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Spatial/Temporal Analysis in Infectious Disease Outbreaks

Real-time Epidemic Forecasting:

Challenges and Opportunities

Angel N. Desai, Moritz U. G. Kraemer, Sangeeta Bhatia, Anne Cori, Pierre Nouvellet, Mark Herringer,
Emily L. Cohn, Malwina Carrion, John S. Brownstein, Lawrence C. Madoff, and Britta Lassmann

Infectious disease outbreaks play an important role in global morbidity and mortality. Real-time epidemic forecasting

provides an opportunity to predict geographic disease spread as well as case counts to better inform public health

interventions when outbreaks occur. Challenges and recent advances in predictive modeling are discussed here. We

identified data needs in the areas of epidemic surveillance, mobility, host and environmental susceptibility, pathogen

transmissibility, population density, and healthcare capacity. Constraints in standardized case definitions and timely data

sharing can limit the precision of predictive models. Resource-limited settings present particular challenges for accurate

epidemic forecasting due to the lack of granular data available. Incorporating novel data streams into modeling efforts is

an important consideration for the future as technology penetration continues to improve on a global level. Recent

advances in machine-learning, increased collaboration between modelers, the use of stochastic semi-mechanistic models,

real-time digital disease surveillance data, and open data sharing provide opportunities for refining forecasts for future

epidemics. Epidemic forecasting using predictive modeling is an important tool for outbreak preparedness and response

efforts. Despite the presence of some data gaps at present, opportunities and advancements in innovative data streams

provide additional support for modeling future epidemics.
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The recent outbreaks of Ebola virus in the Demo-
cratic Republic of the Congo, yellow fever in Brazil,

and Nipah virus in India demonstrate the continued threat
of emerging and reemerging infectious diseases.1-3 Rapid
globalization has led to increases in human mobility and the
trade of animals, plants, and food throughout the world.
Infectious disease outbreaks that begin in the most remote
parts of the globe can now spread swiftly to urban centers
and across regions, putting large segments of human popu-
lations at risk for infection.4 In tandem, changes in climate
and land use contribute to an increased risk of spillover be-
tween animals and humans and to the spread of disease
vectors to regions where they were not previously endemic.5

All of these factors have contributed to large epidemics in the
past 2 decades. In order to support outbreak preparedness,
the ability to forecast the potential spread of a disease is
paramount for implementing public health interventions and
effective resource allocation. This is particularly critical for
low- and middle-income countries, as they often dispropor-
tionately bear the burden of infectious diseases and are hin-
dered by limitations in resources available to tackle them.

Epidemic forecasting that models global risks posed by
outbreak events present an opportunity to address the
growing need for rapid, open, and accurate data sources.
While traditional surveillance mechanisms remain the
cornerstone of outbreak investigations, they often require
time, resources, and infrastructure rarely available in the
setting of an epidemic. Novel data streams, such as epi-
demic case incidence data provided by digital disease de-
tection tools, demographic data estimates aided by
geospatial mapping tools, and advances in mathematical
modeling, can support efforts to contain emerging out-
breaks. Predictive models can leverage these novel data
streams to offer timely case count projections and potential
geographic spread of an emerging epidemic in real-time.6

Despite the potential that epidemic forecasting has in
outbreak scenarios, some key challenges remain. For ex-
ample, unreliable data on basic epidemiologic parameters
and disease dynamics in the setting of an emerging outbreak
can limit predictive models. While rapid assessments are
paramount to disease prevention and control, no stan-
dardized or validated forecasting tools exist, and they must
therefore be developed in the course of each new outbreak.
In addition, effectively communicating model results to key
stakeholders can be disrupted due to limitations in available
data needed to produce a reliable forecast. This review aims
to provide an overview of data needs, challenges, and recent
advances we have identified in our own experiences with
real-time surveillance and epidemic forecasting.

Challenges of Global, Real-time

Epidemic Forecasting

Accurate data streams are critical to enhancing current
forecasting capabilities. The ability to account for population

movements, potential changes in pathogen transmissibility
over time, and drug and vaccine availability require data
sources that are updated in real-time. In addition, global,
comprehensive datasets regarding outbreak preparedness that
are committed to open data sharing are necessary to make
risk assessments and predictions.

Ensuring Updated Data
A key challenge during an outbreak is preserving up-to-
date, reliable data. This ensures that estimates of the risk
of disease spread reflect the current epidemiologic, demo-
graphic, and environmental situation. The frequency at
which data need to be updated is dependent on context.
The natural history of a disease is an important factor in
determining the ideal frequency of case count updates;
diseases with a fast progression (eg, influenza) will require
daily updates, while in those with a slower progression (eg,
HIV), monthly updates may be sufficient. More frequent
case counts may also be required at times when transmis-
sibility is expected to change (eg, when interventions are
initiated, enhanced, or stopped).

The frequency at which demographic and mobility data
should be updated will also depend on the time horizon
during which forecasts are made and whether demographic
and mobility patterns are affected by the disease. For en-
vironmental susceptibility, the ideal frequency will depend
on the timescale at which environmental factors affect
disease transmission change. Fortunately, such data are
typically readily available at a fine spatiotemporal scale.
Host susceptibility will be affected by previous and ongoing
epidemics as well as public health endeavors such as vac-
cination. If interventions are ongoing, more frequent up-
dates are necessary. Similarly, healthcare capacity may
change over the course of an outbreak, and the ideal tem-
poral and spatial resolution for such data also depend on
the desired resolution of the forecast.

Model Uncertainties
All parameters used in models forecasting the spread of
infectious diseases are subject to uncertainties. For example,
emerging outbreaks may lack vital information regarding
pathogen transmissibility. Additional structural issues can
stem from the choice of model used—for example, those
that describe connectivity versus environmental suscep-
tibility. Limitations involving model outputs need to be
communicated clearly and transparently to users and stake-
holders to avoid undue concern as well as to present the
range of plausible scenarios. Bayesian methodologies have
become a tool of choice as they incorporate uncertainties as
well as expert knowledge through the choice of prior prob-
abilities. Parametric uncertainties can be explored by nu-
merically sampling all plausible combinations of available
values and reporting on the full distribution of predicted
risks.7
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To account for structural uncertainties, a range of model
structures should be considered. The natural history of the
pathogen and data availability should inform the model as
well. Methodological advances in model comparison and
averaging are promising avenues to improve the characteriza-
tion of forecasting uncertainty. In particular, the performance
of ensemble predictions where various model structures and
their individual uncertainty is aggregated is increasingly rec-
ognized.8 During the validation phase, historical data are used
to train the forecasting model by comparing observed and
predicted trends of disease spread. Among all model structures
and plausible sets of parameters, only those consistent with
historical observations are retained.

Data Needs

Several data gaps exist that limit the precision with which
epidemic forecasting can occur in real-time. Table 1 dem-
onstrates some of these data needs. In particular, epidemic
case incidence, mobility, host and environmental suscep-
tibility, healthcare capacity, and geospatial data needed for
real-time case projections remain incomplete and warrant
further discussion here.

Epidemic Surveillance
Although digital disease surveillance tools offer the rapid
dissemination of epidemic data that can be incorporated

into forecasting models, several gaps remain. In particular,
the absence of standardized case definitions in the setting
of an outbreak may affect the precision of model estimates.
In addition, achieving the timely sharing of incidence
data during an outbreak to incorporate into epidemic
forecasts is paramount, but is often hindered for a variety of
reasons. Innovative digital disease surveillance tools, such as
ProMED, the Program for Monitoring Emerging Diseases,
and HealthMap, generally provide more sensitive disease
signals over traditional reporting mechanisms and allow for
the rapid sharing of epidemic case incidence data in real-
time.24 ProMED is an internet-based infectious disease
surveillance tool dedicated to the rapid dissemination of
information on global human, animal, and plant infectious
disease and toxin outbreaks. Fifty human subject matter
experts located in 35 countries verify and contextualize
reports.9 HealthMap aggregates more than 200,000 data
sources and uses natural language processing and algo-
rithms to tag, filter, analyze, validate, and map real-time
surveillance of emerging threats.10 Despite the increasing
global reach of both tools, specific challenges were noted in
regards to outbreak detection and digital incidence data
curated from these systems during the 2013-2016 West
Africa Ebola outbreak. Delays in accurate and timely case
detection, a lack of granular data during the epidemic as a
result of the relative paucity of local and online news media
in the region, unreliable internet connectivity, few sup-
porting resources, and generally poor infrastructure were
some of the challenges encountered. In addition, digital

Table 1. Summary of Data Needs for Real-time Global Epidemic Forecasting

Aim Data Needs Examples of Open-Access Data Sources

Case counts Case counts including confirmed,
probable, and suspected cases

Open sharing of case data

ProMED9

HealthMap10

World Health Organization11

Mobility Movement of individuals and populations
Flight and travel networks

Flowminder12

Flirt13

Host susceptibility Immunization coverage data: pediatric and adult GHSA14

World Health Organization11

UNICEF15

Environmental susceptibility Climate data such as temperature and precipitation
Environmental characteristics, eg, flooding
Vector mapping
Ecological niche mapping

NOAA16

NASA Earthdata17

Natural Earth18

Healthcare capacity GPS latitude and longitude coordinates
of hospitals, clinics, and health posts

Number of beds
Number of physicians
Number of nurses
Number of critical care beds

Healthsites.io19

World Bank20

Population density and
spatial demographic data

Census data
Shapefiles for all countries
Corresponding estimates of population sizes

LandScan21

WorldPop22

Facebook Population Maps23
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disease incidence data could be resolved only up to the
country level and were not available at subnational spatial
resolution (eg, district level).

Other digital disease tools used for epidemic surveillance
include the Medical Information System (MedISys), a fully
automatic event-based system that monitors reporting on
infectious diseases threats, and the Global Public Health
Intelligence Network (GPHIN), developed by Health Canada
in collaboration with the World Health Organization.25,26

GPHIN is a restricted-access, internet-based multilingual tool
that continuously searches global media sources to identify
information about disease outbreaks.

Despite the challenges surrounding epidemic surveillance
as discussed above, it is expected that digital disease sur-
veillance data availability will continue to improve through
higher internet penetration in low-income settings.27 Further
refinements in disease dictionaries, scraping targets, and al-
gorithm tuning may be warranted to ensure accurate inci-
dence case reporting on subnational, national, and regional
levels in order to project real-time case numbers and disease
spread within countries and across regions.

Pathogen Transmissibility
As an epidemic evolves, current levels of transmissibility may
be inferred directly from case incidence data by estimating the
reproduction number Rt, the average number of secondary
cases generated by a typical infected individual. This infor-
mation can then be used to forecast future incidence.28,29

Accurate case incidence data are crucial for informing trans-
missability. Although under-reporting can be accounted for,
difficulties quickly arise if the relative level of reporting is
temporally variable and not appropriately quantified. When
transmissibility cannot be directly inferred from the data,
previously published estimates must be used. If these are not
available, or an epidemic is caused by a pathogen not cur-
rently known to cause human disease, critical information
regarding disease transmissibility may be missing.

Population Density and Spatial
Demographic Data
Integrating population density and spatial demographic
data into forecasting models is critical in order to predict
the occurrence of new cases and to inform spatial spread.
Availability of demographic data, however, is constrained
in low-income settings where traditional census data are
often of poor quality, reported irregularly, and at low gran-
ularity, with limited breakdown of population classifications
into subcategories. Without accurate baseline demographic
data, developing tools for outbreak preparedness that are
specific to a particular region is challenging.

Novel global geospatial datasets and recent methodo-
logical advances provide new opportunities and are avail-
able through different sources. For example, Landscan, an

online repository of population density data, is available at
approximately 1 km resolution and is updated annually.21

WorldPop, a digital spatial database focused on low- and
middle-income countries, provides open-access population
estimates by integrating census, survey, satellite, and GIS in
a flexible machine-learning framework to produce high-res-
olution maps of population counts and densities.22 World-
Pop also produces estimates of population demographics
such as age, births, and pregnancies. Other examples include
high-resolution population maps that are produced jointly
by the Facebook Connectivity Lab and the Center for In-
ternational Earth Science Information Network (CIESIN).
These programs provide data on the distribution of human
populations at a 30-meter spatial resolution.

Mobility Data
Human mobility is essential to understanding the geo-
graphic spread of infectious diseases. Unfortunately, data
regarding mobility dynamics on spatial and temporal scales
are sparse, limiting predictive model accuracy. Estimating
risks of disease importation within and between countries is
challenging due to difficulties in independently ascertaining
the relevance and reliability of available data. Similarly,
open access information about population flows is often
scarce or unavailable at the height of any given epidemic.

Examples of currently available real-time mobility data
sources include transportation information such as flight
and mobile phone data, although high-resolution infor-
mation from mobile phones is often not available during
outbreaks.13,30 During the 2013-2016 West Africa Ebola
outbreak, analyses of Orange Telecom mobile phone data
produced initial maps of human movement.31 Facebook
currently generates and shares anonymous, aggregated pop-
ulation movement data as part of their Disaster Maps
project, but its accuracy and utility have not yet been for-
mally assessed.23 Finally, reliable census data are critical. In
the absence of detailed information on human mobility,
relative risk levels of disease spread can only be estimated,
thereby limiting model accuracy.

Host Susceptibility Data
and Environmental Drivers
Host and environmental susceptibility may help elucidate the
drivers of infectious disease transmission and can enhance the
predictive accuracy of epidemic models.32,33 For example,
human host factors such as prior immunity acquired either
naturally or through vaccination is available for many path-
ogens and collated through the Global Health Security
Agenda (GHSA).14 Baseline human population vaccination
rates are often updated regularly by countries, but immunity
through vaccination campaigns during outbreaks might be
more difficult to capture and integrate in disease transmission
models.34
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Developing models for livestock epidemics comes with
its own challenges and, in the absence of livestock popu-
lation and immunity data in many under-resourced coun-
tries, relies on built-in assumptions. Agricultural practices
and breeding techniques can further influence disease
spread in livestock.35 There are numerous other host factors
that can influence pathogen susceptibility in both humans
and animals, such as sex, age, genetics, nutritional status,
and co-morbidities, providing additional opportunities for
model refinements.

Remote sensing and satellite data allow for real-time
monitoring of environmental drivers of epidemics such as
temperature, precipitation, humidity, flooding, and other
characteristics that influence the spread of certain patho-
gens. From these data it is possible to derive risk maps of
transmission for diseases that have a strong environmental
component such as vector-borne diseases like Zika, chik-
ungunya, yellow fever, and dengue.36-38 Other examples
of environmental effects on infectious disease transmis-
sion and spread include political instability, conflict,
overcrowding, poor sanitation, and urbanization. While
these drivers have been shown to influence disease spread,
using them in the context of real-time epidemic fore-
casting remains distant.39

Healthcare Capacity Data
Healthcare capacity is an important factor that can influ-
ence disease control and therefore disease dynamics and
spread. Including this kind of data may help refine case
projections and geographic disease spread. Health facility
types and geographic coordinates provide parameters that
offer some specificity to predictive models. Additional in-
dicators of capacity could include the number of physicians
and nurses at each facility, the number of hospital beds,
and the presence of specialized equipment in the form of
ventilators and isolation rooms. Taken together, these pa-
rameters would help quantify the capacity of a healthcare
system to prevent, predict, and respond to an outbreak.
The quality of the health system in a country will also
influence case reporting rates, and models can adjust the
number of reported cases accordingly. Unfortunately, such
health facility attributes are often not available in a timely
manner and at a regional level. To address this, the Global
Healthsites Mapping Project is building a ‘‘global com-
mons’’ of health facility data using OpenStreetMap, a
collaborative online project that allows users to create free,
editable maps.19 This collaborative approach promotes the
sharing of health facility data with the goal of establishing
an accessible baseline of global data using an open data
approach. The open data approach is focused on 3 key
components:

1. Enable national health agencies and organizations to
share and contribute data to OpenStreetMap;

2. Enable collaboration between national health agen-
cies and volunteer communities; and

3. Connect multiple data streams to build higher quality
data.

Additional Data Sources
Other promising data sources to improve the accuracy of
forecasting include biological drivers of disease transmis-
sion such as strain-specific transmission dynamics, vaccine
effectiveness, sequencing data, and electronic health record
data. Realistically, the prospect of using such data in the
context of epidemic real-time forecasting remains distant.

Considerations
Novel data streams can provide valuable information to
public health officials that complement traditional data
sources and reporting mechanisms. While traditional dis-
ease surveillance remains the backbone of outbreak inves-
tigation and routine data collection, informal disease
surveillance tools allow for more rapid dissemination and
detection of case incidence data. In addition, novel data
streams can provide important input for outbreak modeling
in regions that do not have functioning public health systems
because of ongoing conflict or poor infrastructure. It also has
advantages in data aggregation at a global level, as data are
collected using a unified methodology. Rapid epidemic in-
cidence data reporting across national boundaries can also
assist modeling of epidemic spread and epidemic potential in
geographic areas that do not have surveillance programs.

Recent Advances and Opportunities

Advances
While existing data needs present several challenges for
epidemic forecasting, recent advances in high-level meth-
odologies as well as novel open data sources provide op-
portunities to refine predictive disease models for future
outbreak scenarios. As digital disease surveillance tools have
continued to evolve over time, real-time case information
extracted from these systems has provided significant gains
for forecasting efforts.24

Demographic and geographic data are becoming more
readily available through programs such as LandScan� and
WorldPop. Free software for statistical computing and
graphics such as ‘‘R’’ are used to create the next generation
of analytics tools for informing the response to disease
outbreaks and health emergencies. For example, the R
Epidemics Consortium (RECON) brings together experts
in data science, modeling methodology, public health, and
software development with the goal of developing tools for
handling, visualizing, and analyzing outbreak data.40
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Other examples of infectious disease forecasting tools
include FluSight, a consortium from Reich Lab at the
University of Massachusetts Amherst, and MRIIDS, the
Mapping the Risk of International Disease Spread project.
FluSight displays live influenza predictions for the United
States based on weekly data provided by the US Centers for
Disease Control and Prevention. It visualizes interactive
prediction models while also displaying historical data for
comparison.41 The MRIIDS prototype was developed for
the 2013-2016 West Africa Ebola outbreak. The tool
communicates risks posed by outbreak events in real-time
by combining digital disease case incidence data with mul-
tiple open access data streams into a single probabilistic
framework.42 It was validated against WHO case incidence
data and performed well in a retrospective analysis, but its
use and impact as a real-time forecasting tool remains to be
determined in future outbreaks.

Model Methodologies
Many methodologies exist to forecast case numbers during
an outbreak. The development of new methods and the
testing of established models need to take place between
outbreak events in preparation for future epidemics. Op-
portunities such as the RAPIDD Ebola Forecasting Chal-
lenge coordinate the modeling community ahead of the
next epidemic.8 These projects provide a deeper under-
standing of model accuracy and data requirements in a
controlled environment and can be extended to other known
and unknown pathogens. They are also an opportunity to
improve coordination and collaboration between modeling
groups. The RAPIDD Ebola Forecasting Challenge dem-
onstrated that for short-term, 1- to 4-week incidence pre-
dictions, model performance did not improve with increased
complexity, underscoring that even simple models provide
valuable information for future case counts. Stochastic semi-
mechanistic models may also be an important tool in com-
bating future outbreaks, as they combine the power of
mechanistic models with the flexibility of including uncer-
tainty about precise outbreak dynamics.7,43 More recently,
machine learning and climate data were used to develop a
model for dengue case count forecasting.44

To facilitate comparisons across multiple models,
common data standards need to be defined. We expect
to see continued forecast improvement through method-
ological innovation, technological advances, and collabo-
ration. Development of modular models that are built on
a core of simple models and are able to incorporate novel
data streams as they become available could also improve
performance.

Open Data Sharing
Recent advances in digitization, connectivity, and big data
provide valuable sources of information. By combining

these data streams with conventional methods for moni-
toring infectious diseases, tools can be developed to assist
the public health community to respond to outbreaks
swiftly. Data should be shared openly, transparently, and
free of political constraints. Definitions of incentives to
share data under an open data license need to be consid-
ered. To foster scale-up and ensure sustainability over time,
forecasting tools should be developed in a modular, flexible
manner and use open-source statistical software to make
relevant code publicly available. Improved interoperability
among data sources, health ministries, and electronic health
management systems will also be vital. Open data sharing
will allow multiple teams to develop, test, validate, and
compare models.

Integration
Many public health officials already use innovative digital
disease surveillance tools in their daily work to comple-
ment traditional disease surveillance efforts.45 Refining
forecasting targets to more closely align with public health
priorities will improve integration of model outputs
with decision making. Clear communication of model un-
certainties will increase confidence in model outputs. Close
collaborations, such as those between the Global Outbreak
Alert and Response Network (GOARN), a partnership of
institutions, and networks including traditional and inno-
vative digital disease surveillance systems that pool human
and technical resources for rapid identification, confirma-
tion, and response to outbreaks of international importance
are paramount.46

Conclusions

Outbreaks of emerging and reemerging infectious diseases
will continue to present challenges in the future. Providing
actionable insights such as accurate forecasting of case
counts and the potential geographic reach of infectious
disease spread is critical for resource allocation and pre-
paredness planning. While several gaps in current data
streams provide certain constraints on epidemic forecast-
ing at present, recent advances in the field provide op-
portunities for continued refinement of future predictive
models. Clearly communicating the limitations of out-
break prediction will ensure the adoption of predictive
tools by public health officials, operations managers, and
healthcare practitioners. In addition, innovation using
novel data streams and methodologies need to take place
between global outbreak events in order to enhance epi-
demic preparedness. A modular approach that is rapidly
scalable for new pathogens and allows for the easy inte-
gration of additional data streams to refine output will
be essential for future iterations of epidemic forecasting
models.
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