Lawrence Berkeley National Laboratory

Recent Work

Title

Modeling miscible and immiscible ferrofluid flow in Porous Media

Permalink https://escholarship.org/uc/item/98k602rf

Author Oldenburg, C.M.

Publication Date 1998-08-31

1998 Fall Meeting Search Results:

Your query was: miscible

HR:	0830h
AN:	H21B-07
TI:	Modeling Miscible and Immiscible Ferrofluid Flow in Porous Media
AU:	*Oldenburg, C M
EM:	cmoldenburg@lbl.gov
AF:	Earth Sciences Division.
• • •	Lawrence Berkeley National Laboratory.
	University of California.
	1 Cvclotron Rd., MS 90-1116.
	Berkelev. CA 94720 United States
ΔII•	Moridis G.J
FM•	Molidib, 0 0
ым. аг.	Farth Sciences Division
Ar.	Lawronge Berkeley National Laboratory
	University of California
	1 Cyclotrop Dd MS 00-1116
	Perkolov Ch 04720 United States
7.11.	Berglin S E
AU. FM.	Borgin, 5 E
DM. AF.	Forth Sciences Division
Ar.	Laurence Derkeley National Laboratory
	University of California
	1 Cyclotrop Dd MS 00-1116
	Perkolov Ch 04720 United States
	Berkerey, CA 94720 Oniced States
AB•	We are investigating the use of ferrofluids for environmental
enginee	ring applications
CIIGTIICC	Ferrofluids are suspensions of single domain magnetic particles
stabili	refibilities ale suspensions of single domain magnetic particles
Deaditi	carrier liquids. In the absence of a magnetic field aqueous
ferrofl	uids are miscible in water
ICIIOII	However, nearly nure ferrofluid can be recovered from mixtures
of wate	r and ferrofluid by the
or wate	application of a strong magnetic field Thus the miscibility
and imm	iscibility of ferrofluid is a
	function of the strength of the magnetic field and the
concent	ration of ferrofluid in the mixture
concent	This characteristic suggests the use of two different concentual
modele	for ferrofluid-water
moders	mixtures depending on the strength of the external magnetic
field a	nd forrefluid concentration:
ITEIU a	(1) single-phase with formafluid a component, or (2) two-phase
with fo	(1) Single-phase, with terroriuld a component, of (2) two-phase,
witii те	scoond liquid phase. Pegardless of which concentual model is
ugod f	Second righta phase. Regardress of which conceptual model is
useu, I	ETITITITY TION dilu
duo +o	the external magnetic
uue LO	the external maynette

field is related to the concentration of ferromagnetic particles, and this force changes drastically with distance from the magnetic source. We have developed numerical simulation capabilities for both the miscible and immiscible conceptual models. The numerical simulation capabilities are built upon the TOUGH2 simulator. TOUGH2 is based on the integral finite difference method and uses a fully coupled residual-based formulation that is efficient for strongly coupled flow and transport problems. Comparisons of simulation results using both the miscible and immiscible conceptualizations to laboratory experiments reveals the advantages and disadvantages of the two approches for different kinds of flow problems. This work was supported U.S. Department of Energy, under contract No. DE-AC03-76SF00098. DE: 1829 Groundwater hydrology 1832 Groundwater transport DE: 1899 General or miscellaneous DE: SC: Η MN: 1998 Fall Meeting

New Search

