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Abstract—On multicore architectures, the ratio of peak
memory bandwidth to peak floating-point performance
(byte:flop ratio) is decreasing as core counts increase,
further limiting the performance of bandwidth limited
applications. Multiplying a sparse matrix (as well as its
transpose in the unsymmetric case) with a dense vector
is the core of sparse iterative methods. In this paper, we
present a new multithreaded algorithm for the symmetric
case which potentially cuts the bandwidth requirements in
half while exposing lots of parallelism in practice. We also
give a new data structure transformation, called bitmasked
register blocks, which promises significant reductions on
bandwidth requirements by reducing the number of index-
ing elements without introducing additional fill-in zeros.
Our work shows how to incorporate this transformation
into existing parallel algorithms (both symmetric and
unsymmetric) without limiting their parallel scalability.
Experimental results indicate that the combined benefits of
bitmasked register blocks and the new symmetric algorithm
can be as high as a factor of 3.5x in multicore performance
over an already scalable parallel approach. We also provide
a model that accurately predicts the performance of the
new methods, showing that even larger performance gains
are expected in future multicore systems as current trends
(decreasing byte:flop ratio and larger sparse matrices)
continue.

I. INTRODUCTION

Sparse-matrix vector multiplication (SpMV) is a fre-
quent bottleneck in scientific computing and is notorious
for sustaining a low fraction of peak performance on
modern microprocessors. For multicore optimization,
one key performance aspect is exposing sufficient par-
allelism to avoid idle processors and attain scalability.
Another critical performance component is minimizing
bandwidth requirements by reducing the indexing over-
head — as the SPMV kernel does not exhibit temporal
locality. Significant bandwidth savings are also possible
by reading only half of a symmetric matrix, and storing
only a single copy of the matrix while performing both
y ← Ax (SpMV) and u ← ATv (SpMV_T) for the
unsymmetric case.

Decades of research proposed varying methods to
reduce the index overhead of sparse matrix storage
schemes. Among those techniques, register blocking has
proved especially useful, with block compressed sparse

row (BCSR) and its variants becoming standard in high-
performance auto-tuned SpMV kernels [29] (see related
work in Section VIII). One limitation of BCSR is the
matrix fill-in zeros, which often occur when a register
block is not completely dense, creating a performance
bottleneck on matrices that do not have small dense
block structures. Because SpMV is a bandwidth lim-
ited calculation, this impediment is primarily due to
the added bandwidth pressure of storing and streaming
through explicit zeros; not the overhead of additional
flops on zero elements.

Recently, the compressed sparse blocks (CSB) [6]
format was proposed as a new parallel sparse matrix data
structure that allows efficient computation of SpMV and
SpMV_T in a multithreaded environment. CSB proves
scalability with increasing number of cores while being
serially competitive with standard sparse matrix storage
schemes such as compressed sparse row (CSR) and
compressed sparse column (CSC). However, CSB does
not provide any bandwidth reduction schemes. Although
it supports symmetric matrices by storing only the upper
(or lower) triangle, the multiplication algorithm requires
streaming the triangular matrix twice into main memory,
due to potential race conditions that occur while per-
forming parallel symmetric updates. Serial algorithms do
not suffer from this doubling of the bandwidth pressure.

In this work, we propose a methodology to accel-
erate SpMV computations on multicore processors by
exposing parallelism while minimizing bandwidth re-
quirements. Our study builds on the CSB work and
present four major contributions:

1) For symmetric matrices, we present a new algorithm
that cuts the bandwidth requirements in half by
using floating-point atomics and matrix reordering.

2) We introduce the notion of a bitmasked register
block used to reduce index overhead without in-
troducing fill-in zeros, and we describe an efficient
method to implement them for SpMV.

3) We show how to integrate bitmasked register blocks
to unsymmetric CSB algorithm and the newly in-
troduced symmetric algorithm. The unsymmetric
algorithm retains its ability to perform both SpMV
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Fig. 1: Scaling trends for three generations of Intel pro-
cessors. As the flop:byte ratio increases, more and more of
the compute capability goes unused.

and SpMV_T and we can still prove plenty of
parallelism.

4) We present a new performance model that gives in-
sight about the matrix dependent analysis of parallel
SpMV for a given architecture.

Impact on Future Multicores: Since our work ad-
dresses bandwidth limitations, the advantages of our
approach will continue to grow as next-generation multi-
core systems continue to suffer from increased flop:byte
ratios due to technology constraints. As an example,
Figure 1 presents the trends in peak performance, band-
width, and machine balance for three generations of Intel
processors. The Sandy Bridge node is projected based
on a 8-core server part running at the same frequenecy
using Intel Advanced Vector Extensions (AVX) and
memory bandwidth corresponding to DDR3-1600. We
observe that peak performance has grown quickly via
a doubling of both the core count and SIMD (single
instruction multiple data) width. As peak bandwidth
has not kept pace, the machine balance (as measured
in flops/byte) has roughly doubled. Such trends have
profound implications for memory bound computations
like SpMV as the memory subsystem cannot keep the
cores occupied, resulting in wasted compute capability.

Examining the SpMV algorithm, each nonzero gener-
ates about 12 bytes of memory traffic and will perform
2 floating-point operations. The trend in Figure 1 shows
that on processors like Nehalem, 22 floating-point oper-
ations can be performed in the time required to transfer a
nonzero; wasting 20 possible operations. With the advent
of Sandy Bridge, we expect this waste to increase to
nearly 42, and likely even larger degradations as we
look forward towards projected technology trends. It is
therefore critical to find a solution that regularizes SpMV
computation while reducing the average memory traffic

per nonzero — which is the focus of this work.
Our algorithms work on a work-stealing environment.

Work stealing helps mitigate any potential load imbal-
ances that arise due to the inherent challenges of the
SpMV kernel and the parallelism in modern multicore
processors. For example, if certain blocks of the sparse
matrix are more dense than others, work stealing tasks
other threads with a larger number of sparser blocks
and thus makes our algorithms dynamically scheduled
and more resilient to non-uniform nonzero distributions
among blocks.

To validate our methodology, we examine single-
socket performance results on two of the most so-
phisticated multicore processors available: the octa-core
Intel Nehalem-EX and the hexa-core AMD Istanbul. We
also present a performance model for bitmasked register
blocks within the CSB matrix structure that predicts the
performance gains of register blocking. Overall results
show the potential impact of our algorithmic contribution
on existing and emerging multicore platforms.

II. TERMINOLOGY

We analyze parallelism in terms of work and span [9,
Ch. 27]:
• The work, denoted by T1, is the running time on a

single processor.
• The span, denoted by T∞, is running time on an

infinite number of processors.
The parallelism of the algorithm is T1/T∞, which
corresponds to the maximum possible speedup on any
number of processors.

Additionally, we analyze the asymptotic cost of trans-
fering data to/from the main memory. The bwind cap-
tures the bandwidth costs due to indexing overhead.
Bandwidth costs due to streaming actual nonzero values
always sum up to nnz , since our algorithms do not store
explicit zeros.

In sparse matrix computations, the word “block” is
used in multiple contexts. In order to avoid confusion,
we use the full phrase “register block” to denote r × r,
small (r ≈ 2 . . . 8), typically dense blocks. While re-
ferring to a “compressed sparse block”, which is the
β × β, large (β ≈

√
n), typically hypersparse [7] (the

ratio of nonzeros to block dimension is asymptotically
zero) block within the CSB format, we will sometimes
abbreviate and simply use “block”.

III. AN OVERVIEW OF THE CSB FORMAT

In order to make the paper as self contained as possi-
ble, this section provides an overview of the CSB sparse-
matrix storage format [6] and the high-level description
of parallel SpMV and SpMV_T algorithms that use CSB.

CSB partitions an n × n matrix into n2/β2 blocks
of size β × β each. Aij denotes the β × β submatrix
containing nonzero elements falling in rows iβ, . . . , (i+
1)β − 1 and columns jβ, . . . , (j + 1)β − 1 of A. The



nonzero elements within each sparse block are ordered
recursively using the Z-morton layout [21].

In practice, CSB stores its matrices in three arrays.
The blk_ptr array is a dense 2D array that points to
the first nonzero in each compressed sparse block. The
low_ind array holds the lower order bits of the row and
column index of each nonzero, relative to the beginning
of the sparse block (hence making them small enough to
be concatenated and stored in a single integer). The val
array stores the actual numerical values. Both val and
low_ind arrays are of size nnz .

The algorithms for SpMV and SpMV_T are almost
identical except that the roles of rows and columns are
switched. Hence, only the SpMV case is described for
conciseness. The performance bounds on the parallel
algorithms assume the existence of a work-stealing run-
time scheduler [5], such as the one used in Cilk [4].

The parallel SpMV algorithm employs three levels
of parallelism. First, each blockrow (the row of blocks
Ai0, . . . , Ai,n/β−1) is multiplied in parallel without any
data races. If the nonzeros among blockrows are dis-
tributed unevenly, then a second level of parallelism (the
CSB_BLOCKROWV subroutine) is used within densely
populated blockrows. This involves recursively dividing
into two subblockrows that has roughly equal number
of nonzeros. Each invocation of CSB_BLOCKROWV
uses temporary vectors of size O(β) to avoid data races
when combining updates from different subblockrows.
The overall space required by the temporaries for an
execution on P threads is O(Pβ lg n) [6, Cor. 10], using
a space-efficient scheduler.

To facilitate the recursive subdivision into subblock-
rows, CSB_BLOCKROWV uses the notion of a “chunk”,
which is a set of consecutive blocks, either consisting of
a single block containing Ω(β) nonzeros, or multiple
blocks containing O(β) nonzeros in total. A chunk is
terminated if adding the next block to the chunk in-
creases its total number of nonzeros to more than Θ(β).
At the compressed sparse block level, if it is dense,
a (sub)block M is parallelized via the CSB_BLOCKV
subroutine. It recursively divides M into four quadrants
M00,M01,M10,M11, using binary searches to find di-
viding points (that is, it searches for the first nonzero
whose row index is larger than β/2 to divide M through
the middle row, then performs parallel binary searches
in those two pieces to find their column mid points). The
CSB_BLOCKV subroutine first recursively calls itself on
M00 and M11 in parallel, synchronizes, then recursively
calls itself on M01 and M10 in parallel. The recursion
continues until a subblock of size dim × dim has only
Θ(dim) nonzeros, after which a serial multiplication is
performed.

IV. SYMMETRIC ALGORITHM

A typical serial symmetric SpMV code can save half
of the bandwidth performing both yi ← yi + aijxj

A =


A00 A01 A02 ∗ ∗

A11 A12 A13 ∗
. . . . . . . . .

. . . . . .
Akk


Fig. 2: A sparse matrix in CSB format (where k = n/β−1)
after Cuthill-Mckee ordering. The locations marked with
∗ contain w% of the nonzeros, depending on the matrix.

and yj ← yj + aijxi with a single fetch of aij =
aji. These 50% savings in memory bandwidth might
potentially give close to a factor of 2 improvement
for the bandwidth limited SpMV kernel. In parallel,
this approach creates potential race conditions on the
output array y. Unfortunately, using locks or atomic
updates for all nnz updates is slower than reading the
matrix twice due to the higher overheads. A completely
algorithmic solution, on the other hand, seems hard to
achieve without matrix reordering. We thus present an
algorithm that performs atomic updates for a relatively
small portion of the matrix. Our symmetric algorithm
combines matrix reordering, atomic updates and the
lock-free BLOCKV_SQ and BLOCKV_TRI kernels that
operate on individual compressed sparse blocks.

Matrix bandwidth is defined as the maximum distance
of any nonzero to the main diagonal. Similarly, block
bandwidth is the maximum block-distance of a non-
empty block. For instance, the main block diagonal has
a block bandwidth of zero, the next block diagonal has
a block bandwidth of 1, and so on.

Our algorithm works on a matrix that has been re-
ordered using the reverse Cuthill-McKee (RCM) algo-
rithm [10] to reduce its bandwidth. The matrix is then
stored in CSB format as shown in Figure 2. Many of the
nonzeros are clustered within the three block diagonals:

1) The triangular blocks on the main diagonal.
2) The rectangular blocks Ai,i+1.
3) The rectangular blocks Ai−1,i+1.
These block diagonals are treated purely algorith-

mically, without using atomic updates. The seemingly
arbitrary choice of three is not an inherent property of
our algorithm, and can easily be increased or decreased
depending on the matrix. The optimal choice for the
number of block diagonals that gets executed without
atomic is a complex function of the matrix, architecture
and run-time characteristics. We give a sketch of our
future autotuning strategy in Section IV-C.

After reordering, three levels of
√
n ×

√
n block

diagonals (for β ≈
√
n) cover a significant portion

of the nonzeros for matrices that can be permuted to
block diagonal structure. For such matrices, three block
diagonals were sufficient to cover most of the nonzeros,
whereas for harder-to-permute matrices, increasing the
block bandwidth by a constant amount increased the
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Fig. 3: The nonzero coverage of the first ten block
diagonals for the symmetric matrices in our test suite. The
sparse block dimension β is automatically selected by our
implementation, as described in the original CSB paper [6].

U =
(
U0 S

U1

)
Fig. 4: Recursive decomposition of a triangular compressed
sparse block. Submatrices U0 and U1 are upper triangular
like U , while S is a square block.

nonzero coverage only by a modest amount. Figure 3
shows the nonzero coverage of the first ten block diag-
onals for the symmetric matrices in our test suite.

The algorithm then splits the output array y into four
temporary arrays, three for block diagonals and one for
the remaining scattered nonzeros. Finally, after multi-
plications of all submatrices, it accumulates the tempo-
raries back to y. The pseudocode for the algorithm is
given in Figure 5. The in parallel do . . . do . . . construct
indicates that all of the do code blocks may execute
in parallel. The “for . . . in parallel do” construct means
that each iteration of the for loop may be executed in
parallel with the others.

The BLOCKV_SQ subroutine is similar to the corre-
sponding CSB routine CSB_BLOCKV [6] except that it
performs symmetric multiplication. BLOCKV_TRI is a
its generalization for the triangular case. We recursively
divide an upper-triangular block into three pieces U0,
U1, and S, as shown in Figure 4. The pseudocode for
BLOCKV_TRI is shown in Figure 6.

The algorithm exposes plenty of parallelism, shown
in the execution diagram of Figure 7. The only syn-
chronizations are within the rectangular block diago-
nals where the algorithm properly alternates blocks in
lines 6–8 and similarly in lines 11–13, guaranteeing a
race-free algorithm. The two step process avoids race
conditions that would happen when multiplying Ai,i−1

and Ai+1,i at the same time because the former updates
both yi−1 and yi where the latter updates both yi and

SYM_SPMV(A, x, y)

1 Initialize temporary arrays y1, y2, y3
2 in parallel
3 do for i← 0 to n/β − 1 in parallel
4 do BLOCKV_TR(Ai,i, β, y1, x)
5 (list_a, list_b)← SEPARATEINDICES(n/β, 2)
6 do for all i ∈ list_a in parallel
7 do BLOCKV_SQ(Ai,i+1, β, y2, x)
8 for all i ∈ list_b in parallel
9 do BLOCKV_SQ(Ai,i+1, β, y2, x)

10 (list_a, list_b)← SEPARATEINDICES(n/β, 3)
11 do for all i ∈ list_a in parallel
12 do BLOCKV_SQ(Ai−1,i+1, β, y3, x)
13 for all i ∈ list_b in parallel
14 do BLOCKV_SQ(Ai−1,i+1, β, y3, x)
15 do for all other compressed blocks Ai,j

where j > i+ 1 in parallel
16 do MULTADDATOMICS(Ai,j , y, x)
17 in parallel
18 do y ← y + y1 + y2 + y3
Fig. 5: Pseudocode for the symmetric matrix-vector mul-
tiplication y ← Ax (assuming n/β is an even number,
the odd case just changes the loop indices). The proce-
dure SEPARATEINDICES(size, blkdiag) divides the whole
iteration space of the blkdiagth block diagonal into two
independent pieces that will not conflict with each other.
In particular, alternating indices is sufficient for the second
block diagonal, where all blocks A2i,2i+1 are performed in
parallel, followed by all blocks A2i+1,2i+2 in parallel. For
the third block diagonal, we should alternate in groups of
two instead.

yi+1, due to symmetry. Here, we use a loose notation
where yi denotes the ith subvector when we divide the
vector to equally sized portions of β. In other words,
yi = y(iβ + 1 : (i+ 1)β) in Matlab notation.

Since each of the four main execution branches are
independent from each other, the run time system can
steal from other branches in case load is imbalanced
within a given branch. It is possible to trade-off some
parallelism in order to avoid temporaries altogether, by
using a single vector and synchronizing in between
the four parallel paths that are spawned from line 17.
However, we use the original description of the algorithm
in our experiments.

A. Analysis of the Symmetric Algorithm

In this section, we analyze the work and span of our
symmetric algorithm for a matrix that has only ω% of its
nonzeros outside the first three β-by-β block diagonals.
Since atomic updates are more expensive than normal
additions, an architecture dependent constant c > 1 is
used to quantify the extra cost of atomic operations.

The SYM_SPMV algorithm performs only a con-
stant number of synchronizations between calls to
BLOCKV_SQ and BLOCKV_TR. The subprocedure
BLOCKV_SQ runs with work Θ(nnz ) and span O(β),



BLOCKV_TRI(U, dim, x, y)

// U is a dim × dim upper-triangular matrix.
1 if nnz (U) ≤ Θ(dim)
2 then // Perform y ← y + Ux serially.
3 for all i, j where U(i, j) 6= 0
4 do y(i)← y(i) + U(i, j) · x(j)
5 if i 6= j
6 then// Perform symmetric update
7 y(j)← y(j) + U(i, j) · x(i)
8 return
9 // Recurse. Find the indices of the quadrants.

10 binary search 1, . . . ,nnz (U) for the smallest s1
such that (U. row_ind(s1) ≥ dim /2)

11 binary search 1, . . . , s1 for the smallest s2
such that (U. col_ind(s2) ≥ dim /2)

12 in parallel
13 do BLOCKV_TRI(U, dim /2, x, y) // U0.
14 do BLOCKV_TRI(U + s1, dim /2, x, y) // U1.
15 BLOCKV_SQ(U + s2, dim /2, x, y) // S.
Fig. 6: Pseudocode for the triangular subblock-vector
product y ← Ux, where U is stored in CSB format with
recursive Z-Morton order according. The notation U + s
gives a submatrix of U that is formed by skipping the first
s nonzeros.

when called on a β×β submatrix that has nnz nonzeros.
The span recurrence for BLOCKV_TR is STR(β) =
STR(β/2) + SSQ(β/2) + O(lg β) with SSQ being the
span for BLOCKV_SQ. It solves to O(β) as well. It is
straightforward to show that work is also linear in the
number of nonzeros, by constructing a proof similar to
[6, Lemma 4].

The nonzeros that are handled with atomic updates
are embarrassingly parallel, although with much lower
efficiency. As a result the SYM_SPMV algorithm runs
with work Θ(nnz ·(c·w+(1−w))) and span O(β+lg n)
where the lg n term in the span is due to the parallel
reduction on temporary vectors.

B. Implementation of the Symmetric Algorithm

For the implementation of the atomic updates, we use
Madduri et al.’s method [18] of exploiting the cmpxchg
instruction on x86 architectures to perform floating point
increments. To assess the feasibility of this approach
and to find out the ratio of atomic updates that are
computationally viable, we ran a microbenchmark that
performs atomic additions to vectors of varying lengths.
In serial, the performance is approximately 7x slower
than non-atomic additions, varying slightly with different
vector sizes and locality of updates. Using 16 OpenMP
workers, however, the performance of streaming atomic
updates are 1.6 to 2.2x slower than the non-atomic case,
and the random atomic updates are only 1.2 to 1.6x
slower. Here streaming updates refers to updates of the
form yi ← yi + inc for i = 0, ..., n− 1 in order. In the
case of random updates, we shuffle the indices i. In fact,

this microbenchmark gave the motivation for the current
form of our symmetric algorithm.

C. Discussion and autotuning opportunities

Instead of relying on atomic operations, we could
have modified our algorithm to execute every block
diagonal until all nonzeros are finished. Think about
the solution to the 3D heat problem by using finite
differencing on a regular grid. The discretized matrix
can be permuted to have O(n2/3) bandwidth, yielding
O(n2/3/β) block diagonals. The modified SYM_SPMV
algorithm would then have a span of O(n2/3) and a
parallelism of O(nnz /n2/3), which is ample for large
matrices. However, some matrices can not be permuted
to have o(n) bandwidth (asymptotically less than n). In
this case, our parallelism would be limited to merely
O(nnz /n).

In the future, we plan to make our symmetric al-
gorithm more resilient to different inputs by using an
autotuning strategy. The final performance is a complex
function of the architectural parameters, matrix nonzero
structure, and run-time parameters such as the number
of available threads. Below is a sketch of our strategy:

(i) The first step is architecture dependent. The auto-
tuner calculates the maximum nonzero percentage
w% that falls outside the block diagonals, which
can be tolerated without a significant slowdown in
the execution.

(ii) The second step is matrix dependent. The autotuner
calculates the number of block diagonals that needs
to be treated without atomics according to the value
of w from step (i). We call this number L < n/β.

(iii) The third step, which determines the number of
temporary vectors yi, depends on the run-time
characteristics such as the number of execution
threads and the available memory per thread. The
autotuner calculates a lower bound on |yi| that
exposes enough parallelism to keep all the cores
busy (t1), and an upper bound that is limited by
the available memory (t2).

(iv) The autotuner picks a number t in the range
t1 ≤ t ≤ t2. It runs a loop with increments of L/t,
each processing t diagonal blocks. The rest of the
nonzeros are executed with atomics. The autotuner
times the SpMV operation with different t values
within the permitted range and picks one with the
best performance.

V. BITMASKED REGISTER BLOCKS

We can reduce the memory bandwidth costs of our
symmetric algorithm as well as the original SpMV and
SpMV_T algorithms for unsymmetric matrices, using
bitmasked register blocks. Normally, register blocking
creates small dense matrices by filling in the block with
explicit zeros. This is wasteful on today’s bandwidth-
constrained processors. In our approach, proposed by
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Fig. 7: Parallel execution diagram of SYM_SPMV.

Williams [34] and visualized in Figure 8, we pack the
nonzeros of a register block contiguously, but use a
bitmask to mark their positions in the dense block. As
the block is transfered from memory to registers, the
bitmask is used to dynamically fill in zeros. As such, we
perform flops on explicit zeros, but never transfer them
from memory. In summary, the latency of accessing vec-
tors stays constant, the number of arithmetic operations
increases, and the bandwidth requirements decrease. To
retain the parallelism benefits and the ability to perform
SpMV_T, we modify CSB to store bitmasked register
blocks of size r × r for r = 2, 4, or 8. The conversion
from standard CSB to register blocked version is linear,
hence making our approach practical to situations even
where there are not many SpMV operations to offset the
conversion.

In this work, we focus on square register blocks only
because one of the distinguishing advantages of CSB is
its symmetry: accessing columns is as easy as accessing
rows. If we were to use rectangular r×c register blocks,
then the performance of SpMV and SpMV_T would dif-
fer. Rectangular blocks might outperform square blocks,
if for some (r, c) pair, (P (r, c)+P (c, r))/2 > P (s, s) for
any s, where P (r, c) denotes the row SpMV performance
using r × c register blocks. We will explore rectangular
register blocks in future work .

A. Bitmasked CSB and algorithms

In this section, we describe how to integrate bitmasked
register blocks to the original CSB algorithm. A similar
modification to SYM_SPMV algorithm is straightfor-
ward, and we omit the details for brevity.

In the proposed modification to the CSB data struc-
ture, low_ind holds only one entry per register block,
irrespective of the number of actual nonzeros it contains.
An additional array with same length, named msk_arr,
holds the bitmask structure of the register block. The

Fig. 8: Visualization of a bitmasked register block. Top
left: register block with nonzeros called out in blue. Top
right: resultant column-major bitmask with 1’s denoting
nonzeros. Bottom, visualization of the resultant data in
memory. Note, explicit zeros are never stored in memory.

register blocks never cross compressed sparse block
boundaries, hence making the lower order bits stored
in low_ind sufficient for indexing x and y arrays.

The original parallel SpMV and SpMV_T algorithms
need only two modifications to operate on the enhanced
data structure. First, the inner-most loop uses the bitmap
associated with the register block to index the val array.
Second, the smallest addressible unit of the matrix is
now a register block and all the dynamic paralleliza-
tion decisions are now made according to the number
of register blocks, instead of nonzeros. For example,
the CSB_BLOCKROWV routine used to split a given
block row into two smaller ones with approximately
equal number of nonzeros. With the current bitmask
enhancements, the splitting is done in a way so that
both sides get approximately same number of register
blocks. This modification is practically necessary since
we cannot calculate the number of nonzeros in the
compressed sparse blocks without counting the number
of bits set in the msk_arr. It is also intuitive since to
a first degree approximation (by bandwidth and flops
costs), our computational complexity now depends on
the number of register blocks, as opposed to nnz (which
only affects the latency costs associated with accessing x
and y vectors). Concretely, this modification means that
a chunk is terminated only if adding the next block to
the chunk would increase the number of register blocks
to more than Θ(β).

B. Analysis of the bitmasked SpMV algorithm

In order to qualify the performance gains with register
blocking, we asymptotically analyze the unsymmetric
CSB algorithm using bitmasked register blocks.



Let A be an n-by-n sparse matrix with nnz nonzeros.
There are n2/β2 compressed sparse blocks, each of
which is β-by-β. The smallest directly addressible entity
inside a compressed sparse block is a r×r register block
that consists of at least one nonzero. Hence, A contains
nrb register blocks where nnz /r2 ≤ nrb ≤ nnz .

We expect the performance to be mostly memory
bound until work-to-bwind ratio hits a certain threshold.
We also provide insights on this threshold by using the
performance model [36] in Section V-D.

Lemma 1. The work of multiplying a r × r register
block having nnz nonzeros with a dense vector is O(r2).
Similarly, its bwind is also O(r2), but with a large
reduction in the constant factor.

Lemma 2. On a β-by-β block containing nnz nonzeros
and nrb register blocks, CSB_BLOCKV runs with work
Θ(nrb ·r2) and span O(rβ).

The proof follows Lemma 4 of the original CSB
paper [6]. The span recurrence is still S(β) = 2S(β/2)+
O(lg β), but this time with a different base case S(r) =
r2, which solves to β/r · S(r) = O(rβ) even when
the block is completely dense. This looseness in the
analysis is particularly helpful in the case of applying
permutations that might lead to dense blocks, as we do in
the symmetric algorithm. The sum of the multiplication
costs on the leaves of the recursion tree is O(nrb ·r2)
from Lemma 1. The costs due to the binary searches
on the internal nodes can be accounted as follows.
For an internal node at height h, which corresponds
to a (r · 2h) × (r · 2h) subblock, we have at least 2h

(otherwise we would not recurse further) and at most
22h (completely dense case) register blocks. Hence, both
the bandwidth and the floating-point costs on a internal
node of height h are O(lg 2h) = O(h) from the binary
searches. Summing over all internal nodes gives O(nrb)
extra work due to binary searches, which is subsumed
by the work on leaves.

Lemma 3. On a blockrow containing n/β blocks and
nrb register blocks, CSB_BLOCKROWV runs with work
Θ(nrb ·r2) and span O(r2β lg(n/β)).

Each blockrow contains at most O(nrb /β) chunks
since any two consecutive chunks contain at least Ω(β)
register blocks by construction. The work recurrence can
be written as f(C) ≤ 2f(dC/2e) + Θ(β), where C is
the number of chunks. The base case C = 1 has work
Θ(nrb ·r2). The recursion solves to Θ(Cβ + nrb ·r2).
The first term is due to initializing/adding to the tem-
porary vector and the second term is the cost of actual
floating point operations. Substituting C = O(nrb /β)
gives the conjectured bound.

When calculating span, notice that for the base
cases, the algorithm either multiplies a single chunk
containing at most O(β) register blocks, or a single

compressed sparse block in parallel. The former has
O(r2β) span as it is done serially. The latter has O(rβ)
span because CSB_BLOCKV is called. The recurrence
S(C) = S(dC/2e) + O(β) = O(β lgC) + S(1) is
unchanged. Since each chunk contains at least one
compressed sparse block, we have C ≤ n/β. Consoli-
dating the two terms, we get O(β lg(n/β)) +O(r2β) =
O(r2β lg(n/β))

Theorem 4. On an n×n matrix containing nnz nonze-
ros and nrb register blocks, CSB_SPMV runs with work
Θ(n2/β2 + nrb ·r2) and span O(r2β lg n/β + n/β).

The additional n2/β2 term in work and the n/β
term in span is due to the overhead of computing the
chunks that are required for parallelism, as in the original
algorithm.

Corollary 5. On an n × n matrix containing nnz
nonzeros and nrb ≥ n/r2 register blocks, by choosing
β =

√
n, CSB_SPMV runs with work Θ(nrb ·r2)

and span O(r2
√
n lg n), achieving a parallelism of

Ω(nrb /
√
n lg n).

A similar analysis for CSB_SPMV_T gives exactly
the same bounds as both CSB and our register blocking
are symmetric. We showed that the parallelism guar-
antees of the CSB algorithm are retained, after the
incorporation of bitmasked register blocks. We managed
to reduce bwind by up to a factor of 32 (assuming r = 8),
and provided a graceful increase in work as the register
blocks get sparser.

C. Implementation of the bitmasked SpMV kernel

Efficient implementation of this bitmasked approach
can be challenging. We leveraged SSE instructions in or-
der to produce a highly-tuned inner kernel. Appropriately
indexing into the val array is accomplished by an inner
kernel that performs r2/2 times the following bundle of
128-bit SSE operations: blendvpd, mulpd, addpd,
popcnt, psslq, for an r × r register block. This
approach allowed us to free the inner loop of conditionals
at the cost of performing a multiply-add operation for
every potential nonzero in the register block. If a location
is indeed zero, as indicated by the bitmask, the algorithm
multiply-adds with zero, hence not changing the result.
On AMD architectures, this kernel executes about 10%
slower due to the absence of blendvpd operation,
which we simulate using multiple SSE2 instructions. For
the symmetric kernel, the number of mulpd and addpd
operations are doubled while the rest of the operations
are performed the same number of times.

As the register block arrays have effectively been
compressed, there is no simple algorithm that allows
us to index into the middle of the array at runtime.
A thread that starts operating on the ith register block
needs to know how many nonzeros exist in register
blocks 0 to i − 1 so that it can determine the address



from which it should stream data. Computationally,
this requires checking how many bits are set in the
range msk_arr[0...(i−1)] — clearly a computationally
intensive task that should be performed offline. To that
end, when the matrix is created, we popcount the whole
msk_arr array and run prefix sums on the output. The
construction has O(nrb) work and O(lg nrb) span, and
is required only once for multiple SpMV operations.

The overall cost of accessing the prescan array is
the same as the number of strands on the execution
DAG of the parallel program. In other words, it is equal
to the number of serial SpMV invocations. Since each
invocation has a certain number of nonzeros to multiply,
the extra costs are subsumed by useful work.

D. Performance Model

In the past, simple Roofline models have been used
to bound BCSR SpMV performance using bound and
bottleneck analysis based on STREAM bandwidth, in-
core compute bounds based on Little’s Law, and a
fixed arithmetic intensity [36]. Unfortunately, such an
approach cannot be easily mapped to our SpMV kernel
as both the memory traffic and the useful computation
per register block varies across blocks within the matrix.
To that end, we developed a similar themed model also
premised on bound and bottleneck analysis. However,
we use empirical data for register block performance to
bound in-core performance. Moreover, we use average
nonzero density per register block instead of arithmetic
intensity as our horizontal axis. Finally, our model pre-
dicts useful GFlop/s rather than raw GFlop/s.

Bandwidth Bound: Given an r×r bitmasked register
block, the time required to transfer the block from
DRAM is:

bandwidth
4 + bitmask_size +8 · density ·r2

where bandwidth is the measured STREAM band-
width, bitmask_size is the size of the bitmask in bytes,
and density is the average density of nonzeros using
r × r register blocks. We can thus bound useful per-
formance by multiplying this quantity by the number
of useful floating-point operations per register block:
2 · density ·r2.

Compute Bound: For each r × r bitmasked register
block size, we construct a simple benchmark that would
repeatedly access the same block and perform the requi-
site computation. Doing so allows us to gauge an upper
limit to the achievable performance on each architecture
as a function of register block size, irrespective of
bandwidth or sparsity. Within the performance model we
scale this number by the average density to determine the
number of useful floating-point operations per second.

Performance Bound: Ultimately, we may simply
bound performance as the minimum of either the bound
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Fig. 9: (top) Performance model construction for the
r = 4 case when running 16 threads on Nehalem. (bottom)
Histogram for Wind Tunnel matrix on 4×4 register blocks.

calculated using bandwidth or the bound calculated using
the compute rate for our rather complex inner loop.

The model construction is illustrated in Figure 9(top)
where the actual bound on the performance is the mini-
mum of compute bound (purple dashed line) and band-
width bound (cyan dashed curve) numbers for a given
nonzero density. Additionally, we present the bandwidth
bound (green dashed line) derived from the the original
CSB algorithm.

Our scheme provides performance gains over CSB
for register blocks that are denser than the x1 point
on Figure 9(top). Any register block sparser than x1

runs slower than the case without register blocking. For
register blocks that are denser than x2, the performance
is compute bound with maximum possible performance
gain. For register blocks whose nonzero density is be-
tween x1 and x2, the performance gain is proportional
to how far away we are from x1.

Figure 9(bottom) shows the histogram of nonzero
densities across blocks of the Wind Tunnel matrix when
using 4×4 register blocks, with x1 and x2 once again
representing register block densities above which CSB
is bandwidth bound and performance is compute bound
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Fig. 10: Correlation of the actual performance with the
predicted performance when running on Nehalem. (Wind
Tunnel matrix using 4× 4 register blocks)

(maximum possible gain), respectively. The pointwise
multiplication of the histogram counts with the modeled
performance from Figure 9(top) provides a relatively
accurate performance prediction. That is,

predicted(p) =
∑

i∈densities

count(i) ·modeled(i, p) (1)

Figure 10 uses Equation 1 to present the predicted
(solid blue line) as well as the actual performance
(red dashed line) of the algorithm running the Wind
matrix using register blocks of size 4×4. We see that
performance can be highly correlated with the model.

We believe that auto-tuning based on empirical mea-
surements is a better approach to optimizing performance
than a performance model that requires the totality of the
matrix in order to select an optimized implementation.
Our performance model, although strongly correlated
with actual measurements, merely provides insight into
the forces that constrain SpMV performance. For exam-
ple, densities vary significantly among register blocks;
the non-uniform fill ratio of register blocks may make
certain portions of the execution compute bound while
the rest stays bandwidth bound. In high concurren-
cies, these compute-bound and bandwidth-bound regions
might execute simultaneously, resulting in a faster than
predicted performance.

VI. EXPERIMENTAL SETUP

A. Hardware

In this paper, we explore single-socket multicore per-
formance. To that end, we use two of the most advanced
commodity multicore processors available today — In-
tel’s eight-core Xeon 7550 (Nehalem-EX) and AMD’s
six-core Opteron 8431 (Istanbul).
Xeon 7550 (Nehalem-EX) is the latest enhancement
to the Intel “Core” architecture, and represents a dra-

matic departure from Intel’s previous large multisocket
designs. Each of the eight cores runs at 2 GHz, sup-
ports two-way simultaneous multithreading (16 thread
contexts per socket), can simultaneously execute one
SIMD floating-point multiply and one SIMD floating-
point add, and has private 32 KB and 256 KB L1
and L2 caches. Unlike previous Nehalem processors,
the cores are connected to a very large 18 MB L3
cache via a ring architecture. The ring ensures much
higher bandwidth to the L3. Interestingly, this design is
premised on memory capacity, not memory bandwidth.
As such, the two memory controllers emulate an evolved
FBDIMM standard and provide a sustained bandwidth of
about 14 GB/s per socket.

Opteron 8431 (Istanbul) is a simple evolution of
AMD’s Barcelona processor. Like Nehalem, each core is
a superscalar out-of-order core capable of simultaneously
executing one SIMD floating-point multiply and one
SIMD floating-point add. The private L1 and L2 caches
are 64 KB and 512 KB respectively. The six cores of this
processor are serviced by a 6 MB L3 cache. To mitigate
snoop effects on multisocket SMPs and maximize the
effective memory bandwidth, Istanbul reserves 1MB of
each 6MB cache for HT assist (a snoop filter). The snoop
filter enables higher bandwidth by caching knowledge as
to whether the data is cached on other chips. The cores
at 2.4 GHz and the effective memory bandwidth is a
comparable 11 GB/s per socket.

B. Programming Model

Cilk++, based on the earlier MIT Cilk system, is a
faithful extension of C++ that for multithreaded pro-
gramming. It enables dynamic parallelism via work
stealing instead of the static parallelism in pthreads. In
that sense, it falls into the same category with Intel
TBB [23] and OpenMP [1] that supports tasks from
Version 3.0. Cilk++ employs a provable optimal task
scheduler with minimal parallelization overheads.

We used the CilkArts build 8503 that is based on gcc
4.2. In order to take full advantage of the SSE instruc-
tions, we compiled our innermost kernel separately with
the Intel C++ Compiler 11.1 and linked it with the rest
of the application.

C. Experimental Methodology

We ran our code using different number of threads,
up to the maximum that is supported by a single socket
processor (16 for Nehalem-EX, 6 for Istanbul). We only
performed single-socket experiments to decouple the
NUMA effects. Optimizing performance for NUMA is
an orthogonal issue that is beyond the scope of this paper.

Our baseline is the original CSB code, which has been
shown to scale linearly with cores until limited by off-
chip memory bandwidth [6], on a variety of difficult
matrices. For unsymmetric matrices, we only report the
performance of the SpMV operation, but we note that



SpMV_T performance is comparable, both using original
CSB and our bitmask enchanced version. This is in stark
constrast to parallel algorithms that use row-based (such
as CSR and BCSR) formats, where the performance
degrades significantly for the SpMV_T case.

The reported numbers are for double precision per-
formance, and the matrix indices are represented as
32-bit unsigned integers. We did not employ any low-
level optimizations such as prefetching or TLB blocking,
which will be the subject of future work.

D. Matrix Suite

The sparse matrix test suite used in our experiments
are shown in Figure 11. These matrices come from a set
of real applications such as web-connectivity analysis,
nonlinear optimization, and finite element computations.
They are chosen to represent a variety of different
structures and nonzero densities. Four out of seven
matrices are symmetric and we run both unsymmetric
and symmetric algorithms on them. For the remaining
three matrices, we only run the unsymmetric algorithm.

In the last column of Figure 11, average nonzero
density within register blocks, for three different register
blocking sizes, are shown in the second row for each
matrix. The nonzero density value is also the expected
floating-point efficiency (ratio of useful flops to actual
flops performed) of the algorithm.

VII. EXPERIMENTAL RESULTS

The performance of our algorithms are shown in
Figures 12, using as many threads as available on that
architecture. The red baseline stacks represent the per-
formance of the original CSB code, which is publicly
available. The circles mark the performance achieved
with bitmasked register blocking (best of r = 2, 4, 8).
For symmetric matrices, the squares mark the perfor-
mance of the symmetric algorithm without bitmasked
register blocking, while the triangles mark the symmetric
algorithm with bitmasked register blocking. Finally, the
green stack on top of the red one shows the performance
improvement over original CSB performance.

We see that bitmasked register blocking improves
performance in five out of seven matrices, sometimes
by large margins. For example, the performance of
Tsopf2, which has a nonzero density of 84% for r = 8
case, increased by a factor of 2.2 on Nehalem and
3.5 on Istanbul. Performance boost beyond what is
possible with bandwidth reductions are due to SIMDiza-
tion and smaller parallelization overheads (e.g. during
CSB_BLOCKV parallelization binary searches are per-
formed on much smaller data as the smallest addressible
entity is now a register block). At the other end of
the spectrum, Wiki2007 matrix has the sparsest register
blocks, with the nonzero density for r = 2 case being
only 26% (the smallest possible value is 25% when all

Name
Spy Plot

Dimensions nnz/row
Description Nonzeros nonzero density

Symmetric (r = 2,4,8)

Largebasis 440K×440K 11.9
Optimization 5.24M (92,45,28)%
problem

Wiki2007 3.56M×3.56M 12.6
Wikipedia pages 45.04M (26,7,2)%

Tsopf 35.7K×35.7K 246
Optimal 8.78M (99,93,84)%
power flow

Wind 218K×218K 73.3
Wind Tunnel 11.52M (81,69,50)%
Stiffness Matrix X

Kkt_power 2.06M×2.06M 6.2
KKT 12.77M (43,9,3)%
matrix X

Ldoor 952K×952K 44.6
structural prob. 42.49M (78, 56, 33)%

X

Bone010 986K×986K 48.5
3D trabecular 47.85M (56,41,25)%
bone X

Fig. 11: Structural information on the sparse matrices used
in our experiments. The first three are unsymmetric while
the last four are symmetric. All matrices are from the
University of Florida sparse matrix collection [11]. Spy
plot of Wiki2007 shows only a representative fraction for
visibility. The colors in the spy plots only stress the value
of the nonzeros (darker colors mean larger values).

register blocks contain only one nonzero). Consequently,
any register blocking merely hurts the performance.

Among symmetric matrices, Wind and LDoor benefit
from both symmetry and bitmasked register blocking.
On the other hand, KKT_Power benefitted from neither.
The reason for the poor performance of the symmetric
algorithm on this matrix is due to the large fraction of
nonzeros outside the main block diagonals, as shown in
Figure 3.

The highest performance gains for the unblocked
symmetric algorithm over the unsymmetric is realized
for the Wind matrix with 36%. The 50% reduction in
memory bandwidth does not readily translate to a 2x
improvement, possibly because the number of cache
misses due to vector accesses is increased due to the use
of temporary output vectors. The symmetric algorithm’s
scalability is comparable to the unsymmetric version.
However, applying bitmasked register blocking increased
the performance improvement to over 80% for the Wind
matrix.

To decouple the effects of RCM ordering on the
performance, we ran our unsymmetric algorithm on the
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Fig. 12: Parallel performance of SpMV kernels on Nehalem-EX (left) and Istanbul (right). Baseline original CSB code
is in red; circles show bitmasked register blocks; triangles and squares show symmetric algorithm with and without
bitmasked register blocking, respectively; green shows overall performance gain of our approach. The first three matrices
are unsymmetric, followed by four symmetric matrices. The unsymmetric algorithms (‘Baseline’ and ‘Bitmasked’) run
on original matrices while the symmetric algorithms (‘Symmetric’ and ‘Bitmasked sym’) run on RCM ordered matrices.

RCM ordered data as well. For Ldoor and KKT_power
matrices, this resulted in denser register blocks, but
for Bone010 and Wind Tunnel matrices, it actually
decreased the density of register blocks. This is because
RCM is designed to reduce bandwidth, not to produce
dense blocks. We plan to experiment with different
ordering methods, such as the traveling-salesman based
ordering [22], as future work.

The parallel scaling results for the symmetric algo-
rithm (with and without register blocking) is shown in
Figure 13(middle,right). We achieve 6.3x speedup on
8 threads for the Wind Tunnel matrix that completely
avoids atomic updates. Note that the scalability of the
algorithm is only slightly effected with the integration of
bitmasked register blocks. A similar scaling plot for the
unsymmetric algorithm is also shown in Figure 13(left),
which demonstrates even better scaling. The speedup
values for all three algorithms are relative to the single
threaded performance of the respective algorithm.

VIII. RELATED WORK

Previous algorithmic work on sparse matrix-vector
multiplication has two main directions. First one focuses
on reducing communication volume in a distributed-
memory setting via hypergraph partitioning [8, 27]. The
performance of the partitioning approach mostly depends
on the structure of the input matrix. Our work, by
contrast, targets multicore and manycore architectures
and gives reduced bandwidth algorithms with parallelism
guarantees for any nonzero distribution.

The second algorithmic direction strives to achieve
optimal theoretical I/O complexity by using cache-
oblivious algorithms [3]. From a high-level view, Ben-
der’s algorithm first generates all the intermediate triples

of the output vector y, possibly with repeating indices.
Then, it sorts them with respect to their row indices,
summing up triples with same row index on the fly.
Although theoretically optimal, sorting based approaches
are not competitive in practice yet [14]. A more practical
algorithm uses sparse matrix partitioning methods [37].
Both approaches, however, target serial SpMV.

The literature on optimization and tuning of SpMV
is extensive. The OSKI [29] framework provides an
extensive collection of low-level primitives that provide
auto-tuned computational kernels on sparse matrices.

A number consider techniques that compress the data
structure by recognizing patterns in order to elimi-
nate the integer index overhead. These patterns include
blocks [13], variable or mixtures of differently-sized
blocks [12] diagonals, which may be especially well-
suited to machines with SIMD and vector units [32,
28], general pattern compression [33], value compres-
sion [15], and combinations.

Others have considered improving spatial and tempo-
ral locality by rectangular cache blocking [13], diago-
nal cache blocking [25], and reordering the rows and
columns of the matrix. Researchers have also examined
low-level tuning of SpMV by unroll-and-jam [20], and
software pipelining [12], and prefetching [26]. A com-
pletely recursive layout for SpMV, motivated by CSB, is
recently examined by Martone et al.[19].

Higher-level kernels and solvers provide opportunities
to reuse the matrix itself, in contrast to non-symmetric
SpMV. Such kernels include block kernels and solvers
that multiply the matrix by multiple dense vectors [13],
ATAx [30], and matrix powers [24, 28].

A massively parallel implementation [16], mostly tar-
geting to discretized 3D meshes, focuses on scaling
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Fig. 13: Parallel scalability of SYM_SPMV as a function of optimization on Nehalem-EX. (left) Bitmasked register
blocks, (middle) symmetry, (right) symmetry and register blocks. For the register blocked versions, the scaling of the
best register block size (in terms of raw performance on that matrix) is reported. As the first three matrices unsymmetric,
the symmetric algorithm is not applicable to them.

symmetric SpMV to thousands of cores by applying
a combination of known methods. Methodologies for
exploring symmetry in serial are also examined [17].

A recent study [2] utilized pattern-based accelerated
SPMV to reduce indexing overhead by representing re-
peated sparsity patterns in the matrix with a single index,
using specialized kernels to perform the operations. This
method avoids filling in zeros by using bit vectors to
concisely represent frequently recurring block patterns.
Our bitmasking approach is different in the sense that it
performs the same multiplication kernel for each register
block, regardless of its nonzero pattern. We also provide
complete algorithms with asymptotic analysis.

Our previous studies examined auto-tuned optimiza-
tions in the context of multicore architectures [35] and
demonstrated its significant potential. Given that the
focus of this study is primarily algorithmic, these low-
level optimization techniques will further enhance the
performance of the methods presented in this paper, and
will be the subject of future work.

IX. CONCLUSIONS

The last decade has seen advances in multicore and
SIMD that have dramatically increased the computa-
tional capabilities of modern processors. However, the
bandwidth these machines may exploit has grown much
more slowly. The resultant bandwidth-induced memory
wall is an impediment to performance and squanders
floating-point capability and will only exacerbate in
the future. There is a need for parallel algorithms and
methods that reduce bandwidth requirements without
compromising scalability. In this paper, we explored two
techniques (bitmasked register blocks and symmetry)
that tap into the unused computational capability and
use it to reduce the memory bandwidth requirements
for sparse-matrix vector multiplication. In many respects,
these methods are forward looking as they require a high
flop:byte to be effective. We evaluated their effective-
ness on two state-of-the-art multicore processors, and
demonstrated substantial speedups on both. However,
as both architectures require an increase in flops, it is

quite possible that the evaluated machines lacked the
compute capability to perfectly exploit both techniques
simultaneously. This effect is transitory as the flop:byte
ratio on future machines will continue to increase.

At the low-level, future work will investigate rectan-
gular register blocks as mentioned in Section V, and
using variable sized blocks via splitting [31]. A practical
approach to address variable blocking that exploits the
recursive structure of CSB is as follows. Using the model
in Section V-D, first determine the minimum density d
that is required to achieve the desired performance for
different r values. Then, during the CSB to bitmasked
CSB construction, start with the maximum r considered
and if its density is less than d, recursively explore its
r/2× r/2 quadrants, else encode it as a register block.
This is reminiscent of a quadtree approach except that
the leaves do not have to be completely dense.

At the higher-level we will investigate the best ap-
proach to extend parallelism to multiple sockets and to
multiple nodes. Whether hybrid programming will be
necessary in the future depends on many factors such
as the availability of a NUMA-aware task scheduler and
the unstructured nature of the target matrices.

Finally, in the context of hardware-software co-design,
we will explore how ISA changes can facilitate the
implementation and performance of bitmasked register
blocks as well as whether changes to the memory model
or cache hierarchy can simplify the data synchroniza-
tion challenges we currently resolve via algorithms and
atomics.
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