UC Berkeley

UC Berkeley Previously Published Works

Title

On tangential equivalence of manifolds

Permalink

<https://escholarship.org/uc/item/98f2p0h2>

Journal Annals of Mathematics, 83(2)

ISSN 1939-8980

Author Hirsch, MW

Publication Date 1966-03-01

Peer reviewed

Annals of Mathematics

On Tangential Equivalence of Manifolds Author(s): Morris W. Hirsch Source: Annals of Mathematics, Second Series, Vol. 83, No. 2 (Mar., 1966), pp. 211-217 Published by: [Annals of Mathematics](http://www.jstor.org/action/showPublisher?publisherCode=annals) Stable URL: [http://www.jstor.org/stable/1970427](http://www.jstor.org/stable/1970427?origin=JSTOR-pdf) Accessed: 10/11/2014 23:11

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at <http://www.jstor.org/page/info/about/policies/terms.jsp>

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to *Annals of Mathematics.*

http://www.jstor.org

On tangential equivalence of manifolds

By Morris W. Hirsch

1. Introduction

Let M_1, M_2 be smooth, compact, unbounded manifolds with tangent bundles τ_1 , τ_2 . The object of this paper is to prove Theorem A below, generalizing the following theorem of Barry Mazur [3]'.

THEOREM OF MAZUR. Let $f: M_1 \rightarrow M_2$ be a homotopy equivalence such that $f^*\tau_z$ is stably equivalent to τ_1 . Then $M_1\times R^k$ is diffeomorphic to $M_2\times R^k$ $for\,\,k\geqq\dim M+2.$

The generalization concerns the types of manifolds considered. In $\S 3$ it is shown that M_1 and M_2 need not be compact, provided that f is a proper homotopy equivalence. In § 4 the cases where M_1 and M_2 are piecewise linear or topological manifolds are reduced to the smooth case by the use of microbundles. Definitions and the statement of Theorem A occupy $\S 2$, while $\S 5$ consists of remarks.

I am grateful to C.T.C. Wall for suggesting this work.

2. Theorem A

A map $f: X \to Y$ is proper if $f^{-1}(C)$ is compact for every compact $C \subset Y$. Two maps f, g: $X \rightarrow Y$ are properly homotopic, denoted by $f \simeq_{\text{prop}} g$ if there is a proper map $F: X \times I \to Y$ (where I is the closed interval [0, 1]) such that $F(x, 0) = f(x)$ and $F(x, 1) = g(x)$ for all $x \in X$. A proper homotopy equivalence is a map $f: X \to Y$ such that for some map $g: Y \to X$ it is true that $gf \simeq_{\text{prop}} 1_x$ and $fg \simeq_{\text{prop}} 1_x$; thus f and g must be proper. (The identity map of X is denoted by 1_x or by 1.)

Define three categories DIFF, PL, TOP as follows:

- DIFF: smooth manifolds and smooth maps;
- PL : piecewise linear manifolds and piecewise linear maps;

TOP : topological manifolds and continuous maps.

Let c be one of these categories. If M is a manifold in c, let the tangent bundle τ_M of M denote the usual tangent bundle when $C = DIFF$, and the tangent microbundle of Milnor [6] when $C = PL$ or TOP (If $C = PL$, then of course τ_M is the *piecewise linear* tangent microbundle).

Let M, N be manifolds of c. A proper tangential equivalence $f: M \rightarrow N$ is a morphism in c such that

¹ Mazur informs me that he has also proved Theorem A; cf. [11].

(i) f is a proper homotopy equivalence;

(ii) $f^* \tau_N$ is stably equivalent to τ_M .

Let \sim denote bundle equivalence in c; then (ii) means that for some k,

$$
(f^*\tau_{N})\bigoplus \varepsilon^{k} \sim \tau_{M} \bigoplus \varepsilon^{k} ,
$$

where ε^k is the trivial bundle over M of dimension k.

Let R^k denote euclidean k-space. We always identify M with $M\times \{0\}\subset M\times R^k$.

THEOREM A. Let c be one of the categories DIFF, PL, TOP. Let $f: M_1 \rightarrow M_2$ be a proper tangential equivalence between unbounded manifolds in c. For some integer $k \geq 0$, there exists a c-isomorphism

$$
F\hbox{\rm :}\ M_1\times\,R^k \approx M_{\scriptscriptstyle 2}\times\,R^k\,\,,
$$

such that $F \mid M_1 \simeq_{\text{prop}} f$. If $C =$ DIFF then $k = \dim M + 2$.

3. The non-compact smooth case

In this section, all manifolds etc. are smooth; the boundary bM of the manifold M is empty.

The proof of Theorem A for $C = DIFF$ is, essentially, the same as the proof of Mazur's theorem in [5], using Proposition 3 below in place of Lemma 1 of [5]. The details are left to the reader.

LEMMA 1. Let V be a manifold, and f, g: $M \rightarrow \text{int } V$ proper embeddings with trivial normal bundles. Assume dim $V \geq 2$ dim $M + 2$. If $f \simeq_{\text{prop}} g$, there is a diffeotopy of V carrying f into g , fixed near bV . In particular, there is a diffeomorphism h: $V \rightarrow V$ such that

(a) $hf = g$,

(b) $h = 1$ in a neighborhood of bV.

PROOF. First assume $f(M) \cap g(M) = \emptyset$. Since dim $V \geq 2$ dim $(M \times I)$, there is a proper homotopy $F: M \times I \to \text{int } V$ from f to g which is also an immersion.

If dim $V > 2$ dim $(M \times I)$, then assume F is an embedding.

If dim $V = 2$ dim $(M \times I) = 2n$, say, proceed as follows, in order to make F into an embedding.

Assume that F has generic double points, which therefore form a closed 0-manifold in $M \times I$, disjoint from $b(M \times I)$. These singularities may be removed by the method of piping, due to Penrose-Whitehead-Zeeman [8]. The idea is this: Suppose $F(p) = F(p')$, $p \neq p'$. Let A be an arc in $M \times I$ with one end at p', and meeting $b(M \times I)$ only at its other end $q \in M \times \{0\}$. Assume that p' is the only double point of F lying on A .

Let $B \subset \text{int} (M \times I)$ be an *n*-disk centered at *p*, containing no other double points. Because the self intersection (p, p') is generic, we can find an embedding $\varphi_0: B \times [0, 1] \to \text{int } V$ such that $\varphi_0(B \times \{0\}) = B$, and $\varphi_0({p} \times [0, 1]) =$ $F(A)$. Since $\varphi_0(p, 1) = F(q) \in Fb(M \times I)$, one may extend φ_0 to an embedding $\varphi: B \times [0, 2] \to \text{int } V \text{ such that } \varphi(B \times [1, 2]) \cap F(M \times I) = \varnothing.$

Let $\lambda: B \to [0, 2]$ take the value 2 in a neighborhood of p', and 0 in a neighborhood of bB. Define $F' : M \times I \to \text{int } V$ by

$$
F'(x) = \begin{cases} F(x) , & x \in B \end{cases}
$$

$$
x\in B.
$$

This procedure produces a new embedding $F' : M \rightarrow \text{int } V$ which differs from F only in B , and which has no new double points; moreover, F' has no double points in B.

Let the double points of F be labelled p_j , p'_j , $j = 1, 2, \dots$, so that $F(p_j) =$ $F(p)$. Since F is a proper immersion, the set of double points has no limit point. The piping process can be applied recursively to each pair (p_i, p'_i) , of double points to produce a sequence F'_1, F'_2, \cdots , of embeddings $M \times I \rightarrow \text{int } V$ such that:

(i) $F'_{i+1} = F'_{i}$ except in an *n*-disk B_{i} , with $p'_{i} \in B_{i} \subset \text{int } (M \times I)$:

(ii) the disks B_j are pairwise disjoint, and $\bigcup_j B_j$ is closed in $M \times I$.

(iii) $\bigcup_i F_i'(B_i)$ is closed in V. This will be achieved provided the embeddings φ are carefully chosen. The properness of F is used.

(iv) the double points F'_r are the points p'_i , p_j for $j > r$.

It follows that $\lim F_i: M \times I \to \text{int } V$ is an embedding which is also a proper homotopy from f to g .

Assume, then, that $F: M \times I \to \text{int } V$ is both an embedding and a proper homotopy from f to g. Extend F to a proper embedding $H: M \times J \to \text{int } V$, $J = [-3, 3]$. Since f has trivial normal bundle, so does H. Therefore, there is an embedding (improper) G: $M \times J \times R^k \rightarrow V$ such that $G(x, y, 0) = H(x, y)$, where $k = \dim V - \dim (M \times J)$.

There is clearly a diffeotopy of $M \times J \times R^k$ taking $(x, 0, 0)$ into $(x, 1, 0)$ for all $x \in M$, and which is fixed outside $M \times [-2, 2] \times D^k$ (where $D^k \subset R^k$ is the unit disk). Since G is proper on $M \times J \times D^k$, the image of G is a closed subset of V. Therefore the diffeotopy of $M \times J \times R^k$ can be transferred, via G , to a diffeotopy of V as required.

If $f(M) \cap g(M) \neq \emptyset$, choose a proper embedding $f_1: M \to \text{int } V$ such that

 (i) $f_1 \simeq_{\text{prop}} f$,

(ii) $f_1(M) \cap f(M) = \varnothing = f_1(M) \cap g(M);$

such an f_1 exists because dim $V > 2$ dim M. The first part of the proof applies

to carry f into f_1 and then f_1 into g, by suitable diffeotopies of V, which may be combined to make a diffeotopy of V carrying f into g . Lemma 1 is proved.

REMARK. In Lemma 1, the hypothesis that f and g have trivial normal bundles can easily be dropped.

Let $p: E \to M$ be a smooth orthogonal bundle with fibre D^k . Identify M with the zero section of E. For every smooth map $\lambda: M \to (0, 1)$ of M into the open unit interval, let $\lambda E = \{x \in E : ||x|| \leq \lambda p(x)\}\$. If λ take the constant value a, put $\lambda E = aE$.

LEMMA 2. Let $p: E \to M$ be as above. If $f: \frac{1}{2}E \to \text{int } E$ is an embedding such that $f \, | \, M=1$, then f has an extension to a diffeomorphism of E onto itself.

PROOF. The conclusion of the lemma is equivalent to the statement

(i) $E-\mathrm{int}f(\frac{1}{2}E) \approx I \times bE$,

since clearly $E - \text{int} \frac{1}{2} E \approx I \times bE$, and any diffeomorphism of bE extends to a diffeomorphism of $I \times bE$. It is easy to see that $E - \inf f(\frac{1}{2}E) \approx E - \inf f(\lambda E)$ for any $\lambda: M \to (0, \frac{1}{2})$; therefore (i) is equivalent to

(ii) $E-\mathrm{int} f(\lambda E) \approx I \times bE$ for some $\lambda: M \to (0, \frac{1}{2})$.

It is easy to prove that there exists a $\mu: M \to (0, \frac{1}{2})$ such that $b f(\mu E)$ is transverse to each radial segment of E; that is, each of the curves $t \to tx$, for $t \in I$ and $x \in bE$, meets $bf(\mu E)$ at a single point, and is not tangent to $bf(\mu E)$. (This is where the assumption that $f \mid M = 1$ is used.) It is clear that $E - \text{int } f(\mu E) \approx I \times bE$, proving (ii), and the lemma.

Combining Lemmas 1 and 2 yields:

PROPOSITION 3. Let $p: E \to M$ be a smooth orthogonal D^k bundle with $k \geq \dim M + 2.$ If $f: \frac{1}{2}E \rightarrow \text{int } E$ is an embedding such that $f \mid M \approx_{\text{prop}} 1$, then f extends to a diffeomorphism of E onto itself.

4. Reduction to the smooth case

The reduction is effected by observing that the total space $E\nu$ of the normal bundle of a manifold is smoothable. If $f: M_1 \rightarrow M_2$ is a proper tangential equivalence, then there is a proper tangential equivalence $\bar{f}: E \nu_1 \to E \nu_2$ covering f, where ν_i is a suitable normal bundle of M_i . Therefore $(E\nu_i) \times R^k \approx$ $(E\nu_z) \times R^k$ for some k, by the results of § 3, or equivalently, $E(\nu_1 \bigoplus \varepsilon_1^k) \approx$ $E(\nu_z \oplus \varepsilon_2^k)$, where ε_i^k is the trivial k-dimensional bundle over $M_i(i = 1, 2)$. It follows easily that $E(\nu_1 \bigoplus \tau_1 \bigoplus \varepsilon_1^k) \approx E(\nu_2 \bigoplus \tau_2 \bigoplus \varepsilon_2^k)$, where τ_i is the tangent microbundle of M_i . If $\nu_1 \bigoplus \tau_i \sim \varepsilon'_i$, then this means that $M_1 \times R^{k+j} \approx M_2 \times R^{k+j}$. The details follow.

Let \hat{c} be one of the categories PL, TOP. The following theorem, due to

J. Kister [2] and also B. Mazur, is true for either value of \hat{c} ; see also [10].

THEOREM OF KISTER AND MAZUR. Let $\alpha\colon B\stackrel{i}{\longrightarrow}E\stackrel{j}{\longrightarrow}B$ be a microbundle in \hat{c} . There is a neighborhood E_0 of B in E such that $(j | E_0, E_0, B)$ is a \hat{c} locally trivial fibre space ξ with fibre $\hat{\mathbf{c}}$ isomorphic to a euclidean space. Moreover, if $E_1 \subset E$ is another neighborhood of B making (j |E₁, E₁, B) into a similar fibre space ξ_1 , then there is a \hat{c} isomorphism $h: E_{\theta} \rightarrow E_1$ such that the diagram

commutes.

By virtue of this result, it is assumed hereafter that all microbundles are locally trivial fibre spaces, as in Lemma 1.

LEMMA 4. If Theorem A is true for the category DIFF, it is also true for manifolds M_1 , $M_2 \in \hat{\mathbf{C}}$ which are open submanifolds of \mathbf{R}^s .

PROOF. M_1 and M_2 inherit parallelizable differential structures from R^s ; these are compatible with the piecewise linear structures if $\hat{c} = PL$. The smooth case of Theorem A provides a diffeomorphism $h: M_1 \times R^k \to M_2 \times R^k$. If \hat{c} = PL, approximate h by a piecewise linear homeomorphism, using the uniqueness of smooth triangulations.

The next lemma takes place in \hat{c} .

LEMMA 5. Let $h: N_1 \rightarrow N_2$ be an isomorphism. Let α_i be a microbundle over $N_i(i = 1, 2)$ such that $h^* \alpha_2 \sim \alpha_1$. Then h is covered by an isomorphism $E\alpha_1 \rightarrow E\alpha_2$.

PROOF. In view of the assumption concerning microbundles, preceding Lemma 4, Lemma 5 is tautological.

PROPOSITION 6. If Theorem A is true for $C =$ DIFF, it is also true for $C=PL$ and $C=TOP$.

PROOF. Let $f: M_1 \to M_2$ be a proper tangential equivalence in the category \hat{c} . We may assume that $f^* \tau_2 \sim \tau_1$ (not merely stably equivalent), since, if not, we can replace M_i by $M_i \times R^k$, where $f^*(\tau_2 \bigoplus \varepsilon_2^k) \sim \tau_1 \bigoplus \varepsilon_1^k$. According to Milnor [6] there exist open subsets $N_1, N_2 \subset \mathbb{R}^s$ and $\hat{\mathbf{c}}$ microbundles

$$
\nu_i\colon M_i\longrightarrow N_i\stackrel{p_i}{\longrightarrow} M_i\ .
$$

If s is sufficiently large, the stable uniqueness theorem for inverses of microbundles and the assumption that $f^* \tau_2 \sim \tau_1$ together imply that $f^* \nu_2 \sim \nu_1$. It is easy to see that $f: M_1 \to M_2$ is covered by a bundle map $g: \nu_1 \to \nu_2$ which is a proper \hat{c} tangential equivalence g: $N_1 \rightarrow N_2$. By Lemma 4, there exists a \hat{c} isomorphism $h: N_1 \times R^t \approx N_2 \times R^t$, for some integer $t \geq 0$. Since $N_i \times R^t =$ $E(\nu_i \oplus \varepsilon_i^t)$, we may assume $t = 0$. Therefore assume the existence of a \hat{c} isomorphism $h: N_1 \approx N_2$ such that $h \mid M_1 \simeq_{\text{prop}} f$. Observe now that

$$
M_i \times R^s \approx E(\nu_i \bigoplus \tau_i) = E(p_i^* \tau_i) .
$$

By Lemma 5 (with $\alpha_i = p_i^* \tau_i$) there exists a \hat{c} isomorphism $F: E(p_i^* \tau_i) \approx E(p_i^* \tau_i)$ covering $h: N_1 \approx N_2$. Identifying $M_i \times R^s$ with $E(\nu_i \bigoplus \tau_i)$ proves the lemma and, with it, Theorem A.

5. Remarks

(1) The proof of Theorem A can be refined so as to provide the following upper bound for k in the cases $C = PL$, TOP:

$$
k\leqq p+\dim M_i+2,
$$

where M_i can be embedded in R^p with a normal microbundle ν_i such that $f^*\nu_{2} \sim \nu_{1}$.

(2) In the cases $C=DIFF$, PL of Theorem A, consider this extra hypothesis: M_i is compact, and $f: M_1 \to M_2$ is a simple homotopy equivalence. In the smooth case it is known that $M_1 \times D^k \approx M_2 \times D^k$ for sufficiently large k, and the proofs generalize to the piecewise linear case [1], [4]. It can be shown by means of the s-cobordism theorem that if C=DIFF, then $k > n$ suffices, or $k \geq n$ if M_i is simply connected. One cannot reduce k much further, however, as is shown by the example [9] of a smooth homotopy sphere M^{16} which does not embed smoothly in R^{29} with trivial normal bundle. Thus M^{16} is tangentially equivalent to S^{16} , but $M^{16} \times R^{13} \approx S^{16} \times R^{13}$.

(3) Can the dimensional restriction of Lemma 1 be weakened? If M is compact, Palais [7] shows that no restriction is needed. That some restrictions are needed for non-compact manifolds is shown by the following example. Let $K^1 \subset S^3$ be a smooth non-trivial knot, and let $S^1 \subset S^3$ be a trivial knot. Let $R^3 = S^3 - \{ \infty \},$ with $\infty \in K^1$. Then no homeomorphism of R^3 carries $X^1 =$ $K^1 - \{\infty\}$ onto a straight line $L^1 = S^1 - \{\infty\}$, since $R^3 - L^1$ and $R^3 - X^1$ have different fundamental groups. There does exist, however, a proper smooth isotopy of the embedding $X^1 \rightarrow R^3$ carrying X^1 onto L^1 . Such an isotopy is by definition a smooth proper embedding $h: X^1 \times I \rightarrow \mathbb{R}^3 \times I$ of the form $h(x, t)=$ $(h_t(x), t)$ such that $h_0 | X^1 = 1$, is the inclusion, and $h_1(X^1) = L^1$. To construct h_t , let $g: K^1 \times I \rightarrow S^3 \times I$ be an isotopy such that

- (i) $q_0 \mid K^1 = 1$;
- (ii) $q_i(\infty) = \infty$, for all $t \in I$;
- (iii) $g_1(K^1) = S^1$;
- (iv) $g \mid K^1 \times I \{(\infty, 1)\}\)$ is a smooth embedding.

Such a g can be constructed by the well known trick (due to Seifert) of "pulling K^1 tight", in such a way that the "knotted part" of K^1 shrinks down to ∞ . Then $g: X^1 \times I \rightarrow R^3 \times I$ is the required proper smooth isotopy.

UNIVERSITY OF CALIFORNIA, BERKELEY

BIBLIOGRAPHY

- 1. M.W. HIRSCH, Smooth regular neighborhoods, Ann. of Math., 73 (1962), 524-536.
- 2. J. KISTER, Microbundles are fibre bundles, Ann. of Math., 80 (1964), 190-199.
- 3. B. MAZUR, Stable equivalence of differentiable manifolds, Bull. Amer. Math. Soc., 67 (1961), 377-384.
- 4. Simple neighborhoods, Bull. Amer. Math. Soc., 68 (1962), 87-92.
- 5. J. MILNOR, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math., 74 (1961), 575-590.
- 6. \longrightarrow , Microbundles and differentiable structures, and Microbundles, Part I, Princeton Univ. (mimeographed).
- 7. R. S. PALAIS, Local triviality of the restriction map for embeddings, Comment. Math. Helv., 34 (1960), 305-312.
- 8. R. PENROSE, J.H.C. WHITEHEAD, E.C. ZEEMAN, Imbedding of manifolds in euclidean space, Ann. of Math., 73 (1961), 613-623.
- 9. W. HSIANG, R. SZCZARBA, J. LEVINE, On the normal bundle of a homotopy sphere embedded in euclidean space, Topology, 3 (1965), 173-181.
- 10. M. W. HIRSCH, B. MAZUR, Smoothing piecewise linear manifolds, to appear.
- 11. B. MAZUR, The method of infinite repetition in pure topology, Ann. of Math., 80 (1964), 201-226.

(Received July 13, 1964) (Revised August 5, 1965)