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On the Use of the 
Singular Value 
Decomposition for Text 
Retrieval * 

Parry Husbands, Horst Simon, and Chris Ding t 

1 Introduction 
The use of the Singular Value Decomposition (SVD) has been proposed for text 
retrieval in several recent works [2, 6]. This technique uses the SVD to project very 
high dimensional document and query vectors into a low dimensional space. In this 
new space it is hoped that the underlying structure of the collection is revealed thus 
enhancing retrieval performance. 

Theoretical results [9, 3] have provided some evidence for this claim and to 
some extent experiments have confirmed this. However, these studies have mostly 
used small test collections and simplified document models. In this work we investi­
gate the use of the SVD on large document collections. We show that, if interpreted 
as a mechanism for representing the terms of the collection, this technique alone is 
insufficient for dealing with the variability in term occurrence. 

Section 2 introduces the text retrieval concepts necessary for our work. A 
short·description of our experimental architecture is presented in Section 3. Section· 
4 describes how term occurrence variability affects the SVD and then shows how 
the decomposition influences retrieval performance. A possible way of improving 

*This work is supported by the Director, Office of Science, Office of Laboratory Policy and 
Infrastructure Management, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098. Computing resources were supported by the Director, Office of Advanced Scientific 
Computing Research, Division of Mathematical, hlformation, and Computational Sciences, of the 
U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Work was also supported 
by the NSFC under Project No. 19771073 and the National Science Foundation under Grant Nos. 
CCR-9619542 and CCR-9901986. 
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SVD-based techniques is presented in Section 5 and we conclude in Section 6. 

2 . Text Retrieval Concepts 
In text retrieval (see [4, 10, 1] for treatments of some of the issues), a simple way to 
represent a collection of documents is with a term-document matrix D where D( i, j) 
gives the number of occurrences of term i in document j. Queries (over the same 
set of terms) are similarly represented. The similarity between document vectors 
(the columns of term-document matrices) can be found by their inner product. This 
corresponds to determining the number of term matches (weighted by frequency) in . 
the respective documents. Another commonly used similarity measure is the cosine 
of the angle between the document vectors. This can be achieved computation­
ally by first normalising (to 1) the columns of the term-document matrices before 
computing inner products. 

2.1 Term Weighting 

In the above description frequency counts were used as the entries of the term­
document matrix. In practice these counts are typically scaled using various term 
weightings in order to cancel out the· dominating effects of frequent terms. One 
scheme that is commonly used is Inverse Document Frequency (IDF) weighting. 
This technique multiplies D( i, j) by w( i) where 

. 
1 

Number of documents 
1 w(z) = og2 ( . . + ) 

Number of documents With term z 

This scheme gives very frequent terms low weight and elevates rare (and hopefully 
more discriminating) terms. 

In the discussion to follow we will denote by "term matching" the retrieval 
. scheme where IDF weighting is used prior to document length normalisation on 
both the matrix of documents (D) and queries (Q). The matrix of scores is then 
computed by: 

Scores = D'*Q 

2.2 LSI 

Latent Semantic Indexing (LSI, [2]) attempts to project term and document vectors 
into a lower dimensional space spanned by the true "factors" of the collection. This 
uses a truncated Singular Value Decomposition (SVD) of the term-document matrix 
D. 

If D is· an m x n matrix, then the SVD of D is 

D = USV' 

where U is m x n with orthonormal columns, V is n x n with orthonormal columns, 
and S is diagonal with the main diagonal entries sorted in decreasing order. LSI 
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uses a truncated SVD of the term-document matrix where D is approximated by 

D ~ UkSkV1 

where Uk = U(:, 1: k) (the first k columns of U), Vk = V(:, 1 : k), and Sk = S(1 : 
k, 1 : k) (the upper left k by k part of S). This gives the best rank k approximation 
to the original matrix. 

Because a full SVD is not required the truncated SVD is usually computed 
by an iterative technique such as the Lanczos method. The SVDs in this report 
were computed with the PARPACK software package [8] (as well as TRLAN [12] 
for verification). See [5] for a more complete treatment of the SVD and related 
decompositions. 

The matrix of scores can then be computed by the product VkSkU~Q. Tradi­
tionally these scores are computed by first projecting the queries into k-dimensional 
space (by SkUf.Q) and then finding the cosines of the angles with Vk. In this rep­
resentation the columns of sku~ are identified as the "projected terms" and the 
columns of vk are identified as the "projected documents". 1 

Note that the new representation of term i is SkU~ei and the new representa­
tion of document j is S"k 1Uf.D(:,j) (D(:,j) denotes the jth column of matrix D). 
Note that because 

m 

D(:,j) = 2: D(i, j)ei 

the new representation of document j can be written as 

m 

L D(i, j)S; 1 U~ei. 
i=l 

Ignoring for now the diagonal scaling we see that the "projected documents" are 
simple linear combinations of the projected terms. 

2.3 Evaluation 

In response to a query, a text retrieval system returns an ordered list I of the 
documents where /(1) is the most relevant, /(2) is the second most relevant, and 
so on. The standard way to evaluate the performance of a system is to obtain 
these lists on pre-judged queries and compute precision and recall. At point i, the 
precision is the number of relevant documents in the first i elements of l (denoted 
by /(1 : i)) divided by i. This is a measure of the "accuracy" of the retrieval: the 
fraction of the documents returned that are relevant. The recall is the number of 
relevant documents in /{1 : i) divided by the total number of relevant documents. 
This is a measure of the "completeness" of the retrieval: the fraction of all relevant 
documents returned. For each query these measures are computed at each i from 
1 to the number of documents. Precision values at fixed recall levels (typically 

1 There is some disagreement about using U~, SkU~, or Sj; 1 U~ as the "projected terms". In 
this work we use SkU k primarily because the term-term similarity matrix D D' can be decomposed 
as US2 U' if D = USV'. Hence the rows of US naturally correspond to the rows of D. 
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interpolated to 0,.1,.2, ... ,1) are noted and then averaged. A sample precision/recall 
curve for the MEDLINE test set (with 8847 terms and 1033 documents) using term 
matching and LSI is shown is Figure 1. 

In precision/recall terms, higher curves are better as they indicate a higher 
percentage of relevant documents at each recall level. In the discussion that follows 
we will be evaluating various algorithms for text retrieval based on their preci­
sion/recall performance. 

2.4 LSI Performance 

Experiments with LSI have primarily used small data sets. The primary reason 
for this is the complexity (in both time and space) of computing the SVD of large, 
sparse term-document matrices. Nevertheless, early results were encouraging. Fig­
ure 1 compares LSI using with k = 100 to term matching for the small MEDLINE 
collection. Here IDF weighting was used and the term-document matrix was nor­
malized prior tp decomposition. The cosine similarity measure was used in both 
cases. 
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Figure 1. LSI vs. Term Matching on MEDLINE 

Performance on very large collections is not as good. Figure 2 shows LSI us­
ing k = 200 on TREC6 [11], a collection with 115000 terms and 528155 documents. 
Experiments with different numbers of factors up to 1000 have shown similar per­
formance. Note that the computational resources needed for using rriore than 1000 
factors make this impractical for all but the largest supercomputers. 

In the rest of this paper, we will investigate reasons for this drop in perfor-
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Figure 2. LSI vs. Term Matching on TREC6 
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mance and attempt to change the projection process in order to rectify this problem. 
A major factor will be the norm distribution of the projected terms, discussed in 
Section 4. 

3 Software Used 
For the experiments in this paper we used the MATLAB*P system [7]. MAT­
LAB*P enables users of supercomputers to transparently work on large data sets 
within Matlab. Through the use of an external server (that stores and operates 
on data) and Matlab's object oriented features we can handle data as though it 
were "in" Matlab. In this way, we were able to run our experiments in parallel on 
NERSC's Cray T3E and no changes had to be made when moving from small to 
large collections. For example, if A is the term document matrix and Q is a matrix 
of queries, to investigate LSI we can type, 

[U,S,V]=svds(A,k); 
newTerms=U*diag(S); 
newA=V'; 

% Perform a truncated SVD 
% Compute the projected terms 

newQ=newTerms'*Q; % Get new representation for queries 
% Use normcols for cosine measure and find the similarities 
Scores=normcols(newA)'*normcols(newQ); 

For the TREC6 collection, computing the SVD above for (k = 1000) takes 
approximately 104 minutes using 64 T3E processors. Computing and graphing 
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precision/recall curves from pre-judged quenes also takes place in MATLAB*P 
using simple m-file scripts. 

4 Norm Distribution of Terms and Impact on 
Retrieval Performance 

The norms (lengths) of the rows of UkSk (in addition to their directions) have 
great influence on the representations of the documents and queries. As Figure 3 
and Table 1 show, there is great variability in term norm. In this section we will 
attempt to explain this variability and its effect on retrieval performance. 

Because projected documents and queries are simple linear combinations ( c.f. 
Section 2.2) of the projected terms, terms with low norm contribute very little to 
the representations of documents and queries. The cosine similarity measure comes 
into play too late: after the documents and queries have been projected. Thus, if 
searching for a term that happens to have low norm, the documents that contain 
it will have only a small component of that term and be dominated by other terms 
making it difficult for retrieval. 
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Figure 3. Histogram of MEDLINE {k = 100) term norms. 

Currently a theoretical explanation for the norm distribution has not been 
proposed. However, we can empirically study the phenomenon in an attempt to 
determine its cause. Figure 4 plots IDF weight vs. term norm for the MEDLINE test 
set. We see that the lowest norm terms have the highest IDF weights. This implies 
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that lowest norm terms are those with the lowest frequencies in the collection. 
As an example of this, consider the TREC6 query that contains the words 

"polio, poliomyelitis, disease, world, control, post". For this query, the word "polio" 
is clearly the most important word. It has IDF weight 11.75 but norm 0.16 (k=300). 
The word "disease" has weight 6.17 and a much higher norm of 3.44. It comes as 
no surprise, therefore, that the top documents returned for this query are all about 
disease eradication efforts, but for diseases other than polio (malaria, tuberculosis, 
AIDS, etc.). 

The popular TFIDF weighting scheme does little to mitigate the effect of low 
term norm. Table 1 shows the range of norms and IDF weights for a few test 
collections. The lowest term norms are typically orders of magnitude away from 
the highest IDF weights, hinting at IDF's inadequacy. We can therefore see that 
the effect of IDF is lost after projection. 

Because the columns of Uk are scaled by the singular values, these have a 
contributing effect on term norm distribution and the projected documents. Figure 
5 plots the singular values of the MEDLINE and TREC6 collections. It is interesting 
to note that after an initial drop the singular values decay very slowly over the 
displayed range. . 

••I--
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_, ~~;:~:i~~,;:;~ ;c· .... 
. .. . . . 

.. 
Figure 4. IDF weight and term norm for the MEDLINE {left) and TREC6 

(right) collections. For TREC6 terms with norm > 20 {42 in total) were are not 
displayed. 

Collection k Min norm Max norm Min IDF Max IDF 
NPL 100 2.5e- 3 5.4e + 0 2.5 13.5 
MED,. 100 1.3e- 2 2.0e + 0 1.9 10.0 
TREC6 300 1.5e- 4 1.5e + 2 1.3 16.4 

Table 1. Term norms and IDF weights for text collections 
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Figure 5. The first 1000 singular values of the MEDLINE {left) and 
TREC6 {right} collections. 

5 A Remedy 
In this section we attempt to remedy the situation by recapturing the effectiveness 
of IDF. We do this by first re-examining the way documents are created in term 
matching. In term matching, we start with unit orthogonal vectors as terms ( ej, 

see Section 2.2) that are then scaled using term weighting. Finally, documents 
are created by frequency weighted sums of these (scaled) terms. When we use 
LSI we perform a similar procedure: we create documents by frequency weighted 
sums of the projected terms. The major difference with term matching, however, 
is that these projected terms are neither orthogonal nor scaled in proportion to 
any term weights. The non-orthogonality is desirable: the whole motivation is to 
have similar terms come closer together. However, as discussed in Section 4 the 
scaling (or norms) of the projected terms can have a negative impact on retrieval 
performance. 

One simple fix is to re-scale the projected terms so that they are all unit 
vectors. In this way we can benefit again from term weighting. This scheme, 
denoted by NLSI (for Normalised LSI), is described below: 

• Compute the SVD with k factors Uk, Sk, Vk 

• Compute the projected terms uk X sk 

• Normalise the rows of the projected terms 

• Project the documents and queries using the normalised projected terms (note 
that the document matrix already incorporates term weighting, and so we do 
not need to scale again) 

• Find the scores using the cosine similarity measure 
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Figure 6 shows the results of using this procedure on the TREC6 and NPL 
(7491 terms and 11429 documents) test sets. While not a panacea, re-scaling the 
projected terms has a positive effect on LSI performance for the NPL and TREC6 
collections. For NPL, we outperform term matching and for TREC6 we improve 
on LSI, but still fall short of term matching. For MED, performance seems to 
depend on the number of factors used as Figure 7 shows. This suggests that we 
may also need to investigate the orientations (positions in k-dimensional space) of 
the projected terms in addition to their lengths. 

6 Conclusions 
LSI attempts to project the documents of a collection into a lower dimensional space 
in order to improve retrieval performance. This work examines the properties of 
SVD-based projections in order to determine whether they agree with our intuition 

./ 
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Figure 7. Average precision forMED with projected term normalization. 
Each point represents, for each scheme and value of k, the mean of the precision at 
11 recall levels (0,0.1,0.2, ... ,1) 

about IR concepts. The lower dimensionality of the space is intuitively desirable; 
terms that are related "should" be brought closer together (the cluster hypothesis). 
However, other properties of the SVD may not match our intuition. The main 
focus of this paper is the examination of the influence of term norm on retrieval 
performance. We have seen that rare terms (with low norm) contribute very little 
to the final LSI representation of documents sometimes resulting in poor retrieva:l 
performance. 

The properties described above are by no means exhaustive. Others include 
the enforcement of orthogonality of the columns of U and v; the distribution of the 
projected documents along each axis, and the interpretability of the singular vectors 
as "topics". All of these are candidates for future exploration in an effort to fully 
understand the nature not only of LSI, but of other projection-based approaches to 
text retrieval. 
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