UC Irvine UC Irvine Previously Published Works

Title

Conditional expectation and bicontractive projections on JordanCalgebras and their generalizations

Permalink https://escholarship.org/uc/item/98j2m1vm

Journal Mathematische Zeitschrift, 194(2)

ISSN 0025-5874

Authors Friedman, Yaakov Russo, Bernard

Publication Date

1987-06-01

DOI

10.1007/bf01161970

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

Conditional Expectation and Bicontractive Projections on Jordan C*-algebras and Their Generalizations*

Mathematische

Zeitschrift © Springer-Verlag 1987

Yaakov Friedman¹ and Bernard Russo²

¹ Department of Mathematics, University of California, Riverside, CA 92521, USA

² Department of Mathematics, University of California, Irvine, CA 92717, USA

On a Banach space X a projection $P \in \mathscr{L}(X)$ is called *bicontractive* if $||P|| \leq 1$ and $||I-P|| \leq 1$. Such projections may be constructed as follows. Let θ be an isometry of X onto X of order 2. Then

$$(0.1) P = \frac{1}{2}(I+\theta)$$

is a bicontractive projection. It would be of interest to characterize the class \mathscr{S} of those Banach spaces for which every bicontractive projection is of the above form. Evidently $X \in \mathscr{S}$ if X', its dual, belongs to \mathscr{S} .

The purpose of this paper is to show that if X is a JB^* -triple, then $X \in \mathcal{S}$. It follows that all JB^* -algebras (=Jordan C*-algebras) and their duals and preduals (when existing) belong to \mathcal{S} .

By a theorem of Kaup [14, 18], JB^* -triples are precisely those Banach spaces (within isometric isomorphism) for which the open unit ball is a bounded symmetric domain (within biholomorphic equivalence). For the precise definition and basic properties of JB^* -triples we refer to [11, 14, 18].

In Bernau-Lacey [3] it is shown that $X = L_p(\mu)$, $1 \le p < \infty$ belongs to \mathscr{S} . Earlier Byrne-Sullivan [4] proved the special cases $1 and <math>\mu$ a probability measure. As a bi-product of the classification of all contractive projections on the space C_1 of all trace class operators on a separable Hilbert space, Arazy-Friedman show in [1] that C_1 , and therefore its predual (the space of all compact operators), belongs to \mathscr{S} .

A study of unit preserving bicontractive projections on unital Jordan (operator) algebras was begun in Robertson-Youngson [16]. Using some ideas from [16] and the classification of type I Jordan factors, Stormer [17] proved that every unital bicontractive projection on an arbitrary C^* -algebra is of the form (0.1) with θ a Jordan automorphism of order 2.

In [9] the authors showed that every C*-algebra belongs to \mathcal{S} . This result generalized the above mentioned results of Arazy-Friedman and of Stormer.

^{*} Research sponsored by N.S.F. grant DMS-8402640

The proof was based on the authors' detailed study of contractive projections in a setting of operator algebras without order [7, 8, 10]. It was actually proved for the class of J^* -algebras and therefore also showed that all JC^* algebras belong to \mathscr{S} .

The proof of our main result below depends only on global properties of JB^* -triples and contractive projections thereon, as developed in [11, 15] and Sects. 1 and 2 below. As such it includes as true corollaries all of the above mentioned results of Arazy-Friedman, Robertson-Youngson, Stormer, and the authors on bicontractive projections.

Recall that a J^* -algebra is a concrete example of a JB^* -triple. Other examples of JB^* -triples which are not J^* -algebras are the two exceptional JB^* triples of dimensions 16 and 27, which we denote by C^5 and C^6 . The structure of an arbitrary JB^* -triple has been studied by the authors in [11] and [12]. As a result of this study some problems for JB^* -triples can be reduced to the corresponding problem for J^* -algebras and the two exceptional JB^* -triples. The former act on Hilbert space and the latter are finite dimensional.

It is natural to attempt a direct proof that C^5 and C^6 belong to \mathscr{S} and to use this, together with the structure theorem mentioned above, in order to show that an arbitrary JB^* -triple belongs to \mathscr{S} .

We found that this approach seems to require showing the invariance of the special and exceptional summands of a JBW^* -triple under the projection. To prove this would require much of the fine structure of a contractive projection, as developed in [7] and [10] for J^* -algebras. Hence it is more efficient to follow the outline that solved the bicontractive projection problem for J^* -algebras [9].

This paper is organized as follows. In Sect. 1 we prove some commutativity formulas involving a contractive projection and the Peirce projections associated with an element in the range of the dual projection. The corresponding formulas for the J^* -algebra case played important roles in the study of a contractive projection, and the same is true here. The main tools used in the proofs of these formulas are Propositions 1, 2 and 3 of [11]. In Sect. 2 we exploit two results of Kaup [15] to develop the fine structure of a contractive projection P on a JB^* -triple U. The main results, Theorems 2 and 3, give a concrete realization of P(U) in the second dual U'', and a new conditional expectation formula for P. Our final result, that JB^* -triples belong to the class \mathscr{S} , is proved in Sect. 3.

The following are some of the notational conventions used in this paper. If X is a Banach space, X' denotes its normed dual and X_* denotes a predual of X, i.e., $(X_*) \cong X$ (isometric). We use the same notation, namely $P_k(v)$, k=0, 1, 2, for the Peirce projections associated with a tripotent v, and their adjoints. For a normal functional f on a JBW*-triple U, e(f) denotes the tripotent occuring in the polar decomposition of f. We write $P_k(f)$ for $P_k(e(f))$. Two functionals f, g are orthogonal, denoted by $f \perp g$, if $e(f) \in P_0(g) U$. The symbol \perp will also denote orthogonality of elements of U.

The following consequence of [7: Lemma 2.4] and [11: Cor. 1.6] will be used several times:

(0.2) If P is a contractive projection on a JB^* -triple U and $f \in P'(U')$, then with v = e(f) we have $P'' v = v + P_0(f) P'' v$.

More generally:

(0.3) If $x \in U''$, ||x|| = 1, and f(x) = ||f||, for some $f \in U'$, then $x = v + P_0(f) x$.

1. Commutativity Formulas for Contractive Projections

In this section we use freely the notation and results of Friedman-Russo [11: Sect. 1]. By Dineen [5] and Barton-Timoney [2], if U is a JB^* -triple, we may regard U' as the predual of the JBW^* -triple U''.

Lemma 1.1. Let U be a JB*-triple and let e be a tripotent of U". For each $g \in P_2(e)$ U', let T(g) denote the restriction of g to $P_2(e)$ U". Then T is an isometric isomorphism of $P_2(e)$ U' onto $(P_2(e)$ U")_{*}.

Proof. The map T is clearly linear, norm decreasing and takes $P_2(e) U'$ into $(P_2(e) U'')_*$. By [11: Prop. 1] T is onto and isometric.

The proof of the following proposition is the same as [7: Prop. 3.3], with Lemma 1.1 replacing [7: Remark 3.2].

Proposition 1.2. Let P be a contractive projection on a JB*-triple U and let $f \in P'(U')$. Then $P'P_2(f) = P_2(f)P'P_2(f)$.

Proof. Let $B := (P_2(f) U')_*$, $T : P_2(f) U' \to B$ as in Lemma 1.1 and let V_f be the face generated by T(f) in B^+ . By Emch-King [6, 13] V_f is norm dense in B^+ . Since B^+ linearly spans B, it will suffice, by Lemma 1.1, to prove that $P'(T^{-1}(V_f)) \subseteq P_2(f) U'$.

For $\tau \in V_f$, write $T(f) = \alpha \tau + \sigma$ for some $\alpha > 0$ and $\sigma \in V_f$. Then $f = \alpha \tilde{\tau} + \tilde{\sigma}$ where $\tilde{\tau} = T^{-1}(\tau)$ and $\tilde{\sigma} = T^{-1}(\sigma)$, and

$$\|f\| = \|T(f)\| = \alpha \|\tau\| + \|\sigma\| = \alpha \|\tilde{\tau}\| + \|\tilde{\sigma}\|$$

$$\geq \alpha \|P'\tilde{\tau}\| + \|P'\tilde{\sigma}\| \geq \alpha \|P_2(f)P'\tilde{\tau}\| + \|P_2(f)P'\tilde{\sigma}\| \geq \|f\|$$

since $f = P_2(f) P' f = P_2(f) P'(\alpha \tilde{\tau} + \tilde{\sigma})$. Therefore $||P'\tilde{\tau}|| = ||P_2(f)P'\tilde{\tau}||$ so by [11: Prop. 1] $P'\tilde{\tau} = P_2(f)P'\tilde{\tau}$.

In order to prove our second commutativity formula we need a lemma which generalizes [7: Lemma 3.4].

Lemma 1.3. Let P be a contractive projection on a JB^* -triple U and let $f \in P'(U')$. Then $P_0(f) P' P_1(f) = 0$.

Proof. With v = e(f) consider the map π : $P_1(f) U'' \to U'$ defined by $\pi(y) = D(v, y) f$. We shall show that π is a linear bijection of $P_1(f) U''$ onto a norm dense subspace S of $P_1(f) U'$. Then we shall show that $P_0(f) P' g = 0$ for all $g \in S$, completing the proof.

We show first that $S \subseteq P_1(f) U'$. Let $x \in U''$. By the Peirce rules [11: (1.7)], and the fact that $f = P_2(f) f$,

$$\langle D(v, y) f, x \rangle = \langle f, P_2(f) \{ v \, y \, x \} \rangle = \langle f, \{ v \, y \, P_1(f) \, x \} \rangle$$
$$= \langle P_1(f) \, D(v, y) \, f, x \rangle.$$

Thus $S \subseteq P_1(f) U'$.

Now let $z \in U''$ satisfy $\langle z, S \rangle = 0$, so that $\langle z_1, S \rangle = 0$ where $z_1 = P_1(f) z$. Then $f\{v \, y \, z_1\} = 0$ for all $y \in P_1(f) U''$ and in particular $f\{v \, z_1 \, z_1\} = 0$. Since, by [11: Sect. 1], $\{v \, z_1 \, z_1\}$ is positive in $P_2(f) U''$ and f is faithful there, $\{v \, z_1 \, z_1\} = 0$ and so $z_1 = 0$. Thus $\langle z, P_1(f) U' \rangle = 0$, proving that S is norm dense in $P_1(f) U'$.

Next, let $g = D(v, y) f \in S$ for some $y \in P_1(f) U''$. We shall show that $P_0(f) P'g = 0$. Since D(y, v) + D(v, y) is hermitian

$$|\langle f, (\exp i t(D(y, v) + D(v, y))) x \rangle| \leq 1$$

for all $x \in U''$ with $||x|| \leq 1$ and all $t \in R$. Therefore

$$|f(x) + it f(\{y v x\} + \{v y x\}) + O(t^2)| \leq 1,$$

and since by the Peirce rules

$$f\{y v x\} = 0, \quad |f(x) + i t f\{v y x\}| \le 1 + O(t^2).$$

Thus

$$||f+itg|| \leq 1+O(t^2).$$

Set $w_t = P'(f + itg)$. Since $P''v = v + P_0(f)P''v$,

$$w_t(v) = \langle P'f, v \rangle + it \langle P'g, v \rangle = 1.$$

Therefore $1 \le ||P_2(f)w_t|| \le ||w_t|| \le 1 + O(t^2)$.

Finally, since by Proposition 1.2 $P_0(f)P'f=0$, we have

$$1 + t \|P_0(f) P'g\| \le \|P_2(f) w_t\| + \|P_0(f) P'(f + it g)\|$$

= $\|(P_2(f) + P_0(f)) w_t\| \le \|w_t\| = 1 + O(t^2),$

which forces $P_0(f) P' g = 0$. \Box

By using this lemma and Proposition 1.2, the following proposition can be proved exactly as [7: Prop. 3.5].

Proposition 1.4. Let P be a contractive projection on a JB*-triple U and let $f \in P'(U')$. Then $P_0(f)P' = P_0(f)P'P_0(f) = P'P_0(f)P'$ and $P_0(f)P'$ and $P_1(f)P'$ are projections.

Proof. Writing P_k for $P_k(f)$ we have

$$P_0 P' = P_0 P'(P_2 + P_1 + P_0) = P_0 P' P_2 + P_0 P' P_1 + P_0 P' P_0 = P_0 P' P_0$$

by Proposition 1.2 and Lemma 1.3. Also $P_0 P' P_0 P' = P_0 P' P = P_0 P'$ is a projection.

Conditional Expectation on Jordan C*-algebras and Generalizations

Let $g \in U'$. Then $||P_0P'g|| = ||P_0P'P_0P'g|| \le ||P'P_0P'g|| \le ||P_0P'g|| \le ||P_0P'g||$. By [11: Prop. 1] $P'P_0P'g = P_0P'P_0P'g = P_0P'g$. Finally,

$$P_1 P' = P_1 P'(P_2 + P_1 + P_0) P' = P_1(P'P_2) P' + P_1(P'P_0P') + P_1 P'P_1 P' = P_1 P'P_1 P'. \quad \Box$$

To establish our final commutativity formula we need a lemma which generalizes and considerably simplifies [7: Cor. 4.2].

Lemma 1.5. Let v be a tripotent in U" where U is a JB*-triple and suppose $f \in P_2(v)$ U' and $g \in P_1(v)$ U'. If $f \neq 0$, then ||f+g|| > ||g||.

Proof. Suppose that $||f+g|| \leq ||g||$. Let u=e(g). Then by [11: Prop. 3], $u \in P_1(v) U''$ and $[P_k(v), P_j(u)] = 0$ for all j, k. Thus $\langle f+g, u \rangle = \langle g, u \rangle = ||g|| \geq ||f| + g||$. By [11: Prop. 1], f+g and g belong to $P_2(u) U'$, implying $f \in P_2(u) U'$. Let $x \in U''$ be such that $f(x) \neq 0$ and set $y = P_2(v) P_2(u) x$. Denote by # the involution on the JBW*-algebra $P_2(u) U''$. Then by Peirce rules with respect to $v, y^{\#} = \{u \ y \ u\} \in P_0(v) U''$. Since $g(y) = g(P_1(v) \ y) = 0$ and f+g is positive, hence self-adjoint on $P_2(u) U''$, we have

$$\overline{f(x)} = \overline{f(y)} = \overline{\langle f+g, y \rangle} = \langle f+g, y^{\#} \rangle = 0$$
, a contradiction.

The proof of our final commutativity formula is the same as [7: Prop. 4.3] with Lemma 1.5 in place of [7: Cor. 4.2].

Proposition 1.6. Let P be a contractive projection on a JB^* -triple U and let $f \in P'(U')$. Then $P_1(f)P' = P'P_1(f)P'$, $P_2(f)P' = P'P_2(f)P'$, and $P_2(f)P'$ is a projection.

Proof. We have

$$P'P_1P' = (P_2 + P_1 + P_0)P'P_1P' = P_2P'P_1P' + P_1P'P_1P' + P_0P'P_1P' = P_2P'P_1P' + P_1P'.$$

Therefore for arbitrary $g \in U'$,

$$||P_2(P'P_1P'g) + P_1(P'g)|| = ||P'P_1P'g|| \le ||P_1(P'g)||,$$

and by Lemma 1.5, $P_2 P' P_1 P' g = 0$, so $P' P_1 P' = P_1 P'$.

Furthermore,

$$\begin{split} P_2 \, P' = & (1 - P_1 - P_0) \, P' = P' - P_1 \, P' - P_0 \, P' \\ = & P' - P' \, P_1 \, P' - P' \, P_0 \, P' = P' (1 - P_1 - P_0) \, P' = P' \, P_2 \, P'. \end{split}$$

Finally $P_2(P'P_2P') = P_2P_2P' = P_2P'$.

We summarize the results of this section in the following theorem.

Theorem 1. Let P be a contractive projection on a JB*-triple U and let $f \in P'(U')$. With $P_k = P_k(f)$, k = 0, 2 we have

(a) On U', P' P₂ = P₂ P' P₂, P₀ P' = P₀ P' P₀ = P' P₀ P', $P_1 P' = P' P_1 P', P_2 P' = P' P_2 P';$ (b) On U'', P₂ P'' = P₂ P'' P₂, P'' P₀ = P₀ P'' P₀ = P'' P₀ P'', $P'' P_1 = P'' P_1 P'', P'' P_2 = P'' P_2 P''.$

2. Conditional Expectation Property of a Contractive Projection

In this section we shall use the following two results of Kaup [15] concerning a contractive projection P on a JB^* -triple U.

$$(2.1) \quad P\{PabPc\} = P\{PaPbPc\}, \quad \text{for } a, b, c \in U;$$

(2.2) P(U) is a JB^* -triple in the triple product $\{x \ y \ z\}_{P(U)} := P\{x \ y \ z\}$, for $x, y, z \in P(U)$.

As noted earlier in (0.2) if $f \in P'(U')$, then P''v = v + b where v = e(f) and b is orthogonal to v. The next lemma, which will be needed in Lemma 2.6, shows that in fact b is orthogonal to e(g) where g is an *arbitrary* element of P'(U').

Lemma 2.1. Let P be a contractive projection on a JB*-triple U, let $f \in P'(U')$ and let v = e(f) and b = P''v - v. Then for any $g \in P'(U')$ we have $b \in P_0(g) U''$.

Proof. Let u = e(g). Set c = P''u - u. Then $b \perp v$ and $c \perp u$. We calculate $\lambda := g\{P''v, P''v, P''u\}$ in two ways. First, by (2.1) applied to P'',

$$\lambda = g(P'' \{P''v, P''v, P''u\}) = g(P'' \{P''v, v, P''u\})$$

= g({v + b, v, P''u}) = g({v v P''u}).

Second, $\lambda = g(\{v+b, v+b, P''u\}) = g\{vvP''u\} + g\{bbP''u\}$. Therefore $g\{bbP''u\} = 0$, i.e., $g\{bbu\} + g\{bbc\} = 0$.

Let $b=b_2+b_1+b_0$ be the Peirce decomposition of b with respect to u. Then by the "Peirce rules for multiplication" and the fact that $g=P_2(u)g$, we have $g\{bbc\}=0$ (so that $g(\{bbu\})=0$), and $g\{bbu\}=g\{b_2b_2u\}+g\{b_1b_1u\}$. Since $\{b_2b_2u\}$ and $\{b_1b_1u\}$ belong to $(P_2(u)U'')^+$ and g is positive we have $g\{b_1b_1u\}$ $=g\{b_2b_2u\}=0$. Moreover g is faithful on $P_2(u)U''$, so that $\{b_1b_1u\}=\{b_2b_2u\}$ =0. Finally by [11: p. 73] we have $b_1=b_2=0$. \Box

It follows from (2.2) that M := P''(U'') is a JBW*-triple with predual $M_* = P'(U')$. The next proposition gives the connection between the polar decompositions of an element $f \in P'(U')$ with respect to M and U''. Together with Lemma 2.1 it will clarify the relationship between orthogonality in M and in U''.

Proposition 2.2. Let P be a contractive projection on a JB^* -triple U, let $f \in P'(U')$, and let $v = e(f) \in U''$. Then $\tilde{v} := P''v$ is the tripotent occurring in the polar decomposition of f with respect to the JBW^* -triple M := P''(U'').

Proof. We show first that \tilde{v} is a tripotent in P''(U''). By (0.2), we have $\tilde{v} = v + b$ where $b \in P_0(v) U''$. By (2.1) applied to P'',

$$\{\tilde{v}\,\tilde{v}\,\tilde{v}\,\tilde{v}\}_{M} = P''\{\tilde{v}\,\tilde{v}\,\tilde{v}\} = P''\{\tilde{v},v,\tilde{v}\} = P''\{v+b,v,v+b\} = P''\{v\,v\,v\} = P''v=\tilde{v}.$$

Therefore \tilde{v} is a tripotent.

We show next that if u is a tripotent in P''(U'') with f(u) = ||f||, then $u \ge \tilde{v}$ in M. Since f(u) = ||f||, we have u = v + c with $c \in P_0(v) U''$ (by (0.3)). Thus u = P'' u $= \tilde{v} + P'' c$ and $\tilde{c} := P'' c \in P_0(v) U''$ by Theorem 1. It remains to show that \tilde{v} is Conditional Expectation on Jordan C*-algebras and Generalizations

orthogonal to \tilde{c} in M. By (2.1), we have

$$\{\tilde{v}\,\tilde{v}\,\tilde{c}\}_{M} = P''\{\tilde{v}\,\tilde{v}\,\tilde{c}\} = P''\{\tilde{v}\,v\,\tilde{c}\} = P''\{v+b,v,\tilde{c}\} = P''\{v,v,\tilde{c}\} = P''0 = 0.$$

To obtain the connection between orthogonality in M and U'' we need the following

Lemma 2.3. Let f and g be normal functionals on a JBW*-triple U. Then $f \perp g$ if and only if $||f \pm g|| = ||f|| + ||g||$.

Proof. We may assume ||f|| = ||g|| = 1. Let u = e(g), v = e(f).

Suppose first that $f \perp g$. Then $e_{\pm} := u \pm v$ has norm one and $\langle f \pm g, e_{\pm} \rangle = 2$. Therefore $2 \leq ||f \pm g|| \leq ||f|| + ||g|| = 2$.

Suppose now that $||f \pm g|| = ||f|| + ||g||$, and set w := e(f+g). Then

$$2 = \langle f + g, w \rangle = \langle f, w \rangle + \langle g, w \rangle \leq |\langle f, w \rangle| + |\langle g, w \rangle| \leq ||f|| + ||g|| = 2.$$

Thus $\langle f, w \rangle = \langle g, w \rangle = 1$ and so $f, g \in P_2(w) U_*$ by [11: Prop. 1]. By the Jordan decomposition in *JBW*-algebras [13: Appendix] f and g are orthogonal states on the *JBW**-algebra $U_2(w)$, and hence $f \perp g$. \Box

Corollary 2.4. For a contractive projection P on a JB*-triple U and $f, g \in P'(U')$, let v = e(f), u = e(g), $\tilde{v} = P''v$, $\tilde{u} = P''u$. Then $u \perp v$ in U'' if and only if $\tilde{u} \perp \tilde{v}$ in M = P''(U'').

Proof. For any $h \in P'(U') \subseteq U'$, $||h||_{M_*} = ||h||_{U'}$. By Proposition 2.2 and Lemma 2.3,

$$\begin{aligned} u \perp v \text{ in } U'' \Leftrightarrow \|f \pm g\|_{U'} &= \|f\|_{U'} + \|g\|_{U'} \Leftrightarrow \|f \pm g\|_{M_*} \\ &= \|f\|_{M_*} + \|g\|_{M_*} \Leftrightarrow \tilde{u} \perp \tilde{v} \text{ in } M. \quad \Box \end{aligned}$$

To extend this corollary to arbitrary tripotents we need:

Lemma 2.5. Let v be a tripotent in a JBW*-triple U. Then there is a family of mutually orthogonal functionals $(f_{\alpha}) \subseteq U_*$ with $v = \sum e(f_{\alpha})$ (w*-convergence).

Proof. Let $A = U_2(v)$ which is a JBW^* -algebra with unit v. Since the normal states of A are separating [13], $v = \sup\{e_{\phi}: \phi \in A_*^+\}$ where e_{ϕ} is the support projection of ϕ in A. By Zorn there is an orthogonal family $\{e_{\phi_{\alpha}}\}$ such that $v = \sum e_{\phi_{\alpha}}$ in A. Then $(e_{\phi_{\alpha}})$ are pairwise orthogonal tripotents in U and $e_{\phi_{\alpha}} = e(f_{\alpha})$ where $f_{\alpha} = \phi_{\alpha} P_2(v)$. \Box

The following lemma gives a correspondence between tripotents in M and in U'' which is needed in order to describe the fine structure of the range of a contractive projection. We first establish some notation.

If P is a contractive projection on a JB^* -triple U, we let

$$\mathscr{C} := \text{the } w^*\text{-closure of span} \{ e(f) \colon f \in P'(U') \} \subseteq U'', \\ \mathscr{O} := \bigcap_{g \in P'(U')} P_0(g) U''.$$

It is obvious that \mathcal{O} is a JB^* -subtriple of U'' and that $\mathscr{C} \perp \mathcal{O}$. Therefore the sum $\mathscr{C} + \mathcal{O}$ is direct and the projection Q of $\mathscr{C} + \mathcal{O}$ onto \mathscr{C} is contractive.

Lemma 2.6. Let P be a contractive projection on a JB^* -triple U and let w be a tripotent of the JBW^* -triple M = P''(U''). Then Qw is a tripotent of U''. Moreover, if w_1 and w_2 and orthogonal tripotents of M, then Qw_1 and Qw_2 are orthogonal in U''.

Proof. Let us apply Lemma 2.5 to a tripotent w of the JBW*-triple M: = P''(U''). We obtain orthogonal elements $(f_{\alpha}) \subseteq P'(U')$ and by Proposition 2.2 $w = \sum_{\alpha} (e(f_{\alpha}) + b_{\alpha})$ (w*-convergence in M) where, by Lemma 2.1, $b_{\alpha} \in \mathcal{O}$. By Corollary 2.4 the $e(f_{\alpha})$ are orthogonal in U'' so $w = \sum_{\alpha} e(f_{\alpha}) + \sum_{\alpha} b_{\alpha}$, $\sum_{\alpha} e(f_{\alpha}) w^*$ converges to a tripotent $Qw \in \mathscr{C}$ of U'' and $b := \sum_{\alpha} b_{\alpha} \in \mathcal{O}$ exists in U'' as a w*limit. The second statement follows from Corollary 2.4 and the formula Qw $= \sum_{\alpha} e(f_{\alpha})$. \Box

By Lemma 2.6 each tripotent of M = P''(U'') lies in $\mathscr{C} + \mathscr{O}$. By the spectral theorem [11: Rk. 1.9] $M \subset \mathscr{C} + \mathscr{O}$, and Q is a homomorphism of M into U'', i.e., $Q(\{a b c\}_M) = \{Q a Q b Q c\}$. On the other hand, for $x \in P(U) \subseteq M$, and $f \in P'(U')$, f(x) = f(Q x), and

$$||x|| = \sup\{|\langle f, Qx \rangle|: f \in P'(U'), ||f|| \le 1\} \le ||Qx|| \le ||x||.$$

Thus, by restricting Q to P(U), we have:

Theorem 2. Let P be a contractive projection on a JB^* -triple U. Then the JB^* -triple P(U) is isometrically isomorphic to a closed subtriple of U''.

Since it is elementary that the second dual of a J^* -algebra is a J^* -algebra, we obtain as a consequence of (2.2) and Theorem 2, the main result of [10]:

Corollary 2.7. Let P be a contractive projection on a J^* -algebra. Then the range of P is a JB^* -triple which is isometrically isomorphic to a J^* -algebra.

Our next result is a conditional expectation formula analogous to (2.1). Recall that the triple product $\{abc\}$ is symmetric and linear in a and c and conjugate linear in b. The formula (2.1) was proved in [15] using holomorphic methods. Holomorphic methods are unavailable for the proof of Theorem 3 because of the conjugate linearity in b. Both formulas had been proved in [9] for J^* -algebras.

Theorem 3. Let P be a contractive projection on a JB^* -triple U. Then

$$(2.3) \qquad P\{PaPbc\} = P\{PaPbPc\} \quad for \ a, b, c \in U.$$

Proof. There is no loss of generality in assuming that a=b. By approximating Pa by finite linear combinations of orthogonal tripotents of M=P''(U''), it suffices to prove that

(2.4)
$$P''\{w_1 w_2 x\} = P''\{w_1 w_2 P'' x\}$$

whenever w_1, w_2 are tripotents of M and $x \in U''$. We only need to consider two cases, namely $w_1 = w_2$ and $w_1 \perp w_2$.

Conditional Expectation on Jordan C*-algebras and Generalizations

Note first that by the Peirce rules, for any $a_1, a_2 \in \mathcal{O}$,

 $z \in U''$ and $g \in P'(U')$, we have $\langle g, \{a_1, a_2, z\} \rangle = 0$.

Therefore $P''\{a_1 a_2 z\} = 0$.

If $w_1 \perp w_2$, then writing $w_i = Q w_i + b_i = v_i + b_i$ as in Lemma 2.6 implies

$$\{w_1 w_2 x\} = \{v_1 v_2 x\} + \{b_1 b_2 x\} = \{b_1 b_2 x\}.$$

Therefore $P''\{w_1 w_2 x\} = 0 = P''\{w_1 w_2 P'' x\}.$

If $w_1 = w_2 = w$ say, write w = Qw + b = v + b as in Lemma 2.6. Then $P''\{wwx\} = P''\{vvx\} + P''\{bbx\} = P''D(v,v)x$ and since $D(v,v) = P_2(v) + \frac{1}{2}P_1(v)$, Theorem 1 implies

$$P''\{w w x\} = P''(P_2(v) + \frac{1}{2}P_1(v)) x = P''(P_2(v) + \frac{1}{2}P_1(v)) P'' x = P''\{w w P'' x\}.$$

3. Structure of a Bicontractive Projection

In the previous section, we showed that the JB^* -triple P(U) is isomorphic to a subtriple of U''. Here of course P is any contractive projection on a JB^* -triple U. In this section we make the assumption that P is bicontractive, i.e., I-P is also contractive.

It turns out that in this case, the isomorphism Q of P(U) into U'' is the identity, which results in:

Proposition 3.1. Let P be a bicontractive projection on a JB^* -triple U. Then P(U) is a JB^* -subtriple of U.

Proof. Since M := P''(U'') is a JBW*-triple, it suffices to prove that Qw = w for each tripotent w in M. By Lemma 2.5 and Lemma 2.6 it suffices to prove that P''v = v whenever v = e(f) for some $f \in P'(U')$.

Let b = P'' v - v. Then, by (2.1),

$$P''\{b\,b\,b\} = P''\{v+b, b, v+b\} = P''\{P''v, b, P''v\} = P''\{P''v, P''b, P''v\} = 0.$$

By induction P''(B) = 0 where B is the JB*-triple generated by b. It follows that I - P'' restricts to a bicontractive projection on $Cv \oplus B$ with range B. Then, for any $z \in B$ with $||z|| \le 1$, we have $||v+z|| \le 1$ so that $||(I - P'')(v+z)|| \le 1$, i.e., $||-b| + z|| \le 1$. This forces b = 0. \Box

By Proposition 3.1, if P is bicontractive, the conditional expectation formulas (2.1) and (2.3) take on a neater form:

$$P\{abx\} = \{abPx\}$$
 and $P\{axb\} = \{aPxb\}$

for $a, b \in P(U)$ and $x \in U$.

Finally, let P be a bicontractive projection on a JB^* -triple U, and set $\theta = 2P - I$. By the argument in [9: p. 355], the two conditional expectation formulae (2.1), (2.3) and Proposition 3.1 imply that θ is a homomorphism of U.

Since a homomorphism is always contractive (as follows from $||\{zzz\}|| = ||z||^3$) we obtain

Theorem 4. Let P be a bicontractive projection on a JB^* -triple U. Then there is a surjective isometry θ on U of order 2 such that $P = \frac{1}{2}(I + \theta)$. Thus all JB^* -triples, their duals, and all pre-duals of JBW^* -triples belong to the class \mathcal{S} .

References

- 1. Arazy, J., Friedman, Y.: Contractive projections in C_1 and C_{∞} . Mem. Am. Math. Soc. 13, No. 200 (1978)
- 2. Barton, T., Timoney, R.: Weak *-continuity of Jordan triple products and its applications. Math. Scand. To appear
- 3. Bernau, S.J., Lacey, H.E.: Bicontractive projections and reordering of L_p spaces. Pac. J. Math. 69, 291-302 (1977)
- 4. Byrne, C., Sullivan, F.E.: Contractive projections with contractive complement in L_p -space. J. Multivariate Anal. 2, 1-13 (1972)
- Dineen, S.: The second dual of a JB*-triple system. In: Complex Analysis, Functional Analysis and Approximation Theory, pp. 67-69, J. Mujica (ed.). Amsterdam: Elsevier (North Holland) 1986
- 6. Emch, G.G., King, W.P.C.: Faithful normal states on JBW-algebras. Proc. Symp. Pure Math. 38, 305-307 (1982)
- Friedman, Y., Russo, B.: Contractive projections on operator triple systems. Math. Scand. 52, 279-311 (1983)
- Friedman, Y., Russo, B.: Algebres d'operateurs sans ordre: solution du probleme du projecteur contractif. C.R. Acad. Sci. Paris 296, 393-396 (1983)
- 9. Friedman, Y., Russo, B.: Conditional expectation without order. Pac. J. Math. 115, 351-360 (1984)
- Friedman, Y., Russo, B.: Solution of the contractive projection problem. J. Funct. Anal. 60, 56– 79 (1985)
- 11. Friedman, Y., Russo, B.: Structure of the predual of a *JBW**-triple. J. Reine u. Angew. Math. **356**, 67-89 (1985)
- 12. Friedman, Y., Russo, B.: The Gelfand-Naimark theorem for JB*-triples. Duke Math. J. 53, 139-148 (1986)
- Iochum, B.: Cones autopolaires et algebres de Jordan. Lecture Notes in Math. 1049. Berlin-Heidelberg-New York: Springer 1984
- Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183, 503-529 (1983)
- Kaup, W.: Contractive projections on Jordan C*-algebras and generalizations. Math. Scand. 54, 95-100 (1984)
- Robertson, A.G., Youngson, M.A.: Positive projections with contractive complements on Jordan algebras. J. Lond. Math. Soc. (2) 25, 365–374 (1982)
- 17. Størmer, E.: Positive projections with contractive complements on C*-algebra. J. Lond. Math. Soc. (2) 26, 132-142 (1982)
- 18. Upmeier, H.: Symmetric Banach manifolds and Jordan C*-algebras. Amsterdam: Holland 1985

Received November 18, 1985; in revised form June 10, 1986