
Lawrence Berkeley National Laboratory
LBL Publications

Title
On the Use of the Singular Value Decomposition for Text Retrieval

Permalink
https://escholarship.org/uc/item/98m16327

Authors
Husbands, Parry
Simon, Horst
Ding, Chris

Publication Date
2000-12-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/98m16327
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

LBNL-47170

ERNEST ORLANDO LAWRENCE
NATIONAL LABORATORY BERKELEY

On the Use of the Singular Value
Decomposition for Text Retrieval

Parry Husbands, Horst Simon, and Chris Ding

National Energy Research
Scientific Computing Division

December 2000

I
!lJ z
I
I

.p.
-...I
......
-...I
lSI

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBNL-47170

On the Use of the Singular-Value Decomposition for Text Retrieval

Parry Husbands, Horst Simon, and Chris D~ng

National Energy Research Scientific Computing Division
Ernest Orlando Lawrence Berkeley National Laboratory

University of California
Berkeley, California 94 720

December 2000

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, Mathematical, Information, and Computational Sciences Division, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098.

On the Use of the
Singular Value
Decomposition for Text
Retrieval *

Parry Husbands, Horst Simon, and Chris Ding t

1 Introduction
The use of the Singular Value Decomposition (SVD) has been proposed for text
retrieval in several recent works [2, 6]. This technique uses the SVD to project very
high dimensional document and query vectors into a low dimensional space. In this
new space it is hoped that the underlying structure of the collection is revealed thus
enhancing retrieval performance.

Theoretical results [9, 3] have provided some evidence for this claim and to
some extent experiments have confirmed this. However, these studies have mostly
used small test collections and simplified document models. In this work we investi­
gate the use of the SVD on large document collections. We show that, if interpreted
as a mechanism for representing the terms of the collection, this technique alone is
insufficient for dealing with the variability in term occurrence.

Section 2 introduces the text retrieval concepts necessary for our work. A
short·description of our experimental architecture is presented in Section 3. Section·
4 describes how term occurrence variability affects the SVD and then shows how
the decomposition influences retrieval performance. A possible way of improving

*This work is supported by the Director, Office of Science, Office of Laboratory Policy and
Infrastructure Management, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098. Computing resources were supported by the Director, Office of Advanced Scientific
Computing Research, Division of Mathematical, hlformation, and Computational Sciences, of the
U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Work was also supported
by the NSFC under Project No. 19771073 and the National Science Foundation under Grant Nos.
CCR-9619542 and CCR-9901986.

tNERSC Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA,
94 720 ({prjhusbands,hdsimon,chqding}®lbl.gov)

1

2

SVD-based techniques is presented in Section 5 and we conclude in Section 6.

2 . Text Retrieval Concepts
In text retrieval (see [4, 10, 1] for treatments of some of the issues), a simple way to
represent a collection of documents is with a term-document matrix D where D(i, j)
gives the number of occurrences of term i in document j. Queries (over the same
set of terms) are similarly represented. The similarity between document vectors
(the columns of term-document matrices) can be found by their inner product. This
corresponds to determining the number of term matches (weighted by frequency) in .
the respective documents. Another commonly used similarity measure is the cosine
of the angle between the document vectors. This can be achieved computation­
ally by first normalising (to 1) the columns of the term-document matrices before
computing inner products.

2.1 Term Weighting

In the above description frequency counts were used as the entries of the term­
document matrix. In practice these counts are typically scaled using various term
weightings in order to cancel out the· dominating effects of frequent terms. One
scheme that is commonly used is Inverse Document Frequency (IDF) weighting.
This technique multiplies D(i, j) by w(i) where

.
1

Number of documents
1 w(z) = og2 (. . +)

Number of documents With term z

This scheme gives very frequent terms low weight and elevates rare (and hopefully
more discriminating) terms.

In the discussion to follow we will denote by "term matching" the retrieval
. scheme where IDF weighting is used prior to document length normalisation on
both the matrix of documents (D) and queries (Q). The matrix of scores is then
computed by:

Scores = D'*Q

2.2 LSI

Latent Semantic Indexing (LSI, [2]) attempts to project term and document vectors
into a lower dimensional space spanned by the true "factors" of the collection. This
uses a truncated Singular Value Decomposition (SVD) of the term-document matrix
D.

If D is· an m x n matrix, then the SVD of D is

D = USV'

where U is m x n with orthonormal columns, V is n x n with orthonormal columns,
and S is diagonal with the main diagonal entries sorted in decreasing order. LSI

3

uses a truncated SVD of the term-document matrix where D is approximated by

D ~ UkSkV1

where Uk = U(:, 1: k) (the first k columns of U), Vk = V(:, 1 : k), and Sk = S(1 :
k, 1 : k) (the upper left k by k part of S). This gives the best rank k approximation
to the original matrix.

Because a full SVD is not required the truncated SVD is usually computed
by an iterative technique such as the Lanczos method. The SVDs in this report
were computed with the PARPACK software package [8] (as well as TRLAN [12]
for verification). See [5] for a more complete treatment of the SVD and related
decompositions.

The matrix of scores can then be computed by the product VkSkU~Q. Tradi­
tionally these scores are computed by first projecting the queries into k-dimensional
space (by SkUf.Q) and then finding the cosines of the angles with Vk. In this rep­
resentation the columns of sku~ are identified as the "projected terms" and the
columns of vk are identified as the "projected documents". 1

Note that the new representation of term i is SkU~ei and the new representa­
tion of document j is S"k 1Uf.D(:,j) (D(:,j) denotes the jth column of matrix D).
Note that because

m

D(:,j) = 2: D(i, j)ei

the new representation of document j can be written as

m

L D(i, j)S; 1 U~ei.
i=l

Ignoring for now the diagonal scaling we see that the "projected documents" are
simple linear combinations of the projected terms.

2.3 Evaluation

In response to a query, a text retrieval system returns an ordered list I of the
documents where /(1) is the most relevant, /(2) is the second most relevant, and
so on. The standard way to evaluate the performance of a system is to obtain
these lists on pre-judged queries and compute precision and recall. At point i, the
precision is the number of relevant documents in the first i elements of l (denoted
by /(1 : i)) divided by i. This is a measure of the "accuracy" of the retrieval: the
fraction of the documents returned that are relevant. The recall is the number of
relevant documents in /{1 : i) divided by the total number of relevant documents.
This is a measure of the "completeness" of the retrieval: the fraction of all relevant
documents returned. For each query these measures are computed at each i from
1 to the number of documents. Precision values at fixed recall levels (typically

1 There is some disagreement about using U~, SkU~, or Sj; 1 U~ as the "projected terms". In
this work we use SkU k primarily because the term-term similarity matrix D D' can be decomposed
as US2 U' if D = USV'. Hence the rows of US naturally correspond to the rows of D.

4

interpolated to 0,.1,.2, ... ,1) are noted and then averaged. A sample precision/recall
curve for the MEDLINE test set (with 8847 terms and 1033 documents) using term
matching and LSI is shown is Figure 1.

In precision/recall terms, higher curves are better as they indicate a higher
percentage of relevant documents at each recall level. In the discussion that follows
we will be evaluating various algorithms for text retrieval based on their preci­
sion/recall performance.

2.4 LSI Performance

Experiments with LSI have primarily used small data sets. The primary reason
for this is the complexity (in both time and space) of computing the SVD of large,
sparse term-document matrices. Nevertheless, early results were encouraging. Fig­
ure 1 compares LSI using with k = 100 to term matching for the small MEDLINE
collection. Here IDF weighting was used and the term-document matrix was nor­
malized prior tp decomposition. The cosine similarity measure was used in both
cases.

0.9 ,--r---.---.---.,.--..,.--..,.---,---.==:;;=::;!=:::;:;==;-,
· e · Term Matching
,. LSI 1<=200

0.8

0.7

0.6

.:::::0.5
.2

-~
Q. 0.4

0.3

0.2

0.1

E>.

~.

0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9
Recall

Figure 1. LSI vs. Term Matching on MEDLINE

Performance on very large collections is not as good. Figure 2 shows LSI us­
ing k = 200 on TREC6 [11], a collection with 115000 terms and 528155 documents.
Experiments with different numbers of factors up to 1000 have shown similar per­
formance. Note that the computational resources needed for using rriore than 1000
factors make this impractical for all but the largest supercomputers.

In the rest of this paper, we will investigate reasons for this drop in perfor-

0•71-,.--..-----,-----.---.----,,--.---r. ~e ·::;T;;:=enn='ilM~atc:i:hli::ng:=il
--LSI kal!OO

0.6

0.5

0.4
c:
.2

·~
Q.

0.3

0.2

\

\

0.1 0.2

-e_

0.3 0.4

-o_

(3.

0.5 0.6
Recoil

- - e - - 9-

0.7 0.8 0.9

Figure 2. LSI vs. Term Matching on TREC6

5

mance and attempt to change the projection process in order to rectify this problem.
A major factor will be the norm distribution of the projected terms, discussed in
Section 4.

3 Software Used
For the experiments in this paper we used the MATLAB*P system [7]. MAT­
LAB*P enables users of supercomputers to transparently work on large data sets
within Matlab. Through the use of an external server (that stores and operates
on data) and Matlab's object oriented features we can handle data as though it
were "in" Matlab. In this way, we were able to run our experiments in parallel on
NERSC's Cray T3E and no changes had to be made when moving from small to
large collections. For example, if A is the term document matrix and Q is a matrix
of queries, to investigate LSI we can type,

[U,S,V]=svds(A,k);
newTerms=U*diag(S);
newA=V';

% Perform a truncated SVD
% Compute the projected terms

newQ=newTerms'*Q; % Get new representation for queries
% Use normcols for cosine measure and find the similarities
Scores=normcols(newA)'*normcols(newQ);

For the TREC6 collection, computing the SVD above for (k = 1000) takes
approximately 104 minutes using 64 T3E processors. Computing and graphing

6

precision/recall curves from pre-judged quenes also takes place in MATLAB*P
using simple m-file scripts.

4 Norm Distribution of Terms and Impact on
Retrieval Performance

The norms (lengths) of the rows of UkSk (in addition to their directions) have
great influence on the representations of the documents and queries. As Figure 3
and Table 1 show, there is great variability in term norm. In this section we will
attempt to explain this variability and its effect on retrieval performance.

Because projected documents and queries are simple linear combinations (c.f.
Section 2.2) of the projected terms, terms with low norm contribute very little to
the representations of documents and queries. The cosine similarity measure comes
into play too late: after the documents and queries have been projected. Thus, if
searching for a term that happens to have low norm, the documents that contain
it will have only a small component of that term and be dominated by other terms
making it difficult for retrieval.

4000

3500

3000

2500

2000

1500

1000

500

0.5 1.5 2 2.5

Figure 3. Histogram of MEDLINE {k = 100) term norms.

Currently a theoretical explanation for the norm distribution has not been
proposed. However, we can empirically study the phenomenon in an attempt to
determine its cause. Figure 4 plots IDF weight vs. term norm for the MEDLINE test
set. We see that the lowest norm terms have the highest IDF weights. This implies

7

that lowest norm terms are those with the lowest frequencies in the collection.
As an example of this, consider the TREC6 query that contains the words

"polio, poliomyelitis, disease, world, control, post". For this query, the word "polio"
is clearly the most important word. It has IDF weight 11.75 but norm 0.16 (k=300).
The word "disease" has weight 6.17 and a much higher norm of 3.44. It comes as
no surprise, therefore, that the top documents returned for this query are all about
disease eradication efforts, but for diseases other than polio (malaria, tuberculosis,
AIDS, etc.).

The popular TFIDF weighting scheme does little to mitigate the effect of low
term norm. Table 1 shows the range of norms and IDF weights for a few test
collections. The lowest term norms are typically orders of magnitude away from
the highest IDF weights, hinting at IDF's inadequacy. We can therefore see that
the effect of IDF is lost after projection.

Because the columns of Uk are scaled by the singular values, these have a
contributing effect on term norm distribution and the projected documents. Figure
5 plots the singular values of the MEDLINE and TREC6 collections. It is interesting
to note that after an initial drop the singular values decay very slowly over the
displayed range. .

••I--

•I--

•r-·

·.~---7.~~--~--~-.~.----~----~

_, ~~;:~:i~~,;:;~ ;c·
.

..
Figure 4. IDF weight and term norm for the MEDLINE {left) and TREC6

(right) collections. For TREC6 terms with norm > 20 {42 in total) were are not
displayed.

Collection k Min norm Max norm Min IDF Max IDF
NPL 100 2.5e- 3 5.4e + 0 2.5 13.5
MED,. 100 1.3e- 2 2.0e + 0 1.9 10.0
TREC6 300 1.5e- 4 1.5e + 2 1.3 16.4

Table 1. Term norms and IDF weights for text collections

8

35

~·

180

180

1<0

120

100

eo

=~ ----------------~
\ m ~ - - ~ - m ~ - ~ S(l,Q

Figure 5. The first 1000 singular values of the MEDLINE {left) and
TREC6 {right} collections.

5 A Remedy
In this section we attempt to remedy the situation by recapturing the effectiveness
of IDF. We do this by first re-examining the way documents are created in term
matching. In term matching, we start with unit orthogonal vectors as terms (ej,

see Section 2.2) that are then scaled using term weighting. Finally, documents
are created by frequency weighted sums of these (scaled) terms. When we use
LSI we perform a similar procedure: we create documents by frequency weighted
sums of the projected terms. The major difference with term matching, however,
is that these projected terms are neither orthogonal nor scaled in proportion to
any term weights. The non-orthogonality is desirable: the whole motivation is to
have similar terms come closer together. However, as discussed in Section 4 the
scaling (or norms) of the projected terms can have a negative impact on retrieval
performance.

One simple fix is to re-scale the projected terms so that they are all unit
vectors. In this way we can benefit again from term weighting. This scheme,
denoted by NLSI (for Normalised LSI), is described below:

• Compute the SVD with k factors Uk, Sk, Vk

• Compute the projected terms uk X sk

• Normalise the rows of the projected terms

• Project the documents and queries using the normalised projected terms (note
that the document matrix already incorporates term weighting, and so we do
not need to scale again)

• Find the scores using the cosine similarity measure

0.7,-~--.----.---.---...-~-~--;:=;FT.;::::a:;~

IG· TennMatctalng
-- LSik-300 ,.,.. NL61koo300

0.0

0.6 \

..

0.7,-~--.----.---.----r-~-~-.=:;. e~· ,.:;,m::;t.ta;E..,:;:;Ing::1]
--LSibOOO
.:..,.. NLSIWOD

0.6

' r-·'.
0.3

"·
0.2 ~o.~. ··,::l,

Figure 6. TREC6 (top) and NPL (bottom) with projected term normalization

9

Figure 6 shows the results of using this procedure on the TREC6 and NPL
(7491 terms and 11429 documents) test sets. While not a panacea, re-scaling the
projected terms has a positive effect on LSI performance for the NPL and TREC6
collections. For NPL, we outperform term matching and for TREC6 we improve
on LSI, but still fall short of term matching. For MED, performance seems to
depend on the number of factors used as Figure 7 shows. This suggests that we
may also need to investigate the orientations (positions in k-dimensional space) of
the projected terms in addition to their lengths.

6 Conclusions
LSI attempts to project the documents of a collection into a lower dimensional space
in order to improve retrieval performance. This work examines the properties of
SVD-based projections in order to determine whether they agree with our intuition

./

10

0.5

0.45

A···· .. A····

0.4

0.35

0.3

0.25

0.2

0.15

0.1
0 100 200 300 400 500 600 700 BOO 900 1000

Figure 7. Average precision forMED with projected term normalization.
Each point represents, for each scheme and value of k, the mean of the precision at
11 recall levels (0,0.1,0.2, ... ,1)

about IR concepts. The lower dimensionality of the space is intuitively desirable;
terms that are related "should" be brought closer together (the cluster hypothesis).
However, other properties of the SVD may not match our intuition. The main
focus of this paper is the examination of the influence of term norm on retrieval
performance. We have seen that rare terms (with low norm) contribute very little
to the final LSI representation of documents sometimes resulting in poor retrieva:l
performance.

The properties described above are by no means exhaustive. Others include
the enforcement of orthogonality of the columns of U and v; the distribution of the
projected documents along each axis, and the interpretability of the singular vectors
as "topics". All of these are candidates for future exploration in an effort to fully
understand the nature not only of LSI, but of other projection-based approaches to
text retrieval.

Bibliography

[1] M. W. Berry and M. Browne. Understanding Search Engines: Mathematical
Modeling and Text Retrieval. SIAM, 1999.

[2] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh­
man. Indexing by latent semantic analysis. Journal of the Society for Infor­
mation Science, 41(6):391-407, 1990.

[3] Chris H. Q. Ding. A similarity-based probability model for latent semantic
indexing. In Proceedings of the 22nd ACM/SIGIR Conference, pages 58-65,
1999.

[4] William B. Frakes and Ricardo Baeza-Yates, editors. Information Retrieval:
Data Structures and Algorithms. Prentice-Hall, 1992.

[5] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, 1993.

[6] David Hull. Improving text retrieval for the routing problem using latent
semantic indexing. In Proceedings of the 17th ACM/SIGIR Conference, pages
282-290, 1994.

[7] Parry Husbands, Charles Isbell, and Alan Edelman. MATLAB*P: A tool for
interactive supercomputing. In Proceedings of the 9th SIAM Conference on
Parallel Processing for Scientific Computing, 1999.

[8] K. J. Maschhoff and D. C. Sorensen. A portable implementation of ARPACK
for distributed memory parallel computers. In Preliminary Proceedings of the
Copper Mountain Conference on Iterative Methods, 1996.

[9] Christos Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh
Vempala. Latent semantic indexing: A probabilistic analysis. In Proceedings
of the 17th ACM Symposium on Principles of Database Systems, 1998.

[10] Gerald Salton, editor. The SMART Retrieval System: Experiments in Auto­
matic Document Processing. Prentice-Hall, 1971.

[11] E. M. Voorhees and D. K. Harman, editors. The Sixth Text Retrieval Confer­
ence. National Institute of Standards and Technology, August 1998.

11

12

[12] Keshang Wu and Horst Simon. TRLAN users guide. Technical Report LBNL-
42828, Lawrence Berkeley National Laboratory, 1999. ' ·

@IJ;j;jl§b-nJ' ~ ~j;Jiii!;jl .. §!. @lj;J:j¥111.@":'1 ~ ~

IIDm ~ ~ 0 @lj#J3iY!Wo ~~

