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Abstract
Background No platform for objective, synchronous and on-line evaluation of both intraoperative error and surgeon physiol-
ogy yet exists. Electrokardiogram (EKG) metrics have been associated with cognitive and affective features that are known 
to impact surgical performance but have not yet been analyzed in conjunction with real-time error signals using objective, 
real-time methods.
Methods EKGs and operating console point-of-views (POVs) for fifteen general surgery residents and five non-medically 
trained participants were captured during three simulated robotic-assisted surgery (RAS) procedures. Time and frequency-
domain EKG statistics were extracted from recorded EKGs. Intraoperative errors were detected from operating console POV 
videos. EKG statistics were synchronized with intraoperative error signals.
Results Relative to personalized baselines, IBI, SDNN and RMSSD decreased 0.15% (S.E. 3.603e−04; P = 3.25e−05), 3.08% 
(S.E. 1.603e−03; P < 2e−16) and 1.19% (S.E. 2.631e−03; P = 5.66e−06), respectively, during error. Relative LF RMS power 
decreased 1.44% (S.E. 2.337e−03; P = 8.38e−10), and relative HF RMS power increased 5.51% (S.E. 1.945e−03; P < 2e−16).
Conclusions Use of a novel, on-line biometric and operating room data capture and analysis platform enabled detection of 
distinct operator physiological changes during intraoperative errors. Monitoring operator EKG metrics during surgery may 
help improve patient outcomes through real-time assessments of intraoperative surgical proficiency and perceived difficulty 
as well as inform personalized surgical skills development.
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Graphical abstract
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Understanding the relationship between operator physiol-
ogy and performance during robot-assisted surgery (RAS) 
has the potential to improve operating outcomes, surgical 
education, training, and skills assessment [1–3]. Time and 
frequency-domain electrokardiogram (EKG) metrics provide 
high-temporal resolution measures of surgeon physiology 
that are robust to sensing challenges in dynamic operating 
room (OR) environments [4]. These metrics have been asso-
ciated with cognitive and affective features such as mental 
workload, acute stress, and cognitive fatigue that are known 
to impact surgical performance [5–7]. To explore the rela-
tionships between physiology and performance, subjective, 
manual ratings of surgical performance or error are then 
post-processed and correlated with physiological data and 
their implied cognitive or affective features [8–10]. Develop-
ing a more robust relationship between intraoperative EKG 
metrics and surgical performance, however, will require 
rater-independent, objective error annotation, high-tempo-
ral resolution error identification, and precise alignment of 
error markers with physiological signals. The present study 
seeks to develop on-line, automated detection and alignment 
of intraoperative errors with EKG signals to identify rela-
tionships between EKG statistics and surgical performance 
in real-time. Results suggest that operator EKG statistics 
change significantly during intraoperative errors and the 
magnitude of these changes varies with operator skill level.

Prior works examining EKG statistics in the context of 
surgical performance typically consist of retrospective analy-
ses that often aggregate physiological metrics over the entire 
surgical procedure and use manual rating schemes to char-
acterize per-procedure surgical performance. For example, 

Langelotz et al. associated perceived stress levels in surgeons 
during a 24-h shift with heart rate variability (HRV) metrics 
[11] while Bohm et al. examined HRV to measure mental 
strain in surgeons during laparoscopic surgery [7]. Joseph 
et al. used subjective measures of cognitive load to examine 
physiological differences in novice vs. expert surgeons dur-
ing emergency surgery [12]. Wetzl et al. measured HRV and 
salivary cortisol levels to determine whether physiological 
indicators of stress were predictive of surgical performance 
during simulated OR crises [13]. Amirian et al. examined 
the correlations between HRV and laparoscopic simula-
tion performance [14]. All of these studies use aggregated 
physiological statistics and subjective performance out-
comes. Higher temporal resolution experiments examining 
intraoperative, rather than per-procedure performance and 
physiology, have been published but are largely reliant on 
retrospective, rather than on-line or real-time, analysis due 
to the need for manual annotation of surgical performance 
by expert surgeons [15].

The aim of this study is to analyze intraoperative time and 
frequency domain EKG statistics of operators participating 
in RAS simulation using automated annotation of surgical 
videos for performance metrics. Changes in EKG metrics 
are compared relative to personalized baselines during peri-
ods of operator error to those captured during periods of no 
error. These differences are then analyzed to examine the 
differences in EKG statistics for high and low-performing 
operators during error. It is hypothesized that changes in 
EKG metrics relative to baseline will be significantly dif-
ferent during error compared to no error and that changes 
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in relative EKG metrics during errors would differ across 
levels of performance.

Materials and methods

Participants

Twenty participants were recruited for this study under insti-
tutional IRB approval. Of these participants, 5 were non-
medical graduate students and the remainder were general 
surgery residents at various levels of training (Table 1). All 
participants were naïve to the hypotheses of the study prior 
to participation.

Surgical system, simulation software and sensors

The da Vinci Xi robotic system console (Intuitive Surgical 
Ltd.) with the da Vinci Skills Simulator (DVSS) software 
(Surgical Science Sweden AB) was used for this study. The 
operator’s point-of-view (POV) video from the DVSS was 
recorded using a video capture card with a recording rate of 
30 frames-per-second (fps). For EKG recording, we used a 
Polar H10 (Polar Inc.) chest-strap monitor with a sampling 
rate of 130 Hertz (Hz).

Protocol

Each participant completed three simulation tasks during a 
single sitting without breaks. These tasks were completed in 
the same order for all participants. The tasks utilized were 
“Ring Rollercoaster 1,” “Ring Rollercoaster 3,” and “Wrist 
Articulation 1” in this order for all participants.

A Polar EKG monitor was fitted on each participant prior 
to beginning the first task and checked for appropriate posi-
tioning and data transfer. Four minutes of baseline EKG 
readings were then recorded as each participant sat still at 
the operating console. Following baseline recording, each 

participant was directed to start the first surgical simulation 
task and given no other instruction. After completion of the 
first task, each participant was directed to start the second 
simulation, also without additional instruction or feedback. 
After completion of the second simulation, each participant 
was directed to start the third and final simulation, also with-
out additional instruction or feedback. Following comple-
tion of the final simulation, each participant was instructed 
to complete a demographics survey after which the EKG 
monitor was removed and the system was reset for future 
participants.

Data capture, feature extraction, 
and synchronization

Both the video data stream and the EKG data stream were 
recorded on the same external computer. Operator POV 
videos were captured at a frame rate of 30 fps. Each frame 
was programmatically annotated for the presence or absence 
of error using pixel-based frequency and intensity filters, 
Hough transforms, and canny edge detection. Frame-by-
frame error annotation provided 30 Hz resolution for intra-
operative error.

EKG data was captured at a sampling rate of 130 Hz. 
Interbeat interval (IBI), standard deviation of N–N 
interval (SDNN), root-mean-square successive differ-
ences in N–N interval (RMSSD), low frequency (LF) 
signal (0.04–0.15 Hz), and high frequency (HF) signal 
(0.15–0.40 Hz) features were calculated from raw EKG 
data [16]. SDNN and RMSSD were calculated using a 30 s 
(s) sliding window [17] with a single sample stride result-
ing in trailing 30 s SDNN and RMSSD measures at 130 Hz 
resolution.

LF and HF signal components were isolated from raw 
data using Butterworth bandpass filters with cascaded sec-
ond-order sections and passbands of (0.04–0.15 Hz) and 
(0.15–0.40 Hz), respectively. LF and HF signal powers were 
calculated using root-mean-square (RMS) amplitude.

Table 1  Participant 
demographics

GS—Non-medical graduate student
PGY-1 first year general surgery resident, PGY-2 s year general surgery resident, PGY-3 third year general 
surgery resident, PGY-4 fourth year general surgery resident, IQR Interquartile range from first quartile to 
third quartile

All GS PGY-1 PGY-2 PGY-3 PGY-4

No. (%) 20 (100) 5 (25) 4 (20) 4 (20) 5 (25) 2 (10)
Sex
 Male (%) 14 (70) 5 (100) 2 (50) 2 (50) 3 (60) 2 (100)
 Female (%) 6 (30) 0 (0) 2 (50) 2 (50) 2 (40) 0 (0)

Age (years)
 Median 28.5 27.0 26.0 30.5 30.0 32.0
 IQR 26.8–31.0 26.0–28.0 26.0–26.5 29.5–32.5 29.0–30.0 31.5–32.5
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Data streams were synchronized using Lab Streaming 
Layer [18]. For simulation measures, IBI, RMSSD and 
SDNN metrics were associated with the time-matched video 
frame from the operator POV. Each video frame’s duration 
(0.033 s) was used as a non-overlapping window for LF and 
HF RMS power. Baseline IBI, RMSSD, and SDNN met-
rics were averaged over the entire 4-min baseline record-
ing. Baseline LF and HF RMS power were computed using 
the average RMS power across non-overlapping 0.033 s 
windows.

Measures

Time‑domain EKG statistics

IBI reflects the amount of time between successive 
heart beats (Fig. 1). A decrease in IBI is equivalent to 
an increase in heart rate which is a marker of increased 
sympathetic autonomic nervous system (SANS) activity 
or decreased parasympathetic autonomic nervous system 
(PANS) activity [19, 20]. Increased SANS activity has 

been associated with increased stress, mental and physi-
cal workload, and suppression of negative emotions [21].

Increases in SDNN are associated with increased vagal 
tone and therefore increased PANS activity [22]. Vagal 
tone and increased PANS activity has been correlated with 
resilience to mental, emotional, and physical stress as well 
as lower cognitive workload [23–25]. Increases in RMSSD 
are also associated with higher vagal tone and PANS activ-
ity [26].

Frequency‑domain EKG statistics

LF power (Fig. 2) is an indicator of mixed SANS and PANS 
activity as well as baroreflex activity whereas HF power 
reflects vagal tone [26]. Increases in LF are associated with 
higher mental workload [27], and decreases in HF are asso-
ciated with stress, panic, anxiety, or worry [28].

Fig. 1  Time-Domain EKG Sta-
tistics. Interbeat interval (IBI) 
measures the time (ms) between 
two heart beats as indicated 
by the N–N interval. Standard 
deviation of N–N intervals 
(SDNN) measures the standard 
deviation of N–N intervals as 
measured by IBIs over a speci-
fied window of time. RMSSD 
measures the root mean square 
of successive differences in 
N–N intervals as measured by 
successive differences in IBIs 
over a window of time



4645Surgical Endoscopy (2023) 37:4641–4650 

1 3

Statistical analyses

All participants

EKG metrics relative to individual baselines were associ-
ated with intraoperative errors using separate linear mixed 
effects models for each metric. Intraoperative errors were 
modeled as a fixed effect and individual participant variance 
as a random effect. Identically structured models were used 
for each relative frequency-domain metric (LF RMS power, 
HF RMS power).

High and low performers

All participants were assigned to either a high, middle or low 
performance group based on the sum total of their simula-
tion scores for all three tasks (Table 2). Simulation scores for 
each task are generated by the DVSS based on aggregated 
simulation statistics including time to completion, instru-
ment distance traveled, instrument errors, and manipulation 
errors. The high performance group included the top-third (7 
participants) by score. The low performance group included 
the bottom-third (7 participants) by score. The remainder of 
the participants were assigned to the middle performance 
group.

High Performer and Low Performer groups were analyzed 
separately. For each group, the association between relative 
time-domain (IBI, SDNN, RMSSD) EKG metrics and intra-
operative error were modeled using separate linear mixed 
effects models for each time-domain metric. Intraoperative 

error was modeled as a fixed effect and individual participant 
variance as a random effect. Identically structured models 
were used for each relative frequency-domain metric (LF 
RMS power, HF RMS power).

High vs. low performers

To compare High Performer and Low Performer group 
physiology during intraoperative error, separate linear mixed 
effects models were used for all relative time and frequency-
domain metrics. Group membership was modeled as a fixed 
effect using Low Performer as reference level, and we mod-
eled participant level variance as a random effect.

Multiple comparison correction

We independently tested all 5 EKG metrics (IBI, SDNN, 
RMSSD, LF RMS, HF RMS) for all 4 groupings (all 
participants, high performers, low performers, high vs. 
low performers). Our uncorrected significance level was 
P = 0.01. Given a total of 20 independent tests in this 
study, we conservatively corrected our significance level 
by a factor of 20 to P = 0.0005.

Fig. 2  Time and frequency-domain EKG statistics. After acquiring 
a raw EKG signal, the raw signal is passed through a low-frequency 
bandpass filter (0.04–0.15 Hz) to obtain the LF component of the raw 
EKG signal. To obtain the HF component of the raw EKG signal, the 

raw signal is passed through a high-frequency bandpass filter (0.15–
0.4 Hz). The RMS amplitudes of the LF and HF components are used 
to estimate the power of each component
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Results

All participants

Relative IBI for all participants decreased 0.15% (Stand-
ard Error: 3.60e−04; P = 3.25e−05) during error as com-
pared to no error. Relative SDNN decreased 3.08% (S.E.: 
1.60e−03; P < 2e−16), and relative RMSSD decreased 
1.19% (S.E.: 2.63e−03; P = 5.66e−06) during error as 
compared to no error. Relative LF RMS power increased 
1.44% (S.E.: 2.34e−03; P = 8.38e−10), and relative HF 
RMS power increased 5.51% (S.E.: 1.95e−03; P = 2e−16) 
during error as compared to no error (Table 3 and Fig. 3).

High and low performers

In the High Performer group, relative SDNN and relative 
RMSSD decreased 6.3% (S.E.: 2.846e−03, P < 2e−16) and 
5.8% (S.E.: 3.683e−03, P < 2e−16), respectively, during 
error as compared to no error while relative IBI showed 
no significant change. Relative LF and HF RMS powers 
increased 1.1% (S.E.: 2.914e−03, P = 0.000230) and 3.4% 
(S.E.: 2.241e−03, P < 2e−16), respectively, during error 
as compared to no error (Table 3 and Fig. 3).

In the Low Performer group, relative IBI decreased 
0.8% (S.E.: 6.027e−04, P < 2e−16) during error as 
compared to no error while relative SDNN and relative 
RMSSD increased 2.4% (S.E.: 3.284e−03, P = 5.28e−13) 
and 3.5% (S.E.: 5.570e−03, P = 5.24e−10), respectively. 
Relative LF and HF RMS powers increased 2.6% (S.E.: 
3.918e−03, P = 1.81e−10) and 6.6% (S.E.: 3.975e−03, 

Table 2  Group demographics

Total score represents the sum total of all scores for three simulation tasks as calculated by the DVSS. 
Instrument distance traveled is the total distance that the end effectors of both robotic arms traveled for all 
three simulations. Time to completion is the total amount of time taken to complete all three simulation 
tasks. Intraoperative error is the percentage of video frames in which the participant is making an error 
relative to the total number of video frames required for that participant to complete all three simulations

High performers Middle performers Low performers

No. (% of total) 7 (35) 6 (30) 7 (35)
Sex
 Male (%) 4 (57) 6 (100) 4 (57)
 Female (%) 3 (43) 0 (0) 3 (43)

Age (years)
 Median (IQR) 28.0 (28.0–31.0) 29.5 (26.8–32.3) 28.0 (26.5–30.0)

Level of training
 GS 1 (14) 2 (33) 2 (29)
 PGY-1 1 (14) 1 (17) 2 (29)
 PGY-2 2 (29) 0 2 (29)
 PGY-3 2 (29) 2 (33) 1 (14)
 PGY-4 1 (14) 1 (17) 0 (0)

Total score
 Average 203.6 82.0 26.3
 Median (IQR) 217.0 (146.5–256.5) 79.5 (69.8–89.3) 21.0 (11.0–41.0)

Time to completion (s)
 Average 582.6 789.5 1069.4
 Median (IQR) 601.1 (396.1–737.5) 793.8 (730.2–825.3) 1036.3 (962.9–1181.8)

Instrument distance traveled (cm)
 Average 805.0 1199.6 1392.9
 Median (IQR) 812.1 (626.3–874.6) 1235.7 (1088.1–1341.4) 1389.1 (1274.0–1523.2)

Intraoperative error (%)
 Average 15.7 26.5 10.9
 Median (IQR) 16.9 (10.7–19.8) 28.9 (22.7–31.0) 10.8 (9.5–11.5)
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P ≤ 2e−16), respectively, during error as compared to no 
error (Table 3 and Fig. 3).

High vs. low performers

Differences in changes in all EKG metrics during error for 
high performers as compared to low performers did not meet 
our corrected significance threshold of P = 0.0005 (Table 3 
and Fig. 3).

Discussion

Potential cognitive and affective determinants of surgi-
cal performance, including stress, mental workload, and 
valence, have been explored in prior research [29–31]. These 
determinants have been associated with both physiological 
and neurophysiological metrics including EKG statistics 
[32, 33]. Time and frequency-domain EKG measures are 
particularly relevant given their proposed mappings to cog-
nitive and affective features [34]. Additionally, these EKG 
measures have been associated with surgical performance 
independent of any cognitive or affective mediators [30]. 
Surgical education and surgical performance improvement 
are of paramount importance to patients, surgeons, and sur-
gical trainees. EKG-based biometrics coupled with objective 
intraoperative error detection offer a potential method for 
personalized surgical performance evaluation and targeted 
surgical skill improvement. Precision surgical skill evalua-
tion and development may drive improved patient outcomes 
through higher operator technical proficiency. Prior work, 
however, neglects the potential of on-line EKG analysis cou-
pled with automated surgical error detection to capture high 
temporal-resolution indicators of intraoperative success or 
failure.

In this study, we built and deployed a novel, on-line oper-
ating room data capture and analysis platform to test the 
hypotheses that relative time and frequency-domain EKG 
metrics of operators performing RAS would change signifi-
cantly during intraoperative error. Our results only consider 
detected errors and the EKG statistics associated with those 
detected errors. While other factors, such as stress, may also 
influence the physiological correlates of error, stress can 
occur without error and error can occur without stress. Our 
analysis does not distinguish between the potential effects of 
error on stress or the potential effects of stress on error, and 
our results suggest that all relative time-domain metrics (IBI, 
SDNN, RMSSD) and all relative frequency-domain metrics 
(LF and HF RMS power) demonstrate significant changes 
during error as compared to no error. The direction of these 
changes largely aligns with proposed associations between 
EKG statistics and cognitive or affective determinants of 
surgical performance. Decreases in relative IBI, SDNN, and 

Table 3  Changes in EKG metrics during error

All participants includes all participants in the study with changes 
in relative EKG metrics for error as compared to no error. High 
Performers includes the top-7 performers by sum total DVSS score 
across all three simulations. Low Performers includes the bottom-7 
performers by sum total DVSS score across all three simulations. 
High vs. Low Performers indicates a comparison of changes in rela-
tive EKG metrics during error for High Performers and Low Perform-
ers. Estimate represents the fixed effect coefficient

Group/Metric Estimate Standard error (SE) P

All participants
 IBI − 1.497e−03 3.603e−04 3.25e−05
 SDNN − 3.078e−02 1.603e−03  < 2e−16
 RMSSD − 1.194e−02 2.631e−03 5.66e−06
 LF RMS power 1.435e−02 2.337e−03 8.38e−10
 HF RMS power 5.509e−02 1.945e−03  < 2e−16

High performers
 IBI − 1.310e−03 7.635e−04 0.0861
 SDNN − 6.318e−02 2.846e−03  < 2e−16
 RMSSD − 5.773e−02 3.683e−03  < 2e−16
 LF RMS power 1.073e−02 2.914e−03 0.000230
 HF RMS power 3.393e−02 2.241e−03  < 2e−16

Low performers
 IBI − 7.773e−03 6.027e−04  < 2e−16
 SDNN 2.370e−02 3.284e−03 5.28e−13
 RMSSD 3.460e−02 5.570e−03 5.24e−10
 LF RMS power 2.499e−02 3.918e−03 1.81e−10
 HF RMS power 6.608e−02 3.975e−03  < 2e−16

High vs. low performers
 IBI 0.06730 0.01742 0.00226
 SDNN − 0.2027 0.1767 0.2740
 RMSSD − 0.2709 0.2566 0.3120
 LF RMS power − 0.2474 0.1992 0.238
 HF RMS power − 0.23411 0.09878 0.0354

Fig. 3  Results for all analyses across all EKG metrics. *P < 0.0005
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RMSSD, and increases in relative LF RMS power during 
intraoperative error may reflect an increase in operator stress 
and mental workload as well as a more negative affective 
state. The increase in relative HF RMS power during intra-
operative error, however, may suggest a decrease in stress, 
panic, anxiety or worry [35].

For high performers, decreases in relative SDNN and 
RMSSD associated with intraoperative error are possibly 
reflective of greater stress, mental workload and negative 
valence. However, increases in relative LF RMS power, 
indicative of higher stress and workload, were of smaller 
magnitude than increases in relative HF RMS power. HF 
RMS power is reported to be indicative of lower anxiety or 
worry [35]. For Low Performers, only relative IBI decreased 
during error while all other metrics increased. For both 
groups, the direction of changes in relative IBI, LF RMS 
power and HF RMS power were similar, potentially indicat-
ing common physiological associations with intraoperative 
error regardless of performance status. However, the mag-
nitude of these changes was not identical.

In the previous group analyses, EKG statistics during 
error were compared to those during no error, and the dif-
ferences between error and no error were of sufficient mag-
nitude to be detected. Examination of the differences in rela-
tive IBI and HF RMS during error for high as compared to 
would benefit from further investigation in a higher-powered 
group comparison. Given the relatively small magnitude 
of differences in the error compared to no error analyses, 
detecting even smaller magnitude differences in error com-
pared to error across two groups would benefit from a larger 
cohort size.

There are several limitations of this study. First, the 
number of participants was neither large nor evenly dis-
tributed across skill level, potentially skewing cohort anal-
ysis. Second, the use of trailing 30 s windows for SDNN 
and RMSSD statistics implies that the metrics associ-
ated with a particular time point reflect cardiac activity 
for the entire 30 s up to and including that time point. 
Third, using bandpass filters and RMS power calculations 
for frame-by-frame LF and HF power measurements are 
accompanied by a tradeoff in the settling time of the filter. 
Fourth, we do not exclude individuals on chronotropic or 
inotropic medications nor do we correct for the effect of 
these medications. While this may impact our results, all 
reported EKG statistics are analyzed relative to each indi-
vidual participant's personalized baseline EKG. As these 
baseline characteristics are captured immediately prior to 
the simulation tasks, the effects of medication are likely 
to be consistent across both baseline and simulation EKG 
recording periods. Finally, these results may be affected by 
other variables such as movement at the console and time 
at the console. Based on our observations, low performers 

tended to move and shift body positions more frequently 
than high performers, potentially indicative of discomfort 
at the console. Low performers also required more time to 
complete the simulation tasks.

Despite these limitations, this study shows that a novel, 
on-line operating room data capture and analysis platform 
can enable the detection of distinct physiological changes 
associated with intraoperative error. These changes are 
largely consistent with known relationships between EKG 
metrics and cognitive or affective factors that impact per-
formance [36]. While this preliminary study only proposes 
potential biomarkers of intraoperative error, these biomet-
ric error signals have the potential to improve our under-
standing of surgical proficiency and surgical training. 
Using EKG-based metrics of error, challenge, or difficulty 
could help identify intraoperative tasks and procedures 
that pose significant challenges to operators and guide per-
sonalized training on an individual-by-individual basis. 
Coupling these EKG-based metrics with other markers of 
error, challenge or difficulty such as electroencephalogram 
(EEG) statistics, eye-tracking metrics, and galvanic skin 
response could provide a multidimensional approach to 
understanding, predicting, and improving surgical perfor-
mance. This data highlights the possibility of using objec-
tive biometric data capture and error detection to monitor 
intraoperative surgical proficiency and perceived intra-
operative difficulty in order to improve patient outcomes 
as well as potentially guide more precise, personalized 
RAS training curriculums. Future studies may focus on 
use of real-time error detection and physiological analysis 
to reduce error commission and mitigate negative cogni-
tive or affective states through coaching or other skills 
development tools in an individualized surgical learning 
curriculum.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00464- 023- 09957-0.
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