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What Distribution Function Do LCIs Follow?

Abstract

Purpose. LCI results are often assumed to follow a log-normal distribution, while a systematic study that identifies 

the distribution function that best describes LCIs has been lacking. This paper aims to find the distribution function 

that best describes LCIs using ecoinvent version 3.1 database using a statistical approach, called overlapping 

coefficient analysis.

Methods. Monte Carlo simulation is applied to characterize the distribution of aggregate LCIs. 1,000 times of 

simulated LCI results are generated based on the unit-process level parametric uncertainty information, from each of

which 1,000 randomly chosen data points are extracted. The 1 million data points extracted undergo statistical 

analyses including Shapiro-Wilk normality test and the overlapping coefficient analysis. The overlapping coefficient 

is a measure used to determine the shared area between the distribution of the simulated LCI results and three 

possible distribution functions that can potentially be used to describe them including log-normal, gamma, and 

Weibull distributions.

Results and discussion. Shapiro-Wilk normality test for 1,000 samples shows that average p-value of log-

transformed LCI results is 0.18 at 95% confidence level, accepting the null hypothesis that LCI results are 

lognormally distributed. The overlapping coefficient analysis shows that lognormal distribution best describes the 

distribution of LCI results. The average of overlapping coefficient (OVL) for lognormal distribution is 95%, while 

that for gamma and Weibull distributions are 92% and 86%, respectively.

Conclusions. This study represents the first attempt to calculate the stochastic distributions of the aggregate LCIs 

covering the entire ecoinvent 3.1 database. This study empirically shows that LCIs of ecoinvent 3.1 database indeed 

follow a log-normal distribution. This finding can facilitate more efficient storage and use of uncertainty information

in LCIs, and can reduce the demand for computational power to run Monte Carlo simulation, which currently relies 

on unit process-level uncertainty data. 

Keywords: Life cycle inventory; uncertainty analysis; Monte Carlo simulation; probability distribution; lognormal 
distribution; Ecoinvent 3.1
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1. Introduction

Assessing uncertainty in Life Cycle Assessment (LCA) is important for understanding reliability and robustness of 

the results in the context of decision making (Finnveden et al. 2009). Traditionally, LCA studies only include 

deterministic values in results. However, a sound decision-making can benefit from the understandings of the 

stochastic distribution of LCA results (Geisler et al. 2004; Sugiyama et al. 2005). For example, when making 

comparisons among products, ignoring uncertainty may lead to a misleading decision if the distributions of the two 

LCA results significantly overlap, although their deterministic values favor one versus another (Heijungs and Kleijn 

2001). Therefore, many LCA studies have implemented uncertainty analysis for sound decision-support (Hertwich 

and Hammitt 2001; Huijbregts et al. 2003; Basson and Petrie 2007; Cellura et al. 2011; Clavreul et al. 2012;

Noshadravan et al. 2013).

The concept of uncertainty in LCA was first discussed in a workshop of Society of Environmental Toxicology and 

Chemistry (SETAC) in 1992 in the context of data quality (Fava 1994). Recognizing the significance of 

incorporating uncertainty, the LCA community formed the SETAC LCA working group on data availability and 

data quality in the early 90s. Heijungs (1996) illustrates how uncertainty is propagated from input parameters of an 

LCA model to its outputs. Weidema and Wesnæs (1996) addressed the problem of data quality concerns by 

introducing the pedigree method, which has been widely incorporated into various Life Cycle Inventory (LCI) 

databases to-date. European Network for Strategic Life-Cycle Assessment Research and Development (LCANET) 

has suggested making uncertainty quantification a top research priority. During those early years many efforts were 

devoted to the setting-up the scheme for data quality indicators. Based on such efforts, Huijbregts (1998) established

a framework for parameter uncertainty analysis. Subsequently, a framework for quantifying data quality in LCI was 

also developed 

More recently, the literature focused more on the typologies of uncertainty and the approaches to treat uncertainty

(Björklund 2002; Huijbregts 2002;  Baker and Lepech 2009). In general, two types of uncertainties have been 

distinguished: stochastic uncertainty (due to inherent randomness) and epistemic uncertainty (due to lack of 

knowledge) (Clavreul and Guyonnet 2013; Heijungs and Lenzen 2014). Among them, stochastic uncertainty has 

been the focus of many LCA studies, while the literature on epistemic uncertainty in LCA is scarce (Laner et al. 

2014; Gavankar and Suh 2014). Heijungs and Huijbregts (2004) presented a review of four general uncertainty 

treatments for stochastic uncertainty and Ciroth and colleagues (2004) proposed a method for uncertainty 

calculation. Two types of techniques have emerged: sampling method and analytical approach (Ross et al. 2002;

Heijungs and Frischknecht 2004; Clavreul and Guyonnet 2013; Jung et al. 2013). According to the survey of 24 

LCA studies that incorporated uncertainty analysis, parameter uncertainty is the most addressed one compared to 

2



model and scenario uncertainties, and sampling method is the most frequently used technique to quantify uncertainty

(Lloyd and Ries 2008).

In addition to the development of frameworks and methodologies of uncertainty assessment, a number of empirical 

studies have implemented uncertainty analysis in LCA. Geisler et al. (2004) applied uncertainty assessment to a case

study of plant-protection products using generic uncertainty factors for inventories. Huijbregts and his colleagues

(2003) performed uncertainty quantification considering parameter, scenario, and model uncertainties in a 

comparative study of building’s insulation options. Many studies included probability distribution in uncertainty 

analysis through Monte Carlo Simulation (Maurice et al. 2000; McCleese and LaPuma 2002; Sonnemann et al. 

2003; Hung and Ma 2009; Cucurachi and Heijungs 2014). 

When using Monte Carlo Simulation (MCS), the shape of distribution in the aggregate LCI results becomes an 

important issue for efficient storage of such data. In the study of waste incinerators by Sonnemann et al. (2003) the 

distribution of aggregate LCI results from Monte Carlo simulations looks like a lognormal distribution. Several 

reports suggest lognormal distribution could be an appropriate distribution type in inventory data, risk assessment, 

and impact pathway analysis because lognormal distribution can avoid negative values for emissions and impacts 

(Hofstetter 1998; Frischknecht et al. 2004). Many LCA studies following Sonnemann et al. (2003) assumed that LCI

results are lognormally distributed (Rosenbaum et al. 2004; Hong et al. 2010; Ciroth et al. 2013; Imbeault‐Tétreault 

et al. 2013; Heijungs and Lenzen 2014). However, such an assumption has not been empirically tested in the LCA 

literature. In the literature, it was shown that the product of lognormally distributed data result in a lognormal 

distribution (Limpert et al. 2001). However, there is no theoretical underpinnings on the types of distribution for the 

product of two matrices of which the data are lognormally distributed, which is basically a set of linear 

combinations of products between lognormally distributed data (Hong et al. 2010). Furthermore, LCA data exhibit 

not only lognormal distribution but also other types of distribution such as normal and triangular distributions, of 

which distribution types of the products cannot be determined analytically. 

This study aims to determine the probability distribution that best describes LCI results. The paper is the first 

attempt to generate the distribution profiles for the entire aggregate LCIs of ecoinvent version 3.1. In this study, we 

performed MCS to simulate random samples of unit process data and to estimate the distribution profiles of LCI 

results. We tested the hypothesized distributions of LCIs using the overlapping coefficient method, and identified the

most suitable distribution type to present LCIs.

In the next section, the ‘method and data’ used in this study is presented, followed by a ‘results and discussion’ 

section. In the ‘conclusions’ section, the main findings are presented and a set of recommendations are discussed.  
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2. Method and Data

2.1 Monte Carlo simulation

In this study, MCS is used to create the distribution of each aggregate LCI result from the entire ecoinvent data v3.1.

MCS is a common sampling technique used in uncertainty assessment to obtain randomly generated numbers (Lloyd

and Ries 2008). With the help of advancement in computer hardware and software, MCS of large datasets, such as 

the ecoinvent v3.1, became viable (Gentle 2013). Our approach to MCS takes several steps: (1) extract distribution 

functions of the raw data, which are the data on unit process-level intermediate flows and elementary flows, (2) 

create random samples based on the probability distributions of the raw data, and (3) iterate the process and collect 

the sample results.  Fig. 1 demonstrates the procedure for the statistical analysis used in this study. 

Each and every input parameter for calculating LCI results is considered as a stochastic parameter. For one iteration,

every unit process data in intermediate flow matrix A and elementary flow matrix B are reconstructed based on their 

distribution functions. Aggregate LCI results are calculated through the equation, M=B A−1 (Heijungs and Suh 

2002).  

This process can be summarized as in Eq.1:

M i
¿
=(B+δ Bi)(A+δ Ai)

−1                                                                                                                          (1)

δBi: randomly sampled deviation matrix for the elementary flows
B: deterministic elementary flow matrix
δAi: randomly sampled deviation matrix for the intermediate flows
A: deterministic intermediate flow matrix
i : number of simulation, i=1 ,... n(n=1,000)

The resulting M matrix has the dimension of 1,869 (elementary flows) × 11,332 (processes), and we have generated 

1,000 of them, {M 1
¿ , M 2

¿ ,... M 1000
¿

}. To ensure efficiency, we further sampled 1,000 data points from each M i
¿. To 

do so, we have extracted 1,000 randomly chosen elementary flow-process pairs, and used them to extract 1,000 data 

points for each run. The sampled 1,000 elementary flow-process pairs can be found in the SI Excel file. The number 

of data points that underwent the following statistical analyses were therefore 1,000 (elementary flow-process pairs) 

by 1,000 (runs) = 1,000,000. One whole iteration including simulation, calculation of entire LCI results, and storage 

of randomly chosen 1,000 points takes about 1 minute in Python 2.8 in Windows PC with 16 cores. The total time 

for completing 1,000 times of simulations is 1,000 times of it, which is about 1,000 minutes ≈ 17 hours. 

2.2 Distribution functions
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A probability distribution function f ( x ) is a function describing the probability distribution of a random variable X

. The most frequently used statistical distribution for the unit process level inventory in ecoinvent is lognormal 

distribution (Table 1). Normal and triangular distributions are also considered as the input parameter distributions, 

though they are less common as compared to lognormal distribution. The other two distributions similar to 

lognormal distribution are gamma and Weibull distributions, which will be used to test the distribution of aggregate 

LCI results in this study. Details about the five distributions are presented in the SI.

2.3 Statistical analysis of fitting the distribution

After the 1,000,000 samples as described in the previous section are obtained, statistical analysis is performed to 

discover the probability distribution of the aggregate LCIs of ecoinvent v3.1. A general method of finding the best 

fitting distribution involves the following three steps: (1) Plot the data in frequency histogram or density plot to 

narrow down the list of possible distribution types (Singh et al. 1997); (2) To ensure that the sample is not biased, 

run a normality test using Shapiro-Wilk normality test  following Razali and Wah (2011); (3) Generate LCIs based 

on the hypothesized distributions and test the fitness of each distribution with the original data using overlapping 

coefficient method. 

LCI results that follow a perfect lognormal distribution can be generated by applying the log-mean and log-standard-

deviation of the LCI results. To estimate Weibull and gamma distributions, shape and scale, and shape and rate of 

the LCI distribution are calculated, respectively. The coefficient of overlapping (OVL) is a measure to evaluate the 

similarity of two probability distributions, which can be used to calculate the percentage of overlapped area between

the distribution of LCI sample results and the expected distribution. The greater the value of OVL, the more similar 

of the two distributions. In equation (2), ∆ is the OVL that represents the common area under both density curves. If 

the two density functions are f(x) and g(x), then

∆ ( f , g )=∫min { f ( x ) , g (x )}dx                                                                                                                                

(2)

The OVL of the distribution estimate and the sample aggregate LCI results are calculated in R program. Detailed 

explanation of overlapping coefficient method can be found in Ridout and Linkie (2009).

2.4 Data sources

We use the unit process inventory data obtained from the ecoinvent database v3.1 (default allocation method) as our 

input data. The version 3.1 contains more than 11,000 unit processes and nearly 2,000 types of environmental 

exchanges (Weidema et al. 2013). Uncertainty information including uncertainty type and corresponding 

distribution parameters are given for each unit process data. The unit process data includes both intermediate flow 
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matrix (A) and elementary flow matrix (B) and their distributions. For unit process data in lognormal distribution, all

the geometric standard deviations of them are calculated based on their variance in pedigree uncertainty.

We also corrected a few extremely high uncertainty values in the database, which are likely to be erroneous, into 

reasonable values in order to make the A matrix invertible. For example, one of the intermediate flow in the database

follows a lognormal distribution with GSD = 4.1E+22, which is highly unlikely to be reflective of the reality. 

Furthermore, such high GSDs will lead to extreme values in the ( A+δ Ai) matrix that will make it non-invertible. 

Therefore, we adjusted the GSDs of those intermediate flows into reasonably high value (GSD = 5), which is still 

about 4 times higher than average GSD, 1.3. For consistency, we also corrected uncertainty values in the B matrix. 

Because elementary flows have relatively higher GSD values than intermediate flows in the database, we assign 

GSD = 10 to those GSDs greater than 10 in the B matrix (average GSD of the elements in B matrix is 1.8). 

3. Results and discussion

As the first step of our analysis, we constructed frequency and probability density plots of simulation results of LCIs

to see their distribution shapes. Fig. 2 presents the histograms of LCI results of 9 random elementary flow-process 

pairs. The distribution results are similar to the previous LCI simulations in the literature (Sonnemann et al. 2003;

Muller et al. 2014). The shape of the distributions in Fig. 2 can be visually identified as lognormal, gamma, or 

Weibull distributions (Holland and Fitz-Simons 1982). To further determine the type of probability distributions for 

these results, normality statistical test and overlapping coefficient method are applied.

By definition, if the logarithm of the data is in normal distribution, then the data has a lognormal distribution. The 

QQ-plots of log-transformed LCI results in the Supplementary Information indicate the majority of LCI results are 

very close to lognormal distribution. The normality of the data can also be assessed through a variety of statistical 

tests. One of the most common tests is Shapiro-Wilk normality test, which is known to be the most powerful 

approach to normality test (Razali and Wah 2011). The results of Shapiro-Wilk normality test of simulated LCI are 

provided in Table 2. 

The results of normality test for the 1,000 random elementary flow-process pairs are presented in Table 2. At 95% 

confidence level, p-value less than 0.05 means we reject the null hypothesis that the probability distribution of the 

data is normal. About 99.8% of the simulated LCI results showed p-values greater than 0.05, meaning that nearly all

of the simulated LCI results are not normally distributed. 

After we log-transformed the LCI outputs, the share of the simulated LCIs that passed the test increased to 43% 

(Table 2), indicating that they more likely to be lognormally distributed than normally distributed. At 95% 

confidence level, average p-value of log-transformed LCI results is 0.18, accepting the null hypothesis that LCI 
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results are lognormally distributed. Still 57% of the 1,000 samples of LCI results did not passed the normality test 

after log-transformation. This can be explained by the well-known observation that the power of Shapiro-Wilk test 

diminishes as the size of log-normally distributed sample increases (Yazici and Yolacan 2007). Therefore, we 

performed the Shapiro-Wilk normality test for only 100 randomly chosen samples of simulated LCIs. The results 

show that 81% of the simulated LCIs passed the normality test in this case, confirming that simulated LCIs generally

follow lognormal distribution. 

The next step of fitting the distribution is to test how well a lognormal distribution or other possible distributions 

actually fit LCI simulations. As mentioned before, according to the shape of the curves in histograms, some possible

distributions of LCI results include lognormal, gamma and Weibull distributions. The results are fitted by those 

distributions, and the coefficients of overlapping (OVL) are calculated to find the closeness of the results to those 

distributions. The three types of distributions are generated based on the corresponding distribution parameters of 

simulated LCI results as described in the ‘method and data’ section.  Detailed description about the probability 

density functions for the three distributions is included in the Supplementary information. Fig. 3 represents 9 typical 

comparisons among the results and the estimates of lognormal, gamma and Weibull distributions of random 

elementary flow-process pairs.

In the plots of the distribution comparisons (Fig. 3), lognormal distribution estimates have the larger shared area 

with simulated LCI data than gamma or Weibull distribution. Fig. 4 illustrates the distributions of OVL results from 

the LCI results verses lognormal, gamma and Weibull distributions. For example, the solid line in Fig. 4 shows the 

OVL probability density of expected lognormal distribution and LCI simulations. The average overlapping 

coefficient (OVL) for lognormal distribution and LCI result is 95%, while that for gamma and Weibull distributions 

are 92% and 86%, respectively. The result shows that LCI samples are closest to a lognormal distribution compared 

to other distribution types based on the coefficients of overlapping approach. 

Graphically and numerically, therefore, we could conclude that LCI results of ecoinvent v3.1 are lognormally 

distributed. This observation allows us to characterize the distribution of aggregate LCI results more efficiently 

using GSD and median. In other words, individual users do not need to perform a MCS using unit process-level 

data, which can be highly time-consuming given the dimensions of matrices involved. 

Conclusions

In this study, the probability distribution type for aggregate LCIs of the ecoinvent v3.1 database is identified by 

comparing the simulated LCIs to three possible distributions. The results show that lognormal distribution has the 

highest overlapping coefficient (average 95%) with simulated LCIs as compared to gamma (average 92%) or 

Weibull distribution (average 86%). Our normality test results also confirm that 43% of aggregate LCIs follow 
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lognormal distribution. Therefore, aggregate LCIs can be presented efficiently as lognormal distribution (i.e. median 

and GSD).

Though the current database has uncertainty values for unit process inventory, conducting uncertainty analysis 

starting from the unit process level is neither time-efficient nor necessary for most studies. Therefore, the 

determination of the distribution that best fits the aggregate LCIs is needed. It would help improve the efficiency of 

storing uncertainty data and performing uncertainty analysis in LCA by saving computation time and storage of LCI

data. 

By way of an example, 1,000 times of LCI simulation using unit process-level distribution information for a product

system that involves 30 inputs from ecoinvent v3.1 would take 1,000 mins for a modern, average desktop computer 

(7 core computer, 16 GB ram, 3.4 GHz). By using pre-calculated distribution function for LCIs, this can be reduced 

to 15 seconds, which is 1/4000th of the time needed for the unit process-level computation.

Our study only considers the uncertainty information from unit process data from ecoinvent 3.1, which is mostly 

based on the pedigree matrix. Pedigree method is a pragmatic approach to uncertainty in the absence of better 

uncertainty information. However, the theoretical and empirical grounds of applying pedigree approach to quantify 

uncertainty itself are questionable (Ciroth et al. 2013). The validity of pedigree approach was not within the scope of

our paper; the methodology presented in this paper can be applied to any uncertainty data regardless of how they are

derived in the first place. Though the majority of the unit process data in A matrix include uncertainty values in the 

current database, there is still part of them lacking uncertainty information. The problem is more severe when it 

comes to B matrix, where only about 60% of the data contains uncertainty values in ecoinvent v3.1. The aggregate 

LCI results that we have calculated, therefore, does not reflect all the uncertainties, because some of the uncertainty 

data, especially those in B matrix, were not considered. However, for the purpose of this study, adding additional 

uncertainty information for those that are missing in the original data is unlikely to change the conclusions of our 

study. 

Aggregate LCI uncertainty is only one step in the analysis of LCA uncertainty. Not only LCI uncertainty, but also 

the uncertainty from impact assessment should be assessed in order to achieve the overall uncertainty of the final 

LCA results. Additional research is needed to understand the uncertainties in LCA encompassing both LCI and 

LCIA.
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Supplementary information

The results of lognormal distributions of 1,000 LCIs are presented in the supporting material. Also provided in the 

supporting information are the QQ-plot of 9 random log-transformed LCI results and mathematical notations for 5 

distribution types that are relevant to our study.
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Tables and figures

Table 1 Summary of probability distribution in ecoinvent v3.1 unit process data

  A matrix B matrix
Number of columns 11,332 11,332

Number of rows 11,332 1,869

     

Lognormal distribution 94.7% 60.5%

Normal distribution 0.5% 0.07%

Triangular distribution 0.05% 0.002%

Undefined 4.8% 39.4%

Table 2 Shapiro-Wilk Normality Test results of simulated LCIs (p-value)  

Fig. 1 Monte Carlo procedure for uncertainty assessment of aggregate LCI
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Fig. 2 Histograms of 9 random points in 1,000 iterations of LCI results
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Fig. 3 Density plots of LCI data, lognormal, gamma and Weibull distribution estimates
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Fig. 4 The coefficients of overlapping (OVL) of 1,000 samples of LCI results and lognormal, gamma, and Weibull 
distribution estimates.
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