
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
From Image to Video, Depth Data Reconstruction from a Subset of Samples: 
Representations, Algorithms, and Sampling Strategies.

Permalink
https://escholarship.org/uc/item/98f001p4

Author
Liu, Lee-Kang

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/98f001p4
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

From Image to Video, Depth Data Reconstruction from a Subset of
Samples: Representations, Algorithms, and Sampling Strategies.

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Signal and Image Processing)

by

Lee-Kang Liu

Committee in charge:

Professor Truong Q. Nguyen, Chair

Professor Pamela Cosman
Professor William Hodgkiss
Professor David Kriegman

Professor Bhaskar Rao

2015



Copyright

Lee-Kang Liu, 2015

All rights reserved.



The dissertation of Lee-Kang Liu is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2015

iii



DEDICATION

I dedicate my dissertation work to my family and my friends. I have a special

grateful feeling to my parents, Chiao-Tang Liu and Yi-Chih Chung, who support me as

I make it my mind to broaden my knowledge and visions across The Pacific, encourage

me whenever I face challenges and encounter difficulties, and remind me that you will

always stand by me whatever happens, and to my older brother, Li-Wei Liu, who always

stays by my side, and lights up a path for me when I get lost in the dark. You are always

my mental mentors of my life.

I also dedicate this dissertation to my friends in the United States, Min-Chih

Kuo, Wu-Ting Wu, Tsung-Feng Wu, Chih-Wei Shin, and Chun-Lun Yen, and friends in

Taiwan, Tzu-Fan Chen, Chih-Huei Huang, Shang-Ming Tai, and Kuo-Hsieh Hsu. With

the accompany of you, my will is heartened at the moments that I am depressed, anxious,

satisfied, or fulfilled at any stage on the road map to this dissertation.

iv



EPIGRAPH

As we light a path for others,

we naturally light our own way.

—Mary Anne Radmacher

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Scope and Contributions . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Notations and Problem Formulation . . . . . . . . . . . . . . . 4

1.3.1 Depth and Disparity . . . . . . . . . . . . . . . . . . . 4
1.3.2 Sampling Model . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Representation Model . . . . . . . . . . . . . . . . . . 6
1.3.4 Penalty Functions . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Sparse Representation of Depth Data . . . . . . . . . . . . . . . . . 9

2.1 Natural Images vs Depth Data . . . . . . . . . . . . . . . . . . 9
2.2 Wavelet vs Contourlet . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Representations of Wavelet and Contourlet Bases . . . 10

2.2.2 Sparse Representation of Disparity Maps . . . . . . . . 14
2.2.3 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Comparison Results . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Algorithms for Depth Data Reconstruction . . . . . . . . . . . . . 18
3.1 Symbols and Problem Formulation . . . . . . . . . . . . . . . 18

3.2 Algorithm: Conjugate Sub-Gradient . . . . . . . . . . . . . . . 20
3.2.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Algorithm: Alternating Direction Method of Multipliers . . . 26

3.3.1 ADMM and Operator Splitting . . . . . . . . . . . . . 26

vi



3.3.2 Subproblems . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Convergence Comparison . . . . . . . . . . . . . . . . . 30
3.3.5 Multiscale ADMM . . . . . . . . . . . . . . . . . . . . 32

Chapter 4 Sparse Sampling for Depth Data . . . . . . . . . . . . . . . . . . . . 36

4.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Oracle Random Sampling Scheme . . . . . . . . . . . . . . . . 37

4.2.1 Practical Random Sampling Scheme . . . . . . . . . . 39

4.3 Further Improvement by PCA . . . . . . . . . . . . . . . . . . 41
4.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . 44
4.5.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 5 Depth Reconstruction Algorithm For Spatio-Temporal Depth Data 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Depth Video Reconstruction Framework and Notations . . . . 53
5.2.1 Systematic Configurations and Depth Data Descriptions 53

5.2.2 Notations for Spatio-Temporal Volume . . . . . . . . . 54
5.2.3 Sampling Patterns . . . . . . . . . . . . . . . . . . . . 55

5.3 Spatio-Temporal Depth Reconstruction . . . . . . . . . . . . . 58

5.3.1 Problem Formulations . . . . . . . . . . . . . . . . . . 58
5.3.2 Spatio-Temporal Depth Reconstruction Algorithm . . 60
5.3.3 Parameter Tuning and Temporal Volume Scalability . 61

5.3.4 Initialization using Temporal Information . . . . . . . 65
5.3.5 Preliminary Comparisons . . . . . . . . . . . . . . . . 66

Chapter 6 Efficient Sampling Strategy for Spatio-Temporal Depth Data . . . . 69

6.1 Motion Compensation Assisted Sampling . . . . . . . . . . . . 69
6.1.1 Oracle Random Sampling Assisted by a Linear Com-

bination of Gradient Maps . . . . . . . . . . . . . . . . 70
6.1.2 Synthesis of Gradient Maps . . . . . . . . . . . . . . . 71
6.1.3 Framework for Depth Video Reconstruction . . . . . . 74

6.2 Experimental Results and Discussions . . . . . . . . . . . . . . 75
6.2.1 Depth Video Reconstruction with Ground Truth Depth 75

6.3 Depth Video Reconstruction from Uniform-Grid Subsampled
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Dense Disparity Video Estimation . . . . . . . . . . . . . . . . 80

vii



Appendix A Derivation on Reconstruction Algorithm . . . . . . . . . . . . . . . 90
A.1 Derivation of Subgradient Algorithm . . . . . . . . . . . . . . 91

A.2 Derivation of Alternating Direction Method of Multipliers . . 95
A.2.1 x-subproblem: . . . . . . . . . . . . . . . . . . . . . 95
A.2.2 u!-subproblem: . . . . . . . . . . . . . . . . . . . . . 96

A.3 Parameter Tuning for ADMM . . . . . . . . . . . . . . . . . . 97
A.3.1 Experimental Configurations . . . . . . . . . . . . . . . 97
A.3.2 Regularization Parameters (λ1,λ2,β) . . . . . . . . . . 97

A.3.3 Internal Parameters (µ, ρ1, ρ2, γ) . . . . . . . . . . . . 98
A.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

viii



LIST OF FIGURES

Figure 2.1: PSNR values of approximating a disparity patch and a image patch
using the leading 5% of the wavelet coefficients. . . . . . . . . . . . . 10

Figure 2.2: Representation schemes. For representing a curve, wavelet has square
compact supports and Contourlet has directional rectangular com-
pact support. (Left) Wavelet and (Right) Contourlet [1]. . . . . . . 11

Figure 2.3: Representations of Wavelet and Contourlet. . . . . . . . . . . . . . . 12
Figure 2.4: MSE curves for Triangle, Square, Circle and Ellipse. . . . . . . . . . 13

Figure 2.5: MSE curves and Representations for Dots. . . . . . . . . . . . . . . . 14
Figure 2.6: Log scale mean square error curves. . . . . . . . . . . . . . . . . . . . 15
Figure 2.7: ADMM reconstruction result as a function of sampling ratio ξ . . . . 17

Figure 2.8: Snapshot of the comparison between wavelet dictionary and a com-
bined wavelet-contourlet dictionary at ξ = 0.1. . . . . . . . . . . . . . 17

Figure 3.1: Reconstructed disparity maps from 10% random samples (Aloe). . . 24

Figure 3.2: Reconstructed disparity maps from 10% random samples (Art). . . . 25
Figure 3.3: Comparison of the rate of convergence between ADMM (proposed)

and subgradient algorithms [2] for single wavelet dictionary. . . . . . 31
Figure 3.4: Schematic diagram showing the operations of Aq and Bq . . . . . . 33
Figure 3.5: Runtime comparison of original ADMM algorithm, multiscale ADMM

algorithm and subgradient algorithm. . . . . . . . . . . . . . . . . . . 34
Figure 3.6: Multilevel Scheme for the proposed ADMM algorithm. . . . . . . . . 35

Figure 4.1: Three sampling patterns and the corresponding reconstruction re-
sults using the proposed ADMM algorithm. . . . . . . . . . . . . . . 37

Figure 4.2: Comparison between a deterministic sampling pattern by selecting

samples greedily according to the magnitude of {aj}, and a random-
ized sampling pattern using the proposed scheme. . . . . . . . . . . . 39

Figure 4.3: Snapshot of eigenvectors. . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.4: Comparison between four sampling patterns. . . . . . . . . . . . . . . 43
Figure 4.5: Comparison of reconstruction performance with noisy samples. We

use “Art” disparity map as a test image, and set ξ = 0.2. . . . . . . . 45
Figure 4.6: Examples of reconstructed results from 10% measured samples using

real data using the “Newspaper” dataset, and real captured disparity

maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.1: Systematic Overview of the proposed depth video reconstruction

framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 5.2: Flowchart for depth video reconstruction from sparse samples. . . . . 57
Figure 5.3: Histogram of magnitude of 3D-DWT transform coefficients. . . . . . 59

Figure 5.4: Experiments on regularization parameter selection for the proposed
spatio-temporal depth reconstruction. . . . . . . . . . . . . . . . . . 63

ix



Figure 5.5: Experiments on internal parameter selection. . . . . . . . . . . . . . 63
Figure 5.6: Reconstruction performance verses number of frames T . . . . . . . . 64

Figure 5.7: Convergence rate comparisons. We feed frames 20-21 (T = 2) of
“tanks” sequence to STDR algorithm. . . . . . . . . . . . . . . . . . 66

Figure 6.1: Example of reference images, sampled depth data with varying θ1
and reconstructed disparity map. . . . . . . . . . . . . . . . . . . . . 72

Figure 6.2: Mean absolute curves with varying θ1 values. . . . . . . . . . . . . . 73

Figure 6.3: Examples of sampling maps and reconstructed results of 8th frame
of temple sequence with ξ = 0.05. . . . . . . . . . . . . . . . . . . . 76

Figure 6.4: Snapshots of reconstructing high resolution depth from downsampled

depth data, x↓8, and PSNR comparisons. . . . . . . . . . . . . . . . 81
Figure 6.5: Example of reconstructing high resolution depth from estimated depth

data, xest. (tanks). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 6.6: Example of reconstructing high resolution depth from estimated depth
data, xest. (books). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 6.7: Example of reconstructing high resolution depth from estimated depth
data, xest. (temples). . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 1.1: Example disparity maps from Middlebury dataset. . . . . . . . . . . 98

Figure 1.2: Comparison of reconstruction performance with varying regulariza-
tion parameters and depth images. . . . . . . . . . . . . . . . . . . . 99

Figure 1.3: MSE for ξ = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 1.4: MSE for ξ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

x



LIST OF TABLES

Table 3.1: Summary of Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 4.1: Comparisons of reconstruction algorithms in terms of PSNR. We put

N/A when the algorithm does not converge in 1000 iterations. . . . . 46
Table 4.2: Comparisons of reconstruction algorithms in terms of % Bad Pixel. . 47

Table 5.1: Summarize of parameters for STDR. . . . . . . . . . . . . . . . . . . . 65

Table 5.2: Comparison of reconstruction algorithms from 5%, 10%, 15% and 20%
uniformly random samples. . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 6.1: Comparisons for depth video reconstruction algorithms. . . . . . . . . 78
Table 6.2: MAE and Bad pixel % comparisons for the depth video estimations. . 89

Table A.1: Summary of Parameters and typical values. . . . . . . . . . . . . . . . 102

xi



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my adviser Prof. Truong Q.

Nguyen for the continuous support of my Ph.D study and related research, for his count-

less hours of reading, encouraging, and most of all patience. His generous guidance

helped me in all the time of research and writing of this thesis.

Besides my adviser, I would like to thank my committee members, Prof. Pamela

Cosman, Prof. William Hodgkiss, Prof. David Kriegman and Prof. Bhaskar Rao, for

agreeing to serve as my committee and for their generous expertise, insightful comments

and encouragements.

My sincere thanks also goes to Dr. Stanley Chan, who provides me with selfless

guidance and considerable help on the research discussions on reconstruction algorithms

and efficient sampling strategies. He is currently a professor in Purdue University, and

his vast knowledge and suggestions are invaluable.

Finally, I would like to thank our Video Processing Lab members, Dr. Can Bal,

Dr. Ankit Jain, Dr. Kyoung Rok Lee, Dr. Zucheul Lee, Dr. Yujia Wang, Enming Luo,

Jason Juang, and Yung-Huan Hsieh, for the stimulating discussions.

Chapter 1, 2, 3, and 4 include materials that have been published in IEEE

Transaction on Image Processing 2015, titled “Depth Reconstruction from Sparse Sam-

ples: Representation, Algorithm, and Sampling,” with Truong Q. Nguyen and Stanley

H. Chan.

Chapter 2 and 3 include materials that have been published in IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing 2014, titled “Sparse Re-

construction for Disparity Maps using Combined Wavelet and Contourlet Transforms,”

with Truong Q. Nguyen.

Chapter 5 includes materials that have been published in IEEE Global Confer-

ence on Signal and Information Processing 2015, titled “Spatio-Temporal Depth Data

Reconstruction from a Subset of Samples,” with Truong Q. Nguyen.

Chapter 5 and 6 include materials that have been submitted to IEEE Transaction

on Image Processing, titled “A Framework for Depth Video Reconstruction from a subset

of Samples and its Applications,” with Truong Q. Nguyen.

xii



VITA

2003-2007 B. S. in Department of Electrical and Control Engineering, Na-

tional Chiao-Tung University, Hsinchu, Taiwan.

2009-2011 M. S, in Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla.

2011-2015 Ph. D. in Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla.

xiii



ABSTRACT OF THE DISSERTATION

From Image to Video, Depth Data Reconstruction from a Subset of
Samples: Representations, Algorithms, and Sampling Strategies.

by

Lee-Kang Liu

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2015

Professor Truong Q. Nguyen, Chair

Depth data acquisition has drawn considerable interest in recent years as a result

of the rapid development of 3D technology. A large number of acquisition techniques are

based on hardware devices, e.g., infra-red sensors, time-of-flight camera, and LiDAR, etc,

whereas they have limited performance due to poor depth precision and low resolution.

In some situations computational methods are preferred due to its flexibility and low

cost. These computational techniques, typically known as depth estimation algorithms,

estimate depth maps (in terms of disparities) from a pair of stereo images. However,

existing computational techniques are sensitive to various factors such as noise, camera

alignment, and illumination, resulting that a few samples are reliable. Therefore, dense

depth data reconstruction from sparse samples is a significant technological challenge.

xiv



In this thesis, we mainly consider the problem of dense depth data reconstruction

from a subset of samples. We present computationally efficient methods to estimate dense

depth maps from sparse measurements, and we further extend the work to dense depth

video estimation. Working on single depth image, we have three main contributions:

First, we provide empirical evidence that depth maps can be encoded much more sparsely

than natural images by using common dictionaries such as wavelets and contourlets,

and show that disparity maps can be sparsely represented by a combined wavelet and

contourlet dictionary. Second, we propose a subgradient algorithm for dense depth image

reconstruction, and propose an alternating direction methods of multipliers (ADMM)

algorithm with a multi-scale warm start procedure to further speed up the convergence.

Third, we propose a two-stage randomized sampling scheme to optimally choose the

sampling locations, thus maximizing the reconstruction performance for a given sampling

budget. Experimental results show that the proposed methods produce high quality

dense depth estimates, and are robust to noisy measurements.

For dealing with depth video sequences, a framework for depth video reconstruc-

tion from a subset of samples is proposed. By redefining classical dense depth estimation

into two individual problems, sensing and synthesis, we propose a motion compensation

assisted sampling (MCAS) scheme and a spatio-temporal depth reconstruction (STDR)

algorithm for reconstructing depth video sequences from a subset of samples. Using the 3-

dimensional extensible dictionary, 3D-DWT, and applying alternating direction method

of multiplier technique, the proposed STDR algorithm possesses scability for temporal

volume and efficiency for processing large scale depth data. Exploiting the temporal

information and corresponding RGB images, the proposed MCAS scheme achieves an

efficient 1-Stage sampling. Experimental results show that the proposed depth recon-

struction framework outperforms the existing methods and is competitive comparing to

our previous work on sampling single depth image, which requires a pilot signal in the 2-

Stage sampling scheme. Finally, to estimate missing reliable depth samples from varying

input sources, we present an inference approach using geometrical and color similarities.

Applications for depth video super resolution from uniform-grid subsampled data and

dense disparity video estimation from a subset of reliable samples are presented.

xv



Chapter 1

Introduction

The rapid development of 3D technology has created a new wave of visualization

and sensing impacts to the digital signal processing community. From remote sensing

[3] to preserving historical heritages [4], and from rescue [5] to 3D laparoscopic surgery

[6, 7], the footprints of 3D have been influencing a broad spectrum of the technological

frontiers.

The successful development of 3D signal processing is fundamentally linked to

a system’s ability to acquire depth. To date, there are two major classes of depth

acquisition techniques: hardware solutions and computational procedures. Hardware

devices are usually equipped with active sensors such as time-of-flight (ToF) camera [8]

and LiDAR [9]. While being able to produce high quality depth maps, these hardware

systems have high instrumentation cost. Moreover, the data acquisition time of the

devices is long (e.g., a recently proposed ToF cameras can only achieve 10fps [10], whereas

standard cameras nowadays can easily achieve 60fps.) Although speeding up is possible,

spatial resolution has to be traded off in return.

An alternative solution to acquiring depth is to estimate depth using a set of

computational procedures. This class of computational methods, broadly referred to

as disparity estimation algorithms [11, 12, 13, 14], estimates the depth by computing

the disparities between a pair of stereo images through their corresponding matching

points [15, 16]. Disparity estimation algorithms usually work well under well conditioned

environments, but they could be sensitive to illumination, noise, stereo alignments, and

other camera factors. Thus, the effective number of matching points that one can use

1
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for disparity estimation is actually much fewer than the number of pixels of the depth

map [17, 18].

1.1 Scope and Contributions

The objective of this thesis is to present a sampling and reconstruction framework

for improving the depth acquisition process. The key idea is to carefully select a sparse

subset of spatial samples and use an optimization algorithm to reconstruct the final dense

depth map.

In this thesis, we first consider the framework for single depth image and then

extend it to depth video sequences. The six major contributions are

1. Representation (Chapter 2): In order to reconstruct the depth map, we must

first define an appropriate representation. We show that, as opposed to natural

images, depth maps can be well approximated using a sparse subset of wavelet

bases. Moreover, we show that a combined dictionary of wavelets and contourlets

can further improve the reconstruction quality.

2. Algorithm (Chapter 3): We first discuss a subgradient algorithm for dense depth

image reconstruction using combined wavelet-contourlet dictionary, and we further

propose a fast numerical algorithm based on the alternating direction method of

multipliers (ADMM). We derive novel splitting strategies that allow one to solve

a sequence of parallelizable subproblems. We also present a multiscale implemen-

tation that utilizes the depth structures for efficient warm starts.

3. Sampling (Chapter 4): We propose an efficient spatial sampling strategy that

maximizes the reconstruction performance. In particular, we show that for a fixed

sampling budget, a high quality sampling pattern can be obtained by allocating

random samples with probabilities in proportional to the magnitudes of the depth

gradients.

4. Reconstruction for Spatio-Temporal Depth Data (Chapter 5): To deal with spatio-

temporal depth data, we propose a spatio-temporal depth reconstruction (STDR)

algorithm using the technique of alternating direction method of multipliers. We
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formulate a mathematical model that achieves temporal scalability using 3D-DWT,

leading to robust reconstruction performance to varying sizes of temporal volumes.

Moreover, using temporal information we present a speed-up scheme for the pro-

posed STDR algorithm.

5. Sampling for Spatio-Temporal Depth Data (Chapter 6): With a fixed sampling

budget, we propose a motion compensation assisted sampling (MCAS) scheme that

predicts and determines locations of reliable samples using a combined gradient

information from RGB and motion compensated depth images, achieving an effi-

cient 1-Stage sampling strategy without the requirement of pilot signal proposed

in our previous work [19]. The resulting method is more suitable for reconstructing

depth video sequences.

6. Applications (Chapter 6): Using geometrical and color similarities, we propose

an internal reliable depth data estimation for missing samples between MCAS

predictions and input sources. With the integration of the proposed depth video

reconstruction framework to practical systems, we demonstrate the following ap-

plications: (1) depth video SR from uniformly-grid subsampled depth data, and

(2) dense disparity video from a subset of estimated and reliable disparities.

1.2 Related Work

The focus of this work lies in the intersection of two closely related subjects:

depth enhancement and compressed sensing. Both subjects have a rich collection of

prior works but there are also limitations which we will now discuss.

The goal of depth enhancement is to improve the resolution of a depth map.

Some classical examples include Markov Random Field (MRF) [20], bilateral filter [21],

and other approaches [22, 23]. One limitation of these methods is that the low-resolution

depth maps are sampled uniformly. Also, it is usually assumed that a color image of the

scene is available. In contrast, our proposed method is applicable to any non-uniformly

sampled low-resolution depth map and does not require color images. Thus, the new

method allows for a greater flexibility for the enhancement.
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Compressed sensing (CS) is a popular mathematical framework for sampling and

recovery [24]. In many cases, CS methods assume that natural images exhibit sparse

structures in certain domains, e.g., wavelet. However, as will be discussed in Chapter 2 of

this thesis, natural images are indeed not sparse. If we compare natural images to depth

maps, the latter would show a much sparser structure than the former. Furthermore,

the theory of combined bases [25, 26] shows that a pair of incoherent bases are typically

more effective for signal recovery. Yet, the application of these theories to depth maps

is not fully explored.

The most relevant paper to our work is perhaps [2]. However, our work has

two advantages. First, we propose a new ADMM algorithm for the reconstruction task

(Chapter 3). We show that the ADMM algorithm is significantly more efficient than the

subgradient method proposed in [2]. Second, we present a sampling scheme to choose

optimal sampling patterns to improve the depth reconstruction (Chapter 4), which was

not discussed in [2].

We should also mention a saliency-guided CS method proposed in [27, 28]. In

these two papers, the spatial sampling is achieved by a mixing-plus-sampling process,

meaning that the unknown pixels are filtered and then sub-sampled. The filtering coef-

ficients are constructed using a pre-defined saliency map and certain density functions

(e.g., Gaussian-Bernoulli). In our work, the mixing process is not required so that depth

values are sampled without filtering. This makes our proposed method applicable to

disparity estimation where mixing cannot be used (otherwise it will defeat the purpose

of reconstructing dense depth maps from a few estimated values.)

Finally, advanced computational photography techniques are recently proposed

for fast depth acquisition, e.g., [29, 30]. However, the problem settings of these works

involve hardware designs and are thus different from this work.

1.3 Notations and Problem Formulation

1.3.1 Depth and Disparity

The type of data that we are interested in studying is the depth map. Depth

can be directly measured using active sensors, or inferred from the disparity of a pair
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of stereo images. Since the correspondence between depth and disparity is unique by

simple geometry [31], in the rest of this thesis we shall use depth and disparity inter-

changeably. In the following, we note symbols and describe the problem formulations

for the framework of single depth image sampling, representation and reconstruction.

1.3.2 Sampling Model

Let x ∈ RN be an N × 1 vector representing a disparity map. For simplicity we

assume that x is normalized so that 0 ≤ xj ≤ 1 for j = 1, . . . , N .

To acquire a set of spatial samples, we define a diagonal matrix S ∈ RN×N with

the (j, j)th entry being

Sjj
def
=






1, with probability pj ,

0, with probability 1− pj,
(1.1)

where {pj}Nj=1 is a sequence of pre-defined probabilities. Specific examples of {pj}Nj=1

will be discussed below. For now, we only require {pj}Nj=1 to satisfy two criteria: (1)

for each j = 1, . . . , N , pj must be bounded so that 0 ≤ pj ≤ 1; (2) the average of the

probabilities must achieve a target sampling ratio ξ:

1

N

N∑

j=1

pj = ξ, (1.2)

where 0 < ξ < 1.

Example 1. If pj = ξ for all j, then the sampling pattern S is a diagonal matrix with

uniformly random entries. This sampling pattern corresponds to a uniform sampling

without filtering in the classical compressed sensing, e.g., [24].

Example 2. If pj = 1 for j ∈ Ω1 and pj = 0 for j ∈ Ω0, where Ω1 and Ω0 are two pre-

defined sets such that |Ω1| = ξN and |Ω0| = (1−ξ)N , then S is a deterministic sampling

pattern. In particular, if Ω1 and Ω0 are designed so that the indices are uniformly gridded,

then S will become the usual down-sampling operator.
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With S, we define the sampled disparity map as

b = Sx. (1.3)

Note that in (1.3), the sampled disparity b ∈ RN×1 will contain zeros, i.e., bj = 0 if

Sjj = 0. Physically, this corresponds to the situation where the unsampled pixels are

marked with a value of zero.

Remark 1. Since S is a random diagonal matrix, readers at this point may have con-

cerns about the overall number of samples which is also random. However, we argue that

such randomness has negligible effects for the following reason. For large N , standard

concentration inequality guarantees that the average number of ones in S stays closely

to ξN . In particular, by Bernstein’s inequality [32] we can show that for ε > 0,

Pr





∣∣∣∣∣∣
1

N

N∑

j=1

Sjj − ξ

∣∣∣∣∣∣
> ε



 ≤ 2 exp

{
−

Nε2

1/2 + 2ε/3

}
. (1.4)

Therefore, although the sampling pattern in our framework is randomized, the average

number of samples is concentrated around ξN for large N .

1.3.3 Representation Model

To properly formulate the reconstruction problem, we assume that the disparity

map can be efficiently represented as a linear combination of basis vectors {ϕi}Mi=1:

x =
M∑

i=1

〈x,ϕi〉ϕi, (1.5)

where 〈·, ·〉 denotes the standard inner product. Defining αi
def
= 〈x,ϕi〉 as the ith basis

coefficient, α
def
= [α1, . . . ,αM ]T , and Φ

def
= [ϕ1, . . . ,ϕM ], the relationship in (1.5) can be

equivalently written as x = Φα.

The reconstruction problem can be posed as an optimization problem in which

the goal is to seek a sparse vector α ∈ RM such that the observed samples b are best
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approximated. Mathematically, we consider the problem

minimize
α

1

2
‖SΦα− b‖22 + λ‖α‖1, (1.6)

where λ > 0 is a regularization parameter, and ‖ · ‖1 is the )1-norm of a vector.

In this paper, we are mainly interested in two types of Φ — the wavelet frame

and the contourlet frame [1]. Frames are generalizations of the standard bases in which

M , the number of bases, can be more than N , the dimension of x. Moreover, for any

frame Φ, it holds that ΦΦT = I. Therefore, x = Φα if and only if α = ΦTx. Using

this result, we can equivalently express (1.6) as

minimize
x

1

2
‖Sx− b‖22 + λ‖ΦTx‖1. (1.7)

Remark 2. In compressed sensing literature, (1.6) is known as the synthesis problem and

(1.7) is known as the analysis problem [33]. Furthermore, the overall measurement matrix

SΦ in (1.6) suggests that if pj = ξ for all j, then SΦ corresponds to the partial orthogonal

system as discussed in [34]. In this case, the restricted isometry property (RIP) holds

[35] and exact recovery can be guaranteed under appropriate assumptions of sparsity and

number of measurements. For general {pj}Nj=1, establishing RIP is more challenging, but

empirically we observe that the optimization produces reasonable solutions.

1.3.4 Penalty Functions

As discussed in [2], (1.7) is not an effective formulation because the )1 norm

penalizes both the approximation (lowpass) and the detailed (highpass) coefficients. In

reality, since disparity maps are mostly piecewise linear functions, the lowpass coefficients

should be maintained whereas the highpass coefficients are desirable to be sparse. To

this end, we introduce a binary diagonal matrix W ∈ RM×M where the (j, j)th entry is

0 if j is an index in the lowest passband, and is 1 otherwise. Consequently, we modify

the optimization problem as

minimize
x

1

2
‖Sx− b‖22 + λ‖WΦTx‖1. (1.8)
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Finally, it is desirable to further enforce smoothness of the reconstructed disparity

map. Therefore, we introduce a total variation penalty so that the problem becomes

minimize
x

1

2
‖Sx− b‖22 + λ‖WΦTx‖1 + β‖x‖TV . (1.9)

Here, the total variation norm is defined as

‖x‖TV
def
= ‖Dxx‖1 + ‖Dyx‖1, (1.10)

where D = [Dx; Dy] is the first-order finite difference operator in the horizontal and

vertical directions. The above definition of total variation is known as the anisotropic

total variation. The same formulation holds for isotropic total variation, in which

‖x‖TV =
∑N

j=1

√
[Dxx]2j + [Dyx]2j .

The problem in (1.9) is generalizable to take into account of a combination of L

dictionaries. In this case, one can consider a sum of L penalty terms as

minimize
x

1

2
‖Sx− b‖22 +

L∑

!=1

λ!‖W !Φ
T
! x‖1 + β‖x‖TV . (1.11)

For example, in the case of combined wavelet and contourlet dictionaries, we let L = 2.

This Chapter includes materials that have been published in IEEE Transaction

on Image Processing 2015, titled “Depth Reconstruction from Sparse Samples: Repre-

sentation, Algorithm, and Sampling,” with Truong Q. Nguyen and Stanley H. Chan.



Chapter 2

Sparse Representation of Depth

Data

The choice of the dictionary Φ in (1.11) is an important factor for the recon-

struction performance. In this chapter we discuss the general representation problem of

disparity maps. We show that disparity maps can be represented more sparsely than

natural images. We also show that a combined wavelet-contourlet dictionary is more

effective in representing disparity maps than using the wavelet dictionary alone.

2.1 Natural Images vs Depth Data

Seeking effective representations for natural images is a well-studied subject in

image processing [36, 37, 38, 39, 1, 40, 41, 42]. However, representations of disparity

maps seems to be less studied. For example, how efficient can a pre-defined dictionary

(i.e., wavelets) represent disparity maps as compared to natural images captured by RGB

sensors from the same scene. To address this question, we consider a 128× 128 cropped

patch from a gray-scaled image and the corresponding patch in the disparity map. For

each of the image and the disparity, we apply the wavelet transform with Daubechies

5/3 filter and 5 decomposition levels. Then, we truncate the wavelet coefficients to

the leading 5% coefficients with the largest magnitudes. The reconstructed patches are

compared and the results are shown in Figure 2.1.

The result indicates that for the same number of wavelet coefficients, the disparity

9
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(a) Original (b) Approx. (c) Original (d) Approx.
disparity disparity view view

(50.25 dB) (29.29 dB)

Figure 2.1: PSNR values of approximating a disparity patch and a image patch using
the leading 5% of the wavelet coefficients.

map can be synthesized with significantly lower approximation error than the image.

While such result is not surprising, the big difference in the PSNRs provides evidence

that reconstruction of disparity maps from sparse samples should achieve better results

than that of natural images.

2.2 Wavelet vs Contourlet

The above results indicate that wavelets are efficient representations for disparity

maps. Our next question is to ask whether some of the dictionaries would perform better

than other dictionaries.

2.2.1 Representations of Wavelet and Contourlet Bases

As wavelet transform has sparse representation for images [38], it is widely used

in several image applications. For example, JPEG 2000 uses the 5/3 wavelet function

for loseless compression and 9/7 wavelet function for lossy compression. Since wavelet

functions are designed in square shape compact supports, local compact group of points

can be efficiently compressed. In addition to points, contours (lines) are also a major

components in images. For describing a depth map, lines and points are two fundamental

bases. Contourlet has been proposed and claimed that it has better representation

for piecewise smooth contours. Since directional filter banks are applied, directional

line bases are generated, and by selecting the frequency partitions for fitting parabolic
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scaling functions, contourlet has better representation for image contours [1, 39]. Aside

from wavelet transform, contourlet has directional rectangular compact supports since

directional filter bank is applied. Figure 2.2 denotes the basis function used to represent

a curve by wavelet basis (left) and contourlet basis (right) [1].

Figure 2.2: Representation schemes. For representing a curve, wavelet has square

compact supports and Contourlet has directional rectangular compact support. (Left)
Wavelet and (Right) Contourlet [1].

In this section, we are presenting the bases’ difference between wavelet and con-

tourlet. Since triangle, square, ellipse, circle and points are fundamental structures that

commonly exist in disparity maps, we use them as test images. In addition, ’bior9.7’

filter is applied in contourlet, and for fair comparison, ’bior9.7’ is selected in wavelet

transform. As Do and Vetterli [1] suggest that for fitting parabolic scaling function, the

frequency partitioning should be doubled than the previous scale, hence we select nlevel

= [5 6], which means that there are 25 = 32 wedge-shaped frequency bands in the first

finer scale and 26 = 64 wedge-shaped frequency bands in the finest scale.

For evaluation, we use mean square error as evaluation metric. Given a test image

f ∈ Rn, and a synthesized image from the most M significant coefficients, f̂
((M)

∈ Rn,

the mean square error is defined as

1

n
‖f − f̂

(M)
‖22. (2.1)

As the ground truth image is given, the synthesized image, f̂
(M)

, is estimated

by keeping the most significant M coefficients in transform domain. Using (2.1), the

log scale mean square is shown in Figure 2.4 and the bottom Figure 2.5. If the trans-
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(a) Ground Truth (b) Wavelet (c) Contourlet

Figure 2.3: Representations of Wavelet and Contourlet.

form analyses the selected image more efficiently, the error will be less. As the bases

have better representation for the image structures, fewer number of coefficients will be
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(c) MSE curves for Circle (d) MSE curves for Ellipse

Figure 2.4: MSE curves for Triangle, Square, Circle and Ellipse.

needed for synthesizing the selected image. Figure 2.3 and Figure 2.5 summarize our

studies on representations. The ground truth images are shown in the first column, the

synthesized images by keeping M=100 of the most significant transform coefficients in

contourlet are shown in the second column, and images in the third column are synthe-

sized images by keeping M=100 of the most significant wavelet coefficients. According

to the results, contourlet transform has less mean square errors than wavelet as the test

images are triangle, square, circle and ellipse. However, wavelet has less mean square

error than contourlet as the input is points image. Observing the synthesized images in

Figure 2.3(c) and Figure 2.5(c), since contourlet bases are directional lines, contourlet

transform has better representation for image contours. Similarly, observing the synthe-

sized images in Figure 2.3(b) and Figure 2.5(b), since wavelet bases have square shape

compact supports, wavelet transform has better representation for local compact group

of points. Additionally, wrong selection of transforms can yield erroneous synthesized
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(a) Ground Truth (b) Wavelet (c) Contourlet
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Figure 2.5: MSE curves and Representations for Dots.

images. Observing synthesized points image, as contourlet transform is selected, the

synthesized image has errors resulting from directional bases. In contrast, as wavelet

transform is selected, the synthesized image has matched results. In summary, wavelet

has better representation for local compact group of points since it has square com-

pact support, and contourlet has better representation for image contours since it has

directional rectangular compact supports.

2.2.2 Sparse Representation of Disparity Maps

Lines and points are two fundamental structures that mainly describe objects or

scenes in images. Since images are composed of points and lines, these components are

relatively informative. As these information are presented, the semantic of images can al-
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ways be understood by human beings. Disparity maps, which encode depth information,

especially satisfy these conditions. Since disparity maps contain mainly points and con-

tours, and possess piecewise smooth regions, points and lines are critical components for

describing objects in depth maps. Moreover, the transform coefficients of disparity maps

are more sparse than those of the corresponding images. As shown in Figure 2.6(c)(d),

the blue curve represents the errors of Aloe disparity map and the red curve represents

the errors of Aloe image. In both wavelet and contourlet transforms, disparity map has

less errors than its corresponding image, seeing Figure 2.6(a)(b). Therefore, in terms of

sparse representation, disparity maps have higher sparsity in both wavelet and contourlet

transforms than images.

(a) Aloe Disparity Map (b) Aloe Image
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Figure 2.6: (a)(b): Test Data. (c)(d): Log scale mean square error curves of aloe

disparity map and aloe image.
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2.2.3 Evaluation Metric

To compare the performance of two dictionaries, it is necessary to first specify

what metric to use. For the purpose of reconstruction, we compare the mean squared

error (MSE) of the reconstructed disparity maps obtained by choosing different dictio-

naries in (1.11). For any fixed sampling pattern S, we say that a dictionary Φ1 is better

than another dictionary Φ2 if the reconstruction result using Φ1 has a lower MSE than

using Φ2, for the best choice of parameters λ1, λ2 and β. Note that in this evaluation we

do not compare the sparsity of the signal using different dictionaries. In fact, sparsity

is not an appropriate metric because contourlets typically require 33% more coefficients

than wavelets [43]. However, it is known that contourlets have better representations of

lines and curves than wavelets.

2.2.4 Comparison Results

We synthetically create a gray-scaled image consisting of a triangle overlapping

with an ellipse to simulate a disparity map. We choose the uniformly random sampling

pattern S so that there is no bias caused by a particular sampling pattern. As parameters

are concerned, we set λ1 = 4× 10−5 and β = 2× 10−3 for the single wavelet dictionary

model (L = 1), and λ1 = 4 × 10−5, λ2 = 2 × 10−4 and β = 2 × 10−3 for the combined

dictionary model (L = 2). The choices of these parameters are discussed in Appendix

A.3.

Using the proposed ADMM algorithm (See Chapter 3.3), we plot the perfor-

mance of the reconstruction result as a function of the sampling ratio. For each point of

the sampling ratio, we perform a Monte-Carlo simulation over 20 independent trials to

reduce the fluctuation caused by the randomness in the sampling pattern. The result in

Figure 2.7 indicates that the combined dictionary is consistently better than the wavelet

dictionary alone. A snapshot of the result at ξ = 0.1 is shown in Figure 2.8. As observed,

the reconstruction along the edges of the ellipse is better in the combined dictionary than

using wavelet alone.

This Chapter is published in IEEE Transactions on Image Processing with Stan-

ley H. Chan and Truong Q. Nguyen, and in IEEE international Conference on Acoustics,

Speech and Signal Processing with Truong Q. Nguyen.
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Figure 2.7: ADMM reconstruction result as a function of sampling ratio ξ. Each point

on the curves is averaged over 20 independent Monte-Carlo trials. The PSNR evaluates
the performance of solving (1.11) using wavelet and wavelet+contourlet.

(a) Wavelet, 34.77 dB (b) Combined, 35.86 dB

Figure 2.8: Snapshot of the comparison between wavelet dictionary and a combined
wavelet-contourlet dictionary at ξ = 0.1.

This Chapter includes materials that have been published in IEEE Transaction

on Image Processing 2015, titled “Depth Reconstruction from Sparse Samples: Repre-

sentation, Algorithm, and Sampling,” with Truong Q. Nguyen and Stanley H. Chan, and

in IEEE International Conference on Acoustics, Speech and Signal Processing 2014, ti-

tled “Sparse Reconstruction for Disparity Maps using Combined Wavelet and Contourlet

Transforms,” with Truong Q. Nguyen.



Chapter 3

Algorithms for Depth Data

Reconstruction

3.1 Symbols and Problem Formulation

Based on the reasons that disparity maps have sparsity in both wavelet and

contourlet transform domains, and the point and line representations of wavelet and

contourlet bases, we propose a convex model for reconstructing dense disparity maps from

sparse samples by using wavelet and contourlet transforms. Based on the compressed

sensing theory, to reconstruct an image, sparsity in transform domain corresponds to

the needed number of samples in spatial domain. The fewer transform coefficients are

needed for representing an image in transform domain, the fewer spatial measurements

are needed for image reconstruction [44]. Moreover, disparity maps have no texture

information and possess piecewise smooth regions, hence the main structures are points

and lines. Since wavelet has better representation for points (dots), and contourlet has

better representation for contours (lines), wavelet and contourlet bases are suitable for

representing disparity maps. Therefore, we propose a convex model for disparity map

reconstruction by utilizing both wavelet and contourlet transforms.

minimize
x

‖W 1Φ
T
1 x‖1 + ‖W 2Φ

T
2 x‖1 subject to ‖b− Sx‖22 < ε. (3.1)

18
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Matrices Φ1 ∈ RN×N and Φ2 ∈ RN×N represent wavelet and contourlet bases. W 1 ∈

[0, 1]N×N and W 2 ∈ [0, 1]N×N are two diagonal matrices with zeros at the locations of

approximation coefficients and ones at the locations of detail coefficients. S ∈ [0, 1]N×N

is a sampling matrix. Vectors b ∈ RN×1 and x ∈ RN×1 denote the observations (sparse

samples) and disparity map, respectively. The parameter ε is the tolerance of errors

between measurements and the reconstructed disparity map. Since disparity maps have

piecewise smooth regions, to preserve the discontinuity, we introduce smoothness prior,

total variation. For implementing simplicity, we focus on anisotropic total variation.

Given a disparity map, X ∈ Rr×c, the total variation norm is described as,

‖X‖TV =
i=r−1∑

i=0

j=c−1∑

j=0

√
(X i,j −Xi,j+1)

2 +
√

(X i,j −Xi+1,j)
2. (3.2)

According to (3.2), the difference operators can be represented by matrices. Therefore,

given a canonical form of disparity map, x, the total variation is

‖x‖TV =
k=n−1∑

k=0

√
(ekDxx)

2 +
√

(ekDyx)
2. (3.3)

Dx and Dy, represent gradient in horizontal and vertical directions, respectively. Vector

ek denotes the basis with 1 at location k and 0’s otherwise. Moreover, since the approx-

imation of total variation results in bias in low frequency components and the sparsity

exists in detail coefficients, we further apply weight matrices, W 1 andW 2, for discarding

approximation coefficients, hence our proposed model for dense disparity reconstruction

is

minimize
x

‖W 1Φ
T
1 x‖1 + ‖W 2Φ

T
2 x‖1 + β‖x‖TV subject to ‖b− Sx‖22 < ε. (3.4)

The weight matrices, W 1 ∈ [0, 1]N×N and W 2 ∈ [0, 1]N×N , are diagonal matrices with

zeros at locations of approximation coefficients and ones at locations of detail coefficients.

According to the equivalent form, c = ΦT
1 x and Φ1Φ

T
1 = I, we replace (3.4) by

minimize
c

‖W 1c‖1 + ‖W 2Φ
T
2 Φ1c‖1 + β‖Φ1c‖TV subject to ‖b− SΦ1c‖22 < ε.

(3.5)
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Based on the Lagrangian duality, the (3.5) can be reformulated as an unconstrained

problem.

minimize
c

1

2
‖b− SΦ1c‖22 + λ

(
‖W 1c‖1 + ‖W 2Φ

T
2 Φ1c‖1 + β‖Φ1c‖TV

)
. (3.6)

Since the Lagrangian multiplier, λ, gives a weight between constraints and objective func-

tion, in order to make this problem to be more general, we introduce another parameter

to the regularization term, ‖W 2Φ
T
2 Φ1c‖1, and reformulate the equation as follows:

minimize
c

1

2
‖b− SΦ1c‖22 + λ‖W 1c‖1 + γ‖W 2Φ

T
2 Φ1c‖1 + β‖Φ1c‖TV. (3.7)

3.2 Algorithm: Conjugate Sub-Gradient

3.2.1 Derivation

For solving the unconstrained minimization problem in (3.7), we propose a method

that utilizes conjugate subgradients to minimize the gradient of cost function. First of

all, finding gradients of each terms is the first step, and the gradient of ‖W 2Φ
T
2 Φ1c‖1

at location k is

∂c‖W 2Φ
T
2 Φ1c‖1(k) =

{
ΦT

1 Φ2sign
[
W 2Φ

T
2 Φ1c

]}
(k), (3.8)

where the operator ∂c denotes element-wise derivative of vector c. The definition of

function sign is

sign (v) =






1, if v > 0,

0, if v = 0,

−1, if v < 0.

(3.9)

Since the anisotropic total variation is equivalent to )1 norm, and by introducing differ-

ence operator D = [Dx,Dy]
T , we can rewrite ‖Φ1c‖TV as,

‖Φ1c‖TV = ‖D (Φ1c) ‖1. (3.10)
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Moreover, as subgradients at zero value are ambiguous, we introduce Huber functional

to approximate the )1 norm.

Hδ(x) =






|x|−
δ

2
, if |x| ≥ δ,

x2

2δ
, otherwise.

(3.11)

Therefore, the gradient of ‖D (Φ1c) ‖1 is,

∂c‖Φ1c‖TV(k) = ∂cHδ

(√
(ekDxΦ1c)

2
)
+ ∂cHδ

(√
(ekDyΦ1c)

2
)
. (3.12)

where

∂cHδ

(√
s2x

)
=






ΦT
1 D

T
x e

T
k sign(sx), if |sx| ≥ δ,

ΦT
1 D

T
x e

T
k sx

δ
, otherwise.

(3.13)

and

∂cHδ

(√
s2y

)
=






ΦT
1 D

T
y e

T
k sign(sy), if |sy| ≥ δ,

ΦT
1 D

T
y e

T
k sy

δ
, otherwise.

(3.14)

The variables sx = ekDxΦ1c and sy = ekDyΦ1c. Finally, the conjugate subgradient of

‖W 1c‖1 is as follows

)‖W 1c‖1 =
∑

k





sign([W 1c] (k)), if |W 1c|(k) *= 0,

− sign(q(k)) ·min {|q(k)|, 1} , otherwise.
(3.15)

where the variable q is,

q =
1

λ
{−ΦT

1 S
T (b− SΦ1c) + γ ) ‖W 2Φ

T
2 Φ1c‖1 + β ) ‖Φ1c‖TV }. (3.16)

After calculating gradient of (3.7), the next step is to update variable c. At the i-th

iteration, the updating equation is

ci+1 = ci + αihi. (3.17)
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The descent direction, hi, is

hi+1 = −di+1 +
dT
i+1 (di+1 − di)

hT
i (di+1 − di)

. (3.18)

The update method is called, Hestenes-Stiefel(HS) [45], where di is the gradient of (3.7).

di = −ΦT
1 S

T (b− SΦ1ci)+λ)‖W 1ci‖1+γ)‖W 2Φ
T
2 Φ1ci‖1+β)‖Φ1ci‖TV. (3.19)

Selecting the step size, αi, is an important issue, and line search methods are commonly

used for solving gradient descent problems. Defining f(ci) as (3.7) and d(ci) = −f ′(ci)

as (3.19) , the line search algorithm is shown in as Algorithm 1. For detailed derivations,

readers can refer to Appendix A.1. For the initial process, variables settings are

h0 = −d0,

c0 = ΦT
1 S

Tb,

α0 = 1.

As we use gradient descent method to search for the optimal point and run the iteration

Algorithm 1 Backtracking Line Search Algorithm

Require: (ci, αi−1)

c1 ← 1e− 5, c2 ← 0.8
fc ← f(ci)

δf ← c1 〈f ′(ci), d(ci)〉
t← αi−1

fnew ← f(ci + td(ci))

itr ← 0
while (fnew > fc + tδf) ‖ (itr == 0) do

itr ← itr + 1

t← c2t
fnew ← f(ci + td(ci))

end while
if (itr == 1) then

t← t/c2
end if
return αi ← t
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for infinite number of times, the optimal point, c∗, should be found. Practically, running

the algorithm foran infinite number of time is impossible, hence it is necessary to define

the stop criteria. Therefore, given the current iteration, i, we define the stop criteria as

follows, ∣∣∣
(

1
N

∑j=i−1
j=i−N gj

)
− gi

∣∣∣
(

1
N

∑j=i−1
j=i−N gj

) ≤ tol. (3.20)

where ε is a positive scalar value, and gi = g(ci) is the cost function of regularization

terms,

g(ci) = λ‖W 1ci‖1 + γ‖W 2Φ
T
2 Φ1ci‖1 + β‖Φ1c‖TV. (3.21)

Finally, the overall dense disparity algorithm is summarized in Algorithm 2.

Algorithm 2 Dense Disparity Reconstruction Algorithm (Conjugate Subgradient)

Require: (b, S)

c0 ← ΦT
1 S

Tb

h0 ← −d0

α−1 ← 1

i← 0
while not converge do

di+1 = Subgradient of (3.7) by using (3.8), (3.12) and (3.15).

αi = BacktrackingLineSearch(xi,αi−1).
ci+1 = ci + αihi.

hi+1 = −di+1 +
dT
i+1(di+1−di)

hT
i (di+1−di)

.

end while

3.2.2 Experimental Setup

In our experiment, we test the algorithm using the disparity maps from Middle-

bury dataset [46]. The ground truth disparities and reconstructed results are shown in

Figure 3.1 and Figure 3.2. The size of each disparity maps is 512×512, and the range

of disparity values is [0-255]. Regarding the parameters, we use ”db2” and level=2 in

wavelet transform, and choose nLevel = [5, 6] for contourlet transform. In addition, the

regularization parameters are λ = 0.01, γ = 0.01 and β = 0.5. We examine reconstruc-

tion performance by randomly selecting 5%, 10%, 15%, 20% and 25% sampling points.

Two comparisons are presented in our experiment. Besides the model proposed in [2],
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we also consider the case that only uses contourlet transform. The PSNR and mean

absolute error (MAE) are presented to evaluate the performance of the algorithms.

Given an estimated image x̂, ground truth image x and total number of pixels,

N , the definition of MAE is:

Mean Absolute Error =
1

N

N∑

i=1

|xi − x̂i|. (3.22)
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Figure 3.1: Reconstructed disparity maps from 10% random samples. MAE and PSNR
curves, and snapshots of “Aloe” depth image.

3.2.3 Discussions

As shown in the Figure 3.1(a) and Figure 3.2(a), the proposed CT+WT method

has the highest PSNR. Since the proposed CT+WT method utilizes both contourlet
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Figure 3.2: Reconstructed disparity maps from 10% random samples. MAE and PSNR
curves, and snapshots of “Art” depth image.

and wavelet transforms, local features and contours are reconstructed with high qual-

ity. Additionally, the proposed CT method has higher PSNR than HAWE’11 because

the major structures of disparity maps are contours. Referring to MAE curves, the

proposed CT+WT method outperforms the proposed CT and HAWE’11. As disparity

maps correspond to depth information, the lower MAE infers better dense depth estima-

tion performance. Thus, the proposed CT+WT method not only reconstructs disparity

structures but also has less depth errors. While visually comparing object boundaries,

the proposed CT+WT and proposed CT have smooth boundaries, whereas the stair-

case artifact along object boundaries exists in HAWE’11 method. In summary, the

experiment shows that using combined wavelet and contourlet transforms yields better

reconstruction performance than utilizing either wavelet or contourlet transform.
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3.3 Algorithm: Alternating Direction Method of Multipli-

ers

In this section we present an alternating direction method of multipliers (ADMM)

algorithm to solve (1.11). ADMM algorithms can be traced back to the proximal oper-

ators proposed by Moreau in the 60’s [47], and later studied by Eckstein and Bertsekas

[48] in the 90’s. The application of ADMM to image deconvolution was first mentioned in

[49]. For brevity we skip the introduction of the ADMM algorithm because comprehen-

sive tutorials are easily accessible [50, 51]. Instead, we highlight the unique contributions

of this thesis, which includes a particular operator splitting strategy and a multiscale

implementation.

For notational simplicity we consider a single dictionary so that L = 1. General-

ization to L > 1 is straight forward. Also, in our derivation we focus on the anisotropic

total variation so that ‖x‖TV = ‖Dxx‖1+‖Dyx‖1. Extension to isotropic total variation

follows the same idea as presented in [7].

3.3.1 ADMM and Operator Splitting

A central question about ADMM algorithms is which of the variables should

be splitted so that the subsequent subproblems can be efficiently solved. Inspecting

(1.11), we observe that there are many possible choices. For example, we could split the

quadratic term in (1.11) by defining an auxiliary variable u = Sx, or we could keep the

quadratic term without a split. In what follows, we present an overview of our proposed

splitting method and discuss the steps in subsequent subsections.

We start the ADMM algorithm by introducing three auxiliary variables r = x,

u! = Φ!x, and v = Dx. Consequently, we rewrite the optimization problem as

minimize
x,r,u!,v

1
2‖b− Sr‖2 + λ!‖W !u!‖1 + β‖v‖1

subject to r = x, u! = ΦT
! x, v = Dx.

(3.23)

The ADMM algorithm is a computational procedure to find a stationary point
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of (3.23). The idea is to consider the augmented Lagrangian function defined as

L (x,u!, r,v,w,y!,z)

=
1

2
‖b− Sr‖2 + λ!‖W !u!‖1 + β‖v‖1 (3.24)

−wT (r − x)− yT
!

(
u! −ΦT

! x
)
− zT (v −Dx)

+
µ

2
‖r − x‖2 +

ρ!
2
‖u! −ΦT

! x‖
2 +

γ

2
‖v −Dx‖2.

In (3.24), the vectors w, y! and z are the Lagrange multipliers; λ! and β are the regular-

ization parameters, and µ, ρ! and γ are the internal half quadratic penalty parameters.

The stationary point of the augmented Lagrangian function can be determined by solving

the following sequence of subproblems

x(k+1) = argmin
x

L
(
x,u(k)

! , r(k),v(k),w(k),y(k)
! ,z(k)

)
,

u
(k+1)
! = argmin

u!

L
(
x(k+1),u!, r

(k),v(k),w(k),y(k)
! ,z(k)

)
,

r(k+1) = argmin
r

L
(
x(k+1),u(k+1)

! , r,v(k),w(k),y(k)
! ,z(k)

)
,

v(k+1) = argmin
v

L
(
x(k+1),u(k+1)

! , r(k+1),v,w(k),y(k)
! ,z(k)

)
,

and the Lagrange multipliers are updated as

y
(k+1)
! = y

(k)
! − ρ!

(
u
(k+1)
! −ΦT

! x
(k+1)

)
, (3.25a)

w(k+1) = w(k) − µ
(
r(k+1) − x(k+1)

)
, (3.25b)

z(k+1) = z(k) − γ
(
v(k+1) −Dx(k+1)

)
. (3.25c)

We now discuss how each subproblem is solved.
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3.3.2 Subproblems

x-subproblem

The x-subproblem is obtained by dropping terms that do not involve x in (3.24).

This yields

x(k+1) = argmin
x
−wT (r − x)− yT

!

(
u! −ΦT

! x
)
− zT (v −Dx) (3.26)

+
µ

2
‖r − x‖2 +

ρ!
2
‖u! −ΦT

! x‖
2 +

γ

2
‖v −Dx‖2.

Problem (3.26) can be solved by considering the first-order optimality condition, which

yields a normal equation

(
ρ!Φ!Φ

T
! + µI + γDTD

)
x(k+1) (3.27)

= Φ! (ρ!u! − y!) + (µr −w) +DT (γv − z) .

The matrix in (3.27) can be simplified as (ρ! + µ)I + γDTD, because for any frame Φ!,

it holds that Φ!Φ
T
! = I. Now, since the matrix DTD is a circulant matrix, the matrix

(ρ! + µ)I + γDTD is diagonalizable by the Fourier transform. This leads to a closed

form solution as

x(k+1) = F−1

[
F(RHS)

(ρ! + µ)I + γ|F(D)|2

]
, (3.28)

where RHS denotes the right hand side of (3.27), F(·) denotes the 2D Fourier transform,

F−1(·) denotes the 2D inverse Fourier transform, and |F(D)|2 denotes the magnitude

square of the eigenvalues of the differential operator D.

Remark 3. If we do not split the quadratic function ‖b − Sx‖2 using r = x, then

the identity matrix µI in (3.27) would become µSTS. Since S is a diagonal matrix

containing 1’s and 0’s, the matrix ρ!Φ!Φ
T
! +µSTS+ γDTD is not diagonalizable using

the Fourier transform.
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u!-subproblem

The u!-subproblem is given by

min
u!

λ!‖W !u!‖1 − yT
!

(
u! −ΦT

! x
)
+

ρ!
2
‖u! −ΦT

! x‖
2. (3.29)

Since W ! is a diagonal matrix, (3.29) is a separable optimization consisting of a sum

of scalar problems. By using the standard shrinkage formula [7], one can show that the

closed-form solution of (3.29) exists and is given by

u
(k+1)
! = max

(∣∣∣∣α! +
y!

ρ!

∣∣∣∣−
λ!w̃!

ρ!
, 0

)
· sign

(
α! +

y!

ρ!

)
, (3.30)

where w̃! = diag(W !) and α! = ΦT
! x.

Remark 4. If we do not split using u! = ΦT
! x, then the u!-subproblem is not separable

and hence the shrinkage formula cannot be applied. Moreover, if we split u! = W !Φ
T
! x,

i.e., include W !, then the x-subproblem will contain Φ!W !Φ
T
! , which is not diagonaliz-

able using the Fourier transform.

r-subproblem

The r-subproblem is the standard quadratic minimization problem:

min
r

1

2
‖Sr − b‖2 −wT (r − x) +

µ

2
‖r − x‖2. (3.31)

Taking the first-order optimality yields a normal equation

(
STS + µI

)
r =

(
STb+w + µx

)
. (3.32)

Since S is a diagonal binary matrix, (3.32) can be evaluated via an element-wise com-

putation.

Remark 5. (3.32) shows that our splitting strategy of using r = x is particularly efficient

because S is a diagonal matrix. If S is a general matrix, e.g., i.i.d. Gaussian matrix in

[52], then solving (3.32) will be less efficient.
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v-subproblem

The v-subproblem is the standard total variation problem:

min
v

β‖v‖1 − zT (v −Dx) +
γ

2
‖v −Dx‖2. (3.33)

The solution is given by

v(k+1) = max

(∣∣∣∣Dx+
z

γ

∣∣∣∣−
β

γ
, 0

)
· sign

(
Dx+

z

γ

)
. (3.34)

The overall ADMM algorithm is shown in Algorithm 3. For detailed derivations

of solutions to subproblems, readers can refer to Appendix A.2.

Algorithm 3 ADMM Algorithm

Require: b,S
1: x(0) = Sb, u(0)

! = ΦT
! x

(0), r(0) = x(0), v(0) = Dx(0)

2: while ‖x(k+1) − x(k)‖2/‖x(k)‖2 ≥ tol do
3: Solve x-subproblem by (3.28).
4: Solve u!, r and v subproblems by (3.30), (3.32) and (3.34).

5: Update multipliers by (3.25a), (3.25b) and (3.25c).
6: end while
7: return x∗ ← x(k+1)

3.3.3 Parameters

The regularization parameters (λ!, β) and internal half quadratic penalty param-

eters (ρ!, µ, γ) are chosen empirically. Table 3.1 provides a summary of the parameters

we use in this paper. These values are the typical values we found over a wide range

of images and testing conditions. For detailed experiments of the parameter selection

process, we refer the readers to our supplementary technical report in [53] or Appendix

A.3.

3.3.4 Convergence Comparison

Since (1.11) is convex, standard convergence proof of ADMM applies (c.f. [51]).

Thus, instead of repeating the convergence theory, we compare our proposed algorithm
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Table 3.1: Summary of Parameters.

Parameter Functionality Values

λ1 Wavelet sparsity 4× 10−5

λ2 Contourlet sparsity 2× 10−4

β Total variation 2× 10−3

ρ1 Half quad. penalty for Wavelet 0.001
ρ2 Half quad. penalty for Contourlet 0.001

µ Half quad. penalty for r = x 0.01
γ Half quad. penalty for v = Dx 0.1

with a subgradient algorithm proposed by Hawe et al. [2].

To set up the experiment, we consider the uniformly random sampling pattern

S with sampling ratios ξ = 0.1, 0.15, 0.2. For both our algorithm and the subgradient

algorithm proposed in [2], we consider a single wavelet dictionary using Daubechies

wavelet “db2” with 2 decomposition levels. Other choices of wavelets are possible, but

we observe that the difference is not significant.
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Figure 3.3: Comparison of the rate of convergence between ADMM (proposed) and
subgradient algorithms [2] for single wavelet dictionary. We used “Aloe” as a test image.

The ADMM algorithm requires approximately 10 seconds to reach steady state. The
subgradient algorithm requires more than 9× running time than the ADMM algorithm

to reach steady state.

Figure 3.3 shows the convergence results of our proposed algorithm and the

subgradient algorithm. It is evident from the figure that the ADMM algorithm converges

at a significantly faster rate than the subgradient algorithm. In particular, we see that the
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ADMM algorithm reaches a steady state in around 10 seconds, whereas the subgradient

algorithm requires more than 90 seconds.

3.3.5 Multiscale ADMM

The ADMM algorithm shown in Algorithm 3 can be modified to incorporate a

multiscale warm start. The idea works as follows.

First, given the observed data b, we construct a multiscale pyramid {bq | q =

0, . . . , Q− 1} of Q levels, with a scale factor of 2 across adjacent levels. Mathematically,

by assuming without loss of generality that N is a power of 2, we define a downsampling

matrix Aq at the qth level as

Aq = [e1,0,e2,0, . . . ,0,eN/2q ],

where ek is the kth standard basis. Then, we define bq as

bq = Aqbq−1, (3.35)

for q = 1, . . . , Q − 1, and b0 = b. Correspondingly, we define a pyramid of sampling

matrices {Sq | q = 0, . . . , Q− 1}, where

Sq = AqSq−1, (3.36)

with the initial sampling matrix S0 = S.

The above downsampling operation allows us to solve (1.11) at different resolution

levels. That is, for each q = 0, . . . , Q− 1, we solve the problem

xq = argmin
x

1

2
‖Sqx− bq‖22 + λ!‖W !Φ

T
! x‖1 + β‖x‖TV , (3.37)

where Φ! and W ! are understood to have appropriate dimensions.

Once xq is computed, we feed an upsampled version of xq as the initial point

to the (q − 1)th level’s optimization. More specifically, we define an upsampling and
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averaging operation:

Bq =
[
eT1 ; e

T
1 ; e

T
2 ; e

T
2 ; . . . ; e

T
N/2q ; e

T
N/2q

]
, (3.38)

and we feed xq, the solution at the qth level, as the initial guess to the problem at the

(q − 1)th level:

x
(0)
q−1 = Bqxq. (3.39)

A pictorial illustration of the operations of Aq and Bq is shown in Figure 3.4. The

algorithm is shown in Algorithm 4.

2 [1, 1]
xq x

(0)
q−1

Bq

2
bq−1 bq

Aq

Figure 3.4: Schematic diagram showing the operations of Aq and Bq: Aq downsamples
the observed data bq by a factor of 2; Bq upsamples the solution xq by a factor of 2,

followed by a two-tap filter of impulse response [1, 1].

Algorithm 4 Multiscale ADMM Algorithm

Require: S0, . . . ,SQ−1 and b0, . . . , bQ−1
1: for q = Q− 1 to 0 do

2: xq = ADMM(bq ,Sq) with initial guess x
(0)
q

3: Let x
(0)
q−1 = Bqxq, if q ≥ 1.

4: end for
5: Output x = x0.

To validate the effectiveness of the proposed multiscale warm start, we compare

the convergence rate against the original ADMM algorithm for a combined dictionary

case. In Figure 3.5, we observe that the multiscale ADMM converges at a significantly

faster rate than the original ADMM algorithm. More specifically, at a sampling ratio

of 20%, the multiscale ADMM algorithm converges in 20 seconds whereas the original

ADMM algorithm converges in 50 seconds which corresponds to a factor of 2.5 in runtime

reduction. For fairness, both algorithms are tested under the same platform of MATLAB

2012b / 64-bit Windows 7 / Intel Core i7 / CPU 3.2GHz (single thread) / 12 GB RAM.

Remark 6. When propagating the qth solution, xq, to the (q−1)th level, we should also

propagate the corresponding auxiliary variables u!, r, v and the Lagrange multipliers y!,
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w and z. The auxiliary variables can be updated according to x
(0)
q−1 as u

(0)
!,q−1 = Φ!x

(0)
q−1,

r
(0)
q−1 = x

(0)
q−1, and v

(0)
q−1 = Dx

(0)
q−1. For the Lagrange multipliers, we let y(0)

!,q−1 = Bqy!,q,

w
(0)
q−1 = Bqwq, and z

(0)
q−1 = Bqzq.
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Figure 3.5: Runtime comparison of original ADMM algorithm, multiscale ADMM al-

gorithm and subgradient algorithm. All algorithms use the combined wavelet-contourlet
dictionary. The testing image is “Aloe” and two sampling ratios (10% and 20%) are

tested. Q = 3 multiscale levels are implemented in this experiment.

Remark 7. The choice of the up/down sampling factor is not important. In our exper-

iment, we choose a factor of 2 for simplicity in implementation. Other sampling factors

such as
√
2 are equally applicable. Furthermore, the two-tap average filter [1, 1] in Fig-

ure 3.4 can be replaced by any valid averaging filter. However, experimentally we find

that other choices of filters do not make a significant difference comparing to [1, 1].

This Chapter includes materials that have been published in IEEE Transaction

on Image Processing 2015, titled “Depth Reconstruction from Sparse Samples: Repre-

sentation, Algorithm, and Sampling,” with Truong Q. Nguyen and Stanley H. Chan, and

in IEEE International Conference on Acoustics, Speech and Signal Processing 2014, ti-

tled “Sparse Reconstruction for Disparity Maps using Combined Wavelet and Contourlet

Transforms,” with Truong Q. Nguyen.
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Figure 3.6: Multilevel Scheme. The red arrow represents ADMM dense disparity recon-
struction process, and the green arrow stands for the upsampling process with nearest

neighbor interpolation.



Chapter 4

Sparse Sampling for Depth Data

In the above Chapters, we assume that the sampling matrix S is given and is

fixed. However, we have not yet discussed the design of the sampling probability {pj}Nj=1.

The purpose of this section is to present an efficient design procedure.

4.1 Motivating Example

Before our discussion, perhaps we should first ask about what kind of sampling

matrix S would work (or would not work). To answer this question, we consider an

example shown in Figure 4.1. In Figure 4.1 we try to recover a simple disparity map

consisting of an ellipse of constant intensity and a plain background. We consider three

sampling patterns of approximately equal sampling ratios ξ: (a) a sampling pattern de-

fined according to the magnitude of the disparity gradient; (b) an uniform grid with

specified sampling ratio
√
ξ along both directions; (c) a random sampling pattern drawn

from an uniform distribution with probability ξ. The three sampling patterns corre-

spondingly generate three sampled disparity maps. For each sampled disparity map, we

run the proposed ADMM algorithm and record the reconstructed disparity map. In all

experiments, we use a wavelet dictionary for demonstration.

The results in Figure 4.1 suggest a strong message: For a fixed sampling budget

ξ, one should pick samples along gradients. However, the pitfall is that this approach is

not practical for two reasons. First, the gradient of the disparity map is not available

36
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ξ = 0.1314 ξ = 0.1348 ξ = 0.1332

(a) 45.527dB (b) 29.488dB (c) 30.857dB

Figure 4.1: Three sampling patterns and the corresponding reconstruction results using
the proposed ADMM algorithm. Here, ξ denotes the actual sampling ratio. (a) Sampling
along the gradient; (b) Sampling from a grid; (c) Sampling from an uniformly random

pattern.

prior to reconstructing the disparity. Therefore, all gradient information can only be

inferred from the color image. Second, the gradients of a color image could be very

different from the gradients of the corresponding disparity map. Thus, inferring the

disparity gradient from the color image gradient is a challenging task. In the followings,

we present a randomized sampling scheme to address these two issues.

4.2 Oracle Random Sampling Scheme

We first consider an oracle situation where the gradients are assumed known.

The goal is to see how much improvement one should expect to see.

Let a = [a1, . . . , aN ]T be a vector denoting the magnitude of the ground truth

disparity map’s gradient. Given this oracle information about the disparity gradients, we

consider a soft decision rule where a pixel is sampled with probability defined according

to some function of {aj}Nj=1. Such a function is chosen based on the intuition that the



38

sampled subset of gradients should carry the maximum amount of information compared

to the full set of gradients. One way to capture this intuition is to require that the average

gradient computed from all N samples is similar to the average gradient computed from

a subset of ξN samples.

To be more precise, we define the average gradient computed from all N samples

as

µ
def
=

1

N

N∑

j=1

aj . (4.1)

Similarly, we define the average gradient computed from a random subset of ξN samples

as

Y
def
=

1

N

N∑

j=1

aj
pj

Ij , (4.2)

where {Ij}Nj=1 is a sequence of Bernoulli random variables with probability Pr[Ij = 1] =

pj. Here, the division of aj by pj is to ensure that Y is unbiased, i.e., E[Y ] = µ.

From (4.1) and (4.2), minimizing the difference between Y and µ can be achieved

by minimizing the variance E[(Y − µ)2]. Moreover, we observe that

E
[
(Y − µ)2

]
=

1

N

N∑

j=1

a2j
p2j

Var [Ij ] =
1

N

N∑

j=1

a2j

(
1− pj
pj

)
,

where the last equality holds because Var[Ij ] = pj(1 − pj). Therefore, the optimal

sampling probability {pj}Nj=1 can be found by solving the optimization problem

(P ) : minimize
p1,...,pN

1

N

N∑

j=1

a2j
pj

subject to
1

N

N∑

j=1

pj = ξ, and 0 ≤ pj ≤ 1,

of which the solution is given by [54, Lemma 2]

pj = min(τaj , 1), (4.3)



39

(a) Greedy sampling (b) Random sampling
35.5201 dB, ξ = 0.1157 39.8976 dB, ξ = 0.1167

Figure 4.2: Comparison between a deterministic sampling pattern by selecting samples
greedily according to the magnitude of {aj}, and a randomized sampling pattern using
the proposed scheme.

where τ is the root of the equation

g(τ)
def
=

N∑

j=1

min(τaj , 1) − ξN. (4.4)

It is interesting to compare this new random sampling scheme versus a greedy

sampling scheme by picking the ξN pixels with the largest gradients. Figure 4.2 shows

the result. For the greedy sampling scheme, we first compute the gradient of the dis-

parity map ∇x def
=

√
(Dxx)2 + (Dyx)2 and threshold it to obtain a set of samples

Ω
def
= {j | [∇x]j > α‖∇x‖∞}, where α = 0.1 is the threshold. The actual sampling ratio

is then |Ω|/N . For the randomized scheme, we let a = ∇x and we compute pj according

to (4.3). In this particular example, we observe that the randomized sampling scheme

achieves a PSNR improvement of more than 4 dB.

4.2.1 Practical Random Sampling Scheme

We now present a practically implementable sampling scheme. The challenge that

we have to overcome is that the gradient information of the disparity is not available.

Therefore, we propose the following two-stage sampling process.

Our proposed sampling scheme consists of two stages - a pilot stage to obtain a

rough estimate of the disparity, and a refinement stage to improve the disparity estimate.

In the first step pilot stage, we pick ξN/2 samples (i.e., half of the desired number of
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samples) using an uniformly random sampling pattern. This gives a sampling pattern

{I(1)j }Nj=1, where the superscript denotes the first stage. Correspondingly, we have a

sampling matrix S(1) and the sampled data b(1). Given S(1) and b(1), we apply the

ADMM algorithm to obtain a pilot estimate x(1).

In the second stage, we use the pilot estimate x(1) as a guide to compute the

gradient ∇x(1). By (4.3), this suggests that the optimal sampling probability is pj =

min(τ [∇x(1)]j , 1). However, in order to ensure that the ξN/2 samples picked at the

second stage do not overlap with those picked in the first stage, instead of letting pj =

min(τ [∇x(1)]j , 1), we let pj = min(τaj , 1), where

aj =






[∇x(1)]j , if I(1)j = 0,

0, if I(1)j = 1.
(4.5)

In other words, aj defined by (4.5) forces pj = 0 when the jth pixel is picked in the first

step. Thus, the non-zero entries of {I(1)j } and {I(2)j } are mutually exclusive, and hence

we can now apply the ADMM algorithm to recover x(2) from S1 +S2 and b1 + b2. The

overall method is summarized in Algorithm 5.

Algorithm 5 Two-Stage Algorithm

1: Input: N , ξ, b
2: Output: x(2)

3: Stage 1:

4: Let I
(1)
j = 1 with probability ξ/2, for j = 1, . . . , N .

5: Define S(1) and b(1) according to {I
(1)
j }.

6: Compute x(1) = ADMM (S(1), b(1)).

7: Stage 2:

8: Compute ∇x(1).

9: For j = 1, . . . , N , define aj =

{
[∇x(1)]j , if I

(1)
j = 0,

0, if I
(1)
j = 1.

.

10: Compute τ such that
∑N

j=1 min{τaj , 1} = Nξ/2.

11: Let pj = min{τaj , 1}, for j = 1, . . . , N .

12: Let I
(2)
j = 1 with probability pj , for j = 1, . . . , N .

13: Define S(2) and b(2) according to {I
(2)
j }.

14: Compute x(2) = ADMM (S(1) + S(2), b(1) + b(2)).
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4.3 Further Improvement by PCA

The two-stage sampling procedure can be further improved by utilizing the prior

information of the color image. The intuition is that since both color image and disparity

map are captured from the same scene, strong gradients in the disparity map should align

with those in the color image. However, since a color image typically contains complex

gradients which are irrelevant to the disparity reconstruction, it is important to filter out

these unwanted gradients while preserving the important ones. To this end, we consider

the following patch-based principal component analysis.

Given a color image y ∈ RN , we construct a collection of patches {yj}Nj=1 where

yj ∈ Rd denotes a vectorization of the jth patch of size
√
d ×
√
d centered at pixel j of

the image. For patches centered at the corners or boundaries of the image, we apply a

symmetrical padding to make sure that their sizes are
√
d×
√
d. This will give us a total

of N patches.

Next, we form a data matrix Y
def
= [y1,y2, . . . ,yN ]. This data matrix leads to a

principal component decomposition as

Y Y T = UΛUT , (4.6)

where U is the eigenvector matrix, and Λ is the eigenvalue matrix. Given U , we can

compute uT
i yj, i.e., the projection of a patch yj onto the subspace spanned by an

eigenvector ui. If we view ui as a finite impulse response filter, then the projection is

equivalent to a filtering.

The structure of the filters deserves a closer look. In Figure 4.3 we show the

6 leading eigenvectors u1, . . . ,u6. It can be seen that except for the first eigenvector

u1 (which is a constant vector), all remaining eigenvectors u2, . . . ,ud are in the form

of differential operators, with different orders and orientations. Moreover, these filters

are bandpass filters, which suggests that various gradients of the color image can be

extracted by the filtering. Consequently, if one would like to extract major gradients

while rejecting gradients of the textures, the following filtered signal can be considered:

aj =
d′∑

i=2

|uT
i yj|, j = 1, . . . , N, (4.7)
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Figure 4.3: The first 6 eigenvectors of the data matrix Y Y T , where Y is obtained from
the color image corresponding to Figure 4.2. In this example we set the patch size as

19× 19 so that d = 361. The range of the color index of this figure is [−0.1, 0.1].

where d′ < d is a tunable parameter (which was set to d′ = 16 for d = 49 in this thesis).

Here, the absolute value in (4.7) is used to get the magnitude of 〈ui,yj〉, as aj must be

a non-negative number.

To see how this PCA concept can be incorporated into our two-stage sampling

scheme, we make the following observations. First, the uniform sampling in Stage-1 can

well be replaced by the PCA approach. In particular, instead of setting I(1)j = 1 with

probability ξ/2, we can define aj according to (4.7), and let pj = min(τaj , 1) for τ being

the root of (4.4). Consequently, we let I(1)j = 1 with probability pj.

In Stage-2, since we have already had a pilot estimate of the disparity map, it

is now possible to replace Y in (4.6) by a data matrix X = [x(1)
1 , . . . ,x(1)

N ], where each

x
(1)
j is a d-dimensional patch centered at the jth pixel of x(1). Thus, instead of setting

aj = [∇x(1)]j in (4.5), we can set aj =
∑d′

i=2 |〈ui,x
(1)
j 〉| using (4.7). The advantage

of this new aj is that it softens the sampling probability at the object boundaries to

a neighborhood surrounding the boundary. This reduces the risk of selecting irrelevant

samples because of a bad pilot estimate.

4.4 Comparisons

As a comparison between sampling patterns, we consider a disparity map shown

in Figure 4.4. Setting ξ = 0.1 (i.e., 10%), we study four sampling patterns including

two versions of our proposed two-stage method. We conduct a Monte-Carlo simula-

tion by repeating 32 independent trials, and average the PSNRs. The results shown in

Figure 4.4(c) are generated using the original two-stage sampling scheme without PCA

improvement, whereas the results shown in Figure 4.4(d) are generated using an im-
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proved two-stage sampling scheme where the first stage is uniform and the second stage

is PCA. These results indicate that for the same sampling ratio ξ, the choice of the

sampling pattern has some strong influence to the reconstruction quality. For example,

as compared to both uniform random sampling and grid sampling, the original two-stage

sampling has about 2.44 dB improvement, and can be further improved by almost 3.76

dB using the PCA idea.

(a) Uniform random (b) Uniform grid (c) Proposed w/o PCA (d) Proposed w/ PCA

Method Actual Sampling Ratio Average PSNR / dB Standard Deviation
Uniform random 0.1001 29.7495 0.3768
Uniform grid 0.1128 30.2726 0.0000

Proposed w/o PCA 0.1000 32.4532 0.8962
Proposed w/ PCA 0.1002 33.7707 1.0435

Figure 4.4: Comparison between four sampling patterns. (a) Uniformly random sam-

pling pattern; (b) Uniform grid; (c) Proposed two-stage sampling without PCA im-
provement; (d) Proposed two-stage sampling with PCA improvement. For the two-stage

sampling in (c)-(d), we pick ξN/2 uniformly random samples in stage 1, and pick the
remaining ξN/2 samples according to the pilot estimate from Stage 1. We conduct a
Monte-Carlo simulation with 32 independent trials. The averages of PSNRs are pre-

sented in the Table.
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4.5 Experimental Results

In this section we present additional results to illustrate the performance of the

proposed method.

4.5.1 Synthetic Data

We first compare the proposed algorithm with existing methods on the Middle-

bury dataset[46], where ground truth disparities are available. We consider two versions

of the proposed algorithm: “Proposed WT+CTGrid” and “Proposed WT+CT 2-Stage”.

“Proposed WT+CT Grid” is the ADMM algorithm presented in Section IV using both

wavelet and contourlet bases. Here, “Grid” refers to using a deterministic uniform grid

sampling pattern and “2-stage” refers to using the 2-stage randomized sampling scheme

presented in Section V. We use Daubechies wavelet “db2” with 2 decomposition lev-

els for wavelet dictionary, and we set “bior9-7” wavelet function with [5 6] directional

decompositions for contourlet dictionary.

We also compare our method with [2], which has three differences from ours: (1)

[2] uses a subgradient descent algorithm whereas we use an ADMM algorithm; (2) [2]

considers only a wavelet basis whereas we consider a combined wavelet-contourlet basis;

(3) [2] uses a combination of canny edges and uniformly random samples whereas we use

a principled design process to determine samples.

In this experiment we do not compare with depth super resolution algorithms,

e.g., [21, 55, 56]. These methods require a color image to guide the actual reconstruction

process, which is different from what is presented here because we only use the color

image for designing the sampling pattern. As a reference of these methods, we show the

results of a bicubic interpolation using uniform grid sampling pattern.

Table 4.1 shows the PSNR values of various methods at different sampling ratios

and sampling methods. It is clear that “Proposed WT+CT 2-Stage” outperforms the

other methods by a significant margin. Moreover, as the sampling ratio increases, the

PSNR gain of “Proposed WT+CT 2-Stage” is more prominent than that of other meth-

ods. For example, increasing from 5% to 25% for “Art”, “Proposed WT+CT 2-Stage”

demonstrates an 18 dB PSNR improvement whereas bicubic only demonstrates 3 dB
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improvement.

It is also instructive to compare the percentage of bad pixels (% Bad Pixel),

which is a popular metric to measure the quality of disparity estimates [57]. Given a

threshold τ > 0, the percentage of bad pixels is defined as

% Bad Pixel
def
=

1

N

N∑

j=1

(
|x̂j − x∗j | > τ

)
, (4.8)

where x̂ is the reconstructed disparity and x∗ is the ground truth disparity. Percentage

of bad pixels can be considered as an absolute difference metric as compared to the mean

squared metric of PSNR.

Table 4.2 shows the percentage of bad pixels of various methods at different

sampling ratios and sampling methods. The results indicate that “Proposed WT+CT

2-Stage” has a relatively higher % Bad Pixel at τ = 1 than other methods, but has a

lower % Bad Pixel at τ = 2 and τ = 3. This result suggests that most of the errors

of “Proposed WT+CT 2-Stage” are small and there are very few outliers. In contrast,

bicubic grid (for example) has a low % Bad Pixel at τ = 1 but high % Bad Pixel at τ = 2

and τ = 3. This implies that a significant portion of the bicubic results has large error.

Intuitively, the results suggest that in the bicubic case, some strong edges and corners are

completely missed, whereas these information are kept in “Proposed WT+CT 2-Stage”.
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Proposed WT+CT 2−Stage
Proposed WT+CT Grid
[24] Grid
Bicubic Grid

Figure 4.5: Comparison of reconstruction performance with noisy samples. We use
“Art” disparity map as a test image, and set ξ = 0.2.
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Finally, we show the performance of the proposed algorithm towards additive

i.i.d. Gaussian noise. The purpose of this experiment is to demonstrate the sensitivity

and robustness of the algorithm in the presence of noise. While in reality the noise in

disparity estimates is not i.i.d. Gaussian, the result presented here serves as a refer-

ence for the algorithm’s performance. A more realistic experiment on real data will be

illustrated in the next subsection.

The results are shown in Figure 4.5. Using “Bicubic Grid” as the baseline,

we observe that “Proposed WT+CT 2-Stage” on average has 5.79 dB improvement,

“Proposed WT+CT Grid” has 3.60 dB improvement, whereas “[2] Grid” has only 3.02

dB improvement. This provides a good indicator of the robustness of the proposed

methods.

Table 4.1: Comparisons of reconstruction algorithms in terms of PSNR. We put N/A
when the algorithm does not converge in 1000 iterations.

Disparity Method Percentage of Samples / PSNR (dB)

Name Algorithm / Sampling Strategy 5% 10% 15% 20% 25%

Aloe

Proposed WT+CT 2-Stage 27.5998 31.3877 33.3693 36.4102 38.6265

Proposed WT+CT Grid 25.3236 28.9052 30.0940 31.2956 32.3548

[2] Grid 25.1248 27.8941 28.9504 30.2371 31.6646

Bicubic Grid 27.8899 29.3532 30.1019 31.0031 31.8908

Art

Proposed WT+CT 2-Stage 30.8669 34.1495 37.2801 42.9706 48.0002

Proposed WT+CT Grid 27.5176 28.9528 30.8371 32.5150 33.7126

[2] Grid 27.0300 N/A N/A N/A N/A

Bicubic Grid 29.1550 30.3536 31.1098 31.9473 32.8366

Baby

Proposed WT+CT 2-Stage 39.6978 44.8958 48.6631 52.5000 52.0031

Proposed WT+CT Grid 34.4421 36.7965 37.6708 39.0504 40.0689

[2] Grid 33.6627 35.3166 36.2522 37.4513 38.7670

Bicubic Grid 34.8368 36.2385 37.1749 37.5973 38.3961

Dolls

Proposed WT+CT 2-Stage 29.5087 32.5336 33.9974 36.2741 37.6527

Proposed WT+CT Grid 28.4858 29.0453 30.0949 30.8123 31.6725

[2] Grid 28.4959 N/A N/A N/A 32.0521

Bicubic Grid 29.0612 30.0475 30.4374 31.0053 31.8800

Moebius

Proposed WT+CT 2-Stage 31.0663 35.1060 37.7626 39.9225 41.8933

Proposed WT+CT Grid 27.6882 28.7245 29.8527 31.1663 32.2399

[2] Grid 27.6851 28.7973 N/A N/A 32.0990

Bicubic Grid 28.3987 29.9338 30.6607 30.9427 32.0143

Rocks

Proposed WT+CT 2-Stage 30.7662 35.3975 37.5056 40.4494 42.5089

Proposed WT+CT Grid 25.5924 29.0848 30.4766 31.2311 32.9218

[2] Grid 25.4444 28.7973 29.5364 30.2058 32.1672

Bicubic Grid 28.7241 30.4212 30.7552 31.6722 32.6706
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4.5.2 Real Data

In this experiment we study the performance of the proposed algorithm for real

data. Figure 4.6 shows snapshots of a stereo video (with resolution 320 × 240, 30 fps).

For this video sequence, we apply the block matching algorithm by Lee et al. [58] to

obtain the initial disparity estimates. However, instead of computing the full disparity

map, we only compute 10% of the disparity pixel values and use the proposed recon-

struction algorithm to recover the dense disparity map. The 10% samples are selected

according to the two stages of “Proposed WT+CT 2-Stage”. In the first stage, we se-

lect the locations of the 5% samples using our oracle random sampling scheme with

PCA improvement applied to the color image. A pilot estimate of the disparity is thus

computed and the remaining 5% samples can be located according to the second stage

of “Proposed WT+CT 2-Stage”. The results shown in Figure 4.6 illustrate that the

“Proposed WT+CT 2-Stage” generates the closest disparity maps compared to an ideal

dense estimate.

In addition to real video sequences, we also test the proposed algorithm on a

stereo system we developed. The system consists of a low cost stereo camera with cus-

tomized block matching algorithms. In Figure 4.6 shows the results of the reconstructed

disparity maps. Referring to the results of “[2] Grid” and “Bicubic Grid”, we note that

there are serious stair-like artifacts located at object boundaries. In contrast, the two

proposed methods in general produce much smoother object boundaries, thanks to the

superior modeling and the optimized sampling scheme. More interestingly, we observe

that “Proposed WT+CT 2-Stage” indeed removes some undesirable noisy estimates in

the recovered disparity maps. This shows that the proposed method could potentially

further developed as a depth enhancement method.

Observing the reconstructed disparity maps in Figure 4.6, methods under com-

parisons include: a dense disparity estimation [58] to acquire initial estimate; “Proposed

WT+CT 2-Stage” which applies the 2-Stage randomized scheme to determine sampling

locations; “Proposed WT+CT Grid” which picks samples from a uniform grid; “[2] Grid”

which applies a subgradient algorithm to samples picked from a uniform grid; “Bicubic

Grid” which applies bicubic interpolation to samples picked from a uniform grid.
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This Chapter includes materials that have been published in IEEE Transaction on Im-

age Processing 2015, titled “Depth Reconstruction from Sparse Samples: Representation,

Algorithm, and Sampling,” with Truong Q. Nguyen and Stanley H. Chan.
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Left View Right View Dense Estimation [58]

Proposed WT+CT Proposed WT+CT [2] Grid Bicubic Grid
2-Stage Grid

Left View Right View Dense Estimation [58]

Proposed WT+CT Proposed WT+CT [2] Grid Bicubic Grid
2-Stage Grid

Figure 4.6: Examples of reconstructed results from 10% measured samples using real
data using the “Newspaper” dataset, and real captured disparity maps.



Chapter 5

Depth Reconstruction Algorithm

For Spatio-Temporal Depth Data

5.1 Introduction

Depth sensing technologies enable many applications in computer visions. For

example, direct sensing techniques, such as Time-of-Flight camera, have been applied

to assist gesture recognition [59, 60], 3D object scanning [61], and robot navigation

[62]. Indirect sensing techniques, such as estimating disparities from stereo camera,

have been applied to aid multiview synthesis [63], object segmentation [64], human pose

estimation [65]. Typically, the performance of these applications correlates to the quality

of depth data. Therefore, obtaining high quality depth data becomes an important topic

in computer vision and image processing societies.

According to the configurations of depth sensing systems, depth data acquisition

methods face different image processing problems. For example, given low resolution

(LR) depth data and high resolution (HR) RGB images, super-resolution (SR) tech-

nique is typically applied for HR depth image synthesis [66]. To fill missing depth pixels,

depth image inpainting is usually utilized for occluded region filling [67]. However, both

techniques can be jointly worked by searching for the solutions to two problems: (1)

finding and estimating reliable sample sets, and (2) reconstructing dense depth data

from reliable samples. This leads to a general problem of dense depth reconstruction

from a subset of samples. To resolve these problems, studies on efficient representations,

51
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sampling and reconstruction algorithm for single depth image were first discussed in our

previous work [19], whereas in this paper, we mainly focus on extending single image-

based to video-based depth reconstruction, which exploits temporal information and

deals with depth data in the form of spatio-temporal volume. To the best of our knowl-

edge, reconstructing depth video sequences has not yet been investigated. Therefore, we

herein propose a framework for depth video reconstruction.

5.1.1 Related Works

The proposed depth video reconstruction framework lies in the fields of space-

time depth enhancement and sensing. Works on single-frame-based processing are abun-

dant, but research on dealing with spatio-temporal depth volume is limited. In the

following, we discuss and highlight related works for both single and spatio-temporal

depth images.

Depth enhancement method is used to synthesize high resolution depth data or

to improve depth image quality. Recent works, such as iterative bilateral filtering [68],

Markov Random Field (MRF) [69], and anisotropic diffusion tensor [66], are proposed to

recover high resolution depth images. However, they typically assume that input data

are uniformly-grid sampled, yielding less capability of processing input samples with

irregular patterns. To deal with scattered depth data, guided filter [70, 67] and bilateral

filter [71] are proposed for depth data hole filling, whereas they require the assistance

from high quality RGB images during the filtering process. Other techniques, such as

learning-based approaches [36, 72] and patch-based methods [73], require large training

data and are usually time-consuming during training and synthesizing phases, resulting

in less efficiency to deal with spatio-temporal volume. However, neither RGB images nor

constraint on uniform-grid samples are required for the proposed spatio-temporal depth

reconstruction algorithm (Chapter 5).

Depth sensing is typically associated with reconstruction algorithm, and its pur-

pose is to acquire a sparse amount of meaningful samples, yielding high quality recon-

structed depth data. Considering joint work on sensing and dictionary learning, Duarte-

Carvajalino and Sapiro proposed a patch-based approach for image recovery [74]. Later,

Schwartz et al. proposed to determine sensing matrices using saliency map [27]. These



53

methods define sensing matrix with weights based on Gaussian or Gaussian-Bernoulli

distributions. In contrast, our proposed method defines sampling matrix with weights,

1’s, as the pixel is sampled, and 0’s otherwise.

The most relevant work is probably our previous work on single-frame 2-Stage

sampling and ADMM reconstruction algorithm [19], whereas in this paper, we consider

both sampling strategy and reconstruction algorithm for spatio-temporal depth data. In

2-Stage sampling, a pilot sampling signal was deployed for the second stage sampling

location predictions, yielding less efficiency on conducting reconstruction twice. However,

the proposed spatio-temporal sampling scheme achieves 1-Stage sampling prediction and

is capable of dealing with multiple frames at a time. Followed by a spatio-temporal

reconstruction algorithm (Chapter 6), the proposed framework is thus suitable to depth

video reconstruction.

5.2 Depth Video Reconstruction Framework and Notations

In this section, we describe the systematic configuration and notations for our

proposed depth video reconstruction framework.

5.2.1 Systematic Configurations and Depth Data Descriptions

In our proposed depth video reconstruction framework, we assume that depth

measurement systems contain at least one RGB camera as it is a standard configura-

tion for depth sensing systems. For example, passive depth estimation systems, which

indirectly estimate depth information by finding matched points between a pair of RGB

images, have two RGB cameras. Active depth estimation systems, which directly mea-

sure depth using Time-of-Flight or infrared cameras, typically have at least one RGB

camera (i.e., Kinect). Therefore, we assume that RGB video sequences exist in our

systematic configuration.

The description of depth data varies as different depth measurement systems

are utilized. In practice, depth information can be either directly measured by sensors

or indirectly estimated from a pair of images. For the former, depth image is utilized

for representing depth information. However, for the later, disparity map is used as an
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alternative because disparity values, which can be converted into depth information by

the triangulation geometry [31], are differences between the locations of matched points.

Therefore, in the rest of this paper, we use depth and disparity interchangeably.

5.2.2 Notations for Spatio-Temporal Volume

Assuming that Q is the index of previously reconstructed frame, we let xQ+t to

be a N × 1 vector representing a depth image, bQ+t to be a N × 1 vector representing

sampled data, and yQ+t to be a N×3 vector representing the corresponding RGB image.

The subscript (Q+t) denotes the frame index and t is an integer with t ≥ 1. The number

of sampled data in bQ+t is m, and the locations of sampled data are defined by a N ×N

diagonal sampling matrix with diagonal elements

SQ+t,ii =





1, i-th element of xQ+t is sampled,

0, otherwise,
(5.1)

where the first subscript of SQ+t,ii denotes the frame number and the second subscript

denotes the location of the matrix. Noting that the off-diagonal elements of SQ+t are

zeros. More specifically, the locations of nonzero elements in bQ+t are the locations of

nonzero diagonal entries of SQ+t, i.e., bQ+t = SQ+txQ+t. Here, we further define the

sampling rate ξ = m
N as an alternative for describing the number of sampled data, and

in this work we especially consider m. N and ξ . 1.

Now, considering a spatio-temporal depth volume consisting of T depth images,

we let x to be a TN × 1 vector

x = [xQ+1;xQ+2; · · · ;xQ+T ] . (5.2)

Similarly, the sampled data in the form of spatio-temporal volume b is defined as

b = [bQ+1; bQ+2; · · · ; bQ+T ] . (5.3)

The spatio-temporal volume of RGB images is

y =
[
yQ+1;yQ+2; · · · ;yQ+T

]
. (5.4)
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Then, the sampling matrix S is now a TN × TN matrix with diagonal elements

Sjj =





1, j-th entry of x is sampled,

0, otherwise,
(5.5)

where the subscript of Sjj denotes the locations of matrix S and j is equal to (tN + i).

Note that given a fixed sampling rate ξ = Tm
TN , it is not necessarily to have m samples

for each bQ+t, whereas only in total Tm number of samples over the whole spatio-

temporal volume b is required. With the spatio-temporal depth volume representation,

the sampling operation is now simplified as b = Sx.

We also exploit the temporal correlation by using motion vector estimation be-

tween RGB images, yQ, yQ+1, yQ+2, · · · , yQ+T using the motion vector estimation

and compensation method proposed in [75]. Given the number of images T in a spatio-

temporal volume and for t = 1, 2, ...T , we first estimate motion vectors vQ,Q+t between

RGB images yQ and yQ+t. We then apply the motion compensation on previously re-

constructed depth image x̂Q with estimated motion vector vQ,Q+t, and obtain motion

compensated depth image x̂Q+t,mc.

Sampling Map
Generation
(MCAS)

S Depth/Disparity

Estimation
b

Depth Volume
Reconstruction

(STDR)

x̂

x̂Q

yQ+tMotion Vector
Estimation

vQ,Q+t

x̂Q

Motion
Compensation

x̂Q+t,mc

yQ+t

Figure 5.1: Systematic Overview of the proposed depth video reconstruction frame-
work. Variable Q denotes index of previously reconstruction frame number and t denotes
the index of the spatio-temporal volume, where t = 1, 2, ..., T , and T is the total number

of frames of the spatio-temporal volume.

5.2.3 Sampling Patterns

For sampling matrix S, the sampling pattern can be either deterministic or ran-

dom. Given a sequence of probabilities {pj}TN
j=1, we define the sampling matrix Sjj = 1

with probability pj , and Sjj = 0 with probability
(
1− pj

)
. If pj = 1 for j ∈ Ω, and the
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cardinality |Ω| = Tm, the sampling pattern is deterministic. If pj = ξ for j = 1...TN ,

the sampling pattern is now uniformly random. Apparently, the number of sampled data

for both deterministic and uniformly random patterns are mathematically equal to Tm,

and
1

TN

TN∑

j=1

pj = ξ =
Tm

TN
. (5.6)

Remark 8. As the sampling strategy is random, the number of sampled data may not be

exactly the same as Tm. However, as the total number of samples, TN , increases, the

number of sampled data, Tm, is asymptotically approaching the exact value, referring to

Eq.(4) in [19].

To compare the performance of existing depth reconstruction algorithms, in Sec-

tion III, we first assume the sampling pattern is uniformly random, and in Section IV we

will discuss the efficient sampling strategy for the proposed depth video reconstruction

framework.

Figure 5.2 shows a flowchart representing our main contributions, and Figure 5.1

provides a systematic overview of our proposed depth video reconstruction framework.

We will address our works on the “Depth Volume Reconstruction” and “Sampling Map

Generation” blocks in Chapter 5.3 and Chapter 6 respectively. Depending on systematic

configurations, in Chapter 6.3 and Chapter 6.4 we present the different applications using

the proposed framework.
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5.3 Spatio-Temporal Depth Reconstruction

5.3.1 Problem Formulations

In order to reconstruct spatio-temporal depth volume from a subset of samples,

we first formulate the problem as

min
x

1

2
‖b− Sx‖2 + λ‖WΨx‖1, (5.7)

where Ψ is a TN × TN orthonormal matrix, and W is a TN × TN diagonal weighting

matrix. Apart from our previous work [19], in this paper we let Ψ to be wavelet transform

because it is scalable to spatio-temporal domain, and it is suitable for spatio-temporal

data. As T = 1, 2D discrete Wavelet transform (2D-DWT) is applied, and we set the

weight in W jj to be 1 while location j relates to the detailed coefficients. Otherwise, we

set W jj to be 0. As T > 1, 3D-DWT is then utilized for dealing with the spatio-temporal

data, and the weight in W jj, where the location j relates to the detailed coefficients in

the bands {LHL, HLL, HHL, LHH, HLH, HHH}, is set to 1. Otherwise, weights are set

to 0.

The main advantage of using Wavelet transform is because of its capability of

analyzing and synthesizing signals in both spatial and temporal domains. More specif-

ically, 3D-DWT analyzes a signal along 3 dimensions, horizontal (h), vertical (v) and

temporal (t), and decomposes a signal in each direction into lowpass (L) and highpass

(H) respectively. With the labels of L and H in order, bands of transform coefficients

are now defined. For example, transform coefficients in the band LLH are obtained from

taking low pass in horizontal and vertical directions, and high pass in temporal direction.

The design of weighting matrix W relates to the characteristic of transform

coefficients of dense spatio-temporal depth volume. Figure 5.3 shows a histogram of the

magnitude of transform coefficients using 3D-DWT. It is evident that coefficients with

large magnitudes locate mainly in {LLL, LLH}. Intuitively, to ensure coefficients in

{LLL, LLH} can be recovered, we set the corresponding weights to be 0. Conversely, to

limit the magnitude of coefficients in {LHL, HLL, HHL, LHH, HLH, HHH} to be small,

we set the relating diagonal elements of W to be 1. Therefore, the )1 regularization

term in (5.7) with designed weighting matrix W fits the characteristic of transformed
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Figure 5.3: Histogram of magnitude of 3D-DWT transform coefficients. We construct
the spatio-temporal depth volume using the 20th and 21st frames of tank sequences
(T = 2), and we then apply 3D-DWT using “db2” and decomposition level=1.

coefficients of dense spatio-temporal depth volume.

Observing that depth data has piecewise smooth property, and the discontinuities

locate mainly along the object boundaries. To preserve these properties, we therefore

introduce total variation as a regularization term.

min
x

1

2
‖b− Sx‖2 + λ‖WΨx‖1 + β‖x‖TV, (5.8)

where ‖·‖TV denotes anisotropic spatial total variation, and ‖x‖TV = ‖Dx‖1, whereD =

[Dh;Dv]. Dh and Dv are horizontal and vertical difference operators. As x is a spatio-

temporal volume, we may consider spatio-temporal total variation, which is defined D =

[Dh;Dv;Dt]. However, our empirical results indicate that the improvement from spatio-

temporal total variation is limited while frames of x are not similar. We thus choose

spatial total variation only. In the following, we present our proposed spatio-temporal

depth reconstruction using alternating direction method of multipliers (ADMM).
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5.3.2 Spatio-Temporal Depth Reconstruction Algorithm

To solve (5.8), we propose to use alternating direction method of multipliers

(ADMM) as it is capable of dealing with large scale problem. ADMM was first proposed

by [47, 48], and in this decade, it has been widely used for image processing applications,

e.g., image deblurring [76], image/video denoising [7]. Recently, ADMM is utilized for

single depth image reconstruction in our previous work [19], whereas the main differ-

ence is that we extend this work to a dense spatio-temporal depth volume reconstruction

from a subset of samples. In terms of algorithm, the approach is similar to our single

frame ADMM. Readers can refer to our previous paper for detailed discussion [19]. We

note that the scalability to the sizes of spatio-temporal volume is more important for

depth video reconstruction framework. In the following, we briefly present our proposed

spatio-temporal depth reconstruction (STDR) algorithm, and then discuss its temporal

scability.

First, we introduce new auxiliary variables, r = x, u1 = Ψx and u2 = Dx, and

reformulate (5.8) as

min
x

1

2
‖b− Sr‖2 + λ‖Wu1‖1 + β‖u2‖1,

subject to r = x,u1 = Ψx, and u2 = Dx.
(5.9)

Applying augmented Lagrangian, the constrained minimization problem (5.9) is then

reformulated as

L (x, r,u1,u2,w, q1, q2) =
1

2
‖b− Sr‖22 + λ‖Wu1‖1 + β‖u2‖1

−wT (r − x)− qT
1 (u1 −Ψx)− qT

2 (u2 −Dx)

+
ρ

2
‖r − x‖22 +

γ1
2
‖u1 −Ψx‖22 +

γ2
2
‖u2 −Dx‖22.

(5.10)

Note that w, q1, and q2 are Lagrange multipliers, and scalar variables ρ, γ1 and γ2 are

internal parameters. These internal parameters are set to be fixed as T varies. Detailed

discussions on the parameter selections is presented in Chapter 5.3.3. Equation (5.10)

can be split into multiple subproblems, and its optimal solution x∗ can be obtained by

solving x-,r-,u1-,u2- subproblems sequentially. Solutions to these subproblems are,

x(k+1) = F−1

{
F [R.H.S.]

(ρ+ γ1) I+ γ2|F (D) |2

}
, (5.11)
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where R.H.S. = ρr(k) +ΨTγ1u
(k)
1 +DTγ2u

(k)
2 −w(k) −ΨT q

(k)
1 −DTq

(k)
2 .

r(k+1) =
(
STS + ρI

)−1
(
STb+w(k) + ρx(k+1)

)
. (5.12)

u
(k+1)
1 = max

(
|z|−

λdiag (W )

γ1
, 0

)
· sign (z) , (5.13)

where z = Ψx(k+1) +
q
(k)
1
γ1

.

u
(k+1)
2 = max

(
|z|−

β

γ2
, 0

)
· sign (z) , (5.14)

where z = Dx(k+1) +
q
(k)
2
γ2

.

We note that r, u1 and u2 subproblems are independent to each other, parallel

processing on these three subproblems is feasible to further speed up the algorithm.

Then, the Lagrange multiplier updates are

w(k+1) = w(k) − ρ
(
r(k+1) − x(k+1)

)
, (5.15a)

q
(k+1)
1 = q

(k)
1 − γ1

(
u
(k+1)
1 −Ψx(k+1)

)
, (5.15b)

q
(k+1)
2 = q

(k)
2 − γ2

(
u
(k+1)
2 −Dx(k+1)

)
. (5.15c)

The proposed spatio-temporal depth reconstruction algorithm solves subprob-

lems sequentially, and it iterates until stopping criteria is met.

5.3.3 Parameter Tuning and Temporal Volume Scalability

Observing (5.10), the model with augmented Lagrangian has two regularization

parameters, λ and β, and three internal parameters, ρ, γ1 and γ2. The selection of

parameters is typically problem related, and for the proposed STDR algorithm, the

robustness to different volumes is especially important. In the following, we discuss

our experiments on parameter selection for the spatio-temporal depth reconstruction

algorithm.
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Evaluation Metrics

Instead of using mean square error (MSE), we consider mean absolute error

(MAE) as an evaluation metric for the selection of parameters. The main reasons are

that MAE has been shown to be a better metric than mean square error (MSE) [77],

and for depth measurements, pixel-wise absolute difference is commonly utilized. Given

a reconstructed spatio-temporal disparity volume, x̂, the mean absolute error is defined

as

MAE of x̂ =
1

TN

TN∑

j=1

|x̂j − xj |. (5.16)

For the simulation, we use the disparity video dataset provided in [78]. During the

experiments, we normalize the disparities to [0, 1] for the proposed STDR algorithm,

and then rescale disparities back to [0, 255] for the evaluation. Once the parameters are

determined, we further validate the reconstructed result using percentage of bad pixel,

Bad pixel rate of x̂ =
1

TN

TN∑

j=1

I{|x̂j − xj| > τ}, (5.17)

where τ is an integer number, and I{·} is an indicator function. I{·} returns 1 as the

statement is true. Otherwise, it returns 0.

Regularization Parameters (λ,β)

Regularization parameters typically relate to the reconstruction performance.

Results on our regularization parameter selection are shown in Figure 5.4. Due to the

limited spaces, we show experimental results with randomly selected frames and video se-

quences. Observing MAE curves shown in (a) and (c), results indicate that lowest mean

absolute error locate in the ranges
[
5× 10−5 ≤ λ ≤ 5× 10−4

]
and

[
10−6 ≤ β ≤ 10−4

]
.

We therefore pick λ = 10−4 and β = 5× 10−5. We further validate our selected param-

eters using PBad (observing (b) and (d)), justifying that the selected parameters also

achieve minimum bad pixel rate.
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Figure 5.4: Experiments on regularization parameter selection for the proposed spatio-
temporal depth reconstruction. We conduct the experiment with varying depth video

sequences and number of frames, and set the sampling rate ξ = 0.1. While sweeping λ,
we set β = 5× 10−5, and while sweep β, we set λ = 10−4.
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Figure 5.5: Experiments on internal parameter selection. We conduct experiment

with “tanks” sequence with 5 continual frames (frame no. 72-76, T = 5, ξ = 0.1). The
chosen parameters are shown in red curves. Results indicate that our selected parameters
achieves the fastest convergence rate.
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Figure 5.6: Reconstruction performance verses number of frames T . For each sam-

pling rate and T, we average the reconstruction performance over 100 frames of “tank”
sequence. Noting that we use 99 frames for the case T = 3.

Internal Parameters (ρ,λ1,λ2)

Internal parameters typically relate to the convergence rate. Examples on our

internal parameter selections are shown in Figure 5.5. The red curves indicate the

convergence rates for the selected internal parameters, and we observe that the cho-

sen parameters yield the fastest convergence rate. All the experiments on parameter

selection are conducted on computer with Intel 3.2GHz CPU, 12GB RAM, 64-bits

Windows 7 and MATLAB R2014a. For more experimental results, readers can re-

fer to our supplementary materials in http://videoprocessing.ucsd.edu/~leekang/

2015JournalPublication.html.

Based on the selection of parameters, we in addition conduct an experiment

on reconstructing dense “tanks” sequence from a subset of random samples with T =

1, 2, ..., 5. As shown in Figure 5.6, on average, the reconstruction performance is robust

to the sizes of spatio-temporal volume, and we can still observe slight improvement as

T increases, especially when sampling rate is around at ξ = 0.03 (3%). Additionally,

we choose “Triangular Interpolation” method, which utilizes Delaunary triangulation for

scattered data interpolation [79], as a benchmark. With the evaluation over the whole

tank sequence, the proposed STDR algorithm has approximately 0.5 pixels improvement

when the sampling rate is at 3%, and 0.2 pixels improvement when the sampling rate is

at 20%. Finally, we summarize the selection of parameters in Table 5.1.
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Table 5.1: Summarize of parameters for STDR.

Parameter Functionality Value
λ Regularization for Wavelet sparsity 10−4

β Regularization for Total Variation 5× 10−5

ρ Half quadratic penalty for r = x 10−3

γ1 Half quadratic penalty for u1 = Ψx 5× 10−4

γ2 Half quadratic penalty for u2 = Dx 10−3

5.3.4 Initialization using Temporal Information

Upon the depth video configuration in Figure 5.1, the convergence rate of the

proposed STDR algorithm can be further accelerated by exploiting temporal information.

So far, we have discussed the characteristic of convergence rate as the unknown samples

are set to be 0. To further speed up the rate of convergence, we propose a spatio-

temporal scheme that accommodates the typical configuration of depth video processing,

using motion compensation. In the following, we present our proposed spatio-temporal

scheme that utilizes motion compensated dense depth images.

Using Motion Compensated Depth Images

As we discussed in Section II-A, RGB cameras are typical configuration in depth

measurement systems, and thus motion vectors estimated by continual RGB images can

be further utilized to facilitate the depth video reconstruction process. Now we let vQ,Q+1

to be a motion vector estimated between two RGB images yQ and yQ+1, and x̂Q+1,mc, to

be the motion compensated depth image of Q+1 frame using the motion vector vQ,Q+1.

Therefore, to obtain motion compensated depth images for the spatio-temporal volume,

we repeat the process T times and obtain x̂Q+1,mc,, x̂Q+2,mc,, · · · , x̂Q+T,mc,. Then, we

define the spatio-temporal depth video volume for initialization as,

binit = [x̂Q+1,mc; x̂Q+2,mc; · · · x̂Q+T,mc] . (5.18)

The auxiliary variables are initialized by r(0) = binit, u
(0)
1 = Ψbinit, and u

(0)
2 = Dbinit.

Figure 5.7 shows the convergence rates with configurations of original setup

(Orig.), and the proposed initialization scheme. For this experiment, we assume pre-

viously reconstructed depth image, x̂Q is error free, and we apply the motion vec-



66

tor estimation and compensation method proposed in [75]. Motion vectors are esti-

mated using RGB images yQ,yQ+1, · · · yQ+T . Then, the compensated depth images

x̂Q+1,mc,, x̂Q+2,mc,, · · · x̂Q+T,mc, are obtained using estimated motion vectors and previ-

ously reconstructed depth image, x̂Q.

Observing MAE curves with ξ = 0.03, the “Orig.” configuration reaches steady

state in around 65 seconds, whereas “Initial Scheme” configuration requires only 30

seconds to reach steady state. This indicates that the proposed initialization scheme

achieves more than 2× faster convergence rate than the original setup. We also observe

that MSE curves reach steady state faster than the MAE curves, indicating that MAE is

sensitive to subtle variations. This implies that MAE is a better evaluation metric than

MSE. The overall Spatio-temporal depth reconstruction is shown in Algorithm 6.
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Figure 5.7: Convergence rate comparisons. We feed frames 20-21 (T = 2) of “tanks”
sequence to STDR algorithm.

5.3.5 Preliminary Comparisons

To the best of our knowledge, the proposed work is the only work that recon-

structs depth video without additional information. We therefore justify the comparison

to single-frame reconstruction method. For the “Hawe [2]” method, its default config-

urations are applied. For the proposed STDR algorithm, we apply depth image recon-

struction with T = 1 to the first frame, and we then conduct the proposed initialization

scheme and with T = 5. For wavelet transform configurations, we use “db2” as the

wavelet function with two decomposition levels.
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Algorithm 6 Spatio-Temporal Depth Reconstruction (STDR) Algorithm

Require: b, S, T , x̂Q+1,mc, · · · , x̂Q+T,mc

1: Initialization:
2: if Q == 0 then

3: x(0) = b, r(0) = b, u(0)
1 = Ψb, u(0)

2 = Db,

4: w(0) = 0, q(0)1 = 0, q(0)2 = 0.
5: else
6: binit = [x̂Q+1,mc; x̂Q+1,mc; · · · x̂Q+T,mc].

7: x(0) = binit, r(0) = binit, u
(0)
1 = Ψbinit, u

(0)
2 = Dbinit,

8: w(0) = 0, q(0)1 = 0, q(0)2 = 0.
9: end if

10: while ‖x(k+1)−x(k)‖2
‖x(k)‖2

≥ tol do

11: Solve x subproblem using (5.11).
12: Solve r,u1,u2 subproblems using (5.12), (5.13), (5.14).

13: Update Lagrange multipliers using (5.15a), (5.15b), (5.15c).
14: end while

15: return x∗ ← x(k+1)

Table 5.2 shows the comparison of reconstruction performance for 5%, 10%, 15%,

and 20%. We note that in this experiment, we consider three evaluation metrics, PBad,

MAE and PSNR. Referring to the PSNR metric, we can observe that the proposed

STDR algorithm outperforms the other existing methods, and the STDR has on average

9 dB improvement than the second best result for the “Book” sequence. Also, for all

test sequences, the proposed method mostly achieves the lowest MAE and PBad. So

far, we conduct experiments using uniformly random sampling strategy. In the following

Chapter, we will discuss an efficient sampling strategy.

This Chapter includes materials that have been published in IEEE Global Con-

ference on Signal and Information Processing 2015, titled “Spatio-Temporal Depth Data

Reconstruction from a Subset of Samples,” with Truong Q. Nguyen, and materials that

have been submitted to IEEE Transaction on Image Processing, titled “A Framework

for Depth Video Reconstruction from a subset of Samples and its Applications,” with

Truong Q. Nguyen.
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Chapter 6

Efficient Sampling Strategy for

Spatio-Temporal Depth Data

6.1 Motion Compensation Assisted Sampling

Assuming that dense ground truth depth videos are not provided and the sam-

pling rate, ξ, is fixed, an efficient sampling strategy that can maximize reconstruction

performance becomes especially important. Sampling strategies, such as uniform grid

and uniformly random sampling, are commonly utilized. However, by inferring the cor-

responding view images, sampling locations can be efficiently determined.

An efficient sampling strategy for single depth image reconstruction was discussed

in our previous work [19], whereas in this paper, we focus on an efficient sampling scheme

for depth video reconstruction. In [19], the 2-Stage sampling strategy uses half of sam-

pling budget for pilot signal estimation and then determines the other half by referring to

the reconstructed depth image from stage 1. However, in this paper, we explore another

sampling scheme by using the temporal information. In the following, we first show that

a linear combination of gradient maps can assist oracle random sampling since more than

one gradient information exist. We then discuss the synthesis of gradient maps using

gradient of RGB images and PCA responses of motion compensated depth images. Fi-

nally, we present a depth video reconstruction framework utilizing the proposed motion

compensation assisted sampling (MCAS) strategy and STDR algorithm.

69
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6.1.1 Oracle Random Sampling Assisted by a Linear Combination of

Gradient Maps

Let hQ+t be a N × 1 vector representing a linear combination of gradients for

the (Q+ t)th frame, then define hQ+t as

hQ+t =
L∑

!=1

θ!hQ+t,!, (6.1)

where hQ+t,! denotes a gradient map, θ! is a scalar value, and
∑L

!=1 θ! = 1. In this

paper, we consider L = 2, and define hQ+t,1 to be the gradient of RGB image. Here

hQ+t,2 is the magnitude of PCA responses of motion compensated depth image. The

derivation below is based on the case that L = 2 and hQ+t is defined to be

hQ+t = θ1hQ+t,1 + (1− θ1)hQ+t,2. (6.2)

Now, we let {IQ+t,j}Nj=1 to be independent Bernoulli random variables with a

sequence of probability {pQ+t,j}Nj=1. The probability of a pixel to be sampled or not is

defined as

Pr{IQ+t,j is sampled} = pQ+t,j,

Pr{IQ+t,j is not sampled} = 1− pQ+t,j.
(6.3)

Then, we define a new random variable that averages the gradients with aforementioned

independent Bernoulli random variables

Y Q+t =
1

N

N∑

j=1

IQ+t,j [θ1hQ+t,1,j + (1− θ1)hQ+t,2,j]

pQ+t,j
. (6.4)

According to Section V-B in [19], given a fixed θ1, it is straight forward to show that the

random variable Y Q+t is unbiased. Minimizing the variance of Y Q+t yields

pQ+t,j = min {[θ1hQ+t,1,j + (1− θ1)hQ+t,2,j ] τ, 1} for 1 ≤ j ≤ N,

N∑

j=1

min {[θ1hQ+t,1,j + (1− θ1)hQ+t,2,j ] τ, 1}−m = 0.
(6.5)

Seeing (6.5), we can observe that given the gradient maps hQ+t,1 and hQ+t,2, the sam-

pling probability for each point is now a function of θ1. In the next section, we discuss
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the generation of gradient maps hQ+t,1 and hQ+t,2.

6.1.2 Synthesis of Gradient Maps

Based on the depth video reconstruction framework, both the spatial information

and temporal correlations to the sequence of RGB images can be further exploited by

using motion compensation. With the motion compensated depth image x̂Q+t,mc and

RGB image yQ+t, we propose to synthesize hQ+t from the responses of principal com-

ponents to the motion compensated depth image and the gradient of the corresponding

RGB image.

Obtaining hQ+t,1

To obtain motion compensated depth image x̂Q+t,mc,, we apply motion compen-

sation to the previously reconstructed depth image x̂Q with the motion vector vQ,Q+t

estimated from yQ and yQ+t. As x̂Q+t,mc is not error free, we apply principal component

analysis and obtain PCA responses of motion compensated depth image for the gradient

map hQ+t,1. We first define a set of Np × 1 vectors {aj}Nj=1, where aj is a canonical

representation of a
√

Np ×
√

Np patch centered at pixel j of x̂Q+t,mc,. Noting that

patches are obtained from sliding windows with 1 pixel difference, and thus total num-

ber of patches is equal to total number of pixels of x̂Q+t,mc. Consequently, we construct

a matrix A = [a1,a2, · · · ,aN ], calculate the correlation matrix, and conduct a singular

value decomposition (SVD)

C = AAT , C = UΛUT , (6.6)

where each column of U is a Np × 1 basis, and U =
[
u1,u2, · · · ,uNp

]
. Therefore, the

gradient map hQ+t,1 is defined as the sum of absolute value of PCA responses,

hQ+t,1,j =
M∑

k=2

|uT
k aj |, for j = 1, 2, ...N. (6.7)

In this work, we choose M = 16 and Np = 121, and normalize hQ+t,1 to the range [0, 1].



72

Obtaining hQ+1,2

To estimate gradients of corresponding RGB image, we apply

hQ+t,2 = |DhyQ+t|+ |DvyQ+t|, (6.8)

where Dh and Dv are horizontal and vertical difference operators. As edges in RGB

image might be the edges in the depth image, instead of using PCA responses, we propose

to use gradients. Similar to hQ+t,1, we also normalize the gradient map hQ+t,2 to the

range [0, 1].

Figure 6.1 shows snapshots of intermediate images. The motion compensated

depth image, x̂20,mc is synthesized from previously reconstructed depth image x̂19 with

the estimated motion vector between y19 and y20. Then, x̂20,mc and y20 are utilized

for estimating h20,1 and h20,2. Finally, the sampling locations are determined using the

proposed method. Figure 6.1 (e)-(g) are examples of varying θ1. If we set θ1 = 0, the

samples locate mainly at the edges of the corresponding view images. If we set θ1 = 1,

sampling locations are biased by the errors from the motion compensated depth image.

(a) RGB Image, y19 (b) RGB Image, y20 (c) x̂20,mc (d) Ground Truth, x20

(e) b20 with θ1 = 0 (f) b20 with θ1 = 1 (g) b20 with θ1 = 0.6667(h) Rec. Disparity, x̂20

Figure 6.1: Example of reference images, sampled depth data with varying θ1 and

reconstructed disparity map. (c) is a motion compensated depth image from x̂19 using
estimated motion vectors between y19 and y20. (h) is a reconstructed disparity map

from (g), and sampling rates for (e)-(g) are all ξ = 0.0489.
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Figure 6.2: Mean absolute curves with varying θ1 values. We evaluate the reconstruc-

tion performance using “tank” sequence (100 frames), we set T = 1 for the proposed
STDR.

A comparison of MAE curves with varying θ1 is shown in Figure 6.2. It is visible

that the lowest MAE value locates in the range [0.6, 0.7]. This justifies that utilizing a

linear combination of hQ+t,1 and hQ+t,2 gives rise to better reconstruction performance

than using single gradient map alone. Therefore, we pick θ1 = 0.6667 as a default. A

reconstructed depth image with θ = 0.6667 and ξ = 0.0489 is shown in Figure 6.1 (h),

and the overall motion compensation assisted sampling (MCAS) strategy is presented in

Algorithm 7.

Algorithm 7 Motion Compensation Assisted Sampling (MCAS) Scheme

Require: ξ, T , θ1, x̂Q+1,mc · · · x̂Q+T,mc, yQ+1 · · ·yQ+T

1: for t = 1 to T do
2: Estimate hQ+t,1 using (6.6) and (6.7).

3: Estimate hQ+t,2 using (6.8).
4: hQ+t = θ1hQ+t,1 + (1− θ1)hQ+t,2.

5: end for
6: Estimate pQ+1, · · · ,pQ+T using (6.5).
7: Determine S based on pQ+1, · · · ,pQ+T and ξ.

8: return S.
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6.1.3 Framework for Depth Video Reconstruction

Given a fixed size of temporal volume, T , we have presented a motion compensa-

tion assisted sampling (MCAS) scheme and a spatio-temporal depth reconstruction al-

gorithm (STDR) for depth video reconstruction framework. However, the determination

of temporal volume T relates to the accuracy of motion vector estimation and compen-

sation algorithm. Given a motion vector search limit, rmax and the maximum temporal

volume size, Tmax, we determine the size T as (1) (maximum of vQ,Q+t) ≤ (0.5× rmax)

and (2) T ≤ Tmax. Finally, the overall depth video reconstruction algorithm is shown in

Algorithm 8.

Algorithm 8 Depth Video Reconstruction

Require: ξ, Tmax, rmax, θ1,x̂Q, yQ, yQ+1 · · ·yQ+T

1: if Q == 0 then

2: T = 1.
3: S = Uniformly Random Sampling(ξ).
4: b = Depth Estimation(S).

5: x̂ = STDR(S, b).
6: else

7: t = 1
8: vQ,Q+t = Motion Vector Estimation

(
yQ,yQ+t

)
.

9: x̂Q+t,mc = Motion Compensation(x̂Q,vQ,Q+t).

10: while t ≤ Tmax and vQ,Q+t ≤ (0.5× rmax) do
11: t = t+ 1.

12: vQ,Q+t = Motion Vector Estimation
(
yQ,yQ+t

)
.

13: x̂Q+t,mc = Motion Compensation(x̂Q,vQ,Q+t).
14: end while

15: T = t.
16: S = MCAS

(
ξ, T, θ1, x̂Q+t,mc,yQ+t, t = 1, ...T

)
.

17: b = Depth Estimation(S).

18: x̂ = STDR(S, b, x̂Q+1,mc, · · · , x̂Q+T,mc).
19: end if

20: Q = Q+ T .
21: return x̂Q+1, x̂Q+2, · · · , x̂Q+T .
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6.2 Experimental Results and Discussions

In this section, we first compare the proposed depth video reconstruction frame-

work to existing depth reconstruction methods given a subset of ground truth depth

samples. Then, we present an application that utilizing our proposed framework for

depth video reconstruction from low resolution ground truth depth videos. Finally, we

show the depth video reconstruction from a subset of real estimated depth data.

6.2.1 Depth Video Reconstruction with Ground Truth Depth

To evaluate the depth video reconstruction framework from a subset of samples,

we herein utilize the synthetic depth video dataset provided in [78]. To the best of our

knowledge, this work is the first work on depth video reconstruction from a subset of

samples, therefore, we justify the reconstruction performance using existing single-frame

based sparse reconstruction methods. In the comparisons, we consider two standard

interpolation methods, “bicubic” and “guided filter [70]”, as benchmarks. Since RGB

images are available in our systematic configuration, we therefore consider guided filter

as an additional benchmark. Note that for the “guided filter”, we apply window sizes [7

5 5 5], [9 7 5 5] and [7 5 5 5] for “temples”, “books” and “tanks” sequences respectively.

Each window size in the vector relates to [5%, 10%, 15%, 20%] sampling rates. For our

framework we use “db2” as the wavelet function with two decomposition levels and

Tmax = 5 in the proposed STDR algorithm. In the proposed MCAS scheme, we set

θ1 = 0.6667. We additionally compare our framework to our previously work for single

depth image reconstruction [19]. We apply the “2-Stage” algorithm for the sampling

strategy and use our proposed STDR algorithm with T = 1 for reconstruction method.

The main differences between this work and [19] is that the proposed MCAS strategy is

a “1-Stage” sampling method which utilizes temporal information for estimating optimal

sampling locations; therefore, no pilot signal is required in the proposed MCAS scheme.

Table 6.1 compares the reconstruction performance. On average, our proposed

“MCAS + STDR” approach is very competitive comparing to the “2-Stage [19] + STDR”

approach, which conducts reconstruction twice, whereas “MCAS + STDR” utilizes tem-

poral information and is a “1-Stage” sampling approach. Comparing to existing methods,
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our proposed “MCAS + STDR” mostly outperforms the other methods. Moreover, as

sampling rate increases from 5% to 20%, both “MCAS + STDR” and “2-Stage + STDR”

have significant performance improvement, whereas the improvement on the other exist-

ing methods is limited. Visual comparisons of sampling maps and reconstructed depth

images are shown in Figure 6.3. Observing Figure 6.3 (h)-(l), both the “MCAS + STDR”

and “2-Stage + STDR” have better visual quality than the others. Observing Figure 6.3

(j)(k), we also can tell that the results with guided filter interpolations have blurry

boundaries around the bottom of the temple because of the lack of intensity distinctions

in Figure 6.3 (a). From Figure 6.3 (l), the “Uniformly Grid + Bicubic” yields results

with erroneous object boundaries. Overall, both “MCAS + STDR” and “2-Stage +

STDR” achieve the best visual quality.

(a) RGB image (b) MCAS (c) 2-Stage

(d) Uniformly Random (e) Uniformly Grid (f) Uniformly Grid

Figure 6.3: Examples of sampling maps and reconstructed results of 8th frame of temple
sequence with ξ = 0.05.
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(g) Ground Truth (h) MCAS + STDR (i) 2-Stage + STDR

(j) Uniformly Random + [70] (k) Uniformly Grid + [70] (l) Uniformly Grid + Bicubic

Figure 6.3: Examples of sampling maps and reconstructed results of 8th frame of temple
sequence with ξ = 0.05. [Cont.]
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6.3 Depth Video Reconstruction from Uniform-Grid Sub-

sampled Data

The proposed framework can also deal with the problem that input samples are

from uniformly subsampled data (e.g., ↓ M,M = 2, 4, 8) by introducing an inference

operation. More specifically, the input data are acquired from uniformly sampling grid,

whereas the proposed sampling locations from the proposed MCAS scheme are not the

same as inputs, observing Figure 6.3 (b) and (e). We need to estimate those missing

samples determined by the proposed MCAS scheme. We herein utilize the inference

operation presented in [80]. Let G to be a set of indices (representing in full-resolution)

from those downsampled data, i ∈ G, and let S to be a set of indices predicted by

the proposed MCAS scheme. Our goal is to estimate depth information of indices j ∈

{S/S ∩ G} using the RGB image y and the downsampled data x↓D. For each pixel j to

be estimated, we find the K closest indices k ∈ K, and estimate the depth by

k∗ = argmin
k∈K
‖yj − yk‖2. (6.9)

Then, we assign the missing depth pixel by

b̂j = x↓M↑M,k∗. (6.10)

Examples of reconstructed depth images are shown in Figure 6.4, in which we input down-

sampled depth data, x↓8. Figure 6.4 (b) shows the input samples (including sub-sampled

and estimated depth data) applied to our proposed depth reconstruction algorithm. Re-

constructed results to the proposed method is shown in (c), and to the state-of-the art

method [66] is shown in (d). Figure 6.4 (e) shows bicubic interpolated depth image.

In terms of visual quality, both the proposed method and [66] are better than bicubic

method. Observing the table in Figure 6.4, it is obvious that the proposed method is

competitive to [66], and we see that the proposed method achieves the highest PSNR as

the sub-sampling factor is at 8, which justifies that the proposed framework is suited for

the case that sampling rate is low. We realize that the proposed model is not exactly the

same as depth image super-resolution as we do not consider anti-aliasing and anti-imaing



80

filtering during the down/up-sampling operations.

6.4 Dense Disparity Video Estimation

The proposed depth video reconstruction framework is also applicable for dis-

parity video estimation. In practice, a classical problem to dense disparity estimation

is the trade-off between the blurry effect on object boundaries and selection of patch

window sizes [81]. Both large and small window sizes could lead to erroneous estimated

disparity values. Therefore, we propose to estimate reliable disparities using multiple

window sizes with mean absolute difference (MAD) as a cost function,

d∗ = argmin
d
‖Y L(i, j) − Y R(i, j + d)‖1, (6.11)

D
(
i′, j′

)
= d∗, for (i, j) ∈W,

where W is a set of indices relating to a given window size W centered at (i′, j′). Y L and

Y R are the left and right view of RGB images. D is the estimated disparity map. In this

work, we obtain reliable samples by searching for the majority of disparities while using

different window sizes (e.g., 3×3, ...11×11) and thus obtain a subset of estimated reliable

disparity samples, xest (canonical representation of depth image). Then, we conduct the

same approach as mentioned in previous subsection, inferring predicted to-be-estimated

samples using RGB images and estimated depth data, and finally we reconstruct dense

disparity video using the proposed STDR algorithm. Note that only requested samples

from the proposed MCAS scheme are used in the method.

A snapshot of densely reconstructed depth video of “tanks” sequence is shown in

Figure 6.5. Dense disparity maps with different window sizes are presented in Figure 6.5

(a)-(e), and selected reliable samples are shown in Figure 6.5 (f). According to the pro-

posed MCAS scheme, required sparse samples are shown in Figure 6.5 (g). Equations

(6.9) and (6.10) are used to obtain sparse measurements, b. Finally, we use proposed

STDR algorithm to obtain the dense disparity map, shown in (i). The average mean ab-

solute errors of estimated disparity maps are 9.13984, whereas the proposed scheme with



81

(a) b = b̂ ∪ x↓8↑8 (b) x̂, PSNR = 41.4648(dB)

(c) Bicubic, MSE = 38.5881(dB) (d) [66], PSNR = 40.8392(dB)

Sequence Name Tanks Books

Methods /
2× 4× 8× 2× 4× 8×

Factor

Bicubic 37.8119 33.6391 30.5019 44.6412 40.4048 36.3996
Ferstl [66] 39.8516 36.7817 32.5354 46.9691 44.7886 39.2353

Proposed 38.7744 36.0169 33.6247 46.1762 43.8714 40.1676

Sequence Name Temples

Bicubic 33.5664 28.8665 25.6860

Ferstl [66] 35.7973 32.8430 27.2135
Proposed 37.0280 34.2475 30.7941

Figure 6.4: Snapshots of reconstructing high resolution depth from downsampled depth
data, x↓8, and PSNR comparisons. Note that we show reconstructed results by applying

the 28th frame of “books” sequence.
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5% estimated reliable samples as inputs achieves 2.4369. Therefore, the proposed frame-

work can further be utilized for dense disparity estimation for depth video sequences.

Additional results and comparisons are shown in Figure 6.6, Figure 6.7, and Table 6.2.

This Chapter includes materials that have been submitted to IEEE Transaction

on Image Processing, titled “A Framework for Depth Video Reconstruction from a subset

of Samples and its Applications,” with Truong Q. Nguyen.



83

(a) DW=3×3, MAE = 10.9329 (b) DW=5×5, MAE = 9.4932

(c) DW=7×7, MAE = 8.5465 (d) DW=9×9, MAE = 8.5793

(e) DW=11×11, MAE = 8.1473

Figure 6.5: Example of reconstructing high resolution depth from estimated depth
data, xest.. We show an example of the 58th frame of “tanks” sequence.
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(f) xest. (g) S, ξ = 0.0502

(h) b (i) x̂, MAE = 2.3955

(j) x, Ground Truth

Figure 6.5: Example of reconstructing high resolution depth from estimated depth
data, xest.. We show an example of the 58th frame of “tanks” sequence [Cont.].
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(a) DW=3×3, MAE = 18.0819 (b) DW=5×5, MAE = 17.6607

(c) DW=7×7, MAE = 17.1019 (d) DW=9×9, MAE = 18.0392

(e) DW=11×11, MAE = 17.7302

Figure 6.6: Example of reconstructing high resolution depth from estimated depth
data, xest.. We show an example of the 17th frame of “books” sequence.
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(f) xest. (g) S, ξ = 0.0498

(h) b (i) x̂, MAE = 4.6725

(j) x, Ground Truth

Figure 6.6: Example of reconstructing high resolution depth from estimated depth
data, xest.. We show an example of the 17th frame of “books” sequence [Cont.].
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(a) DW=3×3, MAE = 14.0970 (b) DW=5×5, MAE = 13.1505

(c) DW=7×7, MAE = 12.2131 (d) DW=9×9, MAE = 11.9746

(e) DW=11×11, MAE = 11.5223

Figure 6.7: Example of reconstructing high resolution depth from estimated depth
data, xest.. We show an example of the 69th frame of “temples” sequence.
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(f) xest. (g) S, ξ = 0.0500

(h) b (i) x̂, MAE = 4.6936

(j) x, Ground Truth

Figure 6.7: Example of reconstructing high resolution depth from estimated depth
data, xest.. We show an example of the 69th frame of “temples” sequence [Cont.].
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Appendix A

Derivation on Reconstruction

Algorithm

The following notations are used for all further discussion involving the derivation

of dense disparity reconstruction algorithm.

m :Number of Observations.

N :Total number of pixels of disparity map.

Φ1 ∈ R
N×N :Wavelet Bases.

W 1 ∈ [0, 1]N×N :Weighting Matrices for Wavelet Bases.

Φ2 ∈ R
N×N :Contourlet Bases.

W 2 ∈ [0, 1]N×N :Weighting Matrices for Contourlet Bases.

S ∈ [0, 1]n×n :Sampling Matrix.

b ∈ R
N×1 :Observations (sparse samples).

x ∈ R
N×1 :Disparity map.

c ∈ R
N×1 :Wavelet Transform Coefficients of Disparity map.

90
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A.1 Derivation of Subgradient Algorithm

For reconstructing dense disparity maps, we propose a subgradient algorithm for

solving the unconstrained minimization equation.

minimize
c

1

2
‖b− SΦ1c‖22 + λ‖W 1c‖1 + γ‖W 2Φ

T
2 Φ1c‖1 + β‖Φ1c‖TV. (A.1)

In order to solve problem in (A.1), we focus on the first order method since the data

size is too large while dealing with image processing. For considering the complexity,

we address on the first order method. As the first-order method requires the gradient

of (A.1), calculating gradient of each terms is our first step. Since the matrix W 1 is a

diagonal matrix, the subdifferential of ‖W 1c‖1 is as follows:

∂c‖W 1c‖1(i) =





sign [(W 1c) (i)] , if (W 1c)(i) *= 0,

[−1, 1], otherwise.
(A.2)

where the definition of the sign function is defined.

sign (v) =






1, if v > 0,

0, if v = 0,

−1, if v < 0.

(A.3)

As the operation of matrices W 2Φ
T
2 Φ1 is not a diagonal process, the subdifferential of

c is defined as follows:

∂c‖W 2Φ
T
2 Φ1c‖1(i) =

{
ΦT

1 Φ2sign
[
W 2Φ

T
2 Φ1c

]}
(i). (A.4)

Proof. Instead of using 2D signal decomposition, we consider 1D signal. Given a signal

s of length N = 2P and transform matrix, Φ, the signal is decomposed by a wavelet

function at level L with scaling functions, φL,k, and wavelet functions, ϕ!,k.

vs =
2L−1∑

k=0

aL,kφL.k +
P∑

!=L+1

2!−1−1∑

k=0

a!,kϕ!,k. (A.5)
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The )1 norm of the function ‖Φs‖1 is as follows.

‖Φs‖1 =
2L−1∑

k=0

|aL,k|+
P∑

!=L+1

2!−1−1∑

k=0

|a!,k|. (A.6)

Given another signal u, and it can also be decomposed as

u =
2L−1∑

k=0

bL,kφL.k +
P∑

!=L+1

2!−1−1∑

k=0

b!,kϕ!,k. (A.7)

Therefore, the subdifferential of the )1 norm is as follows.

lim
α→0

1

α
(‖Φ(s+ αu)‖1 − ‖Φs‖1)

= lim
α→0

1

α






2L−1∑

k=0

|aL,k + αbL,k|+
P∑

!=L+1

2!−1−1∑

k=0

|a!,k + αb!,k|

−
2L−1∑

k=0

|aL,k|−
P∑

!=L+1

2!−1−1∑

k=0

|a!,k|






=
2L−1∑

k=0

sign(aL,k)bL,k +
P∑

!=L+1

2!−1−1∑

k=0

sign(a!,k)b!,k

=

〈


2L−1∑

k=0

sign(aL,k)φL,k



 ,




2L−1∑

k=0

bL,kφL,k




〉

+

〈


P∑

!=L+1

2!−1−1∑

k=0

sign(a!,kϕ!,k)



 ,




P∑

!=L+1

2!−1−1∑

k=0

b!,kϕ!,k




〉

=

〈


2L−1∑

k=0

sign(aL,k)φL.k +
P∑

!=L+1

2!−1−1∑

k=0

sign(a!,k)ϕ!,k



 ,u

〉

.

where the operator 〈·〉 is inner product. Since the orthogonal property of the scaling func-

tions and wavelet functions, the last two steps are valid. Therefore, the subdifferential
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of ‖Φs‖ is as follows:

2L−1∑

k=0

sign(aL,k)φL.k +
P∑

!=L+1

2!−1−1∑

k=0

sign(a!,k)ϕ!,k. (A.8)

Thus, given an orthogonal matrix Φ and a signal s, the subdifferential of s of the )1

norm can be written in matrix form.

∂s‖Φs‖1(i) = Φ−1sign(Φs). (A.9)

Therefore, suppose Φ = W 2Φ
T
2 Φ1, and since ΦT

2 = Φ−1
2 and ΦT

1 = Φ−1
1 , the subdiffer-

ential of ‖W2Φ
T
2 Φ1c‖1 is as follows.

∂c‖W 2Φ
T
2 Φ1c‖1(i) =

{
(Φ1)

−1Φ−T
2 W 2sign

[
W 2Φ

T
2 Φ1c

]}
(i)

=
{
Φ−1

1 Φ2W 2sign
[
W 2Φ

T
2 Φ1c

]}
(i)

=
{
ΦT

1 Φ2sign
[
W 2Φ

T
2 Φ1c

]}
(i).

where the variable W 2 is a matrix with coefficients 1 and 0 in diagonal entries. Here,

we let W−1
2 = W T

2 = W 2.

The anisotropic total variation is defined as,

‖u‖TV =
k=n−1∑

k=0

√
(ekDxu)

2 +
√

(ekDyu)
2

=
k=n−1∑

k=0

|ekDxu|1 + |ekDyu|1.

(A.10)

The gradient of ‖u‖TV is,

∂c‖Φ1c‖TV(k) = ∂cHδ

(√
(ekDxΦ1c)

2
)
+ ∂cHδ

(√
(ekDyΦ1c)

2
)
, (A.11)

where

∂cHδ

(√
s2x

)
=






ΦT
1 D

T
x e

T
k sign(sx), if |sx| ≥ δ,

ΦT
1 D

T
x e

T
k sx

δ
, otherwise.

(A.12)
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and

∂cHδ

(√
s2y

)
=






ΦT
1 D

T
y e

T
k sign(sy), if |sy| ≥ δ,

ΦT
1 D

T
y e

T
k sy

δ
, otherwise.

(A.13)

The variables sx = ekDxΦ1c and sy = ekDyΦ1c.

Proof. For implementing total variation, we introduce the Huber functional for the )1

norm approximation.

Hδ(x) =






|x|−
δ

2
, if |x| ≥ δ,

x2

2δ
, otherwise.

(A.14)

As total variation equation has two terms,
√

(ekDxΦ1c)2 and
√

(ekDyekΦ1c)2, we

apply Huber functional to each term separately.

Hδ(
√

(DxekΦ1c)
2) =






√
(DxekΦ1c)

2 −
δ

2
, if

√
(DxekΦ1c)

2 ≥ δ,

(DxekΦ1c)
2

2δ
, otherwise.

(A.15)

and

Hδ(
√

(DyekΦ1c)
2) =






√
(DxekΦ1c)

2 −
δ

2
, if

√
(DyekΦ1c)

2 ≥ δ,

(DyekΦ1c)
2

2δ
, otherwise.

(A.16)

After taking derivative of each terms, we can get the gradient of total variation.

∂cHδ

(√
(ekDxΦ1c)

2
)

=






ΦT
1 D

T
x e

T
k sign(ekDxΦ1c), if |ekDxΦ1c| ≥ δ,

ΦT
1 D

T
x e

T
k ekDxΦ1c

δ
, otherwise.

(A.17)

and

∂cHδ

(√
(ekDyΦ1c)

2
)

=






ΦT
1 D

T
y e

T
k sign(ekDyΦ1c), if |ekDyΦ1c| ≥ δ,

ΦT
1 D

T
y e

T
k ekDyΦ1c

δ
, otherwise.

(A.18)
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A.2 Derivation of Alternating Direction Method of Multi-

pliers

In order to solve problem in (A.1) and consider the complexity, we propose a fast

dense disparity reconstruction algorithm by utilizing alternative directional method of

multiplier (ADMM). Separating the augmented Lagragian in (3.24) into subproblems,

and we can solve each subproblem individually.

A.2.1 x-subproblem:

Referring to (3.24), we can solve the x-subproblem by keeping terms with variable

x, and solve the equation by taking derivative of the subproblem. Therefore, the x-

subproblem is,

x∗ = argmin
x
−wT (r − x)− yT

!

(
u! −ΦT

! x
)
− zT (v −Dx)

+
µ

2
‖r − x‖2 +

ρ!
2
‖u! −ΦT

! x‖
2 +

γ

2
‖v −Dx‖2.

Then, take the derivative of the equation above, and set them to zero. We get,

(
ρ!Φ!Φ

T
! + µI + γDTD

)
x(k+1) = Φ! (ρ!u! − y!) + (µr −w) +DT (γv − z) ,

= r.h.s.

Since Φ! is an orthogonal matrix and has a property that ΦT
! Φ! = I. Also, DTD is a

block circulant matrix, we can use the fourier trick to solve this problem.

x(k+1) = F−1

[
F(r.h.s.)

(ρ! + µ)I + γ (|F(Dx)|2 + |F(Dy)|2)

]
(A.19)

Since the difference operator F(Dx) and F(Dy) can be precalculated, these precalculated

operators can be used for reducing computational complexity.
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A.2.2 u!-subproblem:

To solve u-subproblems, we also keep terms with variable u! in (3.24). As we

consider cases that ) = 1, 2, each u! subproblem can be solved independently.

min
u!

λ!‖W !u!‖1 − yT
!

(
u! −ΦT

! x
)
+

ρ!
2
‖u! −ΦT

! x‖2. (A.20)

Based on shrinkage formula, the solution is,

u
(k+1)
! = max

(∣∣∣∣α! +
y!

ρ!

∣∣∣∣−
λ!w̃!

ρ!
, 0

)
· sign

(
α! +

y!

ρ!

)
, (A.21)

where w̃! = diag(W !) and α! = ΦT
! x.

Proof. For solving the u!-subproblem, taking derivative is the first step. For u∗
i *= 0, the

derivative of each element is,

λ!w̃!,isign (u!,i)− y!,i + ρ!
(
u∗
!,i −α!,i

)
, (A.22)

Then, the equation can be written as,

u∗
!,i +

λ!w̃!,isign(u∗
!,i)

ρ!
=

y!,i

ρ!
+α!,i, (A.23)

Also, we can get,
∣∣u∗

!,i

∣∣+
λ!w̃!,i

ρ!
=

∣∣∣∣
y!,i

ρ!
+α!,i

∣∣∣∣ . (A.24)

Then,

sign
(
u∗
!,i

)
=

sign(u∗
!,i)

∣∣∣u∗
!,i

∣∣∣+
λ!sign(u∗

!,i)

ρ!∣∣∣u∗
!,i

∣∣∣+ λ!
ρ!

=

y!,i

ρ!
+α!,i∣∣∣y!,i

ρ!
+α!,i

∣∣∣

= sign

(
y!,i

ρ!
+α!,i

)
.
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Finally, we can get the solution of this u!-subproblem.

u∗
!,i = |u∗

!,i|
u∗
!,i

|u∗
!,i|

= |u∗
!,i| · sign

(
y!,i

ρ!
+α!,i

)

=

(∣∣∣∣
y!,i

ρ!
+α!,i

∣∣∣∣−
λ!w̃!,i

ρ!

)
· sign

(
y!,i

ρ!
+α!,i

)
.

Similarly, we can use shrinkage formula to find the closed form solution of v-

subproblem.

A.3 Parameter Tuning for ADMM

A.3.1 Experimental Configurations

Before presenting results, we first describe our experimental configurations. Test-

ing disparity maps are chosen from Middlebury datasets [46]. All disparity values are

normalized to the range [0, 1]. Figure 1.1 shows some examples of disparity maps. For

the sampling patterns, we choose the uniformly random samples to minimize any bias

towards the sampling. For wavelet dictionary, we use “db2” wavelet function with de-

composition level 2, and for contourlet dictionary, we set frequency partition “5, 6”.

These settings are fixed throughout the experiment.

A.3.2 Regularization Parameters (λ1,λ2, β)

We empirically evaluate the mean square error (MSE) by sweeping the parameters

(λ1,λ2,β) from 10−6 to 100, with a fixed sampling rate of ξ = 0.2. The optimal values

of the parameters are chosen to minimize the average MSE.

Figure 1.2 shows the MSE curves for various images. For each plot, the MSE

is computed by sweeping one parameter while fixing the other parameters. Observing

the top row of Figure 1.2, we see that the optimal λ1 across all images is approximately

located in the range of 10−6 ≤ λ1 ≤ 10−3. Therefore, we select λ1 = 4× 10−5. Similarly,

we can determine λ2 = 2 × 10−4 and β = 2 × 10−3. We repeat the above analysis for

ξ = 0.1. The results are shown in the bottom row of Figure 1.2. The result indicates



98

Aloe Art Baby2

Moebius Dolls Rocks1

Figure 1.1: Example disparity maps from Middlebury dataset.

that while there are some difference in the MSE as compared to the top row, the optimal

value does not change. Therefore, we keep the parameters using the above settings.

A.3.3 Internal Parameters (µ, ρ1, ρ2, γ)

For µ, ρ1, ρ2, γ, we conduct a set of similar experiments as before. The results

are shown in Figure 1.3 and Figure 1.4. The criteria to select the parameter is based on

the convergence rate. This gives us ρ1 = 0.001, ρ2 = 0.001, µ = 0.01 and γ = 0.1.

A.3.4 Summary

We summarize our findings in Table A.1. We remark that the values in Table A.1

are “typical” values that correspond to a reasonable MSE on average. Of course, for a

specific problem there exists a set of optimal parameters. However, from our experience,

this set of parameters seems to be robust over a wide range of problems.
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Figure 1.2: Comparison of reconstruction performance with varying regularization pa-
rameters and depth images. For each plot, we sweep a parameter from 10−6 to 100 while

fixing others to be our typical values. We set the sampling rate to be 20% (1st row)
and 10% (2nd row). Typical values of regularization parameters are λ1 = 4 × 10−5,
λ2 = 2× 10−4 and β = 2× 10−3.
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Figure 1.3: MSE for ξ = 0.2. Curves in each row are results using Aloe, Art, Baby2,
Moebius, Dolls (From Top to Bottom).
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Figure 1.4: MSE for ξ = 0.1. Curves in each row are results using Aloe, Art, Baby2,

Moebius, Dolls (From Top to Bottom).
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Table A.1: Summary of Parameters and typical values.

Parameter Functionality Values

λ1 Wavelet sparsity 4× 10−5

λ2 Contourlet sparsity 2× 10−4

β Total variation 2× 10−3

ρ1 Half quad. penalty for Wavelet 0.001

ρ2 Half quad. penalty for Contourlet 0.001
µ Half quad. penalty for r = x 0.01
γ Half quad. penalty for v = Dx 0.1
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