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Abstract: The global rise of drug resistant tuberculosis has highlighted the need for improved
diagnostic technologies that provide rapid and reliable drug resistance results. Here, we develop
and validate a whole genome sequencing (WGS)-based test for identification of mycobacterium
tuberculosis complex (MTB) drug resistance to rifampin, isoniazid, pyrazinamide, ethambutol, and
streptomycin. Through comparative analysis of drug resistance results from WGS-based testing and
phenotypic drug susceptibility testing (DST) of 38 clinical MTB isolates from patients receiving care
in Los Angeles, CA, we found an overall concordance between methods of 97.4% with equivalent
performance across culture media. Critically, prospective analysis of 11 isolates showed that WGS-
based testing provides results an average of 36 days faster than phenotypic culture-based methods. We
showcase the additional benefits of WGS data by investigating a suspected laboratory contamination
event and using phylogenetic analysis to search for cryptic local transmission, finding no evidence of
community spread amongst our patient population in the past six years. WGS-based testing for MTB
drug resistance has the potential to greatly improve diagnosis of drug resistant MTB by accelerating
turnaround time while maintaining accuracy and providing additional benefits for infection control,
lab safety, and public health applications.

Keywords: whole-genome sequencing; Mycobacterium tuberculosis complex; drug susceptibility
testing; phylogenetic relatedness analysis; clinical evaluation

1. Introduction

Heralded as the world’s most successful human pathogen, Mycobacterium tuberculosis
complex (MTB) is one of the world’s leading causes of death. MTB caused an estimated
10.6 million infections and 1.6 million deaths in 2021 alone, and an estimated 1.7 billion
people, or roughly 23% of the world’s population is currently infected [1,2]. While effective
treatment regimens exist, global implementation and delivery of care is plagued by issues
surrounding access, selection of appropriate regimens, and drug supply, all issues that
have been exacerbated by the COVID-19 pandemic [3,4]. The resulting frequent incomplete
or ineffective treatment has led to a rise in multidrug resistant tuberculosis (MDR-TB) and
extensively drug resistant tuberculosis (XDR-TB) [5]. These highly resistant strains account
for a significant increase in mortality, especially in hosts with immunosuppression or HIV
co-infection [6–8]. The rise of drug resistant tuberculosis is an urgent global public health
threat, with recent models indicating that the number of people dying from drug resistant
TB will nearly double every five years without intervention [9].

Accurate and timely diagnosis of drug resistance remains a significant barrier to
effective treatment of tuberculosis. The current methods for identification of drug resistance
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in MTB rely on culture-based phenotypic drug susceptibility testing (DST). MTB grows
very slowly in laboratory conditions, which can delay drug resistance results and therefore
proper regimen selection by months following initial detection [10]. While DST is relatively
slow, it remains a cost effective and reliable method of clinical DST testing in low-resource
settings where MTB is endemic [11]. The introduction of rapid molecular testing, which
relies on PCR to provide preliminary antimicrobial resistance (AMR) results for a few
drug targets, has already proven that improvements in diagnostic technologies have the
potential to change the landscape [12]. Furthermore, several studies have shown that
whole-genome sequencing (WGS), which can detect resistance-predicting mutations across
the entire genome in under one week, has the potential to improve and accelerate detection
of drug resistant TB even further [13–15].

The use of WGS for investigation of MTB drug resistance first occurred in September
2006, when an outbreak of XDR-TB in South Africa was identified. Scientists sequenced
the genomes of three isolates in one of the first applications of next generation sequencing
technology of a microbial pathogen, identifying both known and putative drug resistance
mutations [16]. Over the next ten years, the use of WGS in MTB management matured,
with Public Health England supporting clinical diagnosis of resistance and outbreak in-
vestigations with routine sequencing of MTB as early as 2016 [17]. Since the introduction
of standardized, easy-to-use computational analysis tools in 2015 [15], the use of WGS in
MTB diagnosis and surveillance has exploded and is now used by public health authorities
worldwide. Studies performed in the United States, China, England, Tanzania, France,
Indonesia, and Thailand have repeatedly showcased excellent performance and clinical
benefits of using WGS in MTB management [13–15,18–22]. While accuracy in comparison
with phenotypic testing in these studies varies across drugs, the overall concordance is
generally very high at >95% [23].

In addition to improvements in diagnostic speed, the data generated by WGS-based
testing can be utilized for additional clinical and public health benefit. For example, WGS
testing provides an opportunity to conduct molecular surveillance of antibiotic resistance
mechanisms. Unlike many other bacteria, where the presence or absence of horizontally
transmitted mobile genetic elements encoding antibiotic resistance genes play an important
role, drug resistance in MTB can be accurately detected by methods that search for the
known single nucleotide polymorphisms (SNPs) present in chromosomal genes like pncA
and katG. Molecular surveillance of antibiotic resistance in MTB therefore primarily re-
volves around cataloguing SNPs in genes where mutations are known to confer resistance.
Beyond surveillance of drug resistance, analysis of genetic relatedness can be used to
evaluate suspected transmission events between epidemiologically linked cases, detect lab-
oratory contamination events, and identify mixed infections with high confidence [24–26].
Phylogenetic analysis provides the opportunity to monitor the dynamics of local outbreaks
in real time by providing insight into circulating lineages, patterns of drug resistance, and
geospatial links between isolates [27]. Of particular importance to tuberculosis, surveillance
for cryptic transmission between cases with no known epidemiologic links can begin to
tease apart the role of active transmission versus reactivation of latent infection as the
driving forces of local outbreak dynamics.

To evaluate these benefits, we present the development, validation, and implementa-
tion of WGS-based AMR testing of MTB in a clinical laboratory setting in conjunction with
both retrospective and prospective evaluation of diagnostic accuracy and clinical utility.
Our algorithm leverages TB Profiler, a free and widely available web-based tool [15,28],
along with a simple custom quality control algorithm, for rapid and accurate identification
of resistance to five commonly used therapeutics (Figure 1). We compare results from WGS-
based testing with phenotypic testing, showing high concordance between methods. In the
prospective analysis arm of our study, we analyze the improvement in turn-around-time
afforded by WGS-based testing. Lastly, we use genomic epidemiology to showcase how
genetic data can be used to answer specific clinical questions as well as provide insight into
the transmission dynamics of MTB infections in Los Angeles, CA over the past six years.
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Figure 1. Schematic diagram of computational workflow. Illustrated are the quality control and
variant detection steps that lead to resistance results.

2. Materials and Methods
2.1. Ethics

This study was reviewed by the UCLA Human Research Protection Program and
received an IRB exemption. All the patients’ information was de-identified.

2.2. Clinical Samples

A total of 38 isolates from 38 unique patients receiving care in Los Angeles, California,
United States of America were selected for analysis. The isolates selected for analysis
are MTB cultures derived from clinical samples that tested positive for MTB in routine
clinical testing at UCLA Health Clinical Microbiology Laboratory by Vitek MS MALDI-TOF
(Biomerieux, Hazelwood, MO, USA), Gene Xpert PCR (Cepheid, Sunnyvale, CA, USA),
or in-house sequence-based tests for pathogen identification [29]. MTB testing in these
patients was ordered by clinical treatment teams based upon clinical suspicion for tubercu-
losis infection. There were no exclusion criteria. Among the 38 patients, 23 were diagnosed
with pulmonary tuberculosis, 8 were diagnosed with extrapulmonary tuberculosis without
dissemination, and 7 were diagnosed with disseminated, or miliary, tuberculosis. All
isolates were collected prior to initiation of treatment with antimicrobial therapy. Addi-
tionally, one reference strain, M. tuberculosis ATCC 21577, was used for internal procedural
validation. An additional 25 biological replicates derived from the 38 clinical isolates were
analyzed for repeatability, reproducibility, and culture media cross validation, making up
a total of 64 unique sequence data sets included in this study. Of these, 16 samples were
isolated from liquid mycobacterial culture medium (MGIT) using the BD BACTEC MGIT
Automated Mycobacterial Detection (BD, Franklin Lakes, NJ, USA). The remaining 48 were
isolated from solid mycobacterial culture media.

2.3. Isolate Preparation, DNA Extraction and WGS

The MTB isolates were heat-inactivated (100 ◦C for 30 min), and an additional bead-
beating step was performed for mechanical disruption of the cell wall. The Qiagen (Valencia,
CA, USA) EZ1 Blood and Tissue Kit and the EZ1 Advanced XL instrument were used
according to the manufacturer’s instructions to extract genomic DNA from pure microbial
isolates. Extracted DNA was quantified with the Qubit 1× double-stranded DNA HS
assay using the Qubit 3.0 Fluorometer (Thermo Fisher, Waltham, MA, USA). Acceptable
quantities of DNA were ≥0.04 ng/µL. The DNA library was prepared using the Illu-
mina DNA Library Prep kit and WGS was performed on the Illumina MiSeq using the
2 × 250 kit (Illumina, San Diego, CA, USA).

2.4. Sequence Data Quality Control Criteria

Using CLC Genomics Workbench 23 (Qiagen, Redwood City, CA, USA), raw se-
quencing reads were trimmed and mapped to the H37Rv reference genome using a local
alignment strategy (NCBI GenBank Assembly GCA_000195955.2). The number of mapped
reads for each isolate was recorded. Target region coverage depth was generated by calcu-
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lating the percentage of nucleotide sites across a custom panel of 15 genes (ahpC, eis, embB,
fabG1, gyrA, gyrB, inhA, kasA, katG, pncA, rpoB, rpoC, rrl, rrs, Rv0678) and the neighboring
100 nucleotides in either direction with greater than 15X coverage. This panel includes
all described genes associated with resistance to first- and second-line therapeutics and
covers 68.2% of all resistance-associated variants present in the TB-Profiler database. To
construct this panel, the sequence of all 15 genes along with 100 additional nucleotides in
each direction was collated into a target region track for QC analysis in CLC Genomics
Workbench. Nucleotide variants were identified using the Basic Variant Detection and
InDels and Structural Variants tools. Variants were annotated using Annotate with Overlap
Information and Amino Acid Changes tools. Coverage depth and allele frequency were
calculated at each variant site.

2.5. Mutation Profiling and Resistance Calling Using TB-Profiler

Raw reads in FASTQ format were uploaded to TB Profiler (https://tbdr.lshtm.ac.uk/,
accessed on 1 May 2023) for resistance identification. TB Profiler is a web-based application
that performs automated genome assembly, variant calling, identification of resistance-
associated variants and drug resistance calling [15,28]. Drug resistance results for each
sample were recorded along with the reference genome location of all drug resistance sup-
porting variants. Antimicrobial resistance calls from TB Profiler were accepted if the isolate
passed quality control and a literature review verified the variant link to antimicrobial
resistance. Variants that did not pass literature review were recorded to prevent future
false positive results. If TB Profiler was unable to identify any variants associated with
antimicrobial resistance and the sample passed quality control, the sample was considered
sensitive to all therapeutic agents.

2.6. Reproducibility and Repeatability Studies

To assess repeatability, three technical replicates of one randomly selected isolate
were prepared and sequenced on the same sequencing run. To assess reproducibility,
three technical replicates of three randomly selected unique isolates were prepared and
sequenced across three sequencing runs. Computational analysis was then performed to
assess concordance between technical replicates for both studies.

2.7. Cross-Validation of Culture Media

Three pairs of randomly selected isolates (UCLA-658/UCLA-659, UCLA-737/UCLA-
738, UCLA-863/UCLA-864) were cultured in both MGIT and solid agar. Sequencing and
analyses were performed as above and concordance between culture media was determined
by comparing WGS-based testing results.

2.8. Clinical Metadata and Phenotypic DST Results

Clinical metadata and turnaround time data were collected from electronic medical
record (EMR) chart review. Date collected, clinical site of isolation, date of positive MTB
identification, and date of DST results report were collected for analysis. DST were sent out
to commercial reference laboratories and were tested for phenotypic resistance to rifampin
(RIF), isoniazid (INH), ethambutol (EMB), streptomycin (STM). DST results were collected
for evaluation of concordance with WGS testing. For purposes of comparison, intermediate
and resistant results were grouped and treated as resistant.

2.9. Prospective Evaluation

After initial evaluation, all isolates identified as MTB in the clinical laboratory over
the subsequent six months were collected. Eleven samples (UCLA-1139, UCLA-1140,
UCLA-1146, UCLA-1182, UCLA-1142, UCLA-1220, UCLA-1221, UCLA-1222, UCLA-1255,
UCLA-1303, UCLA-1304) were evaluated prospectively with both WGS-based testing and
phenotypic results. Turnaround time, defined as days from culture positivity to final
resistance results, was recorded for both methods.

https://tbdr.lshtm.ac.uk/
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2.10. Genomic Epidemiology

For genomic epidemiology analysis, raw reads were trimmed using Trimmomatic
(version 0.36) and mapped using bwa-mem2 (version 2.2.1) [30,31]. Variants were then
called using bcftools (version 1.17) [32]. Phylogenetic SNP-distance tree was constructed
using augur and visualized with ggtree in R Statistical Software (v4.2.3, R Core Team
2023) [27,33]. For distance tree building, IQTREE with GTR substitution model in augur
was used to create a tree structure, then the branch lengths were re-scaled to reflect SNP
distance between the reference and each isolate [34]. Lineage data for visualization on the
tree was extracted from TB-Profiler results. SNP distances were exported from augur and
visually analyzed using MicrobeTrace (Centers for Disease Control and Prevention) [35].

2.11. Statistical Analysis

Statistical analysis was performed in R version 4.1.2. Correlation of quality control
metrics was performed using binomial logistic regression.

3. Results
3.1. Development and Testing of Quality Control Criteria

To ensure data quality and consistency of analysis for clinical testing, a quality control
algorithm and criteria were established and tested. Across all 64 sequence data sets,
the average number of mapped reads was 2,516,285 (235,422–4,826,617) and the average
percentage of target regions with coverage greater than 15X was 95.6% (0–100%). We found
that samples with greater than 1.5 million mapped reads reliably had coverage depth >15X
at greater than 99% of target region sites (Figure 2). Based on this data we determined that
samples must meet both greater than 1.5 million mapped reads and greater than 99% of
target regions with >15X coverage depth for clinical testing. 57 of 64 sequencing replicates
met these quality criteria and were further analyzed using TB-Profiler. To ensure only
high-quality variant calls were used to support resistance results, we set quality control
criteria for each individual variant identified by TB-Profiler at coverage >15X and allele
frequency greater than 80%. Nine unique variants were identified by TB-Profiler, and each
met these criteria.
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3.2. Turnaround Time

During the prospective stage (post-launch validation) of our study, WGS AMR testing
was found to decrease turnaround time for all eleven samples evaluated at an average
of 36 days faster than phenotypic DST testing. For one sample, WGS-based results were
reported 123 days before the DST results were available. The average turnaround time
for WGS testing from culture positivity was 23 days while average turnaround time for
phenotypic DST testing was 60 days (Figure 3). For two of our samples, WGS testing
results were reported before a solid culture isolate was prepared to be sent out to the
reference laboratory for phenotypic testing. Notably, WGS testing was not immediately
performed when culture turned positive; laboratory confirmation for MTB, communication
with the providers and getting permission/approval to perform WGS testing usually took
approximately 1 week. Since the WGS test was only performed once weekly, when a sample
missed a run, it was postponed to the next week’s run.
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3.3. Accuracy

WGS-based testing of 38 clinical isolates yielded a total of 13 samples (34.2%) resistant
to one or more therapeutics with 8 (21%) resistant to one therapeutic agent. Multidrug
resistance was rare, with only five isolates (13.1%) resistant to two or more drugs. Three
isolates (7.9%) were found to be resistant to two agents, one isolate (2.6%) was resistant to
three agents and 1 (2.6%) resistant to four agents (UCLA-1021), garnering it an MDR-TB
classification.

RIF and EMB resistance were identified only in one MDR-TB isolate while INH
and PZA resistance were the most common in our population with seven isolates (18.4%)
exhibiting resistance to isoniazid and six isolates (15.7%) exhibiting pyrazinamide resistance.
Five isolates (13.1%) exhibited resistance to STM. No isolates were found to be resistant to
fluoroquinolones by WGS. Resistance results are summarized in Figure 4 and all resistance
associated mutations are summarized in Supplementary Table S1.
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Figure 4. Analysis for concordance between testing methods. Resistance results by drug from whole
genome sequencing and phenotypic antibiotic susceptibility testing are displayed for 40 unique
clinical isolates. Preliminary results subsequently corrected by literature review quality control are
shown for UCLA-658 and UCLA-866.

Concordance between resistance results generated using WGS and phenotypic DST,
the current gold standard assay, was found to be 97.4%. Results for RIF, PZA, EMB,
and STM were 100% concordant. The only discordant isolate, UCLA-797, was found
to have false negative INH resistance by WGS. UCLA-658 was identified as resistant to
PZA by phenotypic DST but susceptible by WGS with no mutations in the pncA gene.
False resistance to PZA by phenotypic methods due to issues with unstable pH during
culture is a well-documented issue in the literature [36,37]. In accordance with the WHO
technical guide for MTB WGS analysis, we determined that phenotypic resistance to PZA
in the absence of mutations should be interpreted as false resistance [38]. UCLA-866 was
determined to be resistant to INH by WGS yet susceptible by phenotypic DST. Upon
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further investigation, literature suggests that mutations in the ahpC gene, as identified
here, are compensatory for katG loss-of-function mutations and therefore associated with
resistance [39]. However, there is no definitive evidence that ahpC mutations alone found
in isolation are causative of resistance. In the absence of evidence, we disqualified this
mutation and corrected the result to susceptible by WGS.

Only one isolate, UCLA-1021, was tested for fluoroquinolone resistance by phenotypic
DST and was found to be susceptible in concordance with the WGS result. No other isolates
had phenotypic results available for fluoroquinolones and therefore concordance could
not be evaluated. The positive predictive value for RIF, INH, PZA, and STM was 100%.
EMB positive predictive value could not be evaluated as no samples exhibited resistance.
Negative predictive values (NPV) for RIF, PZA, EMB, and STM resistance were 100%. NPV
for INH was 96.8% (95% CI: 91–100%).

3.4. Precision and MGIT vs. Solid Agar Isolates Cross Validation

WGS-based testing was found to produce 100% (3/3) reproducible and 100% (3/3)
repeatable results without variation in results among samples repeated on the same sequenc-
ing run or across sequencing runs. WGS-based testing generated 100% (3/3) concordant
results from culture in MGIT liquid broth and solid culture media (Supplementary Table
S2). In addition, one pair of controls consisting of a wild-type strain (UCLA-868) and a
PZA resistant strain (UCLA-732) were tested 20 times and generated consistent results.

3.5. Genomic Epidemiology

Phylogenetic relatedness analysis revealed that all four global lineages of Mycobac-
terium tuberculosis (lineage 1–4) as well as Mycobacterium bovis are represented in our
population, with the majority of isolates belonging to lineage 4 (47%) and lineage 2 (26%).
A maximum likelihood phylogenetic tree with branch lengths scaled by SNP distance was
constructed to determine relatedness (Figure 5). No clear association between resistance
status and lineage or clade was noted, yet the lone MDR-TB isolate (UCLA-1021) was
identified as belonging to lineage 4.

Pairwise SNP distance analysis revealed that the closest pairwise distance between any
two isolates is 96 SNPs, far greater than the 10 SNP threshold that indicates transmission
within the past two years [40]. No clear genetic link between either of the two isolates
was identified.

3.6. Phylogenetic Analysis for Laboratory Contamination Investigation

During the prospective analysis phase of our study, we were able to use genetic data
to answer relevant clinical questions posed by the primary treatment team. During the
evaluation of the clinical significance of UCLA-1222’s positive culture result, the treatment
team inquired if the M. bovis isolate could be due to a laboratory contamination event.
Although it was felt to be unlikely a contamination event as no other MTB samples were
present in the lab at the same time, we were able to use genetic data to confirm that
UCLA-1222 was not closely related (minimum pairwise SNP-distance of 412) to any isolate
present in the laboratory for the past six years. Thus, we were able to confidently rule out a
laboratory contamination event and help confirm the clinical significance of the positive
test result.
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Figure 5. Phylogenetic analysis of MTB in Los Angeles. Maximum likelihood tree with branch
lengths scaled by SNP-distance derived from whole genome assemblies of MTB isolates with global
lineages displayed by color.

4. Discussion

Our evaluation of the use of WGS in the routine clinical testing for MTB resistance
provides convincing evidence that WGS provides a substantial improvement in turnaround
time and reliability without sacrificing accuracy. We also show that WGS-based testing is
unaffected by switching to liquid culture media, which speeds up the time to positive cul-
ture [41]. Taken together, these benefits result in delivery of resistance data to providers an
average of greater than one month earlier than phenotypic testing. In practice, patients with
drug resistance can be started on the most effective drug combination much earlier, while
patients experiencing side effects can be transitioned safely to more tolerable regimens,
thereby increasing adherence.

While we found WGS-based testing to be highly accurate and useful in our small
study, there remains room for improvement. Our findings highlight a few pertinent issues
to address if genetic analysis is to become the diagnostic norm, particularly with PZA
and INH resistance results. In the case of PZA, WGS-based testing may indeed be more
accurate than phenotypic testing. Further studies are needed to confirm clinical response
to PZA in such isolates. Conversely, issues around INH resistance highlight the limitations
of the use of an algorithm that only assesses for the presence or absence of mutations
in a database. Generating accurate results from this type of model requires meticulous
curation of mutations generated from large high-quality datasets. Limiting database size
to a small number of high-quality mutations may lead to false negatives while including
many lower-quality mutations could lead to false positives. Therefore, database selection
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should be influenced by resistance burden within the population being tested. For example,
a more conservative approach using a small set of high-quality mutations was shown to be
highly accurate in a population with only 1.75% incidence of MDR-TB [14]. In populations
with higher levels of resistance, a more comprehensive mutation database that includes
lower-quality mutations may have better positive predictive value. Further studies are
needed to evaluate the interaction between database construction and resistance burden on
the accuracy of WGS testing.

Additionally, for complex methods of resistance that are best explained by the interac-
tion between multiple mutations or genes, dichotomous database-dependent algorithms
will fall short. Alternative models that can evaluate multiple types of resistance mech-
anisms, such as those built with machine learning, are promising yet remain in early
development [42,43]. However, given the already excellent performance of WGS test-
ing, these models will likely provide marginal gains in accuracy while adding significant
computational complexity. Clinical evaluation is needed to determine the benefit of such
models in practice.

The other clear benefit to the routine use of WGS is access to rich genetic data that
can be used for many applications beyond resistance identification. As we demonstrate in
our study, genetic data can be used to investigate epidemiologically linked case clusters or
suspected laboratory contamination events. While genetic data is useful in such situations,
the most promising benefit of routine use of WGS is the potential for a larger surveillance
network. We showcase this ability by using phylogenetic analysis and pairwise SNP
distances to conclude that there is no evidence of cryptic local transmission of tuberculosis
within patients tested in our healthcare system in Los Angeles, CA in the past six years.
While this conclusion should not be generalized to the greater Los Angeles region as
we do not capture a representative sample in this study, it is consistent with individual
case epidemiologic data. Most patients in our study reported living in a TB endemic
country for some amount of time before moving to Los Angeles, leading us to conclude that
tuberculosis infections in our patient population are most likely to represent reactivation of
latent infection acquired abroad. More sensitive detection of local transmission will require
capture of a larger proportion of cases. Therefore, the future utility of larger surveillance
networks will likely be facilitated by a combination of an increase in the use of WGS-based
testing in clinical laboratories, secure data sharing, and collaboration between clinical
laboratories and public health authorities.

Although multidrug resistance rates continue to rise globally, our study confirms that
the rate of MDR-TB remains low in Los Angeles, CA. While WGS-based testing is well
positioned to replace phenotypic culture-based methods regardless of the patient popula-
tion, we found that the greatest clinical utility in our population was the strong negative
predictive value of WGS-testing coupled with dramatically improved turnaround time.
Studies of WGS-based testing in populations enriched with resistant isolates, especially
those with high rates of HIV-coinfection, will be critical to evaluating the true clinical
impact of WGS for MTB resistance testing. For now, access to WGS technology, especially
in low resource settings where MTB is endemic, remains scarce due to the prohibitive
cost associated with WGS testing. In this setting, PCR and DST testing continue to be
more feasible options [11]. If the roughly equivalent performance seen in this study is
replicated in populations with high levels of resistance, the cost effectiveness of widespread
adoption of WGS for MTB resistance testing will likely depend upon the clinical impact of
faster turnaround. However, in the foreseeable future, with falling costs of sequencing and
increasingly easy access to computation analysis tools, WGS is poised to make significant
gains in the diagnosis and surveillance of TB.
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