumes, scaling calibration showed improvement to nearly the same value as [54]. The amygdala

increased from 0.54 to 0.74 (versus 0.76 in the [54]), and the ICC of the caudate increased from 0.82

to 0.91 (versus 0.92 in the [54]). The CVa of the left and right amygala were the highest in our study,

at 7 and 9 percent, respectively. The most extreme asymmetry in the scaling factors was between

the left and right caudate (2% and 7%, respectively), which demonstrates regional contrast to noise

variation. Even after scaling factor calibration, the between-site ICC produced by our approach

varied widely from that of [54] in two ROIs. The between-site ICC of white matter volume (WMV)

was very high (0.96 versus 0.774) and that of thalamus volume was very low (.61 versus .95),

compared to [54]. This could be due to di�erences algorithm di�erences (FIRST vs. Freesurfer). It

should also be noted that the scan-rescan reliability of the thalamus was particularly low in some

sites, which propagated errors to scaling factor estimates. Therefore, the 5% CVa estimate for the

thalamus in both hemispheres may not be reproducible and would need to be recalculated using a

di�erent algorithm.

Table 3.7 shows comparisons of our within-site ICCs to the average within-site ICCs reported by

[85]. Similar to our study, scanners were not strictly standardized and the freesurfer cross-sectional

algorithm was run. All within site ICCs (both before and after scaling factor calibration) fall within

27



the range described by [85], including the thalamus. Our last attempt to validate this statistical

model and accompanying scaling factor estimates was to simulate multisite data using scaling factor

estimates and their residual error from the estimate. We found that the power curves align closely,

and match when power is at least 80%. We believe that the small deviations from the theoretical

model result from scaling factor estimation error and a non-normal scaling factor distribution due to

a relatively small sampling of scaling factors (J = 20 sites).

The data acquisition of our study is similar to that of [94], in which the researchers acquired

T1-weighted images from 8 consistent human phantoms across 5 sites with non-standardized

protocols. These scanners were all 1.5T except for one 1T scanner. [94] calibrated the intensity

histograms of the images before segmentation with a calibration factor estimated based on the

absolute agreement of volumes to the reference site (ICC). After applying their calibration method,

the ICC of the lateral ventricle was � 0.96, which is similar to our pre- and post- calibrated result of

0.97. The ICC for the intensity calibrated gray matter volume in [94] was � 0.84, compared to our

calibrated between-site ICC of 0.78 (uncalibrated), and 0.96 (calibrated). Our between-site ICCs for

white matter volume (0.96 and 0.98 for the pre- and post- calibrated volumes, respectively) were

much higher than those of the intensity calibrated white matter volume in [94] (� .78). This could

be explained by the fact that our cohort of sites is a consortium studying multiple sclerosis, which is

a white matter disease, so there may be a bias toward optimizing scan parameters for white matter.

Most importantly, the calibration method of [94] requires re-acquisition of a human phantom cohort

at each site for each multisite study. Alternatively, multisite studies employing our approach can use

the results of our direct-volume calibration (the estimates of CVa for each ROI) to estimate sample

sizes based on our proposed power equation and bias measurements without acquiring their own

human phantom dataset to use in calibration.

To our knowledge, this is the first study measuring scaling factors between sites with non-standardized

protocols using a single set of subjects, and deriving an equation for power that takes this scaling

into account via mixed modeling. This study builds on the work of [77], which investigated the
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feasibility of pooling retrospective data from three di�erent sites with non-standardized sequences

using standard pooling, mixed e�ects modeling, and fixed e�ects modeling. [77] found that mixed

e�ects and fixed e�ects modeling outperformed standard pooling. Our statistical model specifies

how MRI bias between sites a�ects the cross-sectional mixed e�ects model, so it is limited to

powering cross-sectional study designs. Jones and colleagues have derived sample size calculations

for longitudinal studies acquired under heterogeneous conditions without the use of calibration

subjects [95]. This can be useful for studies measuring longitudinal atrophy over long time periods,

during which scanners and protocols may change. For the cross-sectional case, the use of random

e�ects modeling enables us to generalize our results to any protocol with acquisition parameters

similar to those described here (primarily MPRAGE). If protocols change drastically compared to

our sample of 3D MPRAGE-type protocols, a small set of healthy controls should be scanned before

and after any major software, hardware, or protocol change so that the resulting scaling factors can

be compared to the distribution of scaling factors (CVa) reported in this study. A large CVa can

severely impact the power of a multisite study, so it is important not to generalize the results in this

study to non-MPRAGE sequences without validation. Potentially, new 3D-printed brain-shaped

phantoms with similar regional contrast to noise ratios as human brains may become an excellent

option for estimating CVa.

A limitation of our model is the assumption of independence between the unobserved e�ect (DU, j)

at a particular site , j, with the scaling factor of that site (aj). This assumption does not hold if

patients with more severe disease have tissue with di�erent properties that, when scanned, shows

di�erent regional contrast than that of healthy controls. As shown in the Appendix, the calculation

of the unconditional variance of the observed estimate (equation 3.7) can get quite complicated. We

addressed this issue for multiple sclerosis patients by showing that the scaling factors from healthy

controls are very similar to those derived from an MS population. The largest di�erence in scaling

factors between healthy controls and multiple sclerosis patients was in white matter volume, where

aMS = 0.967 and aHC = 0.975. A two-sample T test between the scaling factors produced a p-value

of 0.88, showing that we could not detect a significant di�erence between scaling factors of HC and
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MS. This part of the study was limited in that we only scanned MS patients at two scanners, while

the healthy controls were scanned at 20, so we could not estimate a patient-derived CVa (the direct

input to the power equation). However, the similarity between scaling factors for the subcortical gray

matter, cortical gray matter, and white matter volumes between the MS and HC populations suggests

that, given careful editing of volumes in the disease population, the independence assumption holds

for MS. We recommend that researchers studying other diseases validate our approach by scanning

healthy controls and patients before and after an upgrade or sequence change to test the validity of

the independence assumption.

Even though we did not standardize the protocols and scanners within this study, the consortium is

unbalanced in that there are 16 3T scanners, 11 of which are Siemens. Of the Siemens 3T scanners,

there is little variability in TR, TE, and TI, however, there is more variance in the use of parallel

imaging, the number of channels in the head coil (12, 20 or 32), and the field of view. Similar to the

findings of [96], we could not detect di�erences in scan-rescan reliability between field strengths.

Wolz and colleagues could not detect di�erences in scan-rescan reliabilities of the hippocampus

volumes estimated by the LEAP algorithm, but they detected a small bias between field strengths.

They found that the hippocampus volumes measured from the 3T ADNI scanners were 1.17 %

larger than those measured from the 1.5T [67]. A two-sample T-test with unequal variances was run

between the scaling factors of the 1.5T versus 3T scanners. This test could not detect di�erences in

any ROI except for the left- and right- amydgala. We found that the scaling factors were lower for

the 1.5T scanners than for the 3T scanners (0.9 versus 1.02), suggesting that the amygdala volume

estimates from the 1.5T were larger than those of the 3T. It should be noted that this interpretation is

limited due to the small sample size of 1.5T scanners in this consortium.

Another limitation of this study is that we were under-powered to accurately estimate both the scaling

and intercept for a linear model between two sites, and that we did not take the intercept into account

when deriving power. We excluded the intercept from our analysis for two reasons: (1) we believe

that the nature of systematic error from MRI segmentation is not additive, meaning that o�sets in
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metrics between sites for di�erent subjects is scaled with ROI size instead of a constant additive

factor and (2) the model becomes more complicated if site-level e�ects are both multiplicative and

additive. The other limitation of this study is that we assumed that subjects across all sites will come

from the same population, and that stratification occurs solely from systematic errors within each

site. In reality, sites may recruit from di�erent populations and the true disease e�ect will vary even

more. For example, in a comparison study between the matched ADNI cohort and a matched Mayo

Clinic Study of Aging cohort, researchers found di�erent rates of hippocampal atrophy even though

no di�erences in hippocampal volume was detected [97]. This could be attributed to sampling from

two di�erent populations. This added site-level variability requires a larger site-level sample size,

for an example of modeling this, see [98].

In this study, we reported reliability using both between-site ICC and CVa because these two metrics

have complementary advantages. ICC depends on the true subject-level variability studied. Since

we scanned healthy controls, our variance component estimates of subject variability may be lower

than that of our target population (patients with multiple sclerosis related atrophy). As a result, ICCs

may be lower than expected in MS based on the results of healthy controls. We tried to address this

issue by scanning subjects in a large age range, capturing the variability in gray and white matter

volume due to atrophy from aging. On the other hand, CVa is invariant to true subject variability,

but is limited by the accuracy of between-site scaling estimates. Both between-site ICC and CVa

should be reported when evaluating multisite reliability datasets to understand a given algorithm’s

ability to di�erentiate between subjects (via the ICC) and the magnitude of systemic error between

sites (via the CVa), which could be corrected using harmonization.

3.6 Conclusion

When planning a multisite study, there is an emphasis on acquiring data from more sites because the

estimated e�ect sizes from each site are sampled from a distribution and averaged. Understanding

31



how much of the variance in the distribution is due to scanner noise as opposed to population

heterogeneity is an important part of powering a study. For the purposes of this study, we estimated

the e�ect size variability of Freesurfer-derived regional volumes, but this framework could be

generalized to any T1-weighted segmentation algorithm, and any modality for which systematic

errors are scaled. Scaling factor calibration of metrics resulted in higher absolute agreement of

metrics between sites, which showed that the scaling factor variabilities for the ROIs in this study

were accurate. The equation for power we outlined in this study along with our measurements

of variability between sites should help researchers undestand the trade-o� between protocol

harmonization and sample size optimization, along with the choice of outcome metrics. Our

statistical model and bias measurements enables collaboration between research institutions and

hospitals when hardware and software adaptation are not feasible. We provide a comprehensive

framework for assessing and making informed quantitative decisions for MRI facility inclusion,

pipeline and metric optimization, and study power.

3.7 Acknowledgements

We thank the study participants, MR technicians, and acknowledge Stephane Lehéricy, Eric Bardinet,

Frédéric Humbert and Antoine Burgos from the ICM IRM facility (CENIR) and the CIC Pitié-

Salpêtrière for their expertise. Funding was provided by R01 NS049477. Additional support was

provided by ICM F-75013 Paris, INSERM and IHU-A-ICM (ANR-10-IAIHU-06). BD is a Clinical

Investigator of the Research Foundation Flanders (FWO-Vlaanderen). AG and BD are supported by

the Research Fund KU Leuven (OT/11/087) and the Research Foundation Flanders (G0A1313N).

MRI acquisitions in Hospital Clinic of Barcelona were funded by a "Proyecto de Investigación en

Salut" grant (PI15/00587. PIs Albert Saiz and Sara Llufriu) from the Instituto de Salud Carlos III.

3.8 Tables

32



1 2 3 4

TR (ms) 8.18 7.10 2130 2080
TE (ms) 3.86 3.20 2.94 3.10
Strength (T) 1.50 1.50 1.50 1.50
TI (ms) 300 862.90 1100 1100
Flip Angle (�) 20 8 15 15
Make GE Ph Si Si
Voxel Size (mm) .94x.94x1.2 1x1x1 1x1x1 .97x.97x1
Distortion Correction N N N Y
Parallel Imaging - 2 2 -
FOV (mm) 240x240x200 256x256x160 256x256x176 234x250x160
Read Out Direction HF AP HF HF
Head coil # channels 2* 8 20 12
Model Signa LX Achieva Avanto Avanto
OS 11x 2.50 VD13B B17A
Acq. Time (min) 06:24 05:34 04:58 08:56
orientation sag sag sag sag
# scans 24/24 24/24 24/24 18/18

Amyg (L) .93 .89 .61 .96
Amyg (R) .93 .90 .83 .88
Caud (L) .96 .96 .98 .99
Caud (R) .96 .97 .90 .96
GMV .96 .99 .98 .99
Hipp (L) .94 .95 .89 .93
Hipp (R) .93 .91 .94 .95
Thal (L) .77 .93 .59 .82
Thal (R) .91 .90 .76 .82
cVol .95 .99 .97 .99
cWMV .99 1 .99 .99
eTIV 1 1 1 1
scGMV .98 .97 .98 .93

Table 3.1: Top: Acquisition parameters for the four 1.5T scanners. Si = Siemens, Ph = Philips,
GE= General Electric. Bottom: Test-retest reliabilities for selected ROIs, processed by
Freesurfer. The ROIs are gray matter volume (GMV), subcortical gray matter volume
(scGMV), cortex volume (cVol), cortical white matter volume (cWMV), and the volumes
of the lateral ventricle (LV), amygdala (Amyg), thalamus (Thal), hippocampus (Hipp),
caudate (Caud), and finally the estimated total intracranial volume (eTIV). Test-retest
reliability is computed as within-site ICC(1,1). * signifies a quadrature coil
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5 6 7 8 9

TR (ms) 8.21 7.80 9 8.21 6.99
TE (ms) 3.22 2.90 4.00 3.81 3.16
Strength (T) 3 3 3 3 3
TI (ms) 450 450 1000 1016.30 900
Flip Angle (�) 12 12 8 8 9
Make GE GE Ph Ph Ph
Voxel Size (mm) .94x.94x1 1x1x1.2 1x1x1 1x1x1 1x1x1
Distortion Correction N Y Y Y Y
Parallel Imaging 2 2 3 2 -
FOV (mm) 240x240x172 256x256x166 240x240x170 240x240x160 256x256x204
Read Out Direction HF FH AP FH FH
Head coil # channels 8 8 16 32 8
Model MR750 Signa HDxt Achieva Achieva TX Intera
OS DV24 HD23.0_V01_1210a 3.2.3.2 5.1.7 3.2.3
Acq. Time (min) 5:02 7:11 05:55 05:38 08:30:00
orientation sag sag sag sag sag
# scans 24/24 24/24 24/24 24/24 21/22

Amyg (L) .67 .89 .66 .85 0.97
Amyg (R) .88 .79 .91 .94 0.94
Caud (L) .96 .98 .98 .97 0.98
Caud (R) .95 .96 .98 .93 0.96
GMV 1 .99 .99 .98 0.99
Hipp (L) .51 .97 .83 .90 0.99
Hipp (R) .95 .96 .93 .96 0.99
Thal (L) .97 .81 .94 .80 0.88
Thal (R) .70 .87 .96 .96 0.97
cVol .99 .99 .98 .98 0.99
cWMV 1 .99 1 1 1.00
eTIV 1 1 1 .92 0.99
scGMV .98 .99 .96 .98 0.99

Table 3.2: Top: Acquisition parameters for the 3T Philips and GE scanners. Ph = Philips, GE=
General Electric. Bottom: Test-retest reliabilities for selected ROIs, processed by
Freesurfer. The ROIs are gray matter volume (GMV), subcortical gray matter volume
(scGMV), cortex volume (cVol), cortical white matter volume (cWMV), and the volumes
of the lateral ventricle (LV), amygdala (Amyg), thalamus (Thal), hippocampus (Hipp),
caudate (Caud), and finally the estimated total intracranial volume (eTIV). Test-retest
reliability is computed as within-site ICC(1,1)

34



10 11 12 13 14 15

TR (ms) 2300 2300 2300 2300 2300 2000
TE (ms) 2.96 2.98 2.98 2.96 2.96 3.22
Strength (T) 3 3 3 3 3 3
TI (ms) 900 900 900 900 900 900
Flip Angle (�) 9 9 9 9 9 8
Make Si Si Si Si Si Si
Voxel Size (mm) 1x1x1 1x1x1.1 1x1x1 1x1x1 1x1x1 1x1x1
Distortion Correction Y N Y Y Y N
Parallel Imaging 2 - 2 2 2 2
FOV (mm) 256x256x176 240x256x176 240x256x176 240x276x156 256x256x176 256x208x160
Read Out Direction HF RL HF HF HF RL
Head coil # channels 20 32 20 20 20 32
Model Prisma Prisma fit Skyra Skyra Skyra Skyra
OS D13D VD13D VD13 VD13 VD13C VD13
Acq. Time (min) 05:09 07:46 05:12 05:12 05:09 04:56
orientation sag sag sag sag sag ax
# scans 22/22 24/24 25/25 23/24 23/24 22/22

Amyg (L) .83 .89 .80 .85 .98 .89
Amyg (R) .94 .92 .93 .85 .93 .84
Caud (L) .99 .99 .98 .99 .98 .98
Caud (R) .99 .96 .95 .95 .98 .97
GMV .99 .98 .99 1 .99 .97
Hipp (L) .94 .98 .99 .95 .97 .98
Hipp (R) .91 .94 .97 .98 .95 .96
Thal (L) .92 .87 .87 .76 .91 .89
Thal (R) .74 .93 .80 .91 .93 .89
cVol .99 .98 .98 1 .99 .96
cWMV 1 1 1 1 1 .97
eTIV 1 1 1 1 1 .97
scGMV .98 .99 .98 .98 .99 .99

Table 3.3: Top: Acquisition parameters for the 3T Siemens (Si) Skyra and Prisma scanners. Bottom:
Test-retest reliabilities for selected ROIs, processed by Freesurfer. The ROIs are gray
matter volume (GMV), subcortical gray matter volume (scGMV), cortex volume (cVol),
cortical white matter volume (cWMV), and the volumes of the lateral ventricle (LV),
amygdala (Amyg), thalamus (Thal), hippocampus (Hipp), caudate (Caud), and finally
the estimated total intracranial volume (eTIV). Test-retest reliability is computed as
within-site ICC(1,1)
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16 17 18 19 20

TR (ms) 2300 2150 1900 1900 1800
TE (ms) 2.98 3.40 3.03 2.52 3.01
Strength (T) 3 3 3 3 3
TI (ms) 900 1100 900 900 900
Flip Angle (�) 9 8 9 9 9
Make Si Si Si Si Si
Voxel Size (mm) 1x1x1 1x1x1 1x1x1 1x1x1 .86x.86x.86
Distortion Correction N N N N N
Parallel Imaging 2 2 2 2 2
FOV (mm) 256x256x176 256x256x192 256x256x176 256x256x192 220x220x179
Read Out Direction HF RL AP FH FH
Head coil # channels 12 12 12 32 32
Model Trio Trio Trio Trio Trio
OS MRB17 VB17 VB17A VB17 MRB19
Acq. Time (min) 05:03 04:59 04:26 05:26 06:25
orientation sag ax sag sag sag
# scans 24/24 23/24 23/24 24/24 24/24

Amyg (L) .55 .88 .77 .88 .91
Amyg (R) .85 .93 .81 .94 .93
Caud (L) .99 .95 .97 .97 .97
Caud (R) .97 .92 .98 .91 .95
GMV .99 .99 .98 .99 1
Hipp (L) .71 .96 .94 .93 .96
Hipp (R) .94 .94 .92 .83 .96
Thal (L) .45 .85 .80 .80 .88
Thal (R) .61 .95 .85 .96 .79
cVol .99 .98 .96 .99 1
cWMV 1 .99 .99 1 1
eTIV .97 1 1 1 1
scGMV .98 .98 .98 .98 .98

Table 3.4: Top: Acquisition parameters for 3T Siemens (Si) Trio scanners. Bottom: Test-retest
reliabilities for selected ROIs, processed by Freesurfer. The ROIs are gray matter volume
(GMV), subcortical gray matter volume (scGMV), cortex volume (cVol), cortical white
matter volume (cWMV), and the volumes of the lateral ventricle (LV), amygdala (Amyg),
thalamus (Thal), hippocampus (Hipp), caudate (Caud), and finally the estimated total
intracranial volume (eTIV). Test-retest reliability is computed as within-site ICC(1,1)
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CVa

variable
LV (L) 0.03
LV (R) 0.03
cWMV 0.02
cVol 0.04
scGMV 0.02
GMV 0.04
Caud (L) 0.02
Caud (R) 0.07
Amyg (R) 0.09
Amyg (L) 0.07
Hipp (L) 0.03
Hipp (R) 0.03
Thal (L) 0.05
Thal (R) 0.05

Table 3.5: Coe�cient of variability (CVa) values for selected ROIs. CVa was defined in equation
3.14. The ROIs are gray matter volume (GMV), subcortical gray matter volume (scGMV),
cortex volume (cVol), cortical white matter volume (cWMV, which does not include
cerebellar white matter), and the volumes of the lateral ventricle (LV), amygdala (Amyg),
thalamus (Thal), hippocampus (Hipp), caudate (Caud), and finally the estimated total
intracranial volume (eTIV)

ROI ICC BW ICC BW Cal [54] ICC BW

GMV .78 .96 .854
WMV .96 .98 .774
Thal .61 .73 .95
Hipp .75 .84 .79
Amyg .56 .74 .76
Caud .82 .91 .92

Table 3.6: Between-site ICC comparison to the study by [54], where MRI sequences were standard-
ized and subcortical segmentation was performed using FIRST, and cortical segmentation
using cortical pattern matching. ICC BW and ICC BW Cal were calculated using our
multisite healthy control data, where ICC BW Cal was calculated as the between site ICC
of volumes after applying the scaling factor from a leave-one-out calibration. Other than
the thalamus (Thal), we found that the between-site ICCs were comparable to [54] for the
amygdala (Amyg), caudate (Caud), and even higher for the hippocampus (Hipp), gray
matter volume (GMV) and white matter volume (WMV)
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ROI ICC WI ICC WI Cal [85] ICC WI Average

LV 1 1 .998 ± 0.002
Thal .86 .84 0.765 ± .183
Hipp .93 .93 0.878 ± .132
Amyg .89 .86 0.761 ± .134
Caud .97 .97 0.909 ± 0.092

Table 3.7: Comparing the within-site ICC before and after leave-one-out scaling factor calibration
with the cross-sectional freesurfer results of [85], where scanners were standardized, and
the average within-site ICC is shown. The within-site ICCs of our study fall within the
range of [85], which shows the that sites in this study are as reliable as those in [85].
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3.9 Figures

Figure 3.1: A. Power contours for total number of subjects (nJ) over various e�ect sizes (d), p=
0.002, CVa = 5%. B. # of sites required for e�ect sizes and # subjects per site (n). C
e�ect of CVa on # sites for various e�ect sizes, where n = 200 subjects per site

Figure 3.2: Leave-one-out calibration improvement on within- (WI) and between- (BW) site ICCs
for gray matter volume (GMV), subcortical gray matter volume (scGMV), cortex volume
(cVol), cortical white matter volume (cWMV), lateral ventricle (LV), Thalamus (Thal),
Hippocampus (Hipp), Amygdala (Amyg), Caudate (Caud)
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Figure 3.3: Theoretical power vs. simulated power with scaling factor uncertainty

Figure 3.4: Sub-cortical gray matter volume (scGMV) calibration between 2 scanners/sequences at
UCSF. The trendline fit shows the slopes (scaling factors) are identical for the healthy
control and MS populations
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Figure 3.5: Cortex gray matter volume (cVol) calibration between 2 scanners/sequences at UCSF.
The trendline fit shows the slopes (scaling factors) are very close for the healthy control
and MS populations
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Figure 3.6: White matter volume (WMV) calibration between 2 scanners/sequences at UCSF. The
trendline fit shows the slopes (scaling factors) are very close for the healthy control and
MS populations
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Figure 3.7: Shows power curves for 80% power for 2260 - 3000 total subjects, where the false
positive rate is 0.002, and the e�ect size is 0.2. The lowest point of each curve shows the
minimum number of sites required for a given number of subjects on the x-axis and the
y-axis corresponds to the maximum acceptable coe�cient of variability (CVa, defined in
3.14) for that case. The right-hand side of the chart shows the distribution of CVa values
across all sites and all Freesurfer ROIs. When minimizing the total number of sites for
a set number of subjects, the maximum allowable CVa is around 5%, meaning that if
the CVa is higher than 5% for a particular ROI, the power of the model will fall below
80%. The shaded section on the bottom of the chart called the "Harmonization Zone"
which indicates the regions of the graph where the maximum acceptable CVa is below
the largest CVa across all freesurfer ROIs (which is the right amygdala at 9%). If site-
and subject- level sample sizes fall within the harmonization zone, e�orts to harmonize
between sites is required to guarantee power for all ROIs.
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3.10 Appendix

3.10.1 Variance of a Product of Random Variables

The proof for this is found in Introduction to the Theory of Statistics (1974) by Mood, Graybill and

Boes [99], section 2.3, Thoerem 3:

Let X and Y be two random variables where var[XY ] exists, then

var[XY ] = µ2Yvar[X] + µ2Xvar[Y ] + 2µX µY cov[X,Y ]

�(cov[X,Y ])2 + E[(X � µX)2(Y � µY )2]

+2µY E[(X � µX)2(Y � µY )] + 2µX E[(X � µX)(Y � µY )2]

(3.17)

which can be obtained by computing E[XY ] and E[(XY )2] when XY is expressed as

XY = µX µY + (X � µX)µY + (Y � µX)µX + (X � µX)(Y � µY ) (3.18)

If X and Y are independent, then E[XY ] = µX µY , the covariance terms are 0, and

E[(X � µX)2(Y � µY )2] = E[(X � µX)2]E[(Y � µY )2] = var[X]var[Y ] (3.19)

and

µY E[(X � µX)2(Y � µY )] = E[(X � µX)2]E[(Y � µY )] = 0 (3.20)

µX E[(Y � µY )2(X � µX)] = E[(Y � µY )2]E[(X � µX)] = 0 (3.21)
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Which gives

var[XY ] = µ2Xvar[Y ] + µ2Yvar[X] + var[X]var[Y ] (3.22)

3.10.2 Maximum Likelihood

Note that the estimator defined in 3.9 is a maximum likelihood estimator under the condition of

equal unexplained variance at each site and an equal number of subjects at each site. In the case with

di�erent number of subjects at each site, the maximum likelihood estimator for the disease e�ect,

�̂10, is not the average of the site-level coe�cients, but instead is the average weighted by the inverse

error variance. This is a common method to run meta-analyses, for example, see [98, 59]. To show

this, we follow the procedure from [98], and define the likelihood of the alternate hypotheses as

L1 =
÷

j

1q
2⇡a2j Vj

exp
⇣�(�1 j � µ)2

2a2j Vj

⌘
(3.23)

for a non-zero µ and Vj defined as the unscaled error variance on �̂1, j . The maximum likelihood

estimator µ̂ is found by taking the derivative of the log of (3.23), setting it equal to 0, and solving for

µ,

@

@µ

⇣
log(L1)

⌘
=
@

@µ

⇣ J’
j

log( 1q
2⇡a2j Vj

) +
J’
j

(�1 j � µ)2

2a2j Vj

⌘
= 0 =) µ̂ =

JÕ
j

a�2j V�1
j �1 j

JÕ
j

a�2j V�1
j

(3.24)

which shows that the inverse variance weighted average is the maximum likelihood estimator for the

overall treatment e�ect. If we assume that the unexplained variance (�0) is the same across all sites,

which is a valid assumption if subjects are from the same population, the estimate can be expressed
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as

�̂10 =

JÕ
j=1

nj �̂1 j

N
=

�10
JÕ

j=1
njaj

N
(3.25)

where N =
JÕ

nj is the total number of subjects in the study. The variance of the estimate is

var(�̂10) =
�20↵

2
0

N2

J’
j=1

4nj + CV2
↵ (4nj + �

2n2j ) (3.26)

and it follows that the noncentrality parameter is

� =

�2
⇣ JÕ

j=1
nj

a
j

µ
a

⌘2
JÕ

j=1
4nj + CV2

a (4nj + �2n2j )
(3.27)

which should be used for a more accurate power analysis if the specific number of subjects per site

and the site’s scaling factors are known.
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4 PBRain- A Framework for the Curation

and Execution of Neuroimaging Analyses

4.1 Introduction

Neuroimaging has helped us probe important questions about the brain, like the structure-function

relationship and how the brain is a�ected by neurological and psychiatric illnesses. Given the large

variability in brain structure across the population, studies must sample large numbers of people,

and this presents many challenges associated with "big data". First, studies take a long time to

complete, with multiple people working on data at di�erent times. Data organization structures vary

from person to person, along with in-house scripts configured for particular, non-standardized file

structures. Next, datasets consist of multiple modalities in complex formats, which may change

throughout the course of the study. Analyses scripts are structured with di�erent programming styles,

often in di�erent programming languages, and are saved in no particular standard structure within

the file system. Commenting style varies from person to person; some analyses scripts are sparsely

commented, making it di�cult for new people to learn and adapt scripts for di�erent use cases.

Neuroimaging processing steps are quite complex and require multiple steps that are dependent on

each other; as such, it is di�cult to know which scripts depend on others being run first, without

proper consistent documentation. Finally, the provenance of files written to the filesystem is unclear

when there is no standardized folder structure or naming convention for neuroimaging outputs.
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Lack of a standardized organization scheme for 1) raw data, 2) processed data, 3) the location of

analyses scripts, and 4) the internal organization and comment level of analyses scripts leads to many

ine�ciencies that hinder scientific progress in the neuroimaging field. Time is wasted re-writing

scripts and reorganizing data. There is a high learning curve to editing scripts, which is particularly

problematic in multi-disciplinary labs with members from backgrounds that don’t include formal

computer science training (psychologists, radiologists, etc). This leads to di�culties in transferring

knowledge to newer lab members, which is important given that most research labs have a high

turnover rate of research assistants and PhD students. It becomes di�cult to collaborate and transfer

knowledge outside of the lab, which is problematic for multisite neuroimaging studies that need

to share data and analyses scripts. As the open-data movement continues to gain popularity, it is

di�cult to incorporate this data into local analyses within the lab when file organization structures

are so di�erent. This lack of consistency in file and analysis organization structure increases the

likelihood of errors and data loss. An ideal solution would 1) minimize data curation time 2)

minimize the likelihood of errors and data loss 3) minimize the learning curve for running basic

analyses 4) separate data input/output (IO) from analyses scripts, so that analyses can be run on data

that is organized di�erently, 5) standardize code and comment structure to make it easy for people

to collaborate on analyses, and 6) enforce analysis script dependencies in order to reduce time spend

debugging errors.

Neuroinformatics researchers have begun to address these "big data" problems, mostly in the

functional MRI domain. In 2012, I wrote BrainImagingPipelines [100, 101], which was an

open-source framework that provided curated and configurable data analysis pipelines for structural,

functional, and di�usion imaging analyses. This framework was used by other researchers to design

sparse-sampling methods for fMRI analyses [102], and to study reading [103], the default mode

functional network [104], memory perception [105], and working memory [106] in adolescents.

Soon after, the Configurable Pipeline for the Analysis of Connectomes (CPAC) was released [107],

which consists of a set of workflows to analyze the brain connectome. In 2016, a standardized data

organization structure to enable easier data sharing was proposed, as a more generalized extension

48



of the OpenfMRI project[108] called Brain Imaging Data Structure [109]. As a follow up to BIDS,

a set of pipelines was developed to analyze BIDS-compliant data in an August 2016 code-sprint that

I participated in, which resulted in the collection of BIDS-Apps [110].

My work is focused on the clinical, multiple sclerosis use-case rather than fMRI. I present PBRain,

which is a framework for the curation and execution of neuroimaging analyses. PBRain requires

defining and enforcing the organization of 1) raw data 2) processed data, and 3) analyses code.

The structure of the analyses code is standardized through the Nipype python library [53], and

dependencies between workflows is defined as attributes to each PBRain workflow. Finally, version

control is accomplished using git and GitHub, so that changes are always traced. This has led to

a multidisciplinary collaboration between clinicians, research assistants, and software engineers

in the radiology, neurology, and neurosurgery domains. For example, the pipeline developed by

Kesshi Jordan to evaluate the functional consequences of brain tumor resection was integrated into

the PBRain platform for easy reproducibility. Finally, the software is easy to install and configure in

di�erent computing environments, and has been run on the UCSD compute cluster. The following

sections outline the design decisions, the implementation details, current pipeline implementations,

and a discussion on the implications and future directions of the PBrain software package.

4.2 Design Requirements and Solutions

4.2.1 Input and Output (IO)

IO is often a major bottleneck of large neuroimaging analyses, because di�erent scripts assume a

certain file organization structure, and it can be di�cult to separate the IO logic from the analysis

logic. The first design requirement was to write code in a modular way such that the file IO handling

was separated from the actual pipeline mechanics. This modularization enables us to switch data

organization structure without interfering with the analysis, and results in code that is much more

organized and easier to understand. Next, dependencies between analyses must be explicitly defined
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in the structure of the code, so that the software can automatically run any prerequisite analyses.

Finally, workflow output structure needs to be explicitly defined and documented in the class, so that

collaborators easily understand the nature of the files and how to locate them. Additionally, worflow

outputs should be named in a way that is easy to trace back to the original file. This provenance

information is saved in 2 ways: 1) by propagating the original filename throughout all outputs, and

2) by using Nipype’s [53] built-in provenance tracking.

Figure 4.1A shows the PBrain interface class consists of 4 sections, the inputs, connections,

run method, and outputs. Workflow autoassembly(figure 4.1B) is a natural result of this class

specification. The IO structure of inputs/outputs is shown in figure 4.1AC and 4.1AD.

4.2.2 Collaboration

Keeping track of analysis code and outputs is essential for collaboration, and error checking. PBR is

version controlled using Git, and hosted privately on Github. Git enables users to revert to previous

versions of code, which is useful in tracking errors. Github allows users to post questions and

have discussions on the "issues" page, and perform "code reviews". Documentation is crucial for

e�cient collaboration, and is implemented via the Sphinx python library, which can automatically

generate documentation from class and function docstrings. Consistent code structure is needed to

collaborate, as this reduces the di�culty in reading others’ scripts. PBrain is based on the Nipype

software package [53], where each node of the workflow is specified as an object, and are connected

together to form workflows. The Nipype structures enables users to automatically generate graphs

of their workflow logic (see figure 4.2).

4.3 Implementation Details

The PBRain interface model builds on the Nipype Interface model, such that PBRain interfaces

inherit properties from the Nipype interface, such as 1) caching 2) workflow node connections 3)
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workflow execution engine, and 4) input/output specifications. Additionally, the PBRain interface

requires specification of the connections between interfaces. This is an explicit definition of

dependencies, and allows the workflows to automatically assemble. Each analysis is implemented

as a Nipype Workflow, which is nested within the PBRain interface. Each input must be given

a unique name, data type, and description. Documentation is automatically generated from this

information. The output specification is where the standardized file structure is enforced, either the

cross-sectional or longitudinal structure. The output specification is similar in structure to the input

spec, where input file types and descriptions must be specified. Within the run method, a Nipype

workflow is imported and run with the files in the PBR input specification. Because of this nested

structure, parallelization can occur on two levels: the outer PBRinterface level or the inner Nipype

interface level. A command line tool is exposed, such that users can call PBR via the following

syntax:

pbr <exam ids> -w <workflow name> -ps <PACS database password> -p <parallelization arguments>

where the <exam id> argument can be a list of unique exam ids, specified in the command line or in

a text file. The PACS database password is used to connect to the PACS archival dicom system to

pull dicoms for exam ids that do not have raw data on the file system. This step is optional and can

be bypassed with the

--no_dicoms

flag, but when using the

--no_dicoms

flag, the nifti data must be organized according to the PBRain specification. Other software "layers"

include a config.py file, where directories and paths to standard atlases are set for a specific file

system, and a heuristic file that maps series description names to modality types, like "T1", "T2",

etc.
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4.3.1 Example code structure

The following code structure, which is similar to the Nipype structure, shows how to define a PBrain

interface, and is used as a template to write other PBrain workflows:

#imports

from nipype. interfaces .base import ( BaseInterface , TraitedSpec , traits , File ,

OutputMultiPath, BaseInterfaceInputSpec ,

isdefined , InputMultiPath )

from ... config import config

from glob import glob

import os

from ... base import register_workflow , PBRBaseInputSpec, PBRBaseInterface

# explicit definition of inputs

class InterfacenameInputSpec (PBRBaseInputSpec):

input_file = InputMultiPath ( File ( exists =True), description ="useful description of

the file ")

# explicit definition of ouptuts

class IntefacenameOutputSpec(TraitedSpec) :

output_file = traits . List ( File ( exists =True), minlen=1, description ="useful

description of the output file ")

class Interfacename(PBRBaseInterface):

"""
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Docstring goes here

"""

input_spec = InterfacenameInputSpec

output_spec = InterfacenameOutputSpec

flag = " interfacename" # this is for pbr mse# �w interfacename

connections = [( " nifti " , " t1_files " , " input_file ") ] #define how interfaces relate

to each other

def _run_interface_pbr ( self , runtime) :

# how to run the interface

wf = get_wf( config ) #function that returns a nipype workflow

inputspec = wf.get_node(" inputspec ")

inputspec . inputs . t1_files = self . inputs . input_file #connect inputs to the

workflow

wf.config = {"execution " : {"crashdump_dir": os . path . join ( config ["

crash_directory " ], self . inputs .mseID, self . flag )}}

wf.run(plugin=self . inputs . plugin , plugin_args=self . inputs . plugin_args ) #run

the workflow

return runtime

def _get_output_folder ( self ) :

return "output_folder_name"

def _list_outputs ( self ) :

#define how to locate the output files
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outputs = self . _outputs () . get ()

outputs [" output_file "] = glob(os . path . join ( config [" output_directory " ],

self . inputs .mseID, "output_folder_name

" , "�. nii .gz") )

return outputs

register_workflow ( Interfacename) # register the class so it can be called from the

command line

Figure 4.1: The PBRain Diagram. A) The base PBRain interface class consists of 1) the Inputs
attribute, which specifies the input names, data types, and a description 2) the Connections
attribute, which specifies which outputs are connected to the specified inputs 3) the Run
method, where a generalized Nipype workflow is imported, the inputs are connected
to the workflow, and the workflow is run, and 4) the outputs attribute, which specifies
output names, data types, descriptions, and explicit paths to output files. B) Based on the
Connections attribute, a PBRAIN workflow auto-assembles, and runs all dependencies
before executing a particular node. C) Shows the cross-sectional folder structure naming
convention for PBRain interfaces that run at a single timepoint. D) Shows the longitudinal
folder structure when a PBRain interface is called on multiple exam IDs for the same
subject.
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Figure 4.2: Workflow auto-assembly example for the Mindboggle workflow. When the user asks to
run Mindboggle on a particular exam, the workflow recursively checks and connects
dependencies. In this example, the steps are: 1) pull dicoms from our PACS server 2)
Convert dicoms to NifTI format and organize according to the PBRain structure, 3) run
Freesurfer’s recon-all and ANTS Cortical Thickness pipeline, in parallel if specified,
and finally, 4) to run Mindboggle.

4.4 Discussion

The PBrain software framework for the collaborative execution and curation of brain imaging data

analyses has greatly improved the e�ciency of data processing in our lab. Anyone in the lab can pull

data from the PACS database and minimally process data with no knowledge of any programming

language. This has reduced the startup time needed for new lab members to aquaint themselves with

our computing environment. Regardless of the project, we are aware of the source of the processing

outputs, which helps us more e�ciently manage data storage in the lab. Version control of the

di�erent script versions that were used enabled more advanced lab members to add new processing

scripts for others to run. Some examples of this include di�usion processing pipelines for brain

tumor pre-surgical mapping from PhD student Kesshi Jordan, a spinal cord segmentation pipeline
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Figure 4.3: PBRain nested workflow structure. PBRain workflows are built on top of the Nipype
worklfow architecture. Nipype workflows are nested inside PBRain nodes A, B and C.
This modularity enables the user to specify parallelization mode with more detail. For
example, the user can specify that the PBRain nodes run serially, but that the Nipype
workflow within it runs in parallel. In this case, PBRain node A will run first, with
Nipype nodes A1 and A2 running in parallel, followed by PBRain nodes B, and C.
Conversely. the user can specify that Nipype nodes run serially, but PBRain nodes
run in parallel. In this case, PBRain node A runs first, with Nipype node A1 running
before A2, and then PBRain nodes B and C will run in parallel. The user can also run
workflows fully in parallel, where both Nipype nodes and PBRain nodes run in parallel
(when possible) or completely serially

from PhD student Esha Datta, a longitudinal atrophy pipeline from research assistant James Zhang,

and a processing pipeline for a clinical MR visualization tool by research scientist Jason Crane.

The main limitation to PBrain is that there is a steep learning curve to the contribution of new

pipelines. This requires an intimate knowledge of the Nipype framework, which involves mastery

of object oriented programming techniques in Python. The dependence of PBrain on the Nipype

framework is limiting, because if the Nipype structure changes drastically, all PBRain interfaces

will need to be rewritten. PBRain is not open-source, so outside contributors will not be able to
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help debug problems; all debugging falls to any lab members with access to the code base. In the

future, changing the file structure to the BIDS data structure will help foster collaboration between

other neuroimaging labs, even if our PBRain codebase is private. Debugging PBRain workflows is

also challenging, which becomes especially problematic when users run bulky batch processing.

It is di�cult to determine which nodes failed and for what reason. In the future, an interactive

browser-based dashboard will be developed for PBRain to help beginner users debug failures.

4.5 Conclusion

As the number of neuroimaging data samples grow, e�cient computing solutions will become crucial

to the success of large scale projects. The framework presented here aids in the e�cient storage and

computation of large datasets, through standardized file structures, thorough documentation, and

collaboration via GitHub. Finally, reducing the learning curve needed to batch process data is vital

in the context of a research lab, given the high turnover rate of research assistants, graduate students

and postdoctoral researchers; the framework presented here empowers new users to run complex

data analyses to answer important clinical research questions.
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5 Mindcontrol- A Web Application for

Brain Segmentation Quality Control

Abstract

Tissue classification plays a crucial role in the investigation of normal neural development,

brain-behavior relationships, and the disease mechanisms of many psychiatric and neurological

illnesses. Ensuring the accuracy of tissue classification is important for quality research and,

in particular, the translation of imaging biomarkers to clinical practice. Assessment with the

human eye is vital to correct various errors inherent to all currently available segmentation

algorithms. Manual quality assurance becomes methodologically di�cult at a large scale -

a problem of increasing importance as the number of data sets is on the rise. To make this

process more e�cient, we have developed Mindcontrol, an open-source web application for the

collaborative quality control of neuroimaging processing outputs. The Mindcontrol platform

consists of a dashboard to organize data, descriptive visualizations to explore the data, an

imaging viewer, and an in-browser annotation and editing toolbox for data curation and quality

control. Mindcontrol is flexible and can be configured for the outputs of any software package in

any data organization structure. Example configurations for three large, open-source datasets are

presented: the 1000 Functional Connectomes Project (FCP), the Consortium for Reliability and

Reproducibility (CoRR), and the Autism Brain Imaging Data Exchange (ABIDE) Collection.

These demo applications link descriptive quality control metrics, regional brain volumes, and

thickness scalars to a 3D imaging viewer and editing module, resulting in an easy-to-implement

quality control protocol that can be scaled for any size and complexity of study.
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5.1 Background

Imaging biomarkers derived from MRI play a crucial role in the fields of neuroscience, neurology, and

psychiatry. Estimates of regional brain volumes and shape features can track the disease progression

of neurological and psychiatric diseases such as Alzheimer’s disease [111, 112], Parkinson’s disease

[113], schizophrenia [114], depression [115], autism [116], and multiple sclerosis [117]. Given

recent increases in data collection to accommodate modern precision-medicine approaches, assuring

the quality of these biomarkers is vital as we scale their production.

Various semi-automated programs have been developed to estimate MRI biomarkers. While these

applications are e�cient, errors in regional segmentation are inevitable, given several methodological

challenges inherent to both technological and clinical implementation limitations. First, the quality

of the MRI scan itself due to motion artifacts or scanner instabilities could blur and distort anatomical

boundaries [118, 119, 120, 121]. Di�erences in MRI hardware, software, and acquisition sequences

also contribute to contrast di�erences and gradient distortions that a�ect tissue classification, which

makes combining datasets across sites challenging [122]. An additional source of error comes from

parameter selection for segmentation algorithms; di�erent parameter choices can translate to widely

varying results [123]. Furthermore, many MR segmentation algorithms were developed and tested

on healthy adult brains; applying these algorithms to brain images of children, the elderly, or those

with pathology may violate certain assumptions of the algorithm, resulting in drastically di�erent

results.

Several quality assurance strategies exist to address segmentation errors. In one approach, researchers

flag low-quality scans prior to analysis by viewing the data before input to tissue classification

algorithms. However, identifying "bad" datasets using the raw data is not always straightforward,

and can be prohibitively time consuming for large datasets. Pre-processing protocols have been

developed to extract metrics that can be viewed as a cohort-level summary from which outliers are

selected for manual quality-assurance. For example, by running the Preprocessed-Connectomes

Project’s Quality Assurance Protocol (PCP-QAP) [124], researchers can view summary statistics
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that describe the quality of the raw data going into the algorithm and automatically remove subpar

images. However, these metrics are limited because segmentation may still fail even if the quality of

the scan is good. Another quality assurance strategy is to plot distributions of the segmentation

output metrics themselves and remove any outlier volumes. However, without manual inspection,

normal brains that naturally have very small or large estimates of brain size or pathological brains

with valid segmentations may be inappropriately removed. Ideally, a link would exist between scalar

summary statistics and 3D/4D volumes. Such a link would enable researchers to prioritize images

for labor-intensive quality control (QC) procedures; to collaborate and organize QC procedures; and

to understand how scalar quality metrics, such as signal to noise ratio, relate to the actual image and

segmentation. In this report, we present a collaborative and e�cient MRI QC platform that links

group-level descriptive statistics to individual volume views of MRI images.

We propose an open source web-based brain quality control application called Mindcontrol: a

dashboard to organize, QC, annotate, edit, and collaborate on neuroimaging processing. Mindcontrol

provides an intuitive interface for examining distributions of descriptive measures from neuroimaging

pipelines (e.g., surface area of right insula), and viewing the results of segmentation analyses using

the Papaya.js volume viewer (https://github.com/rii-mango/Papaya). Users are able to annotate

points and curves on the volume, edit voxels, and assign tasks to other users (e.g., to manually

correct the segmentation of a particular image). The platform is pipeline agnostic, meaning that

it can be configured to quality control any set of 3D volumes regardless of what neuroimaging

software package produced it. In the following sections, we describe the implementation details of

Mindcontrol, as well as its configuration for three open-source datasets, each with a di�erent type of

neuroimaging pipeline output.
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5.2 Software Design and Implementation

5.2.1 Design Principles

Mindcontrol was developed with several design requirements. Mindcontrol must be easily accessible

from any device, such as a Mac, Windows or even a tablet. Therefore, the best option was to develop

a web application. Most tablets have limited storage capacity, so space-minimizing specifications

were established. A dependence on cloud-based data storage was specified to accommodate

large neuroimaging datasets without needing local storage. To e�ciently store annotations and

edited voxels, Mindcontrol only stores the changes to files, rather than whole-file information, on

its database. Researchers must be able to QC outputs from any type of neuroimaging software

package, so Mindcontrol was specified to flexibly accommodate any file organization structure,

with configurable "modules" that can contain any type of descriptive statistics and 3D images.

Mindcontrol configuration and database updates must require minimal Javascript knowledge, since

Matlab/Octave, Python, R, and C are primarily used in the neuroimaging community for data

analysis. Finally, changes to the database(like the addition of new images), changes in descriptive

measures, and new edits/annotations, should be reflected in the application in real-time to foster

collaboration.

5.2.2 Server Back-End Framework

Mindcontrol is built with Meteor (http://www.meteor.com), a full-stack javascript web-development

platform. Meteor features a build tool, a package manager, the convenience of a single language

(javascript) to develop both the front- and back-end of the application, and an abstracted imple-

mentation of full-stack reactivity. Data is transferred "over the wire" and rendered by the client (as

opposed to the server sending HTML), which means that changes to the database automatically

trigger changes to the application view. For example, as soon as a user finishes implementing QC

procedures on an image and clicks "save", all other users can see the changes. A diagram of this
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process is provided in Figure 5.1.

Figure 5.1: This diagram shows the di�erent components of the Mindcontrol application. A) The
client sends information, such as annotations and edits, to the server. B) The server
calls a method that updates the mongoDB backend. C) When the back-end MongoDB
database changes, these changes are automatically pushed to the minimongo database
on the client. D) A change to the minimongo database automatically re-renders the view
on the client. E) Users can optionally push changes to the client view via the MongoDB
with Python MongoDB drivers. Drivers for C, C++, Scala, Java, PHP, Ruby, Perl, and
Node.js are also available through MongoDB. F) Developers can optionally write server
methods to launch Python or command-line processes that, in turn, use user annotations
and edits to re-process images and update the MongoDB with new results. G) Imaging
data (in NifTI format) is stored on an external server, such as Amazon S3 or Dropbox,
and URLs to the images are stored in the MongoDB.
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5.2.3 Client-Side Features

The user interface consists of a dashboard view and an imaging view, as shown in Figures 5.2 and

5.3, respectively. The primary dashboard view consists of processing module sections, a query

controller, data tables, and descriptive statistic visualizations. Each entry in the table is a link that,

when clicked, filters all tables on the page. The filters or queries can be saved, edited, and loaded in

the query controller section, as shown in Figure 5.4.

Descriptive statistics are visualized using the D3 library (https://d3js.org/). Currently, two visualiza-

tions are provided: a calendar view of a heatmap that shows a histogram of the number of exams

collected on a given day and 1D histograms of scalar metrics with dimensions that are swappable

using a dropdown menu, as shown in Figure 5.2. Both histogram plots interactively filter the data

tables below. Clicking on a particular date on the date-histogram plot filters all tables by the exams

collected on that particular date. Users are able to “brush” sections of the 1D histogram to filter all

tables with exams that meet requirements of values within that range (see Figure 5.5).

The imaging view is shown in Figure 5.3. The left-side column includes a section to label an

image as “Pass”, “Fail”, “Edited”, or “Needs Edits” and to provide notes. The status bar at the

top-left portion updates instantaneously with information on which user checked the image, the

quality status of the image, and when it was last checked. Users are also able to assign edits to be

performed by other users on the system; for example, a research assistant can perform a general

QC and assign di�cult cases to a neuroradiologist. On the right-hand side, the Papaya.js viewer

(http://rii-mango.github.io/Papaya/) is used to display the NifTI volumes of the original data and

FreeSurfer segmentations.

Annotations of points and curves are shown in Figure 5.6. Using the shift key, users can click on

the image to annotate points or select the “Logged Curves” toolbar. By shift+click and dragging,

users can draw curves. Keyboard and mouse shortcuts provided by the Papaya.js viewer, along with

Mindcontrol, include toggling overlays (zz) and undoing annotations (dd). Figure 5.7 shows the

editing (“Painter”) panel of the imaging view. Users set paintbrush values and shift+click and drag
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to change voxel values. For point and curve annotations and voxel editing, the images themselves

are not changed, but world x,y,z coordinates, along with annotation text or paintbrush values, are

saved to the mongo database when the user clicks “save”. Custom o�ine functions may be written

to apply editing to images: for example, to implement pial surface edits from FreeSurfer.

5.2.4 Configuration Details

Mindcontrol can be configured for a study’s specific needs be specifying a configuration JSON file.

The configuration file describes processing modules by module names, the columns to display in

the data table below, and the type of graph to display (Date histogram or 1D histogram). Images

must be hosted on a separate server or a content delivery network (CDN) and the Mindcontrol

database populated with URLs to these images. An initial JSON file can be specified to populate

the Mindcontrol MongoDB with entries on startup if the database is empty. Instructions and

example JSON schema for the configuration file and the database entries can be found at https:

//github.com/akeshavan/mindcontrol/wiki along with a Python function to access the

MongoDB, which can be used to write custom editing scripts and externally update the database.

5.3 Examples/Applications

Mindcontrol configurations were developed for selected data from the 1000 Functional Connectomes

project (FCP), the consortium for reliability and reproducibility (CoRR), and the Autism Brain

Imaging Data Exchange (ABIDE) Collection I.

The FCP consists of 1414 resting state fMRI and corresponding structural datasets collected from 35

sites around the world [125], which have been openly shared with the public. The purpose of the FCP

collaboration is to comprehensively map the functional human connectome, to understand genetic

influences on brain’s structure and function, and to understand how brain structure and function relate

to human behavior [125]. Segmentation of 200 selected FCP anatomical images from Baltimore,
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Bangor, Berlin, ICBM, and Milwaukee was performed with Freesurfer (recon-all) version 5.3.0 [34]

using the RedHat 7 operating system on IEEE 754 compliant hardware at UCSF. Regional volumes

of subcortical and cerebellar regions were computed. Cortical volumes, areas, and thicknesses were

also computed and averaged across hemispheres. Scan dates were simulated in order to demonstrate

the date histogram shown in Figure 5.1B. The original anonymized T1-weighted images, along with

the aparc+aseg output from Freesurfer, were converted to the compressed NifTI (.nii.gz) format and

uploaded to Dropbox for the purpose of visualization within Mindcontrol. The Mindcontrol database

was populated with URLs to these images, along with their corresponding FreeSurfer segmentation

metrics. The demo of the FCP data is located at http://mindcontrol.herokuapp.com.

More recently, researchers have developed the Preprocessed-Connectomes Project’s Quality Assur-

ance Protocol (PCP-QAP) software, to provide anatomical and functional data quality measures

in order to detect low-quality images before data processing and analysis [124]. Some metrics

include contrast-to-noise ratio, signal-to-noise ratio, voxel smoothness, percentage of artifact voxels,

foreground-to-background energy ratio, and entropy focus criterion [124]. The PCP-QAP protocol

has been run on the Consortium for Reliability and Reproducibility (CoRR), and the Autism Brain

Imaging Data Exchange (ABIDE) datasets and the results have been posted online.

The purpose of CoRR is to provide an open-science dataset to assess the reliability of functional

and structural connectomics by defining test-retest reliability of commonly used MR metrics; to

understand the variability of these metrics across sites; and to establish a standard benchmark dataset

on which to evaluate new imaging metrics [126]. PCP-QAP normative data for the CoRR study

was downloaded from https://github.com/preprocessed-connectomes-project/quality-assessment-

protocol. The Mindcontrol database was populated with pointers to 2,963 CoRR structural images

residing on an Amazon S3 bucket along with their corresponding PCP-QAP metrics. The demo of the

CoRR dataset with PCP-QAP metrics is hosted at http://mindcontrol-corr.herokuapp.com.

The overarching goal of the ABIDE initiative is to expedite the discovery of the neural basis of

autism by providing open access to a large, heterogeneous collection of structural and functional
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neuroimaging datasets collected from over 23 institutions [127]. The Preprocessed Connectomes

Project provides cortical thickness measures of the ABIDE dataset output by the ANTs software

package [128], along with summary statistics across regions of interests (ROIs) defined by the

Desikan-Killiany-Tourville (DKT) protocol [129]. The Mindcontrol database was populated with

pointer URLs to S3-hosted cortical thickness images and their corresponding ROI summary measures,

along with PCP-QAP metrics. The demo of the ABIDE dataset with ANTS cortical thickness and

PCP-QAP metrics is located at http://mindcontrol-abide.herokuapp.com.

5.4 Discussion

Mindcontrol is a configurable neuroinformatics dashboard that links study information and descriptive

statistics with scientific data visualization, MR images, and their overlays (segmentation or otherwise).

The three configurations demonstrated in this report show the link between MRI quality metrics

and raw data, the link between Freesurfer regional volumes and segmentation quality, and the

link between ANTS cortical thickness summary statistics and segmentation/thickness estimates of

the volume. The platform is configurable, open-source, and software/pipeline agnostic, enabling

researchers to configure it to their particular analyses. The dashboard allows researchers to assign

editing tasks to others, who can then perform edits on the application itself.

The Mindcontrol platform streamlines and standardizes QC procedures. The traditional method of

collaborative QC within a lab assembles disparate software components into a procedure that is

vulnerable to clerical errors. The QC operators use existing viewers (such as FSLview or Freeview)

to view and edit the images, making notes on a collaborative spreadsheet application (such as google-

docs). They must carefully adhere to a common folder structure and naming convention so that other

lab members and any automated processing scripts can locate these images. Distributions of scalar

metrics are then plotted to identify outliers using a separate data analysis software program. The

results of that analysis must then be reviewed using the imaging software to ensure that outliers are
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appropriately screened. This method is inherently ine�cient because images must be loaded multiple

times and attention split between the imaging platform and annotation software. Additionally,

results of the QC must be maintained consistently across several software packages. Clerical errors

are common and time-consuming to resolve because naming convention is not explicitly enforced,

and manual edits could be lost within the filesystem without thorough documentation by research

assistants. Google-spreadsheets are collaborative, but ideally this pass/fail/edited QC information

would be directly linked to the data. Mindcontrol stores all notes, annotations, and QC results, and

in-browser edits internally (Mongo database backend). User edits can be extracted automatically

and written to the filesystem, eliminating the potential for clerical errors. An example python script

to do this can be found at https://github.com/akeshavan/mindcontrol/wiki/Applying-Painter-Edits.

Scalar metrics are linked to 3D images, enabling a user to inspect an outlier image with the click of

a button. Mind-control is web-based, so it can be used on any device; QC operators can even use a

tablet with stylus to edit, which is more natural than using a mouse.

There have been considerable e�orts in this field to ensure data quality on a large scale. The

human connectome project’s extensive informatics pipeline, which includes a database service, QC

procedures, and a data visualization platform, has been key to the project’s success in collecting a large,

high-quality dataset [130]. The Allen Brain Atlas o�ers a comprehensive genetic, neuroanatomical,

and connectivity web-based data exploration portal, linking an MRI viewer to data tables [131]. The

open-source LORIS web-based data management system integrates an image viewer with extensive

QC modules [132]. Mindcontrol supplements these e�orts by providing a lightweight and extensible

data management and visualization system with the added capability to perform edits and curate

annotations within the application.

Table 5.4 shows examples of subjects from the FCP, CoRR and ABIDE datasets with low-quality

scans or segmentations, identified using Mindcontrol. The tails of various PCP-QAP metric

distributions for both the ABIDE and CoRR datasets could be filtered interactively to isolate images

with motion artifacts, extensive blurring, and noise. In the ABIDE dataset, filtering by the entropy
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focus criterion (EFC) greater than 17 identified images with extreme motion artifacts. The range of

the EFC for the CoRR dataset was much smaller (less than 2) and the image with the highest EFC

had no motion artifacts, but failed QC due to excessive defacing. In the ABIDE dataset, filtering

for the high FWHM extremes identified images with motion artifacts, grainy/noisy images, and

one extremely blurry image. On the other hand, in the CoRR dataset, the image with high FWHM

had an extreme bias field. In the CoRR dataset, the images with very low contrast-to-noise (CNR)

had motion artifacts, while the ABIDE images did not. Overall, examining the extremes of the

PCP-QAP metrics with Mindcontrol identified outliers, but the relationship between artifacts and

metrics varied by study.

Exploring the link between ANTS Cortical Thickness and the PCP-QAP metrics in the ABIDE

dataset, we found that selecting the higher tail of average left- and right-postcentral gyrus thickness

corresponded to datasets at the higher range of PCP-QAP FWHM. Conversely, selecting the lower

tail of the precentral and postcentral gyrus thicknesses related to the lower range of the FWHM. It

was di�cult to pinpoint errors in the ANTS Cortical Thickness segmentation images because the

data was normalized to MNI space. In the future, it would be better to QC each step of the ANTS

pipeline to ensure that 1) segmentation in native space was accurate and 2) normalization to MNI

space was reasonable.

Mindcontrol is particularly useful to investigate where errors occurred in segmentation algorithms.

In the FCP dataset, the most common errors in segmentation with Freesurfer were that 1) parts

of the temporal lobes were excluded from the segmentation and 2) the gray matter segmentation

entered the dura. Scans with low-quality temporal lobe segmentation were found by selecting the

lower tail of the amygdala or temporal pole volume distributions. Often, these images exhibited

poor gray/white contrast in the temporal pole region, and low signal to noise. Initially, we observed

that dura missclassification occurred most frequently in the precentral and postcentral gyri. We then

selected data points with high precentral/postcentral volumes to locate these errors. However, scans

in the middle of these metric distributions also exhibited dura misclassification, suggesting that this
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particular problem may be consistent across the entire dataset. In this example, it is necessary to QC

every scan, regardless of where its summary metrics lie on the distribution.

In cases where every scan must be quality controlled, Mindcontrol’s summary statistic distributions

and annotation features serve as a triage tool, sorting cases that are likely to require more time or

expertise. When training new editors, Mindcontrol’s annotation and notes features enable users

to ask questions, mark the image with the point or curve annotation feature, and assign images to

more senior editors to review and provide feedback. An initial Mindcontrol quality check can be

used to estimate total editing time and expertise needed for a study, enabling a strategic allocation

of resources. Leveraging Mindcontrol as an integrated quality control tool can make processing

methods more e�cient, organized, and collaborative.

5.5 Future Directions

Mindcontrol is being actively developed to incorporate new features that will improve outlier

detection, e�ciency, and collaboration. New information visualizations to detect outliers include:

scatter plots to compare two metrics against each other, and a longitudinal view of a single-subject

trajectory for a given metric to detect uncharacteristic temporal changes. New scientific data

visualizations are planned using the BrainBrowser library [133] to display cortical surfaces. A beta

version of real-time collaborative annotations, where two users can annotate the same image and see

the edits of the other user as they occur, is in the testing phase.

Currently, configuring Mindcontrol involves creating one JSON file to describe the di�erent modules

and another JSON file to populate the Mongo database with pointers to images and their scalar

metrics. In the future, this process could be streamlined by creating a Mindcontrol configuration

for datasets with a standardized folder structure, like the Brain Imaging Data Structure (BIDS) [3],

and their BIDS-compliant derivatives [110]. Additionally, implementing the server-side application

within a container, like Docker, will make it easier to deploy a Mindcontrol server. Further
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Dataset Filter Algorithm Example Sub-
ject IDs

Observation

ABIDE Higher end of
FWHM

PCP-QAP 50528, 0050511,
0050519

Motion artifact

ABIDE Higher end of
FWHM

PCP-QAP 50496 Very grainy

ABIDE Higher end of
FWHM

PCP-QAP 50611 Extremely blurry

ABIDE High EFC PCP-QAP 51160, 0051191,
0051166,
0051174,
0051192,
0051165,
0051186

Motion artifact

ABIDE High QI1 PCP-QAP 50197, 50017 Very noisy, motion arti-
fact

CoRR Lower end of
CNR

PCP-QAP 25073, 25085, Motion artifact

CoRR High EFC (range
much lower than
ABIDE)

PCP-QAP 25567 No motion artifact, but
frontal lobe cut o� (ex-
cessive defacing)

CoRR High FWHM PCP-QAP 27040 Needs major bias field
correction

FCP Lower end of
Left-Amygdala,
temporal-pole,
Left-Amygdala
distribution

Freesurfer sub48830,
sub93262,
sub55176,
sub75919

Temporal lobes not cor-
rectly segmented; gray
white delineation di�-
cult to see

FCP Higher end of Su-
periorFrontal, Pre-
central, Postcen-
tral thickness

Freesurfer sub98317,
sub27536,
sub28795,
sub10582,
sub93975

Gray matter segmenta-
tion enters dura

Table 5.1: A table of bad quality data or segmentations found on Mindcontrol
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development of Mindcontrol will include the flexible importing of additional scalar metrics, such as

measures of structural complexity, calculated by third-party toolboxes developed to complement

standard analysis pipelines [134, 135]. This will enable researchers to collaborate on the same

dataset by uploading metrics from their newly developed algorithms, and will enable them to easily

explore their results in the context of metrics contributed by others. Finally, Mindcontrol has the

potential to be a large-scale crowd-sourcing platform for segmentation editing and quality control.

We hope the functionality, ease-of-use, and modularity o�ered by Mindcontrol will help to improve

the standards used by studies relying on brain segmentation.

5.6 Software Availability

The Mindcontrol codebase is hosted on GitHub athttp://github.com/akeshavan/mindcontrol,

along with installation instructions. The Mindcontrol configuration of the FCP data is located

on the master branch of the GitHub repository, and the configurations for CoRR and ABIDE are

located at http://github.com/akeshavan/mindcontrol_configs, along with configuration

documentation. Mindcontrol is licensed under the Apache License, Version 2.0.
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Figure 5.2: This figure shows the Mindcontrol layout configured to quality check Freesurfer
outputs from the 1000 Functional Connectomes Project (FCP). Part A shows the module
navigator, which links to the di�erent processing modules on the dashboard. Part B
shows the di�erent exams and the dates they were acquired as a heatmap, where green is
more and orange is less scans collected on a given day. (For demonstration purposes,
the dates depicted here do not reflect the actual dates the data were collected for the
FCP, since this information was not provided at the time.) Clicking on data in any
column of the exam table filters the data by that column. For example, clicking the site
“Milwaukee” reduces both the “Exams” and the “FreeSurfer” tables to only show subjects
from Milwaukee. Part C shows the Freesurfer table and regional volume distribution
of the left caudate. A drop-down menu allows users to switch the descriptive metric.
Clicking on a value in FreeSurfer ID column brings the user to the imaging view, as
shown in Figure 5.3, where users can evaluate and annotate the quality status of the
image. The value of the label in the “QC” column changes instantaneously due to
Meteor’s built in full-stack reactivity.
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Figure 5.3: The imaging view of mindcontrol consists of a panel on the left-hand side that contains
the QC status; a point annotation menu; a curve annotation menu; a voxel editing menu;
and an editable sub-panel for QC status, notes, and editor assignment. On the right-hand
side, the base MRI anatomical MPRAGE image is displayed with an overlay of the
Freesurfer segmentation outputs using the Papaya.js viewer.
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Figure 5.4: The query controller shows the di�erent filters that have been applied to this dataset. In
this example, the exams have been filtered by institution (“Milwaukee”) and by a range
of left caudate volumes (brushed from the histogram). Clicking the “x” next to the filter
removes it, and the view updates. Queries can be saved and reloaded by providing a
name in the text-entry box and clicking "Save". “Reset” removes all filters to show the
whole dataset.

Figure 5.5: This demonstrates the interactive brushing feature of Mindcontrol histograms. On
the left, the user has brushed the tail end of the left caudate volume distribution from
Freesurfer. On the right, the histogram has been redrawn with data from the brushed
range, and the table beneath filtered from 200 entries to 14 entries based on the brushed
caudate volumes.

74



Figure 5.6: The annotations panel can be used to annotate a single point (shown in red, part A) and
curves (shown in B). When annotating points, the user is shown the selected x,y,z world
coordinates and is able to name the annotation. In the curve annotation panel on the left
sidebar, the user is able to name the curve and add/remove curves. Keyboard shortcuts:
“dd” removes the previous annotation and “zz” toggles the segmentation overlay.
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Figure 5.7: The editing panel on the left shows the “Painter” toolbox in yellow, where users can
input brush values or use the eyedropper tool to set the value to that of a clicked label.
The eraser icon sets the brush value to 0, to delete or erase voxels. In the image above,
the Freesurfer segmentation is being edited by erasing the voxels missclassified as dura.
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6 Interactive Brain Data Visualization

Platforms

6.1 Background

One main goal in the field of neuroimaging is to quantify information-rich 3D/4D images to

informative scalar metrics that can accurately capture the variance associated with normal brain

development or pathology. One example involves segmenting the tissues of anatomical MR images

to measure the gray matter volume of an individual; abnormalities in this measurement can be related

to a number of pathologies, including multiple sclerosis. A vital, and often overlooked step that

must occur before this dimensionality reduction process is the visualization of the various features

extracted from these images. When we quantify images as scalar metrics, we lose important spatial

information. For example, in MS, the pattern of lesion distribution is unique, compared to other

diseases with seemingly similar imaging phenotypes, such as vasculitis or neuromyelitis optica;

the lesion volume scalar metric does not capture this important spatial lesion distribution feature.

Ideally, there would be a more intuitive link between the visualization of scalar summary metrics,

called information visualization, and MRI images, or more generally, "scientific data visualization"

[136]. Such a visualization would be able to condense information-rich imaging biomarkers while

simultaneously maintaining intuitive spatial relationships within the data.

Many software packages for scientific data visualization of MR images have been built; these
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include Freeview, part of the Freesurfer package [31], FSLVIEW[137], part of the FSL package

[138], Trackvis, part of the Di�usion Toolkit[139]. Independent standalone packages include

MRICron[140], 3D slicer[141], DataViewer3D [142] and the web-based BrainBrowser [133].

While these viewers have many useful interactive features, none are configured to integrate scalar

information simultaneously with 3D images. In this chapter, I present two projects that address this

gap: the ROYGBIV open-source brain viewer, and the MindMeld interactive dashboard.

6.2 Interactive online brain shape visualization (ROYGBIV)

The following is a reprint of [143], which was peer-reviewed and published in the Research Ideas

and Outcomes journal. ROYGBIV visualizes outputs from the Mindboggle software package [144].

This work was begun at the 2015 Organization for Human Brain Mapping (OHBM) conference with

collaborators Dr. Arno Klein and Dr. Ben Cipollini.

6.2.1 Introduction

Our goal for the hackathon was to create an interactive Web browser application to visualize human

brain image data processed by the Mindboggle software package [145].

The Mindboggle project was initiated to improve the labeling as well as morphometry of brain

imaging data, and to promote open science by making all data, software, and documentation freely

and openly available. An interface for interactive visualization is essential for assessing issues in

brain image processing and analysis, including surface reconstruction, labeling, and morphometry.

Mindboggle processes human brain cortical surface meshes in the VTK format, and generates label

and shape information for each anatomical region, where labels follow the Desikan-Killiany-Tourville

protocol [146].
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6.2.2 Approach

Over the course of two afternoons at the Human Brain Mapping 2015 conference’s hackathon, we

evaluated several JavaScript libraries for creating browser-based WebGL visualizations of brain

surfaces, including three.js, XTK, and BrainBrowser. Three.js was chosen for ease of use and degree

of active development and community support. To accompany these surface visualizations with

graphical plots, we chose the d3 JavaScript library for its flexibility and widespread use.

6.2.3 Results

We completed an initial version of our browser-based interactive visualization tool; a left hemisphere

of a human brain is available at http://roygbiv.mindboggle.info. Click and drag to rotate

this brain, scroll to zoom in and out, and click on any region of the brain while pressing the shift key

to produce an accompanying plot of shape measures for that region (fig. 6.2.3). This will render all

other regions transparent. Figure 6.2.3 shows the distributions of travel depth, geodesic depth, mean

curvature, freesurfer curvature, and freesurfer cortical thickness for the selected region. Shift-click

outside the brain to return opacity to all regions.

Figure 6.1: Example visualization.

After the hackathon, we refactored the code to use an object-based approach. This allows multiple

brains to be shown simultaneously. This approach was used to create a master-slave interaction:

selection of a ROI in one hemisphere loads data for display on a second hemisphere. This approach
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Figure 6.2: Example of a selected region and the accompanying boxplot.

Figure 6.3: Example boxplot of a selected region that shows the distributions of shape features.

was used in a dynamic poster presented at Society for Neuroscience in 2015 [147].

Figure 6.4: Example master/slave visualization.

6.2.4 Conclusions

We have received very positive feedback for our e�orts at the hackathon, and have since received

several requests and encouragement to build this visualization out to accommodate other data

besides shape information and to enable the visual evaluation of thousands of brains. We hope to

continue this work with the help of others! To contribute to this project, please send pull requests to
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https://github.com/akeshavan/roygbiv.

6.3 MindMeld

The goal of the MindMeld interactive visualization was to integrate longitudinal scalar metrics of

MS patients with an interactive 3D brain visualization of cortical thickness, white matter tracts, and

MS lesions. The key feature of this application is contextualization, which means that any metric,

clinical or imaging based, should be displayed relative to a user-defined MS subpopulation. For

example, the cortical thickness of a female MS patient relative to all female patients within the

cohort, or the EDSS of a 50 year old male MS patient relative to all male MS patients between the

ages of 55 and 65.

6.3.1 Design Requirements and Implementation

The application consists of 5 elements; 1) Contextualization filter to select a sub-population, 2)

Longitudinal line plot to view any metric over time of a given patient, 3) Pie chart, to show the ratio

of relapse-remitting to secondary progressive disease subtypes of the sub-population 4) Traditional

slice-by-slice view of the MRI scan, and 5) 3D visualization of metrics extracted from the MPRAGE,

FLAIR, and DWI scans. The main design requirement is that all five components must fit on the

same page.

The main controller of the app is the contextualization filter, where the user defines ranges of

values to select a reference sub-population that resembles the patient. Traditionally, this could be

accomplished with text-input boxes; however, these components take up valuable screen space.

Instead, a parallel coordinates plot [148] can be used to visualize a multidimensional distribution

of metrics, with an added interactive filtering component on each axis. The parallel coordinates

plot library was imported from https://github.com/syntagmatic/parallel-coordinates,

and modified to enable brushing along a highlighted line and to add/remove data dimensions with a
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Figure 6.5: The MindMeld dashboard consists of the following components. Top Row: the parallel-
coordinates contextualization filter, which can be brushed on each axis to filter the data.
Second row, left: the longitudinal line plot, with markers colored by z-score compared to
the reference population. Second row, center: the interactive volume view with lesions
highlighted in red. Second row, right: a pie chart showing the ratio of subjects that
converted to secondary progressive versus those who stayed in the relapse-remitting
disease course. Bottom: the interactive 3D brain visualization with the cortical surface,
with cortical thickness encoded in color by anatomical label, the grey streamlines, and
FLAIR-derived lesions in red. A configuration side panel to the right enables users to
change the opacity of di�erent structures, apply an animation, and take a screenshot.
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multiselect search bar (https://github.com/select2/select2). The style template used was

Twitter Bootstrap (http://getbootstrap.com/) for a minimalist, responsive design.

The longitudinal line plot must display the evolution of any metric over time for a given patient. The

context of each point in the line plot can be encoded by color, and linked to the contextualization

filter by clicking an axis. The pie chart is needed to show how many patients in the sub-population

transitioned to secondary progressive disease. This chart must also be linked to the contextualization

filter. The two components should not take up too much screen space, since one does not need

to closely inspect either chart to understand the overall trend. The line plot and pie chart were

imported from the NVD3 library http://nvd3.org/, and the line plot was modified to encode

contextualization in marker color using the d3 library (http://d3js.org). The line plot’s y

axis updates when an axis of the parallel coordinates chart is clicked, and the pie chart and line

contextualization update after brushing of the parallel coordinates chart.

The standard volumetric MRI view is useful because it shows the raw intensity values of the gray

matter, the white matter with its di�use and focal MS lesions, and the ventricles, which are larger in

brains with more atrophy. This view must be interactive, meaning that users should be able to click on

any x,y,z coordinate and see the corresponding x,y, and z slices. The volumetric view does not need

to be large, because close inspection of each slice would take too much time; instead, the 3D surface

visualization should show the features extracted from the volumetric images. The volumetric MRI

view was implemented using brainsprite.js (https://github.com/SIMEXP/brainsprite.js),

which loads a standard image file (.jpg, .png) as a mosaic of brain slices, and reslices according to a

user’s mouse click.

The 3D surface visualization is capable of showing multiple modalities in one image, and therefore

should take the most screen space. The full distribution of lesions, cortical folding patterns, cortical

thickness by anatomical region, and fiber tracts must be shown simultaneously. The Brainbrowser

library [133] was used to accomplish this. Custom additions to the Brainbrowser library were

implemented such that the interaction of the sub-population selected by the parallel coordinates
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contextualizes the cortical thickness values on the surface.

6.3.2 Data Pipeline

A PBrain pipeline interface was built to calculate cortical shape metrics and create the appropriate

data files for display within the browser. The PBrain interface is shown in figure 6.3.2. The

PBrain interfaces run lesion segmentation, structural segmentation, and fiber tracking on FLAIR,

MPRAGE, and high angular resolution di�usion imaging (HARDI), respectively. First, rigid body

transformations were calculated from the FLAIR, HARDI, and T1+Gadolinium images across all

timepoints to the anatomical MPRAGE image of the first timepoint using the FLIRT program from

the FSL toolbox [138]. Lesion segmentation was calculated by the lesion segmentation toolbox

[149] using the LPA algorithm, and streamline tractography was processed by the dipy toolbox

[150]. The marching cubes algorithm was run on the lesions to create lesion surfaces. The cortical

surface reconstruction of the anatomical image was calculated using Freesurfer [151], which also

provided regional volumes and cortical thicknesses. The ANTS cortical thickness pipeline[128] was

run in parallel to the Freesurfer pipeline. Shape features were extracted by the Mindboggle software

package [152], which performs a more accurate labelling by combining the outputs of Freesurfer and

ANTS, and also outputs the cortical surface mesh in the VTK-format. Lesion surfaces, cortical and

subcortical surfaces, and streamlines were mapped to the anatomical image by applying the rigid

body transformations so that all images are in the same coordinate space. To ensure processed data

quality, processing outputs were quality controlled on the Mindcontrol application. The LST lesion

probability map was displayed in Mindcontrol and quality controlled by a neuroradiologist, who

annotated the false positive and false negative lesions using the point annotation feature. The false

positive regions were removed and the false negative lesions were grown using a local threshold and

size restriction (< 1000 mm2) around the click location. All surface-based data were saved in the

.VTK format, except for the fiber tractography data, which was saved in the .OBJ model specified by

BrainBrowser.
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Figure 6.6: The PBRain workflow for the MindMeld visualization consists of 1) Pulling from the
PACS database at UCSF 2) converteing all dicoms to the NifTI format, 3) Running
antsCorticalThickness.sh, Freesurfer’s recon-all, FLIRT alignment, and di�usion pre-
processing to the the T1, FLAIR, and DW images. LST is run in the FLAIR image and
quality controlled with Mindcontrol. The mindboggle software is run to improve the
precision of labelling by combining the outputs of Freesurfer and ANTS. Whole brain
fiber tracking is run on the preprocessed di�usion image to generate streamlines. All
outputs feed into the visualization node, which prepares the data to be presented by the
MindMeld application.
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6.4 Discussion

The idiom, "An image is worth a thousand words", is particularly relevant in neuroimaging, where

one image can produce thousands of features, based on shape, intensity, and image texture. The

streamlined production of these features has been proposed through the PBrain interface, and their

quality ensured by the Mindcontrol application, but the interpretation of such large amounts of data

is still di�cult. If we want to begin to understand these high-dimensional features, their relationship

to each other, their normative distributions across populations, and how they can relate to disease

progression, we must begin with an e�ective visualization. The information extracted from 4D

imaging data are abstractions that highlight the important features of our data, in the same way a

subway map highlights connections and line routes, and hides unnecessary information like the

terrain. For example, for a given patient who presents a motor disability, a clinician might like to

see the MS white-matter lesions over time, the corticospinal white matter tract, the cortical atrophy

of the motor cortex relative to a reference population, and the walking speed of the patient over time,

compared to disease trajectories of similar patients.

The MindMeld application presents all the clinical, genetic, and imaging data of a subject onto a

one page interactive interface, that can be filtered to contextualize data based on a user selected

sub-population. The visualization framework can present data from any number of MR modalities,

any features extracted from them, and any relevant clinical, genetic, and epidemiological markers.

The most striking feature in the 3D visualization from figure 6.5, is where the lesions are displayed

on top of the white matter tracks, along with the 3D brain that shows cortical thickness by

anatomical label. The spatial distribution of these lesions follow alongside the ventricles, which is a

typical distribution pattern in MS [153, 154, 155]. Examining the pattern of lesions can be very

informative in distinguishing between MS and other MS-like diseases, such as neuromyelitis optica.

Another interesting feature seen from this application is the longitudinal atrophy pattern over time.

Researchers have found di�erent cortical atrophy patterns related to di�erent disease subtypes and

disabilities [156, 157]; the MindMeld visualization tool can help translate this group-level finding
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to the individual patient at the MS clinic. Finally, the link between cortical atrophy and lesion

location [158] can be probed at the patient level, which could enable researchers to explore proposed

mechanisms of cortical atrophy in MS, such as Wallerian degeneration [159].

6.5 Conclusion

The MindMeld application could help us gain a better understanding of the needs and preferences of

clinicians, and could aid in medical decision making by providing an exploratory interactive data

visualization platform. Some examples of exploratory analyses are: How does a patient’s regional

brain atrophy compare to a reference population of similar age, gender, and disease duration? How

does a patient’s brain atrophy pattern compare to a reference population of patients that present

with similar symptoms? Is a patient’s lesion volume at this time larger or smaller than a reference

population of patients who are on a similar treatment? How does the disease trajectory of patients

with similar cortical atrophy patterns compare to this patient, for the type of treatment received?

The answers to these questions could be within our reach, through continued development of the

MindMeld application.

We are moving into a world of big data, with an unprecedented amount of information available on

each individual patient. This explosion of information availability has the capacity to revolutionize

research and treatment of complex diseases such as MS. To harness the potential of these big data

initiatives, platforms such as the MindMeld multiparametric visualization tool is crucial as we move

forward into this new phase of interdisciplinary translational research.
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7 Future Directions and Conclusions

7.1 MindGames- A Crowd-Sourcing Game Platform for Brain

MRI Segmentation

7.1.1 Rationale

Advances in MRI technology and image segmentation algorithms have enabled researchers to

begin to understand the mechanisms of healthy brain development [160] and neurological disorders

such as multiple sclerosis [161]. Due to the wide variability of brain morphology coupled with

pathological processes in the case of neurological disorders, increasingly large sample sizes are

necessary to confidently answer the progressively complex biomedical questions of the research

community. Automated algorithms have been developed to reduce information-rich 3D MRI images

to 1-dimensional summary measures that describe tissue properties and are easy to interpret, such

as total gray matter volume. Automated segmentation algorithms save considerable time compared

to manual human inspection, but lack the advanced visual system of humans. As a result, these

algorithms often make systematic errors, especially when analyzing brains with pathology or those

in the early stages of development. Data science is poised to facilitate complex neuroscience research

by fusing a crowdsourcing strategy with machine learning methods; automatic quantification can

perform the bulk of the work e�ciently and errors can be resolved by non-expert "citizen-scientists"

with the advantage of the human visual system.
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Crowdsourcing has been successful in many other disciplines [162], including mathematics [163],

astronomy [164], and biochemistry [165] . Recently, over 200,000 "citizen-neuroscientists" from

over 147 countries helped identify neuronal connections in a mouse retina through the Eyewire

game [166]. This crowdsourced game led to a new understanding of how mammalian retinal

cells detect motion. I propose to implement three key features of the EyeWire paradigm and

adapt them for the segmentation of MRI data. First, by breaking up the problem into smaller

"micro-tasks", Eyewire scientists were able to access a much larger user-pool of non-experts. In

a similar vein, 3D MRI data can be divided into 2D slices to be segmented by users. Second,

machine learning algorithms were trained to help with the task, which improved the speed of manual

neuronal tracing and validated non-expert input in the Eyewire game. Deep learning methods

have already shown to be successful at segmenting MRI data, and similar models could be built to

support manual segmentation. Lastly, EyeWire transformed a dull, monotonous task for experts

into a fun, competitive game that trained non-experts, and acquired valuable scientific data. The

University of Washington is an ideal place to develop a similar game platform for MRI segmentation,

using the resources at the Center for Game Science, led by Zoran Popovic. I propose to create an

open-source platform for e�ciently crowdsourcing brain tissue classification problems in order to

answer neuroscience research questions with more precision.

Specific Aims

1. Scaleable and Secure Micro-Tasks: A scaleable database system and server backend that

keeps data private by dividing it into small "micro-tasks"

2. Learning by Example: Machine learning algorithm that learns from human curation to

improve e�ciency of manual tasks

3. Training through Gamification: User interface that trains users to solve a specific problem,

and keeps them engaged through a reward system
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7.1.2 Specific Aim 1: Scaleable and Secure Micro-Tasks

This Aim will address two key challenges: 1) Partitioning 3D data into micro-tasks that keep

data private, 2) Serving micro-tasks at scale. While there are many large-scale open-source data

collection e�orts, many datasets are kept private within research institutions due to IRB restrictions,

so presenting a full 3D MRI volume to the public would be a violation. Serving smaller "chunks" of

data serves two purposes: it allows us to keep data private (because you cannot see the whole brain),

and it reduces the fatigue of non-experts (because you only need to edit a small section), which

enables us to engage a larger user base. A scalable server will be implemented on a commercial

cloud computing platform, with an API that allows researchers to upload MRI micro-tasks to the

server database, and serves micro-tasks to users. Researchers will be asked to provide the following

to the API: 1) an initial segmentation file from an automated algorithm 2) any original images (T1,

T2, PD) that users need to properly edit the segmentation 3) directions on how the images should

be sliced into micro-tasks (including the slicing plane and the number of slices). Additionally,

researchers must provide a validation dataset, which includes "correctly" segmented images, which

will be used to train non-experts in Aim 3. The resources and faculty at the eScience Institute will

help me implement state-of-the-art database and cloud computing technologies in order to increase

the delivery of micro-tasks to "citizen-scientists."

7.1.3 Specific Aim 2: Learning by Example

This Aim will address three challenges: 1) Resolve user input to create a final 3D volume, 2)

Prioritize serving micro-tasks based on user consensus and 3) Predict the user-edited segmentation

image. To reconstruct the micro-tasks back into a 3D image, a weighted consensus map will

be computed, based on how accurately each user performed edits on training data. Micro-tasks

with lower consensus scores will be served more frequently to users, until the consensus is high.

Participants will also be scored based on how well their segmentations match with other users on

the same image, and this will be used to reward users in Aim 3. Finally, improving automated
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segmentation algorithms based on human input will save time and reduce the number of editors

assigned to each micro-task. For example, a dataset of 100 3D volumes could be broken into 20,000

patches, each of which would need to be manually edited. Alternatively, convolutional neural

networks (CNNs) have been very successful at pattern recognition when trained on similarly large

sample sizes, and could reduce the time spent editing each patch. I propose to build a CNN using

existing architecture, such as Tensorflow or Theanet, to predict segmentation results, under the

guidance of the machine learning experts at the eScience institute.

7.1.4 Specific Aim 3: Training and Gamification

For individuals with minimal neuroamatomy knowledge, the di�culty of manual neuroimaging

segmentation will depend on the contrast of the image as well as the location/complexity of the target

structure. An example of an easy task would be the segmentation of brain tissue from non-brain

tissue, whereas a more di�cult task would be the segmentation of multiple sclerosis lesions. This

Aim will address simple as well as challenging problems through varying levels of training and

rewards. A web application will be developed that hooks into the server developed in Aim 1. The

app will include an in-browser brain editor (similar to the Mindcontrol application [5]), a reward

structure and a scoreboard for the top users, and an optional link to the Amazon Turk engine, where

users can be paid (in micro-payments) for completing micro-tasks. Initially, the user will only be

presented with training tasks until they reach an adequate accuracy score. Next, the training tasks

will be interspersed with new tasks, in order to detect performnce drift. The frequency of training

tasks will increase based on the researcher’s specification of task di�culty. The reward structure

will be based on 1) how well the user edits training data, 2) how well the user segmentations match

those of other users, and 3) how many voxels are edited by the user. The time spent on the task along

with the number of edited voxels will also be used to validate whether or not the user completed

the task with some thought. For example, a user’s score would be penalized if a large number of

voxels were edited too quickly for a di�cult task. I plan to collaborate with the data scientists at the
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eScience Institute to build an intuitive and engaging crowd-sourcing user interface on the Amazon

Turk Platform.

7.1.5 Broader Impacts

To summarize, I propose to develop an open-source platform for the crowd-sourced image segmen-

tation of brain MRI data, under the guidance of Ariel Rokem and Jason Yeatman at the eScience

Institute and the University of Washington Institute for Neuroengineering. Through gamification,

piece-wise exposure, and machine learning, I plan to engage a large user base across a variety

of image segmentation tasks. Example applications include parcellating gray and white matter

in a low contrast image where traditional segmentation algorithms fail, and delineating multiple

sclerosis lesions which usually requires trained neuroradiologists. For a particular application, the

Yeatman Lab at UW is collecting a large, longitudinal MRI dataset on children undergoing an

intensive learning program, with the goal of determining how experience shapes brain development.

The segmentation data from the MindGames platform can be used to 1) define the typical time

course of cortical changes by examining gray/white matter volumes from segmentation, 2) construct

normative developmental curves in order to detect abnormalities, and 3) study how learning shapes

brain development by analyzing quantitative MR intensities within the gray and white matter. The

MindGames platform will help researchers by improving the precision of segmentation measures

without advanced computer science expertise, but will also engage, educate and excite the public,

and help advance cutting edge neuroscience research.

7.2 Overall Conclusion: Open Collaboration is Key

The overarching result of this work was the production of open and collaborative informatics

tools to help scientists answer di�cult and complex biomedical questions. The aim of the first

part of this dissertation was to help multiple institutions pool data by lowering the requirements
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for data harmonization. The results of this study encourage researchers to collaborate by pooling

both prospective and retrospectively acquired data, in order to define normative morphometry

on a diverse population, study how deviations from normalcy are associated to pathology, probe

genotype-phenotype relationships, and investigate rare diseases, to name a few possible applications.

Next, the PBRain framework was proposed as a collaborative software code base, to streamline

knowledge transfer in academic environments with generally high turnover rates of specialized

researchers. This collaborative software empowers scientists to reproduce results quickly and easily,

and lowers the learning curve to perofrm advanced neuroimaging analyses. The third project was

Mindcontrol, an open-source, collaborative web-based platform for brain quality control. In the

past, the sample size of a typical neuroimaging study was less than 100 subjects, and ensuring data

quality through visual inspection was time consuming, but manageable. Advances in compute power

and MR sequences led to an increased rate of data collection and processing, but visual inspection

remained a major bottleneck. Mindcontrol, and its future iteration, MindGames, leverage web

technology to bring data to and solicit contributions from remote researchers and citizen scientists.

In the future, deep learning networks could be trained to quality check data; but to accomplish this,

a large, collaboratively annotated data set is needed. Finally, a future application of the MindMeld

platform is to be a collaborative, translational tool between researchers and clinicians. While rapid

data collection and computing power accelerate the discovery of biomarkers in research, their utility

in a real world setting remains unknown. The MindMeld visualization platform could be used as a

staging ground for new biomarkers; their utility could be tested in the real world clinic by tracking

use patterns and seeking feedback from clinicians. In the world of big data, open collaboration is a

key strategy to tackle new challenges, to foster new ideas, and to solve the most pressing biomedical

problems.
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Project URL Contribution

Nipype [53] http://github.com/nipy/nipype Wrote new interfaces and
submitted bug fixes

BIPS [100] http://github.com/INCF/BrainImagingPipelines Wrote reusable and
configurable nipype pipelines

nbpapaya http://github.com/akeshavan/nbpapaya Wrote ipython notebook
interface for 3D volumes

mindboggle [144] http://github.com/nipy/mindboggle Submitted bug fixes

roygbiv [167] http://github.com/akeshavan/roygbiv Wrote visualization
for mindboggle outputs

BIDS-Apps [110] http://github.com/BIDS-Apps/mindboggle Wrote docker
container for mindboggle

Mindcontrol [5] http://github.com/akeshavan/mindcontrol Wrote application
for brain QC

Brainspell http://github.com/openneuro/brainspell-neo Wrote github integration
for collaborative annotation
of papers for meta analyses

Table 7.1: Table of my open source contributions and collaborations in the neuroimaging field.
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