UC Irvine

UC Irvine Previously Published Works

Title

Conditional expectation and bicontractive projections on JordanCalgebras and their generalizations

Permalink

https://escholarship.org/uc/item/98j2m1vm

Journal

Mathematische Zeitschrift, 194(2)

ISSN

0025-5874

Authors

Friedman, Yaakov
Russo, Bernard

Publication Date

1987-06-01

DOI

10.1007/bf01161970

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Conditional Expectation and Bicontractive Projections on Jordan C^{*}-algebras and Their Generalizations ${ }^{\star}$

Yaakov Friedman ${ }^{1}$ and Bernard Russo ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of California, Riverside, CA 92521, USA
${ }^{2}$ Department of Mathematics, University of California, Irvine, CA 92717, USA

On a Banach space X a projection $P \in \mathscr{L}(X)$ is called bicontractive if $\|P\| \leqq 1$ and $\|I-P\| \leqq 1$. Such projections may be constructed as follows. Let θ be an isometry of X onto X of order 2 . Then

$$
\begin{equation*}
P=\frac{1}{2}(I+\theta) \tag{0.1}
\end{equation*}
$$

is a bicontractive projection. It would be of interest to characterize the class \mathscr{S} of those Banach spaces for which every bicontractive projection is of the above form. Evidently $X \in \mathscr{S}$ if X^{\prime}, its dual, belongs to \mathscr{S}.

The purpose of this paper is to show that if X is a $J B^{*}$-triple, then $X \in \mathscr{S}$. It follows that all $J B^{*}$-algebras ($=$ Jordan C^{*}-algebras) and their duals and preduals (when existing) belong to \mathscr{S}.

By a theorem of Kaup [14, 18], $J B^{*}$-triples are precisely those Banach spaces (within isometric isomorphism) for which the open unit ball is a bounded symmetric domain (within biholomorphic equivalence). For the precise definition and basic properties of $J B^{*}$-triples we refer to $[11,14,18]$.

In Bernau-Lacey [3] it is shown that $X=L_{p}(\mu), 1 \leqq p<\infty$ belongs to \mathscr{S}. Earlier Byrne-Sullivan [4] proved the special cases $1<p<\infty$ and μ a probability measure. As a bi-product of the classification of all contractive projections on the space C_{1} of all trace class operators on a separable Hilbert space, Arazy-Friedman show in [1] that C_{1}, and therefore its predual (the space of all compact operators), belongs to \mathscr{S}.

A study of unit preserving bicontractive projections on unital Jordan (operator) algebras was begun in Robertson-Youngson [16]. Using some ideas from [16] and the classification of type I Jordan factors, Stormer [17] proved that every unital bicontractive projection on an arbitrary C^{*}-algebra is of the form (0.1) with θ a Jordan automorphism of order 2.

In [9] the authors showed that every C^{*}-algebra belongs to \mathscr{S}. This result generalized the above mentioned results of Arazy-Friedman and of Stormer.

[^0]The proof was based on the authors' detailed study of contractive projections in a setting of operator algebras without order [7, 8, 10]. It was actually proved for the class of J^{*}-algebras and therefore also showed that all $J C^{*}$ algebras belong to \mathscr{S}.

The proof of our main result below depends only on global properties of $J B^{*}$-triples and contractive projections thereon, as developed in [11, 15] and Sects. 1 and 2 below. As such it includes as true corollaries all of the above mentioned results of Arazy-Friedman, Robertson-Youngson, Stormer, and the authors on bicontractive projections.

Recall that a J^{*}-algebra is a concrete example of a $J B^{*}$-triple. Other examples of $J B^{*}$-triples which are not J^{*}-algebras are the two exceptional $J B^{*}$ triples of dimensions 16 and 27, which we denote by C^{5} and C^{6}. The structure of an arbitrary $J B^{*}$-triple has been studied by the authors in [11] and [12]. As a result of this study some problems for $J B^{*}$-triples can be reduced to the corresponding problem for J^{*}-algebras and the two exceptional $J B^{*}$-triples. The former act on Hilbert space and the latter are finite dimensional.

It is natural to attempt a direct proof that C^{5} and C^{6} belong to \mathscr{S} and to use this, together with the structure theorem mentioned above, in order to show that an arbitrary $J B^{*}$-triple belongs to \mathscr{S}.

We found that this approach seems to require showing the invariance of the special and exceptional summands of a $J B W^{*}$-triple under the projection. To prove this would require much of the fine structure of a contractive projection, as developed in [7] and [10] for J^{*}-algebras. Hence it is more efficient to follow the outline that solved the bicontractive projection problem for J^{*}-algebras [9].

This paper is organized as follows. In Sect. 1 we prove some commutativity formulas involving a contractive projection and the Peirce projections associated with an element in the range of the dual projection. The corresponding formulas for the J^{*}-algebra case played important roles in the study of a contractive projection, and the same is true here. The main tools used in the proofs of these formulas are Propositions 1, 2 and 3 of [11]. In Sect. 2 we exploit two results of Kaup [15] to develop the fine structure of a contractive projection P on a $J B^{*}$-triple U. The main results, Theorems 2 and 3, give a concrete realization of $P(U)$ in the second dual $U^{\prime \prime}$, and a new conditional expectation formula for P. Our final result, that $J B^{*}$-triples belong to the class \mathscr{S}, is proved in Sect. 3 .

The following are some of the notational conventions used in this paper. If X is a Banach space, X^{\prime} denotes its normed dual and X_{*} denotes a predual of X, i.e., $\left(X_{*}\right)^{\prime} \approx X$ (isometric). We use the same notation, namely $P_{k}(v), k=0,1,2$, for the Peirce projections associated with a tripotent v, and their adjoints. For a normal functional f on a $J B W^{*}$-triple $U, e(f)$ denotes the tripotent occuring in the polar decomposition of f. We write $P_{k}(f)$ for $P_{k}(e(f))$. Two functionals f, g are orthogonal, denoted by $f \perp g$, if $e(f) \in P_{0}(g) U$. The symbol \perp will also denote orthogonality of elements of U.

The following consequence of [7: Lemma 2.4] and [11: Cor. 1.6] will be used several times:
(0.2) If P is a contractive projection on a $J B^{*}$-triple U and $f \in P^{\prime}\left(U^{\prime}\right)$, then with $v=e(f)$ we have $P^{\prime \prime} v=v+P_{0}(f) P^{\prime \prime} v$.

More generally:
(0.3) If $x \in U^{\prime \prime},\|x\|=1$, and $f(x)=\|f\|$, for some $f \in U^{\prime}$, then $x=v+P_{0}(f) x$.

1. Commutativity Formulas for Contractive Projections

In this section we use freely the notation and results of Friedman-Russo [11: Sect. 1]. By Dineen [5] and Barton-Timoney [2], if U is a $J B^{*}$-triple, we may regard U^{\prime} as the predual of the $J B W^{*}$-triple $U^{\prime \prime}$.

Lemma 1.1. Let U be a JB*-triple and let e be a tripotent of $U^{\prime \prime}$. For each $g \in P_{2}(e) U^{\prime}$, let $T(g)$ denote the restriction of g to $P_{2}(e) U^{\prime \prime}$. Then T is an isometric isomorphism of $P_{2}(e) U^{\prime}$ onto $\left(P_{2}(e) U^{\prime \prime}\right)_{*}$.

Proof. The map T is clearly linear, norm decreasing and takes $P_{2}(e) U^{\prime}$ into $\left(P_{2}(e) U^{\prime \prime}\right)_{*}$. By [11: Prop. 1] T is onto and isometric.

The proof of the following proposition is the same as [7: Prop. 3.3], with Lemma 1.1 replacing [7: Remark 3.2].

Proposition 1.2. Let P be a contractive projection on a $J B^{*}$-triple U and let $f \in P^{\prime}\left(U^{\prime}\right)$. Then $P^{\prime} P_{2}(f)=P_{2}\left(f^{\prime}\right) P^{\prime} P_{2}(f)$.

Proof. Let $B:=\left(P_{2}(f) U^{\prime \prime}\right)_{*}, T: P_{2}(f) U^{\prime} \rightarrow B$ as in Lemma 1.1 and let V_{f} be the face generated by $T(f)$ in B^{+}. By Emch-King $[6,13] V_{f}$ is norm dense in B^{+}. Since B^{+}linearly spans B, it will suffice, by Lemma 1.1 , to prove that $P^{\prime}\left(T^{-1}\left(V_{f}\right)\right) \subseteq P_{2}(f) U^{\prime}$.

For $\tau \in V_{f}$, write $T(f)=\alpha \tau+\sigma$ for some $\alpha>0$ and $\sigma \in V_{f}$. Then $f=\alpha \tilde{\tau}+\tilde{\sigma}$ where $\tilde{\tau}=T^{-1}(\tau)$ and $\tilde{\sigma}=T^{-1}(\sigma)$, and

$$
\begin{aligned}
\|f\| & =\|T(f)\|=\alpha\|\tau\|+\|\sigma\|=\alpha\|\tilde{\tau}\|+\|\tilde{\sigma}\| \\
& \geqq \alpha\left\|P^{\prime} \tilde{\tau}\right\|+\left\|P^{\prime} \tilde{\sigma}\right\| \geqq \alpha\left\|P_{2}(f) P^{\prime} \tilde{\tau}\right\|+\left\|P_{2}(f) P^{\prime} \tilde{\sigma}\right\| \geqq\|f\|
\end{aligned}
$$

since $f=P_{2}(f) P^{\prime} f=P_{2}(f) P^{\prime}(\alpha \tilde{\tau}+\tilde{\sigma})$. Therefore $\left\|P^{\prime} \tilde{\tau}\right\|=\left\|P_{2}(f) P^{\prime} \tilde{\tau}\right\|$ so by [11: Prop. 1] $P^{\prime} \tilde{\tau}=P_{2}(f) P^{\prime} \tilde{\tau}$.

In order to prove our second commutativity formula we need a lemma which generalizes [7: Lemma 3.4].

Lemma 1.3. Let P be a contractive projection on a $J B^{*}$-triple U and let $f \in P^{\prime}\left(U^{\prime}\right)$. Then $P_{0}(f) P^{\prime} P_{1}(f)=0$.

Proof. With $v=e(f)$ consider the map $\pi: P_{1}(f) U^{\prime \prime} \rightarrow U^{\prime}$ defined by $\pi(y)$ $=D(v, y) f$. We shall show that π is a linear bijection of $P_{1}(f) U^{\prime \prime}$ onto a norm dense subspace S of $P_{1}(f) U^{\prime}$. Then we shall show that $P_{0}(f) P^{\prime} g=0$ for all $g \in S$, completing the proof.

We show first that $S \subseteq P_{1}(f) U^{\prime}$. Let $x \in U^{\prime \prime}$. By the Peirce rules [11: (1.7)], and the fact that $f=P_{2}(f) f$,

$$
\begin{aligned}
\langle D(v, y) f, x\rangle & =\left\langle f, P_{2}(f)\{v y x\}\right\rangle=\left\langle f,\left\{v y P_{1}(f) x\right\}\right\rangle \\
& =\left\langle P_{1}(f) D(v, y) f, x\right\rangle .
\end{aligned}
$$

Thus $S \subseteq P_{1}(f) U^{\prime}$.
Now let $z \in U^{\prime \prime}$ satisfy $\langle z, S\rangle=0$, so that $\left\langle z_{1}, S\right\rangle=0$ where $z_{1}=P_{1}(f) z$. Then $f\left\{v y z_{1}\right\}=0$ for all $y \in P_{1}(f) U^{\prime \prime}$ and in particular $f\left\{v z_{1} z_{1}\right\}=0$. Since, by [11: Sect. 1], $\left\{v z_{1} z_{1}\right\}$ is positive in $P_{2}(f) U^{\prime \prime}$ and f is faithful there, $\left\{v z_{1} z_{1}\right\}=0$ and so $z_{1}=0$. Thus $\left\langle z, P_{1}(f) U^{\prime}\right\rangle=0$, proving that S is norm dense in $P_{1}(f) U^{\prime}$.

Next, let $g=D(v, y) f \in S$ for some $y \in P_{1}(f) U^{\prime \prime}$. We shall show that $P_{0}(f) P^{\prime} g$ $=0$. Since $D(y, v)+D(v, y)$ is hermitian

$$
|\langle f,(\exp i t(D(y, v)+D(v, y))) x\rangle| \leqq 1
$$

for all $x \in U^{\prime \prime}$ with $\|x\| \leqq 1$ and all $t \in R$. Therefore

$$
\left|f(x)+i t f(\{y v x\}+\{v y x\})+O\left(t^{2}\right)\right| \leqq 1
$$

and since by the Peirce rules

Thus

$$
f\{y v x\}=0, \quad \mid f(x)+\text { it } f\{v y x\} \mid \leqq 1+O\left(t^{2}\right) .
$$

$$
\|f+i t g\| \leqq 1+O\left(t^{2}\right)
$$

Set $w_{t}=P^{\prime}(f+i t g)$. Since $P^{\prime \prime} v=v+P_{0}(f) P^{\prime \prime} v$,

$$
w_{t}(v)=\left\langle P^{\prime} f, v\right\rangle+i t\left\langle P^{\prime} g, v\right\rangle=1
$$

Therefore $1 \leqq\left\|P_{2}(f) w_{t}\right\| \leqq\left\|w_{t}\right\| \leqq 1+O\left(t^{2}\right)$.
Finally, since by Proposition $1.2 P_{0}(f) P^{\prime} f=0$, we have

$$
\begin{aligned}
1+t\left\|P_{0}(f) P^{\prime} g\right\| & \leqq\left\|P_{2}(f) w_{t}\right\|+\left\|P_{0}(f) P^{\prime}(f+i t g)\right\| \\
& =\left\|\left(P_{2}(f)+P_{0}(f)\right) w_{t}\right\| \leqq\left\|w_{t}\right\|=1+O\left(t^{2}\right)
\end{aligned}
$$

which forces $P_{0}(f) P^{\prime} g=0$.
By using this lemma and Proposition 1.2, the following proposition can be proved exactly as [7: Prop. 3.5].
Proposition 1.4. Let P be a contractive projection on a $J B^{*}$-triple U and let $f \in P^{\prime}\left(U^{\prime}\right)$. Then $P_{0}(f) P^{\prime}=P_{0}(f) P^{\prime} P_{0}(f)=P^{\prime} P_{0}(f) P^{\prime}$ and $P_{0}(f) P^{\prime}$ and $P_{1}(f) P^{\prime}$ are projections.

Proof. Writing P_{k} for $P_{k}(f)$ we have

$$
P_{0} P^{\prime}=P_{0} P^{\prime}\left(P_{2}+P_{1}+P_{0}\right)=P_{0} P^{\prime} P_{2}+P_{0} P^{\prime} P_{1}+P_{0} P^{\prime} P_{0}=P_{0} P^{\prime} P_{0}
$$

by Proposition 1.2 and Lemma 1.3. Also $P_{0} P^{\prime} P_{0} P^{\prime}=P_{0} P^{\prime} P^{\prime}=P_{0} P^{\prime}$ is a projection.

Let $g \in U^{\prime}$. Then $\left\|P_{0} P^{\prime} g\right\|=\left\|P_{0} P^{\prime} P_{0} P^{\prime} g\right\| \leqq\left\|P^{\prime} P_{0} P^{\prime} g\right\| \leqq\left\|P_{0} P^{\prime} g\right\|$. By $\quad[11:$ Prop. 1] $P^{\prime} P_{0} P^{\prime} g=P_{0} P^{\prime} P_{0} P^{\prime} g=P_{0} P^{\prime} g$. Finally,

$$
P_{1} P^{\prime}=P_{1} P^{\prime}\left(P_{2}+P_{1}+P_{0}\right) P^{\prime}=P_{1}\left(P^{\prime} P_{2}\right) P^{\prime}+P_{1}\left(P^{\prime} P_{0} P^{\prime}\right)+P_{1} P^{\prime} P_{1} P^{\prime}=P_{1} P^{\prime} P_{1} P^{\prime}
$$

To establish our final commutativity formula we need a lemma which generalizes and considerably simplifies [7: Cor. 4.2].

Lemma 1.5. Let v be a tripotent in $U^{\prime \prime}$ where U is a $J B^{*}$-triple and suppose $f \in P_{2}(v) U^{\prime}$ and $g \in P_{1}(v) U^{\prime}$. If $f \neq 0$, then $\|f+g\|>\|g\|$.

Proof. Suppose that $\|f+g\| \leqq\|g\|$. Let $u=e(g)$. Then by [11: Prop. 3], $u \in P_{1}(v) U^{\prime \prime}$ and $\left[P_{k}(v), P_{j}(u)\right]=0$ for all j, k. Thus $\langle f+g, u\rangle=\langle g, u\rangle=\|g\| \geqq \| f$ $+g \|$. By [11: Prop. 1], $f+g$ and g belong to $P_{2}(u) U^{\prime}$, implying $f \in P_{2}(u) U^{\prime}$. Let $x \in U^{\prime \prime}$ be such that $f(x) \neq 0$ and set $y=P_{2}(v) P_{2}(u) x$. Denote by $\#$ the involution on the $J B W^{*}$-algebra $P_{2}(u) U^{\prime \prime}$. Then by Peirce rules with respect to $v, y^{\#}$ $=\{u y u\} \in P_{0}(v) U^{\prime \prime}$. Since $g(y)=g\left(P_{1}(v) y\right)=0$ and $f+g$ is positive, hence selfadjoint on $P_{2}(u) U^{\prime \prime}$, we have

$$
\overline{f(x)}=\overline{f(y)}=\overline{\langle f+g, y\rangle}=\left\langle f+g, y^{\#}\right\rangle=0, \quad \text { a contradiction. }
$$

The proof of our final commutativity formula is the same as [7: Prop.4.3] with Lemma 1.5 in place of [7: Cor. 4.2].

Proposition 1.6. Let P be a contractive projection on a $J B^{*}$-triple U and let $f \in P^{\prime}\left(U^{\prime}\right)$. Then $P_{1}(f) P^{\prime}=P^{\prime} P_{1}(f) P^{\prime}, P_{2}(f) P^{\prime}=P^{\prime} P_{2}(f) P^{\prime}$, and $P_{2}(f) P^{\prime}$ is a projection.

Proof. We have

$$
P^{\prime} P_{1} P^{\prime}=\left(P_{2}+P_{1}+P_{0}\right) P^{\prime} P_{1} P^{\prime}=P_{2} P^{\prime} P_{1} P^{\prime}+P_{1} P^{\prime} P_{1} P^{\prime}+P_{0} P^{\prime} P_{1} P^{\prime}=P_{2} P^{\prime} P_{1} P^{\prime}+P_{1} P^{\prime}
$$

Therefore for arbitrary $g \in U^{\prime}$,

$$
\left\|P_{2}\left(P^{\prime} P_{1} P^{\prime} g\right)+P_{1}\left(P^{\prime} g\right)\right\|=\left\|P^{\prime} P_{1} P^{\prime} g\right\| \leqq\left\|P_{1}\left(P^{\prime} g\right)\right\|,
$$

and by Lemma $1.5, P_{2} P^{\prime} P_{1} P^{\prime} g=0$, so $P^{\prime} P_{1} P^{\prime}=P_{1} P^{\prime}$.
Furthermore,

$$
\begin{aligned}
P_{2} P^{\prime} & =\left(1-P_{1}-P_{0}\right) P^{\prime}=P^{\prime}-P_{1} P^{\prime}-P_{0} P^{\prime} \\
& =P^{\prime}-P^{\prime} P_{1} P^{\prime}-P^{\prime} P_{0} P^{\prime}=P^{\prime}\left(1-P_{1}-P_{0}\right) P^{\prime}=P^{\prime} P_{2} P^{\prime} .
\end{aligned}
$$

Finally $P_{2}\left(P^{\prime} P_{2} P^{\prime}\right)=P_{2} P_{2} P^{\prime}=P_{2} P^{\prime}$.
We summarize the results of this section in the following theorem.
Theorem 1. Let P be a contractive projection on a $J B^{*}$-triple U and let $f \in P^{\prime}\left(U^{\prime}\right)$. With $P_{k}=P_{k}(f), k=01,2$ we have
(a) $O n U^{\prime}, P^{\prime} P_{2}=P_{2} P^{\prime} P_{2}, P_{0} P^{\prime}=P_{0} P^{\prime} P_{0}=P^{\prime} P_{0} P^{\prime}$,

$$
P_{1} P^{\prime}=P^{\prime} P_{1} P^{\prime}, \quad P_{2} P^{\prime}=P^{\prime} P_{2} P^{\prime}
$$

(b) On $U^{\prime \prime}, P_{2} P^{\prime \prime}=P_{2} P^{\prime \prime} P_{2}, P^{\prime \prime} P_{0}=P_{0} P^{\prime \prime} P_{0}=P^{\prime \prime} P_{0} P^{\prime \prime}$,

$$
P^{\prime \prime} P_{1}=P^{\prime \prime} P_{1} P^{\prime \prime}, \quad P^{\prime \prime} P_{2}=P^{\prime \prime} P_{2} P^{\prime \prime}
$$

2. Conditional Expectation Property of a Contractive Projection

In this section we shall use the following two results of Kaup [15] concerning a contractive projection P on a $J B^{*}$-triple U.

$$
\begin{equation*}
P\{P a b P c\}=P\{P a P b P c\}, \quad \text { for } a, b, c \in U \tag{2.1}
\end{equation*}
$$

(2.2) $P(U)$ is a $J B^{*}$-triple in the triple product $\{x y z\}_{P(U)}:=P\{x y z\}$, for $x, y, z \in P(U)$.

As noted earlier in (0.2) if $f \in P^{\prime}\left(U^{\prime}\right)$, then $P^{\prime \prime} v=v+b$ where $v=e(f)$ and b is orthogonal to v. The next lemma, which will be needed in Lemma 2.6, shows that in fact b is orthogonal to $e(g)$ where g is an arbitrary element of $P^{\prime}\left(U^{\prime}\right)$.

Lemma 2.1. Let P be a contractive projection on a $J B^{*}$-triple U, let $f \in P^{\prime}\left(U^{\prime}\right)$ and let $v=e(f)$ and $b=P^{\prime \prime} v-v$. Then for any $g \in P^{\prime}\left(U^{\prime}\right)$ we have $b \in P_{0}(g) U^{\prime \prime}$.
Proof. Let $u=e(g)$. Set $c=P^{\prime \prime} u-u$. Then $b \perp v$ and $c \perp u$. We calculate λ : $=g\left\{P^{\prime \prime} v, P^{\prime \prime} v, P^{\prime \prime} u\right\}$ in two ways. First, by (2.1) applied to $P^{\prime \prime}$,

$$
\begin{aligned}
\lambda & =g\left(P^{\prime \prime}\left\{P^{\prime \prime} v, P^{\prime \prime} v, P^{\prime \prime} u\right\}\right)=g\left(P^{\prime \prime}\left\{P^{\prime \prime} v, v, P^{\prime \prime} u\right\}\right) \\
& =g\left(\left\{v+b, v, P^{\prime \prime} u\right\}\right)=g\left(\left\{v v P^{\prime \prime} u\right\}\right) .
\end{aligned}
$$

Second, $\lambda=g\left(\left\{v+b, v+b, P^{\prime \prime} u\right\}\right)=g\left\{v v P^{\prime \prime} u\right\}+g\left\{b b P^{\prime \prime} u\right\}$. Therefore $g\left\{b b P^{\prime \prime} u\right\}$ $=0$, i.e., $g\{b b u\}+g\{b b c\}=0$.

Let $b=b_{2}+b_{1}+b_{0}$ be the Peirce decomposition of b with respect to u. Then by the "Peirce rules for multiplication" and the fact that $g=P_{2}(u) g$, we have $g\{b b c\}=0$ (so that $g(\{b b u\})=0$), and $g\{b b u\}=g\left\{b_{2} b_{2} u\right\}+g\left\{b_{1} b_{1} u\right\}$. Since $\left\{b_{2} b_{2} u\right\}$ and $\left\{b_{1} b_{1} u\right\}$ belong to $\left(P_{2}(u) U^{\prime \prime}\right)^{+}$and g is positive we have $g\left\{b_{1} b_{1} u\right\}$ $=g\left\{b_{2} b_{2} u\right\}=0$. Moreover g is faithful on $P_{2}(u) U^{\prime \prime}$, so that $\left\{b_{1} b_{1} u\right\}=\left\{b_{2} b_{2} u\right\}$ $=0$. Finally by [11: p. 73] we have $b_{1}=b_{2}=0$.

It follows from (2.2) that $M:=P^{\prime \prime}\left(U^{\prime \prime}\right)$ is a $J B W^{*}$-triple with predual M_{*} $=P^{\prime}\left(U^{\prime}\right)$. The next proposition gives the connection between the polar decompositions of an element $f \in P^{\prime}\left(U^{\prime}\right)$ with respect to M and $U^{\prime \prime}$. Together with Lemma 2.1 it will clarify the relationship between orthogonality in M and in $U^{\prime \prime}$.

Proposition 2.2. Let P be a contractive projection on a JB*-triple U, let $f \in P^{\prime}\left(U^{\prime}\right)$, and let $v=e(f) \in U^{\prime \prime}$. Then $\tilde{v}:=P^{\prime \prime} v$ is the tripotent occurring in the polar decomposition of f with respect to the $J B W^{*}$-triple $M:=P^{\prime \prime}\left(U^{\prime \prime}\right)$.
Proof. We show first that \tilde{v} is a tripotent in $P^{\prime \prime}\left(U^{\prime \prime}\right)$. By (0.2), we have $\tilde{v}=v+b$ where $b \in P_{0}(v) U^{\prime \prime}$. By (2.1) applied to $P^{\prime \prime}$,

$$
\{\tilde{v} \tilde{v} \tilde{v}\}_{M}=P^{\prime \prime}\{\tilde{v} \tilde{v} \tilde{v}\}=P^{\prime \prime}\{\tilde{v}, v, \tilde{v}\}=P^{\prime \prime}\{v+b, v, v+b\}=P^{\prime \prime}\{v v v\}=P^{\prime \prime} v=\tilde{v} .
$$

Therefore \tilde{v} is a tripotent.
We show next that if u is a tripotent in $P^{\prime \prime}\left(U^{\prime \prime}\right)$ with $f(u)=\|f\|$, then $u \geqq \tilde{v}$ in M. Since $f(u)=\|f\|$, we have $u=v+c$ with $c \in P_{0}(v) U^{\prime \prime}$ (by (0.3)). Thus $u=P^{\prime \prime} u$ $=\tilde{v}+P^{\prime \prime} c$ and $\tilde{c}:=P^{\prime \prime} c \in P_{0}(v) U^{\prime \prime}$ by Theorem 1. It remains to show that \tilde{v} is
orthogonal to \tilde{c} in M. By (2.1), we have

$$
\{\tilde{v} \tilde{v} \tilde{c}\}_{M}=P^{\prime \prime}\{\tilde{v} \tilde{v} \tilde{c}\}=P^{\prime \prime}\{\tilde{v} v \tilde{c}\}=P^{\prime \prime}\{v+b, v, \tilde{c}\}=P^{\prime \prime}\{v, v, \tilde{c}\}=P^{\prime \prime} 0=0
$$

To obtain the connection between orthogonality in M and $U^{\prime \prime}$ we need the following

Lemma 2.3. Let f and g be normal functionals on a $J B W^{*}$-triple U. Then $f \perp g$ if and only if $\|f \pm g\|=\|f\|+\|g\|$.

Proof. We may assume $\|f\|=\|g\|=1$. Let $u=e(g), v=e(f)$.
Suppose first that $f \perp g$. Then $e_{ \pm}:=u \pm v$ has norm one and $\left\langle f \pm g, e_{ \pm}\right\rangle=2$. Therefore $2 \leqq\|f \pm g\| \leqq\|f\|+\|g\|=2$.

Suppose now that $\|f \pm g\|=\|f\|+\|g\|$, and set $w:=e(f+g)$. Then

$$
2=\langle f+g, w\rangle=\langle f, w\rangle+\langle g, w\rangle \leqq|\langle f, w\rangle|+|\langle g, w\rangle| \leqq\|f\|+\|g\|=2 .
$$

Thus $\langle f, w\rangle=\langle g, w\rangle=1$ and so $f, g \in P_{2}(w) U_{*}$ by [11: Prop. 1]. By the Jordan decomposition in $J B W$-algebras [13: Appendix] f and g are orthogonal states on the $J B W^{*}$-algebra $U_{2}(w)$, and hence $f \perp g$.

Corollary 2.4. For a contractive projection P on a $J B^{*}$-triple U and $f, g \in P^{\prime}\left(U^{\prime}\right)$, let $v=e(f), u=e(g), \tilde{v}=P^{\prime \prime} v, \tilde{u}=P^{\prime \prime} u$. Then $u \perp v$ in $U^{\prime \prime}$ if and only if $\tilde{u} \perp \tilde{v}$ in M $=P^{\prime \prime}\left(U^{\prime \prime}\right)$.

Proof. For any $h \in P^{\prime}\left(U^{\prime}\right) \subseteq U^{\prime},\|h\|_{M_{*}}=\|h\|_{U^{\prime}}$. By Proposition 2.2 and Lemma 2.3,

$$
\begin{aligned}
u \perp v \text { in } U^{\prime \prime} & \Leftrightarrow\|f \pm g\|_{U^{\prime}}=\|f\|_{U^{\prime}}+\|g\|_{U^{\prime}} \Leftrightarrow\|f \pm g\|_{M_{*}} \\
& =\|f\|_{M_{*}}+\|g\|_{M_{*}} \Leftrightarrow \tilde{u} \perp \tilde{v} \text { in } M . \quad \square
\end{aligned}
$$

To extend this corollary to arbitrary tripotents we need:
Lemma 2.5. Let v be a tripotent in a JBW*-triple U. Then there is a family of mutually orthogonal functionals $\left(f_{\alpha}\right) \subseteq U_{*}$ with $v=\sum_{\alpha} e\left(f_{\alpha}\right)\left(w^{*}\right.$-convergence).
Proof. Let $A=U_{2}(v)$ which is a $J B W^{*}$-algebra with unit v. Since the normal states of A are separating [13], $v=\sup \left\{e_{\phi}: \phi \in A_{*}^{+}\right\}$where e_{ϕ} is the support projection of ϕ in A. By Zorn there is an orthogonal family $\left\{e_{\phi_{z}}\right\}$ such that v $=\sum e_{\phi_{\alpha}}$ in A. Then ($e_{\phi_{\alpha}}$) are pairwise orthogonal tripotents in U and $e_{\phi_{\alpha}}=e\left(f_{\alpha}\right)$ where $f_{\alpha}=\phi_{\alpha} P_{2}(v)$.

The following lemma gives a correspondence between tripotents in M and in $U^{\prime \prime}$ which is needed in order to describe the fine structure of the range of a contractive projection. We first establish some notation.

If P is a contractive projection on a $J B^{*}$-triple U, we let

$$
\begin{aligned}
& \mathscr{C}:=\text { the } w^{*} \text {-closure of span }\left\{e(f): f \in P^{\prime}\left(U^{\prime}\right)\right\} \subseteq U^{\prime \prime}, \\
& \mathcal{O}:=\bigcap_{g \in P^{\prime}\left(U^{\prime}\right)} P_{0}(g) U^{\prime \prime} .
\end{aligned}
$$

It is obvious that \mathcal{O} is a $J B^{*}$-subtriple of $U^{\prime \prime}$ and that $\mathscr{C} \perp \mathcal{O}$. Therefore the sum $\mathscr{C}+\mathcal{O}$ is direct and the projection Q of $\mathscr{C}+\mathcal{O}$ onto \mathscr{C} is contractive.

Lemma 2.6. Let P be a contractive projection on a $J B^{*}$-triple U and let w be a tripotent of the $J B W^{*}$-triple $M=P^{\prime \prime}\left(U^{\prime \prime}\right)$. Then $Q w$ is a tripotent of $U^{\prime \prime}$. Moreover, if w_{1} and w_{2} and orthogonal tripotents of M, then $Q w_{1}$ and $Q w_{2}$ are orthogonal in $U^{\prime \prime}$.

Proof. Let us apply Lemma 2.5 to a tripotent w of the $J B W^{*}$-triple M : $=P^{\prime \prime}\left(U^{\prime \prime}\right)$. We obtain orthogonal elements $\left(f_{\alpha}\right) \subseteq P^{\prime}\left(U^{\prime}\right)$ and by Proposition 2.2 $w=\sum_{\alpha}\left(e\left(f_{\alpha}\right)+b_{\alpha}\right)\left(w^{*}\right.$-convergence in M) where, by Lemma 2.1, $b_{\alpha} \in \mathcal{O}$. By Corollary 2.4 the $e\left(f_{\alpha}\right)$ are orthogonal in $U^{\prime \prime}$ so $w=\sum_{\alpha} e\left(f_{\alpha}\right)+\sum_{\alpha} b_{\alpha}, \sum_{\alpha} e\left(f_{\alpha}\right) w^{*}$ converges to a tripotent $Q w \in \mathscr{C}$ of $U^{\prime \prime}$ and $b:=\sum_{\alpha} b_{\alpha} \in \mathcal{O}$ exists in $U^{\prime \prime}$ as a w^{*} limit. The second statement follows from Corollary 2.4 and the formula $Q w$ $=\sum_{\alpha} e\left(f_{\alpha}\right)$.

By Lemma 2.6 each tripotent of $M=P^{\prime \prime}\left(U^{\prime \prime}\right)$ lies in $\mathscr{C}+\mathcal{O}$. By the spectral theorem [11: Rk. 1.9] $M \subset \mathscr{C}+\mathcal{O}$, and Q is a homomorphism of M into $U^{\prime \prime}$, i.e., $Q\left(\{a b c\}_{M}\right)=\{Q a Q b Q c\}$. On the other hand, for $x \in P(U) \subseteq M$, and $f \in P^{\prime}\left(U^{\prime}\right)$, $f(x)=f(Q x)$, and

$$
\|x\|=\sup \left\{|\langle f, Q x\rangle|: f \in P^{\prime}\left(U^{\prime}\right),\|f\| \leqq 1\right\} \leqq\|Q x\| \leqq\|x\|
$$

Thus, by restricting Q to $P(U)$, we have:
Theorem 2. Let P be a contractive projection on a $J B^{*}$-triple U. Then the $J B^{*}$ triple $P(U)$ is isometrically isomorphic to a closed subtriple of $U^{\prime \prime}$.

Since it is elementary that the second dual of a J^{*}-algebra is a J^{*}-algebra, we obtain as a consequence of (2.2) and Theorem 2, the main result of [10]:

Corollary 2.7. Let P be a contractive projection on a J^{*}-algebra. Then the range of P is a $J B^{*}$-triple which is isometrically isomorphic to a J^{*}-algebra.

Our next result is a conditional expectation formula analogous to (2.1). Recall that the triple product $\{a b c\}$ is symmetric and linear in a and c and conjugate linear in b. The formula (2.1) was proved in [15] using holomorphic methods. Holomorphic methods are unavailable for the proof of Theorem 3 because of the conjugate linearity in b. Both formulas had been proved in [9] for J^{*}-algebras.

Theorem 3. Let P be a contractive projection on a $J B^{*}$-triple U. Then

$$
\begin{equation*}
P\{P a P b c\}=P\{P a P b P c\} \quad \text { for } a, b, c \in U \tag{2.3}
\end{equation*}
$$

Proof. There is no loss of generality in assuming that $a=b$. By approximating $P a$ by finite linear combinations of orthogonal tripotents of $M=P^{\prime \prime}\left(U^{\prime \prime}\right)$, it suffices to prove that

$$
\begin{equation*}
P^{\prime \prime}\left\{w_{1} w_{2} x\right\}=P^{\prime \prime}\left\{w_{1} w_{2} P^{\prime \prime} x\right\} \tag{2.4}
\end{equation*}
$$

whenever w_{1}, w_{2} are tripotents of M and $x \in U^{\prime \prime}$. We only need to consider two cases, namely $w_{1}=w_{2}$ and $w_{1} \perp w_{2}$.

Note first that by the Peirce rules, for any $a_{1}, a_{2} \in \mathcal{O}$,

$$
z \in U^{\prime \prime} \text { and } g \in P^{\prime}\left(U^{\prime}\right), \text { we have }\left\langle g,\left\{a_{1} a_{2} z\right\}\right\rangle=0 \text {. }
$$

Therefore $P^{\prime \prime}\left\{a_{1} a_{2} z\right\}=0$.
If $w_{1} \perp w_{2}$, then writing $w_{i}=Q w_{i}+b_{i}=v_{i}+b_{i}$ as in Lemma 2.6 implies

$$
\left\{w_{1} w_{2} x\right\}=\left\{v_{1} v_{2} x\right\}+\left\{b_{1} b_{2} x\right\}=\left\{b_{1} b_{2} x\right\} .
$$

Therefore $P^{\prime \prime}\left\{w_{1} w_{2} x\right\}=0=P^{\prime \prime}\left\{w_{1} w_{2} P^{\prime \prime} x\right\}$.
If $w_{1}=w_{2}=w$ say, write $w=Q w+b=v+b$ as in Lemma 2.6. Then $P^{\prime \prime}\{w w x\}$ $=P^{\prime \prime}\{v v x\}+P^{\prime \prime}\{b b x\}=P^{\prime \prime} D(v, v) x$ and since $D(v, v)=P_{2}(v)+\frac{1}{2} P_{1}(v)$, Theorem 1 implies

$$
P^{\prime \prime}\{w w x\}=P^{\prime \prime}\left(P_{2}(v)+\frac{1}{2} P_{1}(v)\right) x=P^{\prime \prime}\left(P_{2}(v)+\frac{1}{2} P_{1}(v)\right) P^{\prime \prime} x=P^{\prime \prime}\left\{w w P^{\prime \prime} x\right\} .
$$

3. Structure of a Bicontractive Projection

In the previous section, we showed that the $J B^{*}$-triple $P(U)$ is isomorphic to a subtriple of $U^{\prime \prime}$. Here of course P is any contractive projection on a $J B^{*}$-triple U. In this section we make the assumption that P is bicontractive, i.e., $I-P$ is also contractive.

It turns out that in this case, the isomorphism Q of $P(U)$ into $U^{\prime \prime}$ is the identity, which results in:

Proposition 3.1. Let P be a bicontractive projection on a $J B^{*}$-triple U. Then $P(U)$ is a $J B^{*}$-subtriple of U.

Proof. Since $M:=P^{\prime \prime}\left(U^{\prime \prime}\right)$ is a $J B W^{*}$-triple, it suffices to prove that $Q w=w$ for each tripotent w in M. By Lemma 2.5 and Lemma 2.6 it suffices to prove that $P^{\prime \prime} v=v$ whenever $v=e(f)$ for some $f \in P^{\prime}\left(U^{\prime}\right)$.

Let $b=P^{\prime \prime} v-v$. Then, by (2.1),

$$
P^{\prime \prime}\{b b b\}=P^{\prime \prime}\{v+b, b, v+b\}=P^{\prime \prime}\left\{P^{\prime \prime} v, b, P^{\prime \prime} v\right\}=P^{\prime \prime}\left\{P^{\prime \prime} v, P^{\prime \prime} b, P^{\prime \prime} v\right\}=0 .
$$

By induction $P^{\prime \prime}(B)=0$ where B is the $J B^{*}$-triple generated by b. It follows that $I-P^{\prime \prime}$ restricts to a bicontractive projection on $C v \oplus B$ with range B. Then, for any $z \in B$ with $\|z\| \leqq 1$, we have $\|v+z\| \leqq 1$ so that $\left\|\left(I-P^{\prime \prime}\right)(v+z)\right\| \leqq 1$, i.e., $\|-b$ $+z \| \leqq 1$. This forces $b=0$.

By Proposition 3.1, if P is bicontractive, the conditional expectation formulas (2.1) and (2.3) take on a neater form:

$$
P\{a b x\}=\{a b P x\} \quad \text { and } P\{a x b\}=\{a P x b\}
$$

for $a, b \in P(U)$ and $x \in U$.
Finally, let P be a bicontractive projection on a $J B^{*}$-triple U, and set θ $=2 \mathrm{P}-\mathrm{I}$. By the argument in [9: p.355], the two conditional expectation formulae (2.1), (2.3) and Proposition 3.1 imply that θ is a homomorphism of U.

Since a homomorphism is always contractive (as follows from $\|\{z z z\}\|=\|z\|^{3}$) we obtain

Theorem 4. Let P be a bicontractive projection on a $J B^{*}$-triple U. Then there is a surjective isometry θ on U of order 2 such that $P=\frac{1}{2}(I+\theta)$. Thus all $J B^{*}-$ triples, their duals, and all pre-duals of $J B W^{*}$-triples belong to the class \mathscr{S}.

References

1. Arazy, J., Friedman, Y.: Contractive projections in C_{1} and C_{∞}. Mem. Am. Math. Soc. 13, No. 200 (1978)
2. Barton, T., Timoney, R.: Weak *-continuity of Jordan triple products and its applications. Math. Scand. To appear
3. Bernau, S.J., Lacey, H.E.: Bicontractive projections and reordering of L_{p} spaces. Pac. J. Math. 69, 291-302 (1977)
4. Byrne, C., Sullivan, F.E.: Contractive projections with contractive complement in L_{p}-space. J. Multivariate Anal. 2, 1-13 (1972)
5. Dineen, S.: The second dual of a $J B^{*}$-triple system. In: Complex Analysis, Functional Analysis and Approximation Theory, pp. 67-69, J. Mujica (ed.). Amsterdam: Elsevier (North Holland) 1986
6. Emch, G.G., King, W.P.C.: Faithful normal states on $J B W$-algebras. Proc. Symp. Pure Math. 38, 305-307 (1982)
7. Friedman, Y., Russo, B.: Contractive projections on operator triple systems. Math. Scand. 52, 279-311 (1983)
8. Friedman, Y., Russo, B.: Algebres d'operateurs sans ordre: solution du probleme du projecteur contractif. C.R. Acad. Sci. Paris 296, 393-396 (1983)
9. Friedman, Y., Russo, B.: Conditional expectation without order. Pac. J. Math. 115, 351-360 (1984)
10. Friedman, Y., Russo, B.: Solution of the contractive projection problem. J. Funct. Anal. 60, 5679 (1985)
11. Friedman, Y., Russo, B.: Structure of the predual of a $J B W^{*}$-triple. J. Reine u. Angew. Math. 356, 67-89 (1985)
12. Friedman, Y., Russo, B.: The Gelfand-Naimark theorem for $J B^{*}$-triples. Duke Math. J. 53, 139-148 (1986)
13. Iochum, B.: Cones autopolaires et algebres de Jordan. Lecture Notes in Math. 1049. Berlin-Heidelberg-New York: Springer 1984
14. Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183, 503-529 (1983)
15. Kaup, W.: Contractive projections on Jordan C^{*}-algebras and generalizations. Math. Scand. 54, 95-100 (1984)
16. Robertson, A.G., Youngson, M.A.: Positive projections with contractive complements on Jordan algebras. J. Lond. Math. Soc. (2) 25, 365-374 (1982)
17. Størmer, E.: Positive projections with contractive complements on C^{*}-algebra. J. Lond. Math. Soc. (2) 26, 132-142 (1982)
18. Upmeier, H.: Symmetric Banach manifolds and Jordan C*-algebras. Amsterdam: Holland 1985

[^0]: * Research sponsored by N.S.F. grant DMS-8402640

