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Abstract

Controller Synthesis and Vibration Suppression Techniques for Industrial Robotic
Manipulators with Joint Flexibilities

by

Michael L Chan

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

This dissertation focuses on the design of feedback and feedforward controllers for direct
application to industrial manipulators. In this dissertation, an iterative online controller
tuning algorithm based on nonlinear programming concepts and extremum seeking control
is introduced and applied to a 6 degree of freedom FANUC M16iB industrial robot. Details
regarding stepsize selection and gradient estimation for the proposed controller tuning is
also discussed. Experimental results show that the proposed controller tuning method is
able to improve robot performance by successively reducing a cost function. Additionally, a
controller tuning framework based off the disturbance observer is also introduced for stable
controller tuning. The framework is shown to be robustly stable under most practical tuning
applications. The assumptions and constraints of the proposed framework is also detailed.
The framework is experimentally verified by sweeping through a variety of controller gains
that satisfy the framework conditions. Finally, an input shaping technique for application
to industrial robots with elastic joints is also proposed in this dissertation. The approach is
simple to apply and can be easily integrated to existing trajectory generation techniques for
industrial robots. Experimental results show substantial joint vibration suppression during
transient motions.
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Chapter 1

Introduction

1.1 Background

Feedback control is often an under appreciated concept. Most human beings, given their
sensitive, yet robust, senses of vision, hearing, touch are capable of doing many miraculous
feats. Yet even the simplest of feats, such as walking or catching a ball, would not be
possible if it was not for the constant visual, audio, and tactile feedback the human body
provides to the brain. The brain can process this information which then allows the human
to react and, in some cases, anticipate events. This latter concept is called feedforward
control by people in the Controls community. Yet despite all the advantages that feedback
and feedforward control provides, humanity rarely acknowledges these concepts outside of
the Controls community.

Similarly, industrial automation is also an under appreciated field in robotics. Robotics
has always stemmed from humanity’s desire to create life. Even the term ’robot’ was first
coined by the Russian science fiction writer Isaac Asimov when he was envisioning a world
with robots that were human-like in appearance. As a result, the general public tends to
associate robots with androids and other human-like robots. But in reality, the vast majority
of the robots today are fixed industrial machines that are not human-like in appearance at
all. But more importantly, these industrial machines play a crucial role in the advancement
of a nation’s manufacturing capabilities.

This dissertation in return focuses on these two under appreciated concepts. More specif-
ically, this dissertation will talk about how fundamental principles such as feedback and
feedforward control can be further refined to improve the performance of industrial robots.

1.2 Motivation and Contribution

In today’s competitive manufacturing environment, industrial robots are pushed to operate
near their designed hardware and software limitations. Even so, manufacturers still demand
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more performance from their machinery. Rather than redesigning the hardware for these
industrial robots, which is a costly strategy, an alternative is to design better software algo-
rithms. This dissertation focuses primarily on the software aspect by introducing intelligent
control algorithms that can improve the performance of industrial manipulators.

This dissertation can be roughly divided into two sections. The first two-thirds of the
dissertation focuses on feedback techniques while the last third of the dissertation will em-
phasize feedforward techniques. In the feedback portion, the dissertation presents a novel
application of extremum seeking control (ESC) for use with industrial robotics as well as
present a novel platform based off the disturbance observer (DOB) which can be applied
for gain tuning applications. In the feedforward portion, a simple input shaping method
is demonstrated to work efficiently at reducing transient vibrations in flexible joint robots.
While the feedback and feedforward techniques in this dissertation can be used in unison,
they are implemented individually in this dissertation for the purpose of demonstrating the
effectiveness of each approach.

Sensor-based Feedback Controller Tuning of Robot Manipulators
by Nonlinear Programming

In current practice, whenever a new robot model is introduced, experienced engineers have
to spend a long period of time to tune and validate the feedback and feedforward controller
gains for the robot. This process is performed on a single robot and then applied to all
other robots of the same model. As a result, these tuned gains have to be robust to both
manufacturing uncertainties and different robot applications. Furthermore, robot dynamics
are highly nonlinear and can vary substantially from one configuration to another. While it
is possible to use a fixed set of gains to stabilize a robot for its entire workspace, it is highly
unlikely that these controller gains can guarantee good performance for any given trajectory
in the workspace. Hence in an industrial setting, the ability to quickly optimize the robot
controller for any particular task can likely improve robot performance. Manually retuning
robots can be a time consuming and expensive process. Hence it is desirable to have an
algorithm that can automatically tune robot controllers based on a user specified trajectory.
Chapter 3 focuses on the development of an automated gain tuning algorithm for industrial
manipulators.

A Disturbance Observer Framework for Stable Feedback
Controller Tuning

Feedback control is essential for good performance in almost any electro mechanical system.
Consequently, a great deal of effort is put into properly designing feedback controllers. The
most practical controller used in industrial robots today is still the proportional plus integral
plus derivative (PID) controller. The PID controller has many practical properties that make
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them easy to tune and use, namely, the controller parameters have very intuitive physical
implications which makes manual tuning feasible. As computational technologies improve,
however, it may be possible to take advantage of more advanced higher order controllers to
further improve robot performance. Tuning these higher order controllers, however, may not
be as intuitive as tuning a PID controller. An alternative method is to empirically tune these
higher order controllers using a nonlinear programming technique. This approach, however,
may run into stability issues as higher order controllers are more likely to excite a system’s
higher order dynamics. Chapter 4 focuses on developing a gain tuning framework that is
robustly closed loop stable for controller tuning applications.

An Input Shaping Method to Suppress Transient Vibrations In
Flexible Joint Robotic Manipulators

Actuators found in mechanical systems have to satisfy a variety of seemingly conflicting
requirements. Often these actuators are required to have high positioning accuracy, good
repeatability, and high torque capacity while simultaneously required to be compact, light,
and competitively priced. To meet these demands, engineers decide to introduce various gear
reduction mechanisms (also called transmission) between the motor output and the actual
output shaft of the actuator. This way, a light and high speed motor with low torque capacity
and moderate positioning accuracy can be used to transmit large amounts of torque with high
positioning accuracy. Systems that utilize this actuator and transmission setup are called
indirect drive mechanisms. Although they have many benefits, indirect drive mechanisms
also create interesting problems for control engineers. Namely, the transmission mechanism
has its own dynamic properties. For a variety of reasons, the sensors used for motor feedback
are usually placed prior to the transmission mechanism, hence a good feedback controller
that provides excellent motor performance cannot guarantee good performance of the out-
put shaft of the actuator. If the transmission dynamics are known, however, feedforward
techniques can be used to shape the desired motor reference trajectory to pre-compensate
for the transmission dynamics. Chapter 5 focuses on developing an input shaping approach
to compensate for the dynamics of a particular family of transmission mechanisms, namely
strain wave gearing mechanisms.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows: Chapter 2 will introduce basic
robotics and system modeling ideas used throughout this dissertation. Additionally, the
chapter will also detail the experimental setup used to verify the developed algorithms in
this dissertation. Chapter 3 will introduce an automatic controller tuning algorithm based
on nonlinear programming. This chapter will also provide methods of selecting important
parameters such as initial controller gains and stepsizes. Chapter 4 will introduce a frame-
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work based on the disturbance observer (DOB) concept that can be used for tuning higher
order controllers. The chapter will also prove that the framework is robustly stable given a
few mild constraints. Chapter 5 will introduce an input shaping technique to compensate
for transmission dynamics. A simple procedure for empirically identifying the transmission
parameters will also be introduced. And finally, the main results and contributions of this
dissertation will be highlighted in Chapter 6. Additionally, this chapter will also discuss
possible extensions for the work presented in this dissertation.
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Chapter 2

System Modeling, Hardware
Description, and System Identification

2.1 Introduction

This chapter summarizes all the modeling, hardware, and system identification results neces-
sary to understand the remainder of this dissertation. Section 2.2 motivates and introduces
the two mass model used for studying indirect drive mechanisms. In particular, this section
will also highlight the modeling simplifications used in this dissertation due to the nature of
industrial robotic manipulators. Section 2.3 briefly introduces the dynamics for a 6 degree
of freedom (DOF) robotic manipulator. Section 2.4 talks about both the physical hardware
and simulation software that is used to verify the theory presented in the later chapters
of this dissertation. Section 2.5 highlights the system identification process used to obtain
empirical frequency response data for the physical hardware. And finally, the contents of
this chapter will be summarized in section 2.6.

2.2 Two Mass Model

Given the physical nature of indirect drive mechanisms, many researchers chose to use a
two inertia model to physically model the behavior of the indirect drive mechanism [39,
16, 23]. This two inertial model is shown in Fig. 2.1. J∗ and θ∗ denote the inertia and
displacement. The subscripts m and l denote the motor side and load side parameters
respectively. In the proposed model, the torque input, u, is applied on the motor side.
Furthermore, motor side viscous damping is captured by the viscous damping coefficient,
dm, whereas the other motor side nonlinear forces and damping effects are denoted generally
as fnl,m. The transmission is modeled as a combination of a linear spring and viscous damper,
whose coefficients are denoted by kj and dj respectively, as well as nonlinear joint friction
forces and joint transmission error denoted by fnl,j and θ̃ respectively. Also note that the
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transmission mechanism also reduces the displacement from the motor side to load side by
a factor of N . The transmission error, θ̃ is defined as the deviation between the expected
output position and the actual output position. More specifically, it is given as:

θ̃ =
θm
N

− θl (2.1)

The behavior of the transmission error depends heavily on the transmission mechanism itself.
The transmission error will be addressed more specifically later in this chapter. Looking back
at the two inertial model, performing a torque balance on the two inertia elements in Fig. 2.1
yields:

Jmθ̈m = −dmθ̇m − kj
N

(
θm
N

− θl − θ̃
)
− dj

N

(
θ̇m
N

− θ̇l − ˙̃θ
)
− fnl,m − fnl,j + u

Jlθ̈l = −kj

(
θl − θm

N
+ θ̃

)
− dj

(
θ̇l − θ̇m

N
+ ˙̃θ

) (2.2)

Note that the motor side and load side displacements, velocities, and accelerations are cou-
pled together in Eq. (2.2). Furthermore, if the nonlinear friction effects and transmission
error are ignored, the ideal relationship between the motor input and motor position as well
as load position in the Laplace domain is given by:

Gmu(s) =
θm(s)

u(s)
=

Jls
2 + djs+ kj

JmJls4 + Jds3 + Jks2 + kjdms
(2.3)

Glu(s) =
θl(s)

u(s)
=

djs+ kj
N (JmJls4 + Jds3 + Jks2 + kjdms)

(2.4)

where:

Jd = Jmdj + Jl

(
dj
N2

+ dm

)
(2.5)

Jk = Jmkj +
Jlkj
N2

+ djdm (2.6)

Other relevant transfer function variants for the two inertia system are:

Gdmu(s) =
θ̇m(s)

u(s)
=

Jls
2 + djs+ kj

JmJls3 + Jds2 + Jks+ kjdm
(2.7)

Gddlu(s) =
θ̈l(s)

u(s)
=

djs
2 + kjs

N (JmJls3 + Jds2 + Jks+ kjdm)
(2.8)

Transmissions for Industrial Manipulators

Flexible gear reducers are commonly used in industrial robots due to their high gear reduc-
tion ratios [33]. Among the different types of flexible gear reducers, the discussion in this



7

u θ
m

J
m

d
m

f
nl,m

d
j

k
j

N , θ̃, f
nl,j

J
l

θ
l

���������

	�
�������

Figure 2.1: Two inertial model of an indirect drive mechanism

subsection will focus harmonic drives since variants of their transmission properties can be
found in many of the other reducers used in industrial robots. The main components of
a harmonic drive are identified in Fig. 2.2 [21]. The wave generator is a rigid core having
an slightly elliptical shape. The wave generator fits inside the flexspline, which is usually a
thin-walled hollow cup. The teeth of the flexspline are on the outside surface of the hollow
cup and the output of the harmonic drive is also attached to the flexspline. The flexspline
fits inside the circular spline. The circular spline is a rigid and fixed component that has
teeth machined along the inside surface. Usually, there are two fewer teeth along the outside
of the flexspline as there are along the inside of the circular spline. This difference in teeth
causes the flexspline to essentially rotate by the difference in teeth for every full rotation
of the wave generator. This design allow harmonic drives to efficiently achieve large gear
reduction ratios. Additionally, the inherent multiple-tooth contact design in harmonic drives
also allow them to withstand high amounts of torque while simultaneously eliminating all
transmission backlash [38]. Additional advantageous properties of harmonic drives include:
lightweight and compact design, high efficiency, and backdrivability.

The harmonic drive, however, is not without its disadvantages. The use of the flexspline
in the harmonic drive instills a large amount of flexibility in the drive. Additionally the
concentric nature of the harmonic drive assembly tend to give rise to kinematic errors due
to manufacturing and alignment inaccuracies. Studies show that these kinematic errors
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Figure 2.2: Harmonic drive components

occur dominantly at a frequency of twice the wave generator rotation velocity. The root
cause of these kinematic errors are caused by manufacturing and assembly imperfections in
the harmonic drive. More specifically, the tooth placement errors along the flexspline and
circular spline as well as misalignment of the three major harmonic drive components [38].
In this dissertation, the kinematic errors caused by component misalignment, manufacturing
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imperfections, and nonlinear flexspline flexibilities are denoted as the transmission error θ̃.
Additionally the nonlinear friction effect caused by the meshing of the flexspline and circular
spline is denoted by fnl,j whereas the linear flexibility and damping effects are characterized
by the linear joint stiffness and damping coefficients kj and dj respectively.

Much work has been done on trying to compensate for the transmission error and non-
linear friction effects found in harmonic drives [20, 17, 8]. As a result, the work in this
dissertation will not focus on the transmission error or nonlinear friction effects, but instead
will focus primarily on compensating for the linear flexibilities and damping. For all inten-
sive purposes, the nonlinear friction effects and transmission error will be treated as process
noise or disturbances in this dissertation.

2.3 Multiple Degree of Freedom Robot Model

This dissertation will only consider serial industrial manipulators. The dynamics of a n
DOF serial industrial manipulator with joint flexibilities can be derived through Lagrangian
dynamics and can be expressed generally as:

Ml(ql)q̈l + C(ql, q̇l)q̇l +G(ql) +Dlq̇l + Flcsgn(q̇l) + J(ql)
Tfext

= Kj (N
−1qm − ql − q̃) +Dj

(
N−1q̇m − q̇l − ˙̃q

) (2.9)

Mmq̈m +Dmq̇m + Fmcsgn(q̇m) =
τm −N−1 [Kj (N

−1qm − ql − q̃) +Dj (N
−1q̇m − q̇l − q̃)]

(2.10)

where ql ∈ Rn and qm ∈ Rn denote the load side and motor side position vectors where the
ith element denote the position at the ith joint. q̃ ∈ Rn is the vector of transmission errors
caused by flexible joint reducers. M∗ ∈ Rn×n, D∗ ∈ Rn×n, and F∗c ∈ Rn×n are the inertia,
viscous damping, and coulomb friction matrices respectively. Again the subscripts l and m
denote load side and motor side respectively. C(ql, q̇l) ∈ Rn×n is the Coriolis and centrifugal
force matrix, G(ql) ∈ Rn is the gravity torque vector, N ∈ Rn×n is the matrix containing the
gear reduction ratios of each reducer, and J(ql) ∈ R6×n is the Jacobian matrix which maps
the load side joint space to the end-effector Cartesian space. Kj ∈ Rn×n and Dj ∈ Rn×n

are the joint linear stiffness and viscous damping matrices respectively. Vectors τ ∈ Rn and
fext ∈ R6 denote the motor input torques and external forces/torques acting on the robot
end-effector in the Cartesian coordinate system. Note that Mm, Kj, Dj, Dl, Dm, Flc, Fmc,
and N are all diagonal matrices.

In the case where the joints are rigid, Eqs. (2.9-2.10) can be combined and rewritten as:

M(q)q̈ + C(q, q̇)q̇ +G(q) +Dq̇ + Fcsgn(q̇) + J(q)Tfext = τ (2.11)

where q = ql, τ = Nτm, M(q) = Ml(ql) + N2Mm, C(q, q̇) = C(ql, q̇l), D = Dl + N2Dm,
Fc = Flc +NFmc, and J(q) = J(ql).
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Decentralized Analysis

In general, it is difficult to analyze and design control algorithms for the coupled multiple-
input-multiple-output (MIMO) system described by Eq. (2.9-2.10). More specifically, the
inertia, gravity, external, Coriolis, and centrifugal forces cause the behavior at each individual
joint to be coupled with each other. This coupling is characterized by the off diagonal terms
in the corresponding matrices. In many cases, however, the diagonal terms in these matrices
are substantially larger than those in the off diagonal terms. While the coupling effects are
non-negligible, this dissertation will mainly treat the analysis of each joint in a multiple
degree of freedom robot as essentially decoupled. The coupling effects will be regarded as
regular process noise. Although this is a nontrivial assumption, the developed algorithms in
this dissertation will be experimentally validated. The experimental results will shed light
on the limitations caused by this assumption.

2.4 Hardware and Software Setup

As mentioned in the previous section, all the developed algorithms in this dissertation are
experimentally verified. The FANUC M-16iB [14] industrial manipulator, provided to the
University of California, Berkeley, by FANUC Corporation, is used for all the experimental
verifications in this dissertation. This setup is shown in Fig. 2.3. The FANUC M-16iB is a
standard 6-DOF serial industrial manipulator with a 20 kg payload capacity. The naming
and positive rotation conventions for each joint of the FANUC M-16iB robot is depicted in
Fig. 2.4. Each joint of the robot uses a gear reduction mechanism. Due to the high inertia
loads on the first three joints (J1-J3), the joint flexibilities in these joints are dominant
compared to those on the last three joints (J4-J6). As a result, this dissertation will focus
on the joint flexibilities of J1-J3 only whereas J4-J6 are assumed to be rigid. The first three
joints of the robot uses Rotor-Vector (RV) reducers [34]. RV reducers contains elements of
both a planetary gearbox and a harmonic drive. The RV reducer design allows it to keep
most of the strengths and weakness found in a harmonic drive. One noticeable difference is
that the dominant kinematic error in RV reducers occurs at a frequency that is eight times
that of the wave generator rotation frequency.

For sensing, the FANUC robot is equipped with motor side encoders at each joint. These
encoders are standard on the commercially available M-16iB and provide the motor position
and velocity information for feedback. In addition to the motor encoders, an inertia sensor
(Analog Devices, ADIS16400) [1] has also been attached to the end-effector to provide three
dimensional end-effector angular velocity and translational acceleration measurements. The
three dimensional end-effector position can also be measured with the CompuGauge 3D [12].
If direct contact to the robot end-effector is not desirable, then a Position Sensitive Detector
(PSD) [11], also referred to as the PSD camera, can be utilized to obtain the end-effector
position measurements. In this dissertation, only the motor encoders are used for real-time
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Figure 2.3: FANUC M16iB industrial manipulator

feedback. The other load side sensors (i.e. inertial sensor, CompuGauge 3D, PSD camera)
are only used for performance evaluation of the algorithms proposed in this dissertation.

The hardware configuration for the FANUC robot is depicted in Fig. 2.5. While the com-
mercial M-16iB robot controller is capable of moving the robot along any desired trajectory,
it does not allow for flexibilities such as adjusting the controller parameters or algorithm.
As a result, MATLAB [28] is used to design the control algorithms and a digital to analog
servo adaptor (DSA) is used to transfer the information to the robot. By using the DSA,
the control signal (i.e. motor torque command) is generated by the target computer and is
then converted to output current by the robot controller. Although the robot controller is
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Figure 2.4: Joint naming and rotating conventions for the FANUC M16iB robot

not directly generating signals to control the robot, it is still used to amplify the output from
the target computer. In addition, the robot controller is also used to activate the mechanical
motor brakes in the robot. Note that the brake function is turned on and off directly with
a digital input/output (DIO) board installed on the target computer.

In operating real-time systems such as the FANUC robot using MATLAB, it is critical
that computational hardware performance runs as quickly and as consistently as possible.
More specifically, it is important that the hardware performance of the robot is not limited
by computational limitations from the computer used for control. Since MATLAB runs on a
Windows platform, it is not guaranteed that the real-time computation will not be hindered
by virus scanning software and other event logging processes. To overcome this problem,
two computers are used for the real-time control system setup. A host computer running
Windows and MATLAB is used to design and implement the algorithms in this disserta-
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Figure 2.5: FANUC M16iB robot system setup scheme

tion. Once the design and coding for the algorithms are complete on the host computer, the
information is then compiled and loaded onto the second computer via an ethernet connec-
tion. This second computer, also called the target computer, runs the MATLAB XPCtarget
environment. The XPCtarget environment allows the target computer to execute the com-
piled information from the host computer. Once the target computer begins running the
control algorithm, the connection between the two computers is automatically disengaged,
thus allowing the target computer to run without any interferences from the host computer.
The current minimum sampling time for the XPCtarget is 0.5 msec. Additionally, the robot
encoder information is accessible by the target computer through a high-speed serial bus
(HSSB) interface while the inertia sensor information is acquired through an National In-
struments (NI) FPGA board.

In addition to the aforementioned hardware a simulator is also available for the FANUC
M-16iB robot. The simulator is mainly constructed in the MATLAB Simulink environment
and utilizes both the SimMechanics and Robotics toolbox [13]. This simulator is capable of
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simulating the dynamic behaviors of the robot. Preliminary studies show that the behavior
of the physical robot system can be captured by the robot simulator model. As a result, the
robot simulator is used to test the proposed algorithms in this dissertation prior to actual
implementation on the FANUC M-16iB robot.

Controller Structure

By default, the FANUC M-16iB robot uses a decentralized PID feedback controller scheme.
The block diagram for a single joint of the robot is depicted in Fig. 2.6. The controller consists
of two loops, an inner velocity feedback loop and an outer position feedback loop. The inner
loop is controlled with a Proportional plus Integral (PI) controller with parameters Kv and
Ki respectively whereas the outer loop is controlled with a simple Proportional controller
with parameter Kp [15]. Combining the two loops together, the resulting feedback controller
is a Proportional-Integral-Derivative (PID) controller whose transfer function from the motor
position error, e = θm,ref − θm, to the feedback torque, ufb, is given by:

C(s) =
ufb(s)

e(s)
=

Kvs
2 + (KpKv +Ki) s+KpKi

s
(2.12)

The feedforward torque, uff is computed using a recursive algorithm that solves the Newton-
Euler equations for the robot [35] and is represented simply as just F2 block in Fig. 2.6. Note
that the Newton-Euler equations are solved in a centralized manner, hence all the reference
joint trajectories are needed. This aspect is not depicted in Fig. 2.6. The algorithm is
implemented via the robotics toolbox mentioned earlier. The feedforward torque calculation
requires the desired robot joint trajectory to be entirely known in advance. Although the
algorithm for computing the feedforward torque is recursive, it is extremely computationally
intensive and cannot be computed in real time. The computed feedforward torque using this
approach, however, is extremely accurate and provides the majority of the performance for
the robot manipulator. The primary role of the feedback controller then is to compensate for
any residual errors that is not captured by the recursive Newton-Euler (RNE) feedforward
torque. Since most of the time, it is more convenient to define the robot’s trajectory from
the load side perspective, the feedforward block F1 is a conversion between the desired load
side trajectory, θl,ref , to the desired motor side trajectory, θm,ref . In many cases, F2 is simply
a multiplication by the respective gear ratio N .

2.5 System Identification

As mentioned in Section 2.3, each joint of the 6 DOF industrial robot will be analyzed in
a decoupled manner. In this decoupled analysis, a single two inertia model as described in
Fig. 2.1 is used to represent the dynamic behavior of each joint. As with all models, the
two inertia model is a simplified model that cannot capture all the dynamics of the physical
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Figure 2.6: Decentralized feedback controller scheme

system. Hence a system identification on the physical FANUC M-16iB robot is performed to
measure the actual dynamic behavior of the robot. This data is useful for both identifying
some of the model parameters and also learning the bandwidth limitations of the two inertia
model.

The system identification was performed one joint at a time. Two different system
identification experiments were performed for each joint. The first is a sine sweep experiment
which harmonically excites the joint from 1 Hz to 100 Hz over a 180 second span. The
objective of the sine sweep experiment is to capture an initial estimate of the joint frequency
response. The second experiment is a sine by sine test. In the sine by sine test, the joint is
excited at a particular frequency for a fixed amount of time, stops, and then proceeds to the
next excitation frequency. The sine by sine experiment provide a more accurate frequency
response than the sine sweep experiment since the excitation frequency is stationary at each
frequency. In addition, the sine by sine gives the user more flexibility in setting testing
parameters such as the experimental time duration spent exciting each frequency. This is
important as lower excitation frequencies require a longer excitation duration to acquire
meaningful data. For each system identification experiment, three measurements: motor
position, θm, motor velocity, θ̇m, and load acceleration, θ̈l are recorded. The control structure
for the system identification process is shown in Fig. 2.7. During the system identification
process, the reference trajectory for each joint is set to zero and the feedforward torque, uff ,
is used for gravity compensation only. The sinusoidal torque, uref is injected at the same
point as the feedforward torque. Since the reference trajectory is set to zero at every joint,
the feedback controller, C(s), may produce conflicting torque commands at the joint that is
undergoing system identification. As such, the gains of C(s) for the joint being identified is
set to be substantially lower to reduce the feedback controller effects. More specifically, the
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Figure 2.7: Controller for system identification

closed loop transfer function in Fig. 2.7 can be expressed as:

θm
uref

=
G(s)

1 +G(s)C(s)
(2.13)

Hence by selecting the gains, Kp, Kv, and Ki to be very small, G(s)C(s) ≪ 1 and the
effect of the feedback controller can be neglected. For joints that are not heavily influenced
by gravity effects, the controller gains can be set exactly to zero. But non-zero feedback
controller gains are necessary to maintain safe robot motions during the system identification
process otherwise. In all experiments and for all joints, the integrator gain, Ki, is set to zero.
The remaining controller controller gains used for each joint during the system identification
process for each joint are tabulated in Table 2.1. Additionally, the posture of the FANUC
M-16iB robot during the system identification process for each joint is shown in Fig. 2.8.

Parameter Identification

Much of the postprocessing of the measured data is done through the MATLAB’s System
Identification Toolbox. The processing accepts the input torque command and measured
output data as an input and returns the estimated magnitude and phase for this input-
output relationship at each measured frequency. Ideally the system identification should be
performed in an open loop manner. But as mentioned in the previous section, small feedback
gains are used to keep the robot system stable during the experiment due to gravity effects.
But since the structure of the feedback controller and the gain values are known, it is possible
to calculate the open loop transfer function from the estimated closed loop data. The first
step to doing so is to convert the magnitude and phase estimates into the real and imaginary
parts of the closed loop transfer function. Consider a closed loop transfer function:

Gcl(jω) = α(ω) + jβ(ω) (2.14)
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Table 2.1: Feedback parameters for system identification

Joint ID Joint Feedback Gains
J1 J2 J3 J4 J5 J6

J1 Kp 0 10 10 20 20 20
Kv 0 0.2280 0.05072 0.08592 0.0046 0.003986

J2 Kp 10 5 10 20 20 20
Kv 0.1533 0.1 0.05072 0.08592 0.0046 0.003986

J3 Kp 10 10 2 20 20 20
Kv 0.1533 0.2280 0.01 0.08592 0.0046 0.003986

J4 Kp 10 10 10 0 20 20
Kv 0.1533 0.2280 0.05072 0 0.0046 0.003986

J5 Kp 10 10 10 20 0 20
Kv 0.1533 0.2280 0.05072 0.08592 0 0.003986

J6 Kp 10 10 10 20 20 0
Kv 0.1533 0.2280 0.05072 0.08592 0.0046 0

where α(ω) ∈ R and β(ω) ∈ R represents the coefficients of the real and imaginary part of
the closed loop transfer function, Gcl, evaluated at frequency ω. The magnitude and phase
of the closed loop transfer function can be represented as:

|Gcl(ω)| =
√
α2(ω) + β2(ω) (2.15)

∠Gcl(ω) = tan−1(
β(w)

α(w)
) (2.16)

With some algebraic manipulation, the coefficients α(ω) and β(ω) can be expressed as:

β(ω) = α(ω) tan(∠Gcl(ω)) (2.17)

α(ω) =

√
|Gcl(ω)|2

1 + tan2(∠Gcl(ω))
(2.18)

Due to the inherent nature of tan(·), one needs to be careful when assigning the signs for
α(ω) and β(ω) using Eqs. (2.17-2.18). Once the coefficients are calculated, one can deduce
the real and imaginary parts of G(jω) by equating the real and imaginary parts of Gcl(jω)
and utilizing Eq. (2.13). More specifically, one can define the following:

C(jω) = σ(ω) + jγ(ω) (2.19)

G(jω) = x(ω) + jy(ω) (2.20)

Combining Eq. (2.14), (2.19), and (2.20) with Eq. (2.13) and equating the real and imaginary
parts on both sides of the equations yield two equations and two unknowns, namely x(ω) and
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y(ω). Note that since the controller structure and gains are known, σ(ω) and γ(ω) can be
computed. The bode plots of the system identification results from the motor input torque,
u/rmref to motor velocity, θ̇m, are shown in Figs 2.9-2.14. The blue circles indicate the sine
sweep results whereas the red crosses indicate the sine by sine results. Note that at low
frequencies, both the sine sweep and sine by sine results are closely matched. Furthermore,
the system identification results suggest that the first three joints (J1-J3) have much simpler
than dynamic behavior than the three wrist joints (J4-J6) of the FANUC robot. Also note
that the first three joints have a clear antiresonance and resonance behavior at about the 10
Hz range. This dynamic behavior can be captured by the two mass model relationship given
in Eq. (2.7). The parameter identification and transfer function fitting process is detailed in
later relevant chapters.

2.6 Chapter Summary

This chapter introduced the two inertia model used to model indirect drive mechanisms.
The chapter also talked about typical transmission used in industrial robots. In particular,
the harmonic drive was discussed in detail in Section 2.2. Then the dynamic equations of a
multi DOF robot was briefly introduced. A few modeling assumptions and their justifications
were also discussed. The chapter then talked about the hardware and software configuration
used when producing the results in this paper. Finally, the chapter closed by discussing the
system identification process used to identify and characterize the actual hardware behavior.
The material in this chapter is a necessary prerequisite to understanding the later chapters
of this dissertation.
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Figure 2.8: Robot postures for system identification
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Figure 2.9: System identification result for joint 1: uref ⇒ θ̇m (o: sine sweep results, x: sine
by sine results)
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Figure 2.10: System identification result for joint 2: uref ⇒ θ̇m (o: sine sweep results, x: sine
by sine results)
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Figure 2.11: System identification result for joint 3: uref ⇒ θ̇m (o: sine sweep results, x: sine
by sine results)
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Figure 2.12: System identification result for joint 4: uref ⇒ θ̇m (o: sine sweep results, x: sine
by sine results)
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Figure 2.13: System identification result for joint 5: uref ⇒ θ̇m (o: sine sweep results, x: sine
by sine results)
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Figure 2.14: System identification result for joint 6: uref ⇒ θ̇m (o: sine sweep results, x: sine
by sine results)
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Chapter 3

Sensor-based Feedback Controller
Tuning of Robot Manipulators by
Nonlinear Programming

3.1 Introduction

This chapter presents a method to automatically tune the controller gains for industrial
robots. Section 3.2 briefly introduces basic nonlinear programming (NLP) concepts and
highlights the math behind the proposed gain tuning algorithm. Section 3.2 outlines how
nonlinear programming can be used to tune the controller gain tuning. The chapter then
proceeds to introduce barrier functions in section 3.4, which is essential for preserving sys-
tem stability during the gain tuning process. Stepsize and initial gain selection are then
highlighted in section 3.5 and section 3.6 respectively. Section 3.7 presents experimental
results demonstrating the utility of the proposed algorithm. The chapter is summarized in
section 3.8.

3.2 Nonlinear Programming

NLP is a field in mathematics that focuses on developing algorithms to minimize arbitrary
cost functions. The solutions to these optimization processes can be subjected to both
equality and inequality constraints. Due to such flexibilities, NLP has already been applied
to various applications in control systems; for example, computing the controller gains to
minimize the H∞ norm or identifying unknown parameters through transfer function fitting.
Most NLP algorithms minimize cost functions in an iterative manner. More specifically,
NLP algorithms adjusts the free parameters at every iteration such that the cost function
decreases. There are many different methods for solving NLP problems, such as the sub-
gradient methods, Lagrangian multiplier methods, quasi Newton methods, etc [4, 5, 26].
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The majority of these methods, however, rely on a family of descent algorithms known as
gradient methods. There are many variations of gradient methods: e.g., the steepest descent
method and the Newton method. More specifically, for an arbitrary cost function J(xk),
where subscript k denotes the iteration, it is desirable to update the free variable xk+1 such
that:

J(xk+1) < J(xk) ∀ k (3.1)

In particular, gradient methods suggests that the free parameter x can be iteratively updated
as follows:

xk+1 = xk − αkDk∇J(xk) (3.2)

where αk and ∇J(xk) denote the stepsize and the gradient of the cost function at the kth

iterative respectively. Dk is a positive definite matrix that can be used to scale the descent
direction to improve the convergence rate of the algorithm. While ∇J(xk) depends on the
cost function and xk, αk and Dk are design parameters for the descent algorithm. Methods
such as Newton’s method or sequential quadratic programming (SQP) put emphasis on
designing αk and Dk. This dissertation will revisit αk selection later in this chapter but will
redirect interested readers to the cited text above for additional details on how to choose Dk.
Unless otherwise specified, Dk will be assumed to be the identity matrix for the remainder
of this dissertation.

In this dissertation, NLP will be used to iteratively update the robot feedback controller
gains. As a result, the free parameters xk will be the robot feedback controller gains. For
most industrial robotic applications, robots are required to repetitively perform a single task.
This makes it intuitive to select each NLP iteration to coincide with a single completion of
the robot’s desired task. With this said, it is important to choose the cost function such
that minimizing such a quantity will also desirably improve the robot performance for the
desired task. For example, if tracking performance is only of interest, the cost function can
be designed to be a weighted sum of the tracking error norms along the trajectory the robot
moves as it performs its task. If vibration suppression is desirable, then the cost function
can be designed to prioritize penalizing the acceleration error instead. In many cases, the
cost function at each iteration is a function of the robot tracking performance or behavior
during that iteration. As such, the cost function is inherently a highly nonlinear function
of the free parameters xk and analytically evaluating the gradient of such a function when
utilizing Eq. (3.2) may not be a feasible option. Instead an experimental method can be
used to evaluate the cost function gradient.

Gradient Estimation

The method used to experimentally estimate the cost function gradient is a variant of
extremum-seeking control originally proposed by [2]. In short, extremum-seeking control
is a real-time perturbation technique used for online optimization. Variations of extremum-
seeking control has been applied to simple robot systems for online controller tuning [24, 19].



28

ωi

J(xk + εn) = J(xk) + ε
T

n∇J(xk) +
1

2
ε
T

n∇
2
J(xk)εn +H.O.T

ai sin(ωin)∇Ji(xk)

��������

��	
��

ai sin(ωin) 2

a
2

i

�����

a
2

i
sin2(ωin)∇Ji(xk)

=
a
2

i

2
∇Ji(xk)(1− cos(2ωin))

∇Ji(xk)

������ ��	
��

Figure 3.1: Block diagram of procedure to obtain ∇J(xk)

These applications, however, involved tuning simple robot systems where perturbations in
the time domain was possible. In many cases, however, standard robot controllers do not
support the ability to perturb the controller gains in real-time. Hence it is more practical
and also safer to perturb and update the controller gains in between each robot task iteration
instead.

If the cost function J(xk) is perturbed by the vector εk, the resulting cost function can
be expressed by a Taylor series expansion as:

J(xk + εn) = J(xk) + εTn∇J(xk) +
1

2
εTn∇2J(xk)εn + H.O.T (3.3)

where ∇2J(xk) is the Hessian of the cost function and H.O.T. refers to higher order terms
of the Taylor expansion. Suppose the perturbation vector is chosen to be:

εn = [a1 sin(ω1n) · · · a3J sin(ω3Jn)]
T ∈ R3J (3.4)

where ai and ωi represents the perturbation amplitude and frequency respectively. J denotes
the number of joints being tuned. Note that while the indices k and n are not necessarily
the same, the perturbations vector, εn, is updated in Eq. (3.3) in the iteration domain, not
in the time domain. If the perturbation frequencies are chosen to be linearly independent of
each other (e.g. ωe ̸= bωi + cωj ∀ b, c, e, i, j) then the perturbation frequencies in Eq. (3.3)
are isolated to the first order term, εTn∇J(xk). Recall that all the terms beyond the gradient
contain cross frequency terms, sin(ωi) sin(ωj) or sin(ωi) sin(ωi)), which have frequency con-
tent, |ωi ± ωj| and |ωi ± ωi| respectively. This allows the ith element of the gradient to be
partially isolated by passing the sequence of {J(xk + εn)} through a bandpass filter with a
narrow pass band centered about ωi. This process is depicted in the left half of Fig. 3.1.

The bandpass filter used in this dissertation have transfer functions in the form:

pi(z) =
b0,i(z − 1)

z2 + a1,iz + a0,i
(3.5)
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Figure 3.2: Frequency response of bandpass filter centered at 0.29π with b = 0.1

where
a0,i = e−bωi

a1,i = −2e−0.5bωi cos

(√
1−

(
b
2

)2
ωi

)
b0,i =

∣∣∣ ej2ωi+a1,ie
jωi+a0,i

ejωi−1

∣∣∣
Note that for a given ωi, b is the only design variable for the bandpass filters. The magnitude
of b is inversely proportional to the width of the filter pass band. This dissertation selects
b = 0.1. The frequency response of such a filter is show in Fig. 3.2. Note that the filter
design provide zero phase shift at the pass band.

Assuming one of the perturbation frequencies occur at ωi, the output of Eq. (3.3) after
passing through a bandpass filter centered at ωi is nominally:

ai sin(ωin)∇Ji(xk) (3.6)

Note that in actual implementation, the bandpass filter will only attenuate the content at
other frequency ranges and not completely eliminate them. The nominal expression given
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by Eq. (3.6), however, is reasonably accurate if the perturbation frequencies are sufficiently
spaced apart. At this point, if Eq. (3.6) is modulated by its perturbation value, that is:

ai sin(ωin)∇Ji(xk) · ai sin(ωin) = a2i sin(ωin)
2∇Ji(xk)

= a2i∇Ji(xk)
1
2
(1− cos(2ωin))

(3.7)

then the ith term of the gradient can be isolated by passing Eq. (3.7) through a lowpass filter
whose DC gain is 2

a2i
and cutoff frequency is lower than two times the lowest perturbation

frequency. Note that there is a one step delay induced by the bandpass filter given by
Eq. (3.5). As a result, this delay should be taken into consideration prior to modulating
Eq. (3.6). This modulating and filtering process is depicted by the right half of Fig. 3.1.
Once this process is done for each perturbation frequency, the cost function gradient can then
be reassembled by concatenating the processed results together. As a note, one inherent
assumption made in this section is that the gain tuning environment is time-invariant or
slowly time-varying (i.e. the dominant factor that influences the value of the cost function
should be the controller gain perturbations). Consequently, this assumption also mandates
that the nonlinearities of the system, such as Coulomb friction in the gear train, and other
disturbances remain relatively consistent between iterations. Otherwise, the time varying
nature of the system will invalidate Eq. (3.3). However, this condition is easily satisfied
during gain-tuning processes of robots when they repeat the same tasks. Furthermore, if
each tuning iteration is selected to be a single completion of the robot’s task, then the
nonlinearities experienced by the robot for each iteration should remain relatively constant
as well.

3.3 Controller Tuning Process

The controller tuning process is relatively simple. Once the desired robot trajectory, cost
function, and initial gains are selected, the robot can then be commanded to iteratively
follow the desired robot trajectory. The desired controller gains can be perturbed according
to Eq. (3.4) after the completion of every robot trajectory while simultaneously computing
and storing the cost function value at every iteration. More specifically, the index n is
the number of iterations that the robot has traversed its desired trajectory. Once enough
iterations have been performed to capture a few perturbation periods, the sequence of cost
function values can be processed using the process depicted in Fig. 3.1 to obtain the cost
function gradient about the set of initial gains. More specially, if the robot performs N
iterations of its desired trajectory, the calculated cost function sequence can be represented
as:

J̄(xk, εn)N = { J(xk + εn+1) J(xk + εn+2) · · · J(xk + εn+N) } ∈ RN (3.8)

Once J̄(xk, εn)N is obtained, the filtering process outlined in Fig. 3.1 can be used to obtain
∇J(xk). At this point, any gradient descent method, whose form is given by Eq. (3.2),
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can be used to update the controller gains xk. Once the desired gains have been updated,
this process can be repeated to obtain the next cost function gradient to further update the
controller gains.

Note that the controller gain index, k, is incremented once after every N iterations of the
robot performing its task. This can lead to a time consuming gain tuning process, especially
if the robot training trajectory is chosen to be fairly long. One method to expedite this
tuning process is to approximate J̄(xk+1, εn)N with:

J̄(xk+1, εn)N ≈ Ĵ(xk+1, εn)N =
[
J(xk + εn+2) · · · J(xk + εn+N) J(xk+1 + εn+N+1)

]
(3.9)

Essentially the lastN−1 element of J̄(xk, εn)N is used to approximate the firstN−1 elements
of J̄(xk+1, εn)N . This approximation is remarkably accurate as long as the stepsize, αk, used
for updating the gains is sufficiently small. This stepsize assumption does not hinder the gain
tuning process since in practice, the controller gains should be updated in small increments
anyways to preserve system stability. Additionally, the first order parameter update law
given in Eq. (3.2) also requires the parameter updates to be sufficiently small such that
the cost function values decreases after each parameter update. In this dissertation, the
experimental results will utilize the approximation in Eq. (3.9) to expedite the gain tuning
process.

3.4 Barrier Functions

An inherent weakness of using NLP methods for tuning physical systems is that NLP meth-
ods are strictly numerical in nature and does not take into consideration physical limitations
of these system. More specifically, when using NLP algorithms for gain tuning, it is intuitive
that increasing these gains will make the performance better. The NLP algorithm, however,
does not consider the possibility that increasing the gains can also make the system unsta-
ble. For feedback gain tuning, it is absolutely critical that system stability is preserved in
the process. Because stability is a binary condition, the robot seldom exhibit measurable
symptoms of instability during tuning prior to becoming instable. Hence some modifications
needs to be made to the NLP formulation to account for this issue.

Up until now, the gain tuning problem, when phrased as an optimization problem, is
simply an unconstrained optimization problem of the form:

min J(xk)

Whereas to preserve stability, the problem should be rephrased as a constrained optimization
problem of form:

min J(xk)
s.t. xk ∈ Xs
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where Xs denotes the subspace of all stabilizing controller gains for the robot. Since it is
normally very difficult to produce an analytical expression for Xs, In this dissertation, the
two mass model given by Eq. (2.7) is used to assess the closed loop poles of each joint to
account for system stability. By doing this, the optimization problem can be reformulated
as:

min J(xk)
s.t. R{cj,n} < 0 ∀j, n (3.10)

where R{cj,n} is the real part of the nth pole of the closed loop transfer function for the jth

joint. Rather than trying to solve a constrained optimization problem, the constraints can
be incorporated into the cost function as barrier functions. More specifically, rather than
solving Eq. (3.10), one can solve:

min J(xk) + B(xk) (3.11)

B(xk) is called a barrier function and is constructed such that these functions become arbi-
trarily large if any one of the inequality constraints (i.e. R{cj,n} < 0) is about to violated.
Common choices for B(xk) in Eq. (3.11) are:

B1(xk) = −
∑
j

∑
n

ln{−ζj,nR{cj,n}}

B2(xk) = −
∑
j

∑
n

−ζj,n
R{cj,n}

(3.12)

where ζj,n serves as a scaling factor. Both function in Eq. (3.12) are plotted in Fig. 3.3.
Note that both examples become arbitrarily large as R{cj,n} approach 0 from below. A
fundamental assumption when using barrier methods is that the barrier functions are never
violated when updating the free parameters xk. This criteria can be satisfied by properly
choosing the stepsize. Stepsize selection criteria will be discussed in a later subsection of
this chapter.

On a technical note, in order for the solution of Eq. (3.11) to be exactly the same as
the original formulation in Eq. (3.10), one would have to iteratively solve Eq. (3.11) with
the coefficients ζj,n decreasing in each iteration. The optimal solution x∗

k(ζj,n) as each ζj,n is
iteratively reduced to zero follows a trajectory known as the centralpath along the solution
space. The limit point of these solutions is the solution to Eq. (3.10) [4]. For the purpose of
gain tuning, however, Eq. (3.11) is not solved iteratively, but instead is treating as its own
optimization problem. Hence the optimal solution for the feedback controller gains using
the barrier method may not be same as the one obtained by solving Eq. (3.10). This is not
a problem in this application as long as the gain tuning algorithm can continue to improve
the robot performance. This can be guaranteed by initially setting each x∗

k(ζj,n) such that
J(x1) ≫ B(x1) based on the initial values for x1. This way, any substantial decrease of the
combined cost function is caused by improved performance and not by the barrier functions.
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Figure 3.3: Plots of B1(xk) and B2(xk) on the top and bottom respectively

Barrier Functions Gradients

Using the gradient estimation procedure outlined in section 3.3, one inherent assumption
is that the cost function changes slowly from one iteration to another. Barrier functions,
however, do not satisfy this condition as they can grow exponentially. Hence, the proposed
gradient estimation technique may not be accurate if it is used to empirically estimate the
gradient of Eq. (3.11). This is especially problematic since it implies that the gradient
estimate becomes inaccurate when the system is on the verge of instability. One approach to
avoid the aforementioned problem is to numerically calculate the barrier function gradients
separately from the gradient of the cost function, J(xk). To simplify the gradient calculation,
the barrier function for each robot joint in Eq. (3.12) can be reformulated as

max
s = −σo + jω
∀ ω ∈ (−∞,∞)

γ

||1 + L(s)||22
(3.13)
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where L(s) is the open loop transfer function and σo is a positive tolerance term. Eq. (3.13)
essentially performs a search along a vertical line in the complex plane whose real part is
given by −σo. Eq. (3.13) will grow rapidly as the closed loop poles approach −σo. Like all
barrier methods, this approach assumes that initially all the real components of the closed
loop poles are less than −σo and updating the controller gains do not cause the poles to
cross −σo. The first assumption can be checked by properly selecting the initial controller
gains. The second assumption can be satisfied through careful stepsize selection. The value
of s in Eq. (3.13) can be found through a numerical search using commercial software such
as MATLAB. Assuming s = σo + jωo is known, the gradient of the barrier function can be
computed . To simplify the algebra, consider the following notation

s = σo + ωoj
s2 = (σ2

o − ω2
o) + (2ωoσo)j

= ϕ1 + ϕ2j
s3 = (σoϕ1 − ωoϕ2) + (ωoϕ1 + σoϕ2)j

Gdmu(s) = θ̇m(s)
u(s)

=
Jls

2+djs+kj
JmJls3+Jds2+Jks+kjdm

= β22s2+β1s+βo

α3s3+α2s2+α1s+αo

= (β2ϕ1+β1σo+βo)+(β2ϕ2+β1ωo)j
(α3(σoϕ1−ωoϕ2)+α2ϕ1+α1σo+αo)+(α3(ωoϕ1+σoϕ2)+α2ϕ2+α1ωo)j

= γ1+γ2j
δ1+δ2j

L(s) = γ1+γ2j
δ1+δ2j

Kvs2+(KvKp+Ki)s+KpKi

s2

where j =
√
−1. The expressions above breaks the complex values into their corresponding

real and imaginary parts. This is convenient since it allows Eq. (3.13) to be expressed as

1
||1+L(σo+jωo)||2 = 1

wTw (3.14)

where w = [ℜe{1 + L(σo + jωo)} ℑm{1 + L(σo + jωo)}]T . From (3.14), the gradient of the
barrier function can be expressed as

∂

∂xk

1

||1 + L(σo + jωo)||2
=

∂w

∂xk

−2w

(wTw)2
(3.15)

Since the current application of the gain tuning algorithm focuses on tuning the feedback
controller gains, the free variables for the NLP are the feedback controller parameters. More
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specifically, xk = [Kp Kv Ki]
T . To evaluate ∂w

∂xk
∈ R3×2, consider the following notation

γ1+γ2j
(δ1+δ2j)s2

= {ϕ1(γ1δ1+γ2δ2)+ϕ2(γ2δ1−γ1δ2)}+{ϕ1(γ2δ1−γ1δ2)−ϕ2(γ1δ1+γ2δ2)}j
||δ1+δ2j||2 ||ϕ1+ϕ2j||2

= θ1+θ2j
||δ1+δ2j||2 ||ϕ1+ϕ2j||2

L(σo + jωo) = θ1+θ2j
||δ1+δ2j||2 ||ϕ1+ϕ2j||2{Kvs

2 + (KvKp +Ki)s+KpKi}

ℜe{1 + L(σo + jωo)} = 1 + θ1(Kvϕ1+(KvKp+Ki)σo+KpKi)−θ2(Kvϕ2+(KvKp+Ki)ωo)

||δ1+δ2j||2 ||ϕ1+ϕ2j||2

ℑm{1 + L(σo + jωo)} = θ2(Kvϕ1+(KvKp+Ki)σo+KpKi)+θ1(Kvϕ2+(KvKp+Ki)ωo)

||δ1+δ2j||2 ||ϕ1+ϕ2j||2

The first and second columns of ∂w
∂xk

are ∂
∂xk

ℜe{1+L(σo+jωo)} and ∂
∂xk

ℑm{1+L(σo+jωo)}
respectively. Evaluating these partial derivatives yield

∂
∂xk

ℜe{1 + L(σo + jωo)} = 1
||δ1+δ2j||2 ||ϕ1+ϕ2j||2

 θ1(σoKv +Ki)− θ2ωoKv

θ1(ϕ1 + σoKp)− θ2(ϕ2 +Kpωo)
θ1(σo +Kp)− θ2ωo


∂

∂xk
ℑm{1 + L(σo + jωo)} = 1

||δ1+δ2j||2 ||ϕ1+ϕ2j||2

 θ2(σoKv +Ki) + θ1ωoKv

θ2(ϕ1 + σoKp) + θ1(ϕ2 +Kpωo)
θ2(σo +Kp) + θ1ωo



Hence, ∂
∂xk

1
||1+L(σo+jωo)||2 = ∂w

∂xk

−2w
(wTw)2

can be evaluated using the equations listed above.

3.5 Stepsize Selection

As mentioned earlier, the selection of the stepsize, αk, needs to ensure that updating the
controller gains will not violate the barrier constraints. If the barrier functions are accurately
defined, then enforcing the barrier functions will also guarantee system stability. Many
traditional stepsize selection techniques require knowledge of how the stepsize affects the
updated cost function, J(xk+1). Examples of these techniques include the Goldstein rule
and the Armijo rule. In this particular application, the cost function J(xk) does not have
a closed form expression and can only be obtained through experimental measurements.
Hence it is not possible to utilize many of these existing stepsize selection techniques. While
the cost function itself cannot be computed without performing an experiment on the robot,
the barrier functions can be. Hence a successive stepsize reduction algorithm is used to
continually reduce the stepsize until the updated gains satisfy the barrier functions.
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In general, the stepsize, αk, can be represented more generally as

αk = α0,kα
nk
r (3.16)

where α0,k is the initial stepsize at iteration k, αr < 1 is a stepsize reduction ratio, and
nk is the stepsize reduction factor at iteration k. Intuitively, if the initial stepsize violates
the barrier constraints at a particular iteration, nk can be increased to decrease the stepsize.
For the purpose of automatic gain tuning, it is important that the stepsize is selected to
both improve system performance while simultaneously enforcing system stability. In this
dissertation the selection of α0,k is used to improve performance while the selection of nk is
used to satisfy the second requirement. Given that the gains are being updated using steepest
descent, a first order approximation shows that any positive value for α0,k is guaranteed to
decrease the cost function. The caveat to this statement, however, is that it is only true for
α0,k small enough such that the first order effects are dominant. Since ”small” also depends
heavily on the nonlinearity of the cost function, it is usually very difficult to quantify a
good value for α0,k if the cost function is unknown. This dissertation uses a fixed value for
α0,k for every iteration. The selected value is manually tuned based on experimental data.
Additional refinement of α0,k is a topic of future work. Calculating nk, however, is relatively
straight forward since the barrier functions can be numerically evaluated prior to running the
experiment. Hence one can check whether or not updating the gains will violate the barrier
constraints. In this dissertation, nk is selected using the logic tree presented in Fig. 3.4.

3.6 Initial Condition Selection

Due to the nonlinear nature of the robot system, and inherently of the cost function J(xk),
NLP techniques can only arrive at locally optimal solutions rather than globally optimal
solutions. Hence selecting the appropriate initial feedback controller gains prior to tuning can
strongly affect the performance of the gain tuning algorithm. In particular for an industrial
robot, tuning the three wrist joints (J4-J6) is particularly difficult as these joints tend to be
very sensitive to controller parameter variations. Hence it is especially important to correctly
select the initial gains for these values. This subsection will provide a theoretical way for
selecting initial gains to satisfy certain performance criterion. For practicality, the work in
this subsection will focus on selecting gains for the three wrist joints of the FANUC M-16iB
robot. Two gain selection approaches will be given. The first is a standard approach that
is commonly used in industry, whereas the second is a slightly more complicated approach
which gives consideration to system stability and unmodeled dynamics.

Standard Initial Gain Selection Method

The feedback controller structure for a single wrist joint of the FANUC M-16iB is depicted
in Fig. 3.5. Note that Fig. 3.5 uses motor velocity, θ̇m, for motor side feedback. Note that
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Figure 3.4: Logic tree for selecting nk

since the load side inertias of the wrist joints are relatively small, the reducer dynamics
for these three joints can be effectively ignored. Using this assumption, the wrist joint can
be approximated as an inertia system with viscous damping. This allows Eq. (2.7) to be
simplified as a first order system of form:

Gdmu(s) =
θ̇m(s)

u(s)
≈ Ĝdmu(s) =

1

Js+D
(3.17)

where the lumped inertia and damping are given by J = Jm + Jl
N2 and D = dm respectively.
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Figure 3.5: Feedback controller structure for an individual joint

Additionally, also note that the controller structure can be broken down into two sepa-
rate loops: an inner velocity loop and an outer position loop. This structure can simplify
the tuning process as the bandwidth of the inner and outer loop can be tuned separately.
Performing a closed loop analysis of the inner loop from r to θ̇m gives the following transfer
function:

θ̇m
r

=
Kvs+Ki

Js2 + (Kv +D) s+Ki

(3.18)

Based on this observation, it would be ideal if the inner loop behaved like a first order closed
loop system of form:

θ̇m
r

=
1

δs+ 1
(3.19)

This can be achieved by setting Kv = J/δ and Ki = D/δ. Once this is done, tuning of the
outer loop is performed while assuming that the inner loop behaves like Eq. (3.19). The
proportional gain, Kp, is tuned such that the outer loop has the desired bandwidth. Note
that this method works if the outer loop bandwidth is significantly less than that of the
inner loop bandwidth. While this method is simple to apply, it does not give consideration
to any unmodeled system dynamics. Furthermore, there is no guarantee that these initial
gains can even stabilize the system.

Alternate Initial Gain Selection Method

The bandwidth of a control loop is often used in practice as a measure of performance. The
alternate method for initial gain selection also aims at satisfying bandwidth requirements, but
also give considerations to stability and unmodeled dynamics. In the aforementioned tuning
method, the inner loop and outer loop are tuned separately. When tuning the inner loop,
however, it is inherently assumed that the plant behaves strictly like a first order damped
inertia system. More specifically, this process assumes the plant to behave like this ideal first
order system up to the bandwidth specified by the time constant δ, which can in practice be
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Figure 3.6: System identification result for joint 4 (Blue circles indicate the measured fre-
quency response from a sine sweep, black crosses indicates the response of an ideal first order
model)

as high as 20 Hz. In actuality, however, this assumption may not hold, and depending on
the actual dynamics of the plant, setting the values of Kv and Ki carelessly can cause the
inner velocity loop to be unstable. Rather than making assumptions about the behavior of
the plant, another approach is to use the system identification data to better characterize
the actual dynamics of the plant. The frequency response of J4-J6 are shown in Figs. 3.6-
3.8. The blue circles indicate the measured system response from a sine sweep identification
experiment whereas the black crosses indicate the frequency response of an ideal first order
damped inertia model given by Eq. (3.17). The inertia parameters, Jm and Jl, used for the
calculations of the damped inertia model was provided by FANUC Corporation. The motor
side viscous damping parameter, dm, was experimentally verified by Chen in [8]. Note that
Figs. 3.6-3.8 suggest that the first order approximation is accurate at low frequencies, but
fails to capture the behavior of the system at higher frequencies. Notably, the first order
model is accurate up to about 10 Hz.

When tuning the bandwidth of the two feedback loops in Fig. 3.5, one thing to note is
that the only bandwidth that ultimately matters for actual performance is the outer loop
bandwidth. As a result, the inner loop bandwidth does not necessarily matter as long as the
outer loop maintains its desired bandwidth.
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Figure 3.7: System identification result for joint 5 (Blue circles indicate the measured fre-
quency response from a sine sweep, black crosses indicates the response of an ideal first order
model)

Inner Loop Bandwidth Analysis

In the standard approach, the inner loop is tuned to behave like the first order system given
by Eq. (3.19). Eq. (3.18) shows that the inner loop is naturally second order. While forcing
it to behave like a first order makes it simple for tuning the outer loop, this approach may
not be very robust to modeling uncertainties. A more straightforward and robust approach
is to directly analyze the bandwidth of the second order system. This section will detail
the bandwidth analysis for a second order system in the form given by Eq. (3.18). The
bandwidth of Eq. (3.18) is defined as the lowest frequency, ω in which:∣∣∣∣∣ θ̇mr

∣∣∣∣∣
s=jω

=

∣∣∣∣∣ Ki

J

s2 + (Kv+D)
J

s+ Ki

J

· Kvs+Ki

Ki

∣∣∣∣∣
s=jω

<
1√
2

(3.20)

Rewriting the second order term in Eq. (3.20) as ω2
n

s2+2ζωns+ω2
n
and then squaring both sides

of Eq. (3.20) yields:
ω4
n

K2
i

· K2
vω

2 +K2
i

(ω2
n − ω2)2 + (2ζωnω)2

<
1

2
(3.21)
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Figure 3.8: System identification result for joint 6 (Blue circles indicate the measured fre-
quency response from a sine sweep, black crosses indicates the response of an ideal first order
model)

where ζ = (Kv+D)

2
√
KiJ

and ω2
n = Ki/J . After some algebraic manipulation and also setting the

inequality to an equality, the solution to ω in Eq. (3.21) can be written as:

ω2 = K2
v+JKi−2JKiζ

2

J2

± [4ζ4K2
i J

2−4ζ2K2
i J

2−4ζ2K2
vKiJ+2JK2

vKi+K4
v+2J2K2

i ]
1/2

J2

(3.22)

Solving Eq. (3.22) for the smallest positive value of ω will yield the bandwidth of the inner
loop for given controller gains Ki and Kv. Upon careful observation of Eq. (3.22) one can
show that the term under the square root is larger than the leading term, hence the solution
of interest can be expressed as:

ω2 = K2
v+JKi−2JKiζ

2

J2

+
[4ζ4K2

i J
2−4ζ2K2

i J
2−4ζ2K2

vKiJ+2JK2
vKi+K4

v+2J2K2
i ]

1/2

J2

(3.23)

To prevent overshoot in the system response, it is desirable to set the value ζ = 1. By doing
so, Ki becomes a function of Kv through the following relationship:

Ki =
(Kv +D)2

4J
(3.24)
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Substituting this relationship into Eq. (3.23) yields the following expression:

1
16
K4

v +
D
4
K3

v +
(

3D2

8
+ 3J2ω2

2

)
K2

v +
(

D3

4
−DJ2ω2

)
Kv+(

D4

16
− J4ω4 − J2ω2D2

2

)
= 0

(3.25)

Once the desired bandwidth, ω, is fixed by the designer, a numeric solver can be used to
solve Eq. (3.25) for Kv. Once Kv is known, Eq. (3.24) can be used to solve for Ki.

Outer Loop Bandwidth Analysis

Once the inner loop is tuned, as long as the bandwidth of the inner loop is substantially
higher than the desired bandwidth of the outer loop, the the inner loop can be treated as
an unit gain when doing the outer loop analysis. At low frequencies, the outer loop transfer
function effectively becomes:

θ̇m

θ̇md

=
Kp

s+Kp

(3.26)

Hence Kp can be designed to shape the outer loop bandwidth.

Final Initial Controller Gain Adjustments

Once the initial controller gains are calculated using the analysis approach outlined in the
previous two sections, the final step is to lower Kv as much as possible while still maintaining
the desired outer loop bandwidth. Recall that decreasing Kv will decrease the inner loop
bandwidth but it may not affect the outer loop bandwidth. This final step is to ensure that
the initial gains do not cause the mechanical system to become unstable.

3.7 Experimental Results

In this section, the M-16iB is used to verify the proposed gain tuning algorithm. In this
dissertation, a quadratic cost function that penalizes the tracking position error and velocity
error is used. Since the built in robot motor encoders can readily provide motor position and
velocity error information, the motor side error is used when computing the cost function.
Using the motor side error is sufficient for demonstrating the feasibility of the proposed
approach, but in practice, the cost function should penalize the load side errors. More
specifically, the cost function used in the dissertation has form:

J(xk) =
T∑
t=0

{eTm,k(xk, t)W1(t)em,k(xk, t) + ėTm,k(xk, t)W2(t)ėm,k(xk, t)} (3.27)
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where t is a time index, em,k(t) and ėm,k(t) is the motor side position error and velocity
error vector respectively. W1(t) and W2(t) are the weighting matrices for the motor side
position and velocity errors respectively. Additionally, the barrier function parameters σo

and γ were manually tuned for each joint so that the initial contributions from the barrier
functions to the entire cost function were an order of magnitude less than the contributions
from the tracking errors em(t) and ėm(t). The initial stepsize, αo,k, and step size reduction
ratio, αr, were both selected to be 0.5. The perturbation amplitudes for each controller gain
was selected to be 10% of their initial value. And finally, 65 iterations were used for the gain
tuning process.

Single Joint Tuning Experiments

This section presents the results from the single joint tuning experiments on the M-16iB
robot. The perturbation frequencies used forKp, Kv, andKi were 0.293π, 0.467π, and 0.313π
respectively for each joint. Since each joint is tuned individually, the weighting matrices W1

and W2 reduce to scalars. Values of 1 and 0.3 were used for W1 and W2 respectively. In
these tuning experiments, each joint of the robot was instructed to sweep a 22.5 degree arc
over one second and then sweep back. The initial and final controller gains for each joint is
tabulated in Table 3.1.

Figures. 3.9-3.14 plot the cost function versus iteration for each joint. Note that in some
cases, it requires up to 30 iterations before the cost function begins to substantially decrease.
This can be caused by many factors, such as the initial gains starting off in a local plateau
in the map between the cost function and controller gains. Since the gains are perturbed
from iteration to iteration, the effects of these perturbations can been in the cost function.
Since the sensitivity of the cost function to these perturbations vary from one set of gains to
another, it may cause the cost function to decrease nonmonotonicly. Also note that for J1,
J2, J3 and J5, the contributions of the barrier functions to the overall cost function seem
minimal. This is to be expected if the tuning process does not encounter any gains that may
destabilize the system. For some joints, in particular J4 and J6, the contributions from the
barrier functions are not negligible. Both J4 and J6 were found to be extremely sensitive to
their velocity gain Kv. While increasing Kv improves performance, increasing it beyond a
certain value would abruptly cause the joint to chatter significantly. As a result, the barrier
function parameter γ was set to be more conservative for these two joints to preserve overall
system stability. This effect can be seen in Fig. 3.14 after 30 iterations and to a lesser extent
in Fig. 3.12. Even with these nuances, however, the gain tuning method still decreased the
performance-based portion of the cost function (dashed lines), thus resulting in improved
tracking performance of the robot manipulator.
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Table 3.1: Parameters for gain tuning

Parameters
Joint Kp,1 Kv,1 Ki,1 Kp,65 Kv,65 Ki,65

J1 10 0.2300 0.1000 10.293 0.3493 0.1257
J2 10 0.2000 0.1000 10.030 0.2250 0.1310
J3 10 0.0507 0.0100 9.991 0.1010 0.0954
J4 20 0.0560 0.2000 19.998 0.0622 0.2010
J5 15 0.0020 0.0020 15.000 0.0025 0.0024
J6 20 0.0040 0.0040 19.999 0.0069 0.0035

3.8 Chapter Summary

This chapter introduced an automatic gain tuning algorithm using nonlinear programming.
The proposed gain tuning procedure was presented and barrier functions were introduced
to help preserve system stability during tuning. Additionally, this chapter also introduced
techniques for selecting the stepsize and initial gains when utilizing this tuning algorithm
on industrial robots. And finally, experimental results were presented to verify the utility of
the proposed approach.
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Figure 3.9: Cost function versus iteration while tuning J1 of the FANUC M-16iB robot
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Figure 3.10: Cost function versus iteration while tuning J2 of the FANUC M-16iB robot
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Figure 3.11: Cost function versus iteration while tuning J3 of the FANUC M-16iB robot
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Figure 3.12: Cost function versus iteration while tuning J4 of the FANUC M-16iB robot
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Figure 3.13: Cost function versus iteration while tuning J5 of the FANUC M-16iB robot
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Figure 3.14: Cost function versus iteration while tuning J6 of the FANUC M-16iB robot
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Chapter 4

A Disturbance Observer Framework
for Stable Feedback Controller Tuning

4.1 Introduction

This chapter introduces a disturbance observer based framework for stable feedback con-
troller tuning. When tuning high order controllers with a plant whose behavior is not fully
known, feedback controller tuning always run the risk of destabilizing the system. Barring a
few mild restrictions, this chapter presents a tuning framework that allows one to arbitrarily
tune a subset of the feedback controller parameters while simultaneously preserving system
stability. This chapter begins by briefly reviewing the traditional disturbance observer in
section 4.2 before introducing the framework in section 4.3. The motivation and proof for the
framework is also presented. Both simulation and experimental verification of the framework
are organized in section 4.4. Finally, the contents of the chapter is summarized in section 4.5.

4.2 Traditional Disturbance Observer

The structure of a typical disturbance observer (DOB) is show in Fig. 4.1. In the figure, Ga(s)
is the phyiscal plant, G−1

n (s) is the stable nominal inverse of the plant, and Q(s) is called
the Q-filter and is to be designed. U∗(s), D(s), Y (s), and N(s) are the command input,
disturbance input, plant output, and the measurement noise respectively. The disturbance
observer has several beneficial properties, namely the transfer function U∗(s) to Y (s) is given
by:

Gyu∗(s) =
Ga(s)Gn(s)

Gn(s) +Q(s) (Ga(s)−Gn(s))
(4.1)

If Q(s) = 1, then Gyu∗(s) = Gn(s). Similarly, if Q(s) = 0, then Gyu∗(s) = Ga(s). This
implies that the DOB structure will force the input/output relationship from U∗(s) to Y (s)
to behave like the nominal model within the pass band of the Q-filter, and to behave like
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n
(s)+

−

Q(s)

Figure 4.1: Typical DOB structure

Ga(s) in the stop band of the Q-filter. Additionally, the DOB structure has modest stability
robustness properties, especially if Gn(s) closely matches Ga(s) within the pass band of the
Q-filter. Traditionally, the Q-filter is designed as a lowpass filter whose bandwidth is limited
by the error between Gn(s) and Ga(s).

4.3 Disturbance Observer Tuning Framework

In most controller applications applications, the controllers are tuned to provide good system
performance up to a predesignated bandwidth. While increasing the controller gains will
improve the system performance within the desired bandwidth, recklessly increasing the
gains may also cause the controller to excite resonances and other high frequency dynamics
of the physical system. This in effect will deteriorate the overall system performance and
in the worst case destabilize the system. Many established controller tuning methods such
as the Ziegler-Nichols method operate by effectively giving practical guidelines for balancing
the trade off between good low frequency performance and overall system stability.

So if the desired system bandwidth is known in advance, it would be ideal if tuning the
feedback controller would just affect the closed loop system performance within this desired
closed-loop bandwidth. A naive implementation of this idea can be done with the parallel
controller structure shown in Fig. 4.2. C(s) is a fixed stabilizing controller for plant G(s).
Ct(s) is the controller being tuned and Q̂(s) is a lowpass filter whose cutoff frequency dictates
the desired bandwidth of the tuned controller. R(s), E(s), U(s), and Y (s) are the reference
signal, error, plant input, and plant output respectively. The equivalent controller in Fig. 4.2
can be expressed as:

Ceq(s) =
(
1− Q̂(s)

)
C(s) + Q̂(s)Ct(s) (4.2)
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Ceq(s)

Ê(s)

+

−

R(s)
E(s)
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Y (s)
U(s)

Ct(s)Q̂(s)

1− Q̂(s) G(s)

Figure 4.2: Parallel controller structure

Roughly speaking, Ceq(s) behaves like Ct(s) in the passband of Q̂(s) and behaves like C(s)
otherwise. This implementation has several key advantages when it comes to gain tuning.
Normally, engineers can use a nominal model, Ĝ(s), to model the physical plant G(s). Due
to both computational and modeling limitations, these nominal models capture the behavior
of G(s) well at low frequencies, but are unable to capture the higher frequency dynamics.
Additionally, most physical plants tend to exhibit nonlinear amplitude dependent behavior
at higher frequencies. For these reasons, typical feedback controller gains are limited. By
using a framework similar to that shown in Fig. 4.2, the controller gains in Ct(s) can be
tuned without experiencing the aforementioned limitations. While it is easy to draw intuitive
statements about the performance of the structure in Fig. 4.2, rigorously proving the internal
system stability for such a structure, however, turns out to be very difficult.

Motivation

Recalling the input/output relationship of the DOB in Eq. (4.1), one may note that this
transfer function has similar characteristics as Eq. (4.2). Namely, both structures allow the
combined transfer function to behave like one transfer function within a certain bandwidth
and behave like another independent transfer function outside of that bandwidth. Most
importantly, these two transfer functions are completely separated in the block diagram,
hence one can be adjusted without affecting the other. Using Figs. 4.1-4.2 as inspiration,
the DOB tuning framework is shown in Fig. 4.3.

Like before, C(s) is a fixed and stabilizing controller for the plant G(s). C−1
t (s) is the

inverse of the controller being tuned and Q(s) is the Q-filter that is to be designed by the
user. Using this framework, the relationship from the error E∗(s) to U(s) is given by:

Cue∗(s) =
C(s)Ct(s)

Ct(s) +Q(s) (C(s)− Ct(s))
(4.3)

Similar to the behavior in Eq. (4.1), Cue∗(s) behaves like Ct(s) when Q(s) = 1 and like C(s)
when Q(s) = 0. This is important, since it allows Ct(s) to only affect particular frequency
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Figure 4.3: Proposed DOB framework for controller tuning

bands of the closed loop behavior. By designing Q(s) as a lowpass filter for example, will
limit the gain tuning to only affect low frequency behavior. This keeps the Ct(s) from
exciting high frequency dynamics in G(s), which is the primary cause of instability during
feedback controller tuning.

Stability Analysis

Given the proposed DOB framework, it is important to analyze the internal stability of the
entire closed loop system when varying the parameters in Ct(s). Again, since C−1

t (s) is the
only transfer function that varies during the gain tuning process, it is reasonable to begin
the stability analysis by isolating C−1

t (s) from the rest of the system. Doing this results in
the block diagram shown in Fig. 4.3.

Once in this form, the small gain theorem can be used to analyze the internal stability
of the structure. The specific form of the small gain theorem used in this dissertation is

Ê(s)U(s)

C
−1

t
(s)

G
ÊU

(s) =
−C(s)Q(s)

1−Q(s) + C(s)G(s)

Figure 4.4: Equivalent representation of Fig. 4.3 for stability analysis
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+

−Q(s)

G(s)C(s)

C(s)

−1

G(s)

Figure 4.5: Block diagram representation of ĜÊU as a structured uncertainty problem

formally stated as follows:

Theorem 1. If two systems S1(s) and S2(s) are connected in a positive feedback loop, then
the closed loop system is internally stable if both S1(s) and S2(s) are internally stable and if
∥S1(s)S2(s)∥∞ < 1.

Remark The general small gain theorem was derived by Zames and the proof will not be
repeated here [41]. The specific form of the small gain theorem used in this dissertation is
the form commonly used to analyze stability of systems with bounded uncertainty and often
used in conjunction with H∞ controller synthesis.

Based on the small gain theorem, the first two conditions to check are the internal stability
conditions of C−1

t (s) and GÊU(s). Since C−1
t (s) is a controller that is actively being tuned,

its stability can be easily enforced while tuning. The internal stability of GÊU(s) on the
other hand, is harder to analyze. Rather than directly analyzing the stability of GÊU(s), it

is more convenient to look at the stability of ĜÊU(s), which is defined as:

ĜÊU(s) =
C(s)G(s)−Q(s)

1 + C(s)G(s)−Q(s)
(4.4)

Note that ĜÊU(s) and GÊU(s) both have the same characteristic equation, hence showing

that ĜÊU(s) is internally stable is the same as showing that GÊU(s) is internally stable. It

is convenient to consider ĜÊU(s) because it can be interpreted as a closed loop system with
controller C(s) and plant G(s) where the plant has a structured multiplicative uncertainty

given by
−Q(s)

G(s)C(s)
. This feedback system is depicted in Fig. 4.5. The following theorem is

helpful for interpreting the stability conditions of such a system:
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Theorem 2. Given a plant with multiplicative structured uncertainty defined as Gunc(s) =
G(s) (1 +Wu(s)∆(s)) where G(s) is the nominal plant representation as a rational transfer
function, Wu(s) is the structured uncertainty modeled as a stable transfer function, and ∆(s)
is any transfer function such that ∥∆(s)∥∞ ≤ 1. Furthermore, it is assumed that the
number of unstable roots of Gunc(s) remains the same and is equivalent to the number of
unstable roots of G(s) under all possible parameter variations characterized by the structured
uncertainty model. If these conditions hold, then a controller C(s) stabilizes all variations
of Gunc(s) under negative feedback if and only:

1. C(s) stabilizes G(s)

2.

∣∣∣∣∣∣∣∣Wu(s)G(s)C(s)

1 +G(s)C(s)

∣∣∣∣∣∣∣∣
∞

< 1

Proof. The proof for Theorem 2 can be constructed graphically. The dashed line in Fig. 4.6
is the Nyquist plot of the open loop transfer function G(s)C(s). The structured uncertainty
of Gunc(s) implies that at any point s = jω̄ along the Nyquist plot, Gunc(jω̄)C(jω̄) can
take any value within a spherical region centered around G(jω̄)C(jω̄) with radius r(ω̄) =
∥Wu(s)G(s)C(s)∥s=jω̄. The first condition implies that the Nyquist plot of G(s)C(s) has
the correct number of encirclements of −1 to guarantee closed loop system stability. Since
it is assumed that the number of unstable roots of Gunc(s) is the same as the number of
unstable roots of G(s), the Nyquist criteria states that Gunc(s)C(s) will also be closed loop
stable under all possible outcomes of the proposed structural uncertainty if none of these
uncertainties can change the number of encirclements of Gunc(s)C(s) about −1. Another
way to write this condition is for the radius of uncertainty, r(ω̄) = ∥Wu(s)G(s)C(s)∥s=jω̄, to
be less than ∥1+G(jω̄)C(jω̄)∥ for all frequencies. This is exactly the second condition of the
theorem. Additional discussion regarding the derivation and implications of this theorem
can be found in [37].

It is relatively straight forward to apply Theorem 2 to show the stability of ĜÊU(s). One
possible application of the theorem is to set:

Wu(s) = −Q(s)
G(s)C(s)

∆(s) = 1

One can quickly confirm that the assumptions in Theorem 2 can be easily satisfied for the
system at hand. Going through the checklist:

1) G(s) needs to be represented as a rational transfer function: this requirement can
be satisfied through preliminary models of the system.

2) Wu(s) must be a stable transfer function: since in this particular application,

Wu(s) = −Q(s)
G(s)C(s)

, stability can be guaranteed if G(s) and C(s) are minimum phase
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−1

Figure 4.6: Nyquist plot of C(s)G(s)

and if Q(s) is stable. These requirements are generally not problematic as most indus-
trial robots are minimum phase systems. Furthermore non-minimum phase controllers
and unstable filters are usually avoided in feedback loops, hence this requirement can
be easily satisfied.

3) The number of unstable roots of ĜÊU(s) must be the same as those in G(s). This
constraint can be violated in two ways:

i. Introduction of an unstable pole by the uncertainty term.

ii. Elimination of an unstable pole by the uncertainty term.

Since ĜÊU(s) can also be rewritten as:

ĜÊU(s) = G(s)

(
1− Q(s)

G(s)C(s)

)
(4.5)
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An additional unstable pole can be inserted only if Q(s)
G(s)C(s)

is unstable, which violates
the previous constraint. An existing unstable pole can be removed if a unstable pole

zero cancellation occurs between the G(s) and
(
1− Q(s)

G(s)C(s)

)
. Again, since C(s) and

Q(s) are designed by the user, this scenario can be easily avoided.

Now to apply Theorem 2. The first condition states that ĜÊU(s) is stable if and only if
C(s) is a stabilizing controller for G(s), which is trivially satisfied. More interestingly, the
second condition states that: ∣∣∣∣∣∣∣∣ −Q(s)

1 +G(s)C(s)

∣∣∣∣∣∣∣∣
∞

< 1 (4.6)

Eq. 4.6 suggests that magnitude the product of Q(s) and the sensitivity function of the
nominal closed loop plant with controller C(s) must be upper bounded by 1. This naturally
leads to Q(s) to be designed as a low pass filter. And ĜÊU satisfies the theorem, which shows
that the transfer function is stable, and that consequently also shows that GÊU is stable. At
this point, the small gain theorem says that the DOB framework (Fig. 4.4) is stable if:∣∣∣∣∣∣∣∣ −C−1

t (s)C(s)Q(s)

1−Q(s) + C(s)G(s)

∣∣∣∣∣∣∣∣
∞

< 1 (4.7)

Eq. (4.7) is only interesting within the pass band of Q(s). Setting Q(s) = 1 suggests that:∣∣∣∣∣∣∣∣ −1

Ct(s)G(s)

∣∣∣∣∣∣∣∣
∞

< 1 (4.8)

Eq. (4.8) suggests that there is a lower bound on the controller gains for Ct(s) but not
necessarily an upper bound. This condition is useful for gain tuning applications since
in most gain tuning scenarios, the gains are increases for better performance rather than
decreased.

Limitations

There are a few limitations with the DOB framework, many of these are mild limitations
and should not affect the overall effectiveness of such a framework. A summary of these
limitations are as follows:

1) C−1
t (s) is required to be stable: This condition is introduced so that the small gain

theorem can be applied to the system shown in Fig. 4.4. This condition implies that
the tuned block Ct(s) should not introduce unstable zeros to the equivalent controller
given by Eq. 4.3. This constrain is reasonable since Bode’s Integral Theorem suggests
that right half plane zeros can put limitations on the system’s performance.
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2) G(s) and C(s) cannot contain any unstable zeros: This constraint is notably prob-
lematic if the physical plant has non-minimum phase characteristics. Although for
industrial robot applications, most robots are indeed minimum phase, hence the plant
constraint should not be an issue. Additionally, since C(s) is designed to be any stabi-
lizing controller for G(s), it should not be difficult to introduce a stabilizing controller
with minimum phase properties.

3) Q(s) needs to be stable and designed in a way such that Eq. (4.6) is satisfied:
The stability condition of Q(s) is implied by the structure of the DOB framework to
ensure internal stability. As previously mentioned, Eq. (4.6) suggests that Q(s) can be
naturally designed as a lowpass filter. This coincides well with the initial motivation
for the DOB structure. The only limitation set by Eq. (4.6) is that the bandwidth of
Q(s) is limited by the closed loop performance of the stabilizing controller C(s).

As a result, while a few constraints are introduced to enforce system stability, closer analysis
show that these constraints do not hinder the practical application of the DOB framework.

4.4 Results

This section attempts to verify the stability properties of the proposed DOB framework
through both simulations and experiments. The nominal plant model used for each joint of
the FANUC M16iB robot is a fifth order transfer function that is designed to closely match
the robot system identification data up until 20 Hz. Both C(s) and Ct(s) are chosen to be
PID controllers with form:

C(s) =
Kvs

2 + (KvKp +Ki) s+KpKi

s2
(4.9)

Ct(s) =
Kvts

2 + (KvtKpt +Kit) s+KptKit

s2
(4.10)

The gains of C(s) are conservatively selected such that C(s) is a minimum phase controller
that can stabilize the robot. C(s) and Ct(s) are chosen to be PID controllers so that the
DOB framework can be directly compared with the M16iB’s existing PID structure. Q(s)
is designed to be a lowpass filter with a 20 Hz bandwidth of form:

Q(s) =
ω2
n

s2 + 2ωns+ ω2
n

(4.11)

where ωn = 40π. The selection of Q(s) and C(s) satisfy the conditions introduced in the
previous section to ensure stability of the DOB framework.

While it is difficult to prove that a particular system is stable for an unbounded set of
controller gains, the following table attempts to show that the system is stable for a wide
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Kpt Kvt Kit

Gains in DOB Framework 0.06− 305 0.03− 1.02 0.00− 10.4
Stable Gains in Default PID Structure 10− 20 < 0.25 < 1

Table 4.1: Verified stable gain variations in DOB framework through simulation

range of gains. In particular, the following data is collected from the fourth joint of the
FANUC M16iB robot. Table 4.1 details the gain variations for Ct(s) which is still able to
stabilize the system. Note that typical values for the PID gains using the default controller
structure are given in the second row. The DOB framework is able to stabilize the system
for a much higher range of gain variations. Table 4.2 provides a range of gains that are

Kpt Kvt Kit

Gains in DOB Framework 16.8− 168 0.035− 0.35 0.29− 2.9
Stable Gains in Default PID Structure 10− 30 < 0.1 < 1

Table 4.2: Verified stable gain variations in DOB framework through experimentation

able stable through the DOB structure for the M16iB robot. These gains are verified and
obtained through experimentation. Again, the typical values that can be used to stabilize
the standard PID controller are given in the second row. Note the much wider range of
stabilizing controller parameters.

With this said, there are several limitations with the DOB framework. Looking at Fig. 4.3,
the entire feedback controller can be thought as a higher order controller whose order is upper
bounded by the sum of the orders of C(s), Ct(s), and Q(s). While it’s straightforward to
design C(s) and Q(s) and subsequently tune Ct(s) to obtain the entire feedback controller,
it is difficult to guarantee in advance the structure of the tuned controller. Hence the
DOB framework may not be applicable if the hardware/software configuration does not
allow for flexible feedback controller structures. A consequence of this limitation is that
the framework cannot be applied to tune typical PID controllers found in many of today’s
mechanical systems.

4.5 Chapter Summary

This chapter presented a framework based on the disturbance observer for stable feedback
controller tuning. Both simulation and experimental results are provided to demonstrate the
robust stability conditions of the DOB framework. A current limitations of this approach,
however, is that it cannot be used to PID controllers. While the user can specify the
controller being tuned to be of any structure, the complete controller is given by Eq. (4.3).
The framework essentially allows the user to tune a subset of the parameters of a higher
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order controller. While this increases the computational complexity of the entire controller,
in return, it is able to provide very robust stability properties for the controller. At this
point of development, the DOB framework cannot be utilized for tuning PID controllers but
it may play a significant role in tuning higher order controllers in the future.
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Chapter 5

An Input Shaping Method to
Suppress Transient Vibrations In
Flexible Joint Robotic Manipulators

5.1 Introduction

This chapter proposes an input shaping approach for suppressing the fundamental vibratory
mode in flexible joint robots. In many robot manipulator applications, such as spot welding,
it is desirable for the robot to travel quickly from one point to another. In these situations,
the robot user is primarily concerned with suppressing the robot end effector vibrations as
it approaches each point. As a result, it is important to develop methods that can suppress
transient vibrations. Section 5.2 briefly introduces the input shaping concept. Development
of the proposed algorithm takes place in section 5.3. More specifically, section 5.3 discusses
about both the system identification aspect as well as the actual input shaping procedure.
Both simulation and experimental results are given in section 5.4. Finally, section 5.5 sum-
marizes the contents of this chapter.

5.2 Input Shaping

Input shaping was first proposed by the authors in [36]. As the name suggests, the method
involves modifying the desired system’s input such that the actual output from the closed
loop system matches the initial desired trajectory. The initial theory assumes that the sys-
tem contains damped vibratory modes that can be accurately modeled by linear vibration
analysis. Using this assumption, impulses can be injected into the system at a π/2 phase
offset to effectively cancel out the vibratory response of the system. While the fundamental
theory lies heavily on linear vibration analysis, the effectiveness of the input shaping ap-
proach was validated through experimentation on a more complex mechanism. Following
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Figure 5.1: Two inertial model of an indirect drive mechanism

this example, this chapter develops the underlying theory for the input shaping approach
based on linear vibration theory. But ultimately, the utility of the approach is demonstrated
by both simulation and experimentation on the M-16iB industrial robot.

5.3 Theory

An individual joint of a robot manipulator can be approximated a two inertia model. For
reading convenience, the two inertia model originally presented in Fig. 2.1 is shown again
here in Fig. 5.1. In industrial robotic joints, both linear and non-linear joint dynamics exist.
The linear portion is modeled in the two inertia model by the linear spring and damper which
have constants kj and dj respectively. The nonlinear portion is modeled by the transmission
error, θ̃, and the generic variable fnl,j. Unfortunately in most systems, nonlinear dynamics
is difficult to model and predict. Unless more information about these nonlinear effects is
known, it is not possible to compensate for them without the use of load side sensors. Since
this nonlinear behavior is difficult to learn and generalize for any given input, the focus of the
input shaping technique presented in this chapter will focus on learning and compensating
for the linear component of the transmission dynamics, namely the fundamental vibratory
mode.
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System Identification

In many applications, Jm and Jl can be calculated from the mechanical schematics and/or
orientation of the mechanical system. Furthermore, if the motor side controller can provide
tight control, then the motor side dynamics, namely the effects of motor side damping, dm,
and motor side friction, fnl,m, can be neglected. The gear reduction ratio N is usually
specified by the manufacturer; hence the only parameters to identify are kj and dj. If the
motor side feedback controller has tight control performance, the two inertia system can be
simplified to a single spring-mass-damper system shown in Fig. 5.2. Using this assumption,
the load side time response subjected to a unit motor side step input is given by [29]:

θl(t) =
1

Nkj

[
1− e−ζωnt

(
cos (ωdt) +

ζωn

ωd

sin (ωdt)

)]
1(t) (5.1)

where ζ = 1
2

dj√
kjJl

, ωn =
√

kj
Jl
, ωd = ωn

√
1− ζ2, and 1(t) represents the unit step response.

The nominal step response of a second order system is shown in Fig. 5.3. Let x1 and x2

denote the overshoots of two consecutive vibratory responses of the step function, while t1
and t2 denote the time instances corresponding to x1 and x2 respectively. Taking the ratio
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of x1 and x2 yields:

x1

x2
=

e−ζωnt1

(
cosωdt1+

ζωn
ωd

sinωdt1
)

e−ζωn(t1+Td)
(
cosωd(t1+Td)+

ζωn
ωd

sinωd(t1+Td)
)

= eζωnTd

= e2πζωn/ωd

= e2πζ/
√

1−ζ2

(5.2)

where Td =
2π
ωd

is the period of the damped natural frequency ωd. Then, solving for ζ yields:

ζ =
δ√

(2π)2 + δ2
(5.3)

where δ = ln x1

x2
. Noting that ζ = 1

2

dj√
kjJl

, Eq. (5.3) provides a relationship between the

system parameter dj and kj based on the system’s step response. ωd can also be empirically
measured from the step response data by the following formula:

wd =
2π

Td

=
2π

t2 − t1
(5.4)

Given empirical measurements ωd and δ, the joint parameters kj and dj can be determined
with the following relationships:

kj =
ω2
dJl

√
(2π)2 + δ2

2π
(5.5)

dj =
2δ
√

kjJl√
(2π)2 + δ2

(5.6)

In order to perform this empirical test to obtain the model parameters, a load side sensor
to estimate the load side behavior is required. Additionally, the actuator on the motor
side needs to be able to cleanly produce a step displacement, which requires both feedback
and feedforward control. In some cases, it is not always possible to get good motor side
performance with just a feedback controller, especially when the feedforward controller per-
formance is poor. In these scenarios, techniques such as iterative learning control (ILC) [6]
can be used to tune the feedforward torques such that the motor side actuator can produce
the best possible step input for system identification.

Trajectory Modification

Once the system parameters have been identified, the procedure in this section can be used
to reshape the system input to improve load side behavior. In many complex systems
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Figure 5.3: Nominal step response of a second order system

that utilize harmonic drives, such as industrial robots, a closed-form relationship between
the input torque and load side output is not readily available due to the complexity of
the mechanism. Instead, a complex dynamic model derived from Lagrangian mechanics is
used to establish the relationship between the desired motor side trajectory and motor side
torque. Ideally, if the transmission dynamics are known, it may be possible to calculate the
corresponding motor side trajectory based on the desired load side trajectory. Since this is
rarely the case, the motor side reference trajectory is usually calculated by neglecting any
transmission dynamics. This desired motor side reference is then used by the dynamic model
to compute the required input torque. While these complicated dynamic models provide
superior motor side performance, they do not consider joint flexibilities. Hence the motor
side reference and resulting feedforward torque may not always produce the desired load side
performance, especially during transients. Rather than directly changing the feedforward
torque or dynamic model, the proposed method focuses on reshaping the desired motor
side trajectory to pre-compensate for the joint dynamics such that the resulting feedforward
torques will produce the desired load side behavior. This approach has the advantage of
being easy to implement since it does not require any substantial modification to existing
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procedures.
Let θ̄d,l be the desired load side trajectory vector. Neglecting joint dynamics, the corre-

sponding motor side trajectory vector can be written as:

θ̄d,m = N ∗ θ̄d,l (5.7)

Eq. (5.7) is often used as the feedforward controller F1 in Fig. 2.6 whereas the Lagrangian
model is used for F2. If these feedforward controllers and motor side feedback controller
are good, then the actual motor side output will be nearly identical to θ̄d,m. Using this
assumption, θ̄d,m is used as the reference base input to the single inertia system given in
Fig. 5.2. The resulting load side output vector from this base input can be calculated by
numerically solving the following:

Jlθ̈l + dj θ̇l + kjθl =
dj
N
θ̇m +

kj
N
θm (5.8)

where θm is the known input which is set to be θ̄d,m and the output, θl, yields the estimated
load side output, θ̄l,est. This relationship is obtained from a torque balance on Jl in the two
inertia model. Once θ̄l,est is known, the load side trajectory error can be computed as follows:

δθ̄d,l = θ̄d,l − θ̄l,est (5.9)

Using this error trajectory, the motor side compensation, δθ̄d,m is computed by solving
Eq. (5.8) again. This time θl = δθ̄d,l is the input and the output is θm = δθ̄d,m. Once this
computation is complete, the new desired motor side trajectory is defined as:

θ̄∗d,m = θ̄d,m + δθ̄d,m (5.10)

Note that in the single mass model representation, the majority of the system uncertainty is
eliminated as Jl can be accurately calculated and the remaining system parameters kj and
dj are identified empirically. As a result, the load side output estimate from the single
mass model can accurately capture the actual system behavior. From first glance, the
process outlined above may seem like a roundabout way to calculate the compensation
torque. Intuitively, it would be simpler to let θl = θ̄d,l and solve for the motor side trajectory
using Eq. (eq:GELoadside—ch:IS). Empirical data from simulation and experimentation,
however, suggest that this method produces substantially worse performance than the initial
outlined approach. The cause for this discrepancy is still unknown and may be a topic for
future investigation.

5.4 Results

In this section, the proposed input shaping algorithm will be verified by application on both
the robot simulator and the M-16iB industrial robot.
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Figure 5.4: Motor side step response tracking

Simulation Results

This section contains the simulation results for the input shaping technique. For simplicity,
in this section the algorithm is tested only on the base joint of the robot.

System Identification Results

In the system identification process, the actuator of the first axis of the robot (J1) was
instructed to produce a step response indicated by the dashed-dotted line in Fig. 5.4. The
robot, however, was not able to track the step response well and produced the response shown
by the solid line in Fig. 5.4. As a result, the measured load side response, shown in Fig. 5.5
as the solid line, was unable to produce the desired load side response necessary for system
identification. As suggested earlier in the chapter, motor side ILC can be used to improve
the motor side response of the robot. The motor side and load side responses after applying
ILC are plotted as the dotted line in Figs. 5.4-5.5 respectively. 20 ILC iterations were used to
obtain the aforementioned results.The joint stiffness and viscous damping parameters used
in the remainder of this section are taken from the post-ILC load side response shown in
Fig. 5.5.
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Figure 5.5: Load side step response

Trajectory Compensation Results

An assumption used in this approach is that the joint stiffness and damping coefficients are
independent of the robot posture. Before testing this assumption, it is important to first
verify the accuracy of the identified joint stiffness and damping parameters. If the identified
parameters are accurate, the proposed method should be able to effectively compensate
for the vibratory motions caused by motions along the J1 axis when the robot is in its
home posture. In the first simulation, the robot end effector is instructed to perform a step
displacement about the J1 axis in its home configuration and then return back to its home
position. Fig. 5.6 shows the uncompensated load side step response (dashed-dot line). Note
that the response exhibit mild oscillatory behavior. For comparison purposes, the desired
load side reference is shown as the dotted line and the computed load side response based on
the single inertia model is shown as the solid line. Note that while the predicted response of
the single inertia system is unable to capture the offset of the simulated response, it is able
to capture the oscillatory behavior (dashed dot line). This is not surprising since the single
inertia model used to compute the trajectory compensation does not take into account static
friction effects that is present in the robot simulator. The load side trajectory compensation
is then calculated using the proposed approach. Fig. 5.7 plots the original load side desired
trajectory in the top subplot and the calculated trajectory correction, δθ̄d,l, in the bottom
subplot. Note that the magnitude of the trajectory correction is relatively small compared to
the original trajectory. The load side response after the proposed trajectory compensation
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is shown in Fig. 5.8. The top subplot of Fig. 5.8 compares the load side position response
before and after the trajectory compensation. While the proposed trajectory was unable to
compensate for the undershoot behavior, the compensated load side response exhibit less
oscillatory behavior when compared to the uncompensated load side response. The bottom
subplot of Fig. 5.8 compares the load side position error before and after the proposed
trajectory compensation. From a quantitative standpoint, the compensated result showed a
35% decrease in the 2−norm of the load side position error vector along the entire trajectory.

As mentioned earlier, an assumption of the proposed approach is that the joint pa-
rameters kj and dj do not vary significantly over the entire workspace. To validate this
assumption, several simulations were performed on the robot simulator under different robot
configurations. As mentioned earlier, in many applications of industrial robots, especially
spot welding, the robots are desired to travel quickly from one point to another. In many
cases, the user is primarily interested in suppressing robot vibrations as they approach these
designated points. A step response can be used to mimic these conditions. Hence, the fol-
lowing simulations will test the step response of the robot simulator. Note that under all of
these simulations, the same kj and dj obtained through system identification of the robot in
its home posture are used. Each simulation will be done at a different robot configuration.
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Figure 5.7: Trajectory correction: top subplot shows the original desired load side trajectory,
bottom subplot shows the trajectory correction, δθ̄d,l

Each configuration provides different load side inertias to the robot. For ease of terminology,
the load side inertia of the robot in its home position will be referred to as the default inertia.
The top subplot in Fig. 5.9 shows the load side position step response. In this simulation, a
posture which has approximately 90% of the default inertia is used. The load side position
error comparison can be found in the bottom subplot of Fig. 5.9. Note that the proposed
compensation approach is still able to suppress a large amount of the load side vibrations.
Fig. 5.10 shows the same load side response when the load side inertia is reduced to roughly
50% of the default inertia. Note that the compensated result is still able to greatly reduce
the load side vibrations. Finally, Fig. 5.11 shows the robot’s load side output response when
the robot is in a pose that maximizes its load side inertia. The load side inertia in this
case is roughly 200% of the default inertia. In this worst case scenario, the performance
of the proposed algorithm seems to significantly degrade based on the time history plots in
Fig. 5.11. A quantitative comparison of the 2−norm of the error vector, however, still shows
that the compensated response was able to reduce the error by 20%.
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Figure 5.8: Compensated response: top subplot shows the load side tracking performance,
bottom subplot shows load side error

Experimental Results

In this section, the M-16iB industrial robot is used to verify the proposed input shaping
algorithm. The load side sensors such as inertia sensor and CompuGauge3D system will be
used during the system identification process and also later on for performance evaluation.
Due to the high inertia loads on the base three joints (J1-J3) of the FANUC robot, joint
flexibilities are predominantly concentrated in these three joints. As such, the input shaping
technique is applied to these three joints only.

The system posture used for parameter identification of these three joints is shown in
Fig. 5.12. The acceleration measurements from the inertia sensor is used for evaluating
the load side vibratory behavior during the system identification process. The load side
acceleration measurements for the first three joints during the step response experiment
are shown in Figs. 5.13-5.15. The motor encoder position during the measurement is also
included as a reference. The expected linear step response behavior can be clearly seen in
Fig. 5.13 and Fig. 5.15. As such, it confirms the assumption that the reducer behavior can
be captured by a simple spring and damper model. This vibratory behavior, however, is
not seen as clearly in Fig. 5.14. In particular, J2 is a much stiffer joint than J1 and J3.
Hence, the natural frequency is much higher and is much harder to decouple the desired
joint vibratory content from transient noise and other joint coupling effects. Due to this, the
input shaping will be applied to J1 and J3 only in the following experimental results.

Similar to the simulation example, the robot is instructed to quickly turn 0.2 radians
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Figure 5.9: Compensated response: top subplot shows the load side tracking performance,
bottom subplot shows load side error (90 % of default inertia)

about the J1 axis, hold for a second, and then swing back. In this experiment, the Com-
puGauge3D is used to track the robot end-effector position. The load side performance is
shown in Fig. 5.16. The input shaping algorithm reduced the load side tracking error by
40% over the entire trajectory. In a second experiment, the end effector is maping out a
planar square, stopping for 2 seconds at each corner. Again the load side tracking error is
measured using the CompuGauge3D system. Figs. 5.17-5.19 show a portion of the load side
position error as the robot traverses the trajectory. Note that the load side response after
applying the input shaping technique shows superior vibration suppression characteristics.
While this level of vibration suppression is not uniform across the entire trajectory, nowhere
along the trajectory is the vibration actually increased after applying the input shaping
technique. Overall in this multi-joint experiment, the proposed input shaping technique is
able to reduce the load side position tracking error by 15%. One point to note is that the
proposed input shaping approach is limited by the motor side performance. In reality, the
feedforward controller is never perfect and considerations for stability and robustness put
a limit on the feedback controller gains. If the motor side performance is poor, then the
two inertia model in Fig. 5.1 cannot be reasonably approximated by Fig. 5.2 and thus the
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Figure 5.10: Compensated response: top subplot shows the load side tracking performance,
bottom subplot shows load side error (50 % of default inertia)

identified system coefficients kj and dj cannot be used to approximate the actual system’s
behavior. This limitation may be overcome by extending the system identification procedure
to identifying the motor side parameters as well. This is a topic of future work.

5.5 Chapter Summary

An input shaping approach for compensating for transient transmission dynamics for in-
dustrial robots with flexible joints was proposed in this chapter. The necessary system
identification process required by the approach was also presented in detail. The proposed
approach was evaluated through both simulations on the robot simulator as well as exper-
imentation on the M-16iB industrial robot. Both the simulation and experimental results
have shown that the approach is able to reduce load side transient vibrations if the base
joint of the robot is required to follow a simple step trajectory. The proposed approach was
also experimentally shown to be effective at suppressing transient vibrations along a more
complicated trajectory.
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Figure 5.11: Compensated response: top subplot shows the load side tracking performance,
bottom subplot shows load side error (200 % of default inertia)
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Figure 5.12: System identification posture for first 3 joints of the FANUC M-16iB robot
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Figure 5.13: Load side acceleration response used for system identification of joint 1
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Figure 5.14: Load side acceleration response used for system identification of joint 2
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Figure 5.15: Load side acceleration response used for system identification of joint 3
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Figure 5.17: Compensated response: load side position tracking error along X axis
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Figure 5.18: Compensated response: load side position tracking error along Y axis
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Figure 5.19: Compensated response: load side position tracking error along Z axis
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Chapter 6

Conclusions

6.1 Chapter Summary

This dissertation presented feedback and feedforward controller design techniques for direct
application to industrial robots. Chapter 2 introduced the background information necessary
to understand this dissertation. This information includes single joint modeling techniques,
multi joint robot dynamics, and controller structure. This chapter also introduced the soft-
ware and hardware used for experimental verification in this dissertation as well as relevant
system identification results.

Chapter 3 presented an algorithm for automatic gain tuning of robot manipulators. The
proposed approach is an iterative method that uses nonlinear programming to improve robot
performance by successively reducing a cost function. This chapter also discusses barrier
methods, stepsize selection, as well as initial gain selection. Experimental results are included
to verify the effectiveness of the proposed approach.

Chapter 4 presents a controller framework based on the disturbance observer. This con-
troller framework is designed for gain tuning purposes and is shown to be robustly stable
under a few mild assumptions. These assumptions are addressed and do not hinder the pro-
posed framework’s viability for most gain tuning scenarios. The framework is experimentally
shown to be stable under a large range of controller gain variations.

Chapter 5 introduces an input shaping approach for reducing residual vibrations in in-
dustrial robots with joint flexibilities. This approach models the joint dynamics as a simple
second order system and utilizes a simple system identification process to identify the model
parameters. Experimental results show that the proposed approach is effective at reducing
residual vibrations in robot manipulators, especially when the link inertia is large.
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6.2 Future Work

Additional research can be done to further improve the topics presented in this dissertation.
Chapter 3 presented an algorithm for automatically tuning the feedback controller gain for
robot manipulators. Further work can be done to improve the step size selection process.
Additionally, the proposed gain tuning algorithm improves robot performance by iteratively
reducing a cost function. More work can be done to refine the cost function design process to
see how different cost function parameters correlate to actual robot performance. Chapter 4
presents a controller tuning framework for stable gain tuning. The proposed framework can
use further experimental verification. In particular, it would be interesting to combine the
proposed gain tuning algorithm from chapter 3 with the framework proposed in chapter 4.
More specifically, it would be interesting to tune the free controller Ct(s) in the DOB frame-
work using the proposed gain tuning approach presented in chapter 3. And finally, chapter 5
presented an input shaping method for suppressing residual joint vibrations. The current
implementation assumes good motor side performance, which is something that is not always
readily available. More work can be done to extend the input shaping approach to situations
where the motor feedback controller has not been optimized.
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