
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A Bayesian hierarchical model of local-global processing: visual crowding 
as a case-study

Permalink
https://escholarship.org/uc/item/98m8569z

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 37(0)

Authors
Zhang, Shunan
Song, Man
Yu, Angela J

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/98m8569z
https://escholarship.org
http://www.cdlib.org/


A Bayesian hierarchical model of local-global processing: visual crowding
as a case-study

Shunan Zhang Man Song Angela J. Yu
(s6zhang@ucsd.edu, feijuejuanling@gmail.com, ajyu@ucsd.edu)

Department of Cognitive Science, University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093-0515

Abstract

We explore the interaction between local-global informa-
tion processing in visual perception, leveraging a visual
phenomenon known as crowding, whereby the perception
of a target stimulus is impaired by the presence of nearby
flankers. The majority of established models explain
the crowding effect in terms of local interactions. How-
ever, recent experimental results indicate that a classical
crowding effect, the deterioration in the discrimination
of a vernier stimulus embedded in a square, is alleviated
by the presence of additional flanker squares (“uncrowd-
ing”). Here, we propose that crowding and uncrowding
arise from cortical inferences about hierarchically orga-
nized groups, and formalize this concept using a hierarchi-
cal Bayesian model. We show that the model reproduces
both crowding and uncrowding for flanked vernier discrim-
ination. More generally, the model provides a normative
explanation of how visual information might simultane-
ously flow bottom-up, top-down, and laterally, to allow
the visual system to interactively process local and global
features in the visual scene.

Introduction

A common approach to understanding visual perception is
to identify the “local” versus “global” processing of visual
information, where local processing depends on spatially
proximate visual elements, and global processing is more
holistic in nature and thus influenced by spatially distal
elements. The local versus global distinction has long been
an important topic in Gestalt psychology (Wagemans et
al., 2012) and neuroscience (Rasche & Koch, 2002). How-
ever, recent discoveries in visual perception, in particular
in the study of visual crowding (Manassi, Sayim, & Her-
zog, 2013; Clarke, Herzog, & Francis, 2014), suggest that
the distinction may be overly constraining, and that it
is necessary to explore the recurrent interactions of local
and global processing to fully understand computational
principles in vision. Visual crowding is a psychophysical
phenomenon in which target discrimination is impaired
in the presence of flankers (also known as distractors).
Crowding effects have been extensively studied in various
settings, including letter recognition, vernier acuity, orien-
tation discrimination, face recognition, etc. It is believed
that crowding reflects a crucial bottleneck in peripheral
visual discrimination and has a close link with contour
integration (May & Hess, 2007; Hess, Dakin, Kapoor, &
Tewfik, 2000), segmentation (Wilkinson, Wilson, & Ellem-
berg, 1997), feature interaction (Van den Berg, Roerdink,
& Cornelissen, 2010; Freeman & Pelli, 2007), and ob-

ject recognition (Levi, 2008; Whitney & Levi, 2011; Pelli,
2008).

Most theories about visual crowding explain it using
essentially local mechanisms, where degraded target pro-
cessing is due to the (inappropriate) pooling of informa-
tion about the target and the surrounding elements. Ex-
amples of such models include spatial pooling (Parkes,
Lund, Angelucci, Solomon, & Morgan, 2001; Dayan &
Solomon, 2010), substitution (Huckauf & Heller, 2002;
Strasburger, Harvey, & Rentschler, 1991), masking (Tyler
& Likova, 2007), and feature integration (Freeman & Pelli,
2007). These models explain some of the key phenomena
in crowding, such as the asymmetrical crowding influence
between foveal and peripheral stimuli (Dayan & Solomon,
2010). However, recent experimental studies suggest that
crowding may involve complex global and feedback pro-
cessing (Levi & Carney, 2009; Livne & Sagi, 2007; Mala-
nia, Herzog, & Westheimer, 2007; Saarela, Sayim, West-
heimer, & Herzog, 2009; Manassi et al., 2013), as crowd-
ing effects can be significantly reduced or even eliminated
(Manassi et al., 2013) when multiple flankers form a per-
ceptual pattern that excludes the target. Previous studies
have also found target-flanker proximity to be a major fac-
tor that modulates the crowding effect, with a particular
separation distance maximizing the crowding effect (Hess
et al., 2000). These non-linear effects on crowding suggest
that a new approach for computational modeling of visual
crowding is needed.

Here, we propose an alternative theory: the brain simul-
taneously processes local and global features (Lamme &
Roelfsema, 2000), in particular using local features to de-
lineate the hierarchically organized grouping of elements,
and in turn using global grouping information to facilitate
inferences about local features. The impairment of vernier
discrimination in the presence of the square flanker (e.g.
Manassi et al., 2013) may be due to the perceptual group-
ing of the vernier stimulus with the square, such that the
straight, well-aligned edges of the square leads to a biased
perception of the vernier lines being closer together, thus
leading to a deterioration in offset discrimination. When
additional square flankers are introduced at regular spac-
ing, the square surrounding the vernier is perceived as
being part of the array of squares, and the vernier stim-
ulus is perceived as not belonging to this grouping, and
thus features of the square grouping (straight edges) has a
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smaller influence on the perceived properties of the vernier
stimulus (offset spacing). Formally, we introduce a hier-
archical Bayesian model that incorporates prior assump-
tions about grouping of similar features at different spatial
and complexity levels, while making inferences about the
target, through simultaneous top-down and bottom-up in-
formation processing. This grouping-based explanation is
consistent with the observation that crowding effects are
particularly strong when target and flankers are similar in
shape and size (Kooi, Toet, Tripathy, & Levi, 1994), orien-
tation (Levi, Hariharan, & Klein, 2002; Hariharan, Levi,
& Klein, 2005) , polarity (Kooi et al., 1994; Chakravarthi
& Cavanagh, 2007), spatial frequency (Chung, Levi, &
Legge, 2001), color (Kooi et al., 1994; Põder & Wagemans,
2007), depth (Kooi et al., 1994) and motion (Banton &
Levi, 1993).

In the following, we first describe the model, then
demonstrate how the model explains the crowding and
uncrowding effects, and finally conclude with some dis-
cussions of related work and future directions.

A Bayesian Model of Visual Crowding in
the Vernier Discrimination Task

Visual crowding has been studied intensively in the
Vernier discrimination task, a classical perceptual psy-
chophysics paradigm. In the vernier discrimination ex-
periment, e.g. in (Manassi et al., 2013), observers judge
whether one line is offset to the left or the right of a sec-
ond line (Figure 1a); in the crowding version of the experi-
ment, the vernier stimulus is surrounded by a square, and
possibly other flankers/distractors (Figure 1b:c). Typi-
cally, experimenters identify a discrimination threshold,
by measuring the offset distance for which a certain accu-
racy level is attained (e.g. 75% correct in Manassi et al.
(2013)). When vernier offset discrimnation are tested with
several stimulus setting – a single vernier, a vernier em-
bedded in one square, and an embedded vernier with hori-
zontally surrounded squares – it was found that, compared
with the single vernier condition, the threshold increased
(performance deteriorated) in the presence of one flanker,
exhibiting the classic crowding effect; but threshold de-
creased (performance improved), relative to the crowd-
ing condition, when the vernier is surrounded by an ar-
ray of square flankers in addition to the square flanker
immediately surrounding the vernier target (Manassi et
al., 2013). This latter result, termed “uncrowding”, defies
any simple local processing account of crowding; instead,
it suggests that hierarchical grouping, which probably ne-
cessitates global processing, is inherently present in visual
crowding.

Here, we propose a normative Bayesian model that
makes joint inferences about the identity and grouping of
all the objects in the visual scene, and marginalizes over
beliefs about the rest of the visual scene to infer offset
property about the central target. Below, we first describe

(a) (b) (c) 

(d) 
c0 c3 c4 

g 

c0 c1 cN 

a00 a01 a04 a10  a11 a14 aN0 aN1 aN4 

s00 s01 s04 s10 s11 s14 sN0 sN1 sN4 

d00 d01 d04 d10 d11 d14 dN0 dN1 dN4 

… 

… … … 

c2 c1 

Figure 1: Generative model for the Vernier discrimination
task. (a) Model representation of a single vernier. (b)
Model representation of a vernier embedded in a square;
edges perceived as composition of line segments. We de-
note the central vernier as a0, and the four edges as a1 to
a4. (c) Model representation of an embedded vernier sur-
rounded by additional square flankers. We use location 0
to denote the target location, then location 1 and 2 for its
two neighboring locations on the left and the right, and so
forth. (d) Graphical illustration of the Bayesian generative
model: the global grouping variable, g, specifies whether
the objects from all locations are the same. cn specifies
the semantic relationship of the parts that compose the
visual object at location n, i.e. either all line segments are
unrelated, or they form a square plus an unrelated central
edge (if it is present), or all the line segments form a single
“window” object. Likewise, a = 1 indicates line segments
that are well-aligned and belong to the same edge, and
a = 2 indicates unrelated lines segments.

the generative model, which encapsulates all our assump-
tions about what subjects believe about general organiza-
tional principles of the visual scene as well as how noisy
sensory observations are generated from the visual scene.
We then describe the recognition mode, which inverts the
generative model, using a combination of Bayes’ Rule and
other standard statistical tools, to predict how perception
arises from noisy sensory data.

Generative Model

In the model, we use the variable g to denote the (po-
tential) global grouping of objects across all N stimulus
locations. g = 1 means (1) there is at least one object in-
ferred at each location, and (2) the same object is present
at all locations (e.g. square present at all locations). Oth-
erwise, g = 0. The prior probability of grouping (g = 1)
is parameterized as p.

We model the visual scene as being made up of an array
of N decomposable visual stimuli, c0, c1, ..., cN , where c0
always refers to the central location. cn = 0 denotes that
there is no coherent visual object (though there may be
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semantically unrelated visual input) at location n. cn = s
denotes that there is a square present at location n (and
there may or may not be semantically unrelated, addi-
tional visual object at this location). cn = w denotes that
there is a “window” object at location n, which consists of
a central edge embedded in a square. The distribution of
c conditioned on g = 1 is correlated among the different
locations:

Pr(c0 = c1 = · · · = cN = s|g = 1) = ϕs

Pr(c0 = c1 = · · · = cN = w|g = 1) = ϕw

Pr(c|g = 1) =
1− (ϕs + ϕw)

3N+1 − 2
, o.w.

For simplicity, the model only allows the array of objects
to all be squares or all be “windows”. When there is no
global grouping (g = 0), the conditional distribution of c
is independent (factorizable):

Pr(c|g = 0) =

N∏
n=0

Pr(cn)

The model assumes that a straight line segment gener-
ates noisy sensory evidence of well-aligned shorter line seg-
ments (mimicking the neuroscientific observations that vi-
sual neurons from retinal ganglion cells to LGN, to V1, are
sensitive to oriented line segments of increasing lengths;
and the general notion that larger receptive fields depend
on pooling responses from neurons with smaller receptive
fields). We use the variable a to denote the grouping
(alignment) of the two lines that constitute the vernier.
a = 1 means that the two lines are aligned, a = 2 means
that the two lines are not aligned, and a = 0 denotes the
absence of any lines. The prior probabilities of a = 1 and
a = 2 are q1 and q2. Let ψ be a large probability, when cn
is a square,

Pr(an0 = 1, an1 = · · · = an4 = 1|c = s) = ψ · q1
Pr(an0 = 2, an1 = · · · = an4 = 1|c = s) = ψ · q2
Pr(an0 = 0, an1 = · · · = an4 = 1|c = s) = ψ · (1− q1 − q2)

Pr(an0, · · · , an4|c = s) =
1− ψ
35 − 3

, o.w.

When cn is a “window”, the conditional probability dis-
tribution of an0, ...an4 has most of its mass (ψ) on an0 =
... = an4 = 1, and the rest of the mass split equally to all
other conditions (35 − 1 in total). If there is no object,

Pr(an0, · · · , an4|c = 0) =

4∏
i=0

Pr(ani)

The offset of the vernier, s, should be close to 0 if the
two lines are aligned, but can vary across a broader range
of values otherwise. Conditioned on a, s has a Gaussian
distribution centered at 0; its variance is close to 0 when

a = 1, but large when a = 2. We assume that there is
one population of neurons whose activities are driven by
each vernier offset, yielding noisy perception of the offset,
d. We assume d has a Gaussian distribution conditioned
on s when s /∈ ∅.

Pr(d|s) = N (s, σ2
d)

Recognition Model

Given the noisy input of d from all existing verniers at
all locations, the ideal observer’s belief about the true off-
set of the target vernier, s00, the alignment of the target
vernier, a00, the object at the central location, c0, and the
global grouping g, captured by the probability distribu-
tion, P (s00, a00, c0, g|d), is proportional to

p(g)

∫
c

p(c|g)

∫
an

p(an|cn)

4∏
i=0

p(sni|ani)p(dni|sni) (1)

by Bayes’ rule, where c is shorthand for the object vari-
ables across all locations, and an is shorthand for all the
vernier alignment variables at one location. This function
is proportional to the posterior distribution (without nor-
malizing factor). In practice, we make the observation of
the lines’ presence/absence noise-free, i.e. subjects should
not hallucinate vernier’s presence when it is actually ab-
sent, or vice versa.

To make a perceptual decision based on the posterior
probability, we compute the marginal distribution of s00,
by summing over the uncertainty over a00, c0, and g. How
decisions of the offset direction should be made based on
the inferred offset size of the vernier is an interesting prob-
lem by itself. For the current study, however, we focus on
the representational component of the task, and assume a
simple, sigmoidal mapping from the posterior mean of the
offset, ŝ, to decision accuracy:

a =
1

1 + e−βŝ
(2)

where β is a free parameter that is associated with the
internal discriminability.

Simulations

The model infers the offset distance of the target vernier,
along a grid of true offset values from .1 to 1.5, for three
conditions including 1) single vernier, 2) vernier embedded
in a square and 3) additional flankers. For each condition,
we ran simulations using the same 10 different values of
σ2
d, iid from N(.1, .1). We generated 500 observations for

each offset distance for each particular d. σ1 and σ2 were
.1 and 1. We denote the posterior mean of s by ŝd; the
mean inferred offset, ŝ, is the average of all ŝd. For Fig-
ure 2, q1 = .05, q2 = .85, ψ = .9999, ϕw = .7, p = .5,
β = −3. The graphical models were implemented via
WinBUGS 1.4.3 (Lunn, Thomas, Best, & Spiegelhalter,
2000), which implements MCMC for posterior inference
of hidden variables and model parameters.
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(a) 

(b) 

Figure 2: Model simulation results consistent with hu-
man performance (top plot) as reported in (Manassi et al.,
2013). The exact forms of the stimuli used in (Manassi et
al., 2013) are shown along with the horizontal axis in the
top plot. Each bar shows the offset distance for which 75%
correct responses occurred. Thresholds increased when
the vernier was embedded in a square, but gradually de-
creased when in creasing the number of flanking squares.
In the bottom plot, thresholds calculated from model sim-
ulations for 75% accuracy, showing a similar pattern as in
the behavioral data. Error bars calculated across simula-
tion results using the 10 different σd values.

Results

By simulating our hierarchical Bayesian model (details in
the previous section), we show that our model is able to
recover the observed patterns in the behavioral experi-
ment as reported in (Manassi et al., 2013). As shown in
Figure 2, when we simulate our model at 75% discrimina-
tion accuracy for the different experimental conditions, the
predicted model discrimination threshold shows a similar
pattern as human behavioral data (Manassi et al., 2013).

Having seen that our model can reproduce the behav-
ioral pattern, we then explore further how the model works
by simulating the inferred offset distance for each of the ex-
perimental conditions (single vernier, framed vernier, ad-
ditional flankers), under different parameter settings (see
Figure 3), in particular for different priors of the group-
ing variable at each level. When there is a single vernier
stimulus, the model predicts that the inferred offset dis-
tance should be in general smaller than the true offset
distance, due to the influence of the of the grouping vari-
able (Figure 3a). As the prior probability of the two lines

(a) (b) (c)

Figure 3: (a) Single vernier discrimination task: inferred
vernier offset distances are more under-estimated when the
prior probability of grouping of the lines (q1) increases.
(b) Vernier embedded in a square: effects of varying the
prior probability of a square (ϕs), a “window” (ϕw), or no
object (1−ϕs−ϕw). (c) Embedded vernier with flankers:
inferred vernier offset distances increase (but still under-
estimated) when the prior probability of a global group
(p) increases.

being grouped together into a single well-aligned object
increases, the perceived offset distance becomes smaller.
When the prior probability of such a grouping goes to-
ward 0, or when the true offset distance gets very large,
the under-estimation of offset distance also diminishes to-
ward 0 (results not shown).

When the vernier is embedded in a square frame, we
assume that the visual system can either perceive a “win-
dow”, a “square” (plus any semantically unrelated visual
input), or “no object” (completely incoherent visual input)
at this central location. As illustrated in Figure 3b, the
inferred vernier offset distance is smallest, and thus the
discrimination performance is the worst, when the prior
probability of “window” is high (magenta). This is be-
cause when there is a relatively high prior probability of
perceiving a single “window” object, the target vernier
“inherits” the “well-aligned-ness” of the edges of the sur-
rounding square, with q1 (in Figure 3a) no longer being
a model parameter but a hidden parameter whose distri-
bution is influenced top-down by the perception of the
“window” (see previous section for details).

As the prior of the presence of a global group is in-
creased, the model increasingly under-estimates the offset
magnitude, and the probability that the central square
is grouped with the flanker squares becomes higher (Fig-
ure 3c).

Discussion

We introduced a Bayesian hierarchical model for visual
scene processing, which makes simultaneous inferences
about (relatively) global grouping membership at different
levels of organizational hierarchy, as well as (relatively) lo-
cal visual features. The model explains the crowding phe-
nomenon as follows: when the target vernier is presented
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along with a square frame, it may be perceptually grouped
with the square flanker and thus partially inherits the fea-
tures of other group members (straight edges), making the
perceived offset distance smaller and thus the discrimina-
tion threshold higher. On the other hand, when additional
squares are presented as flankers, inferences about global
group membership result in perceptual grouping of all the
squares, and the “decoupling” of the vernier from that
group, resulting in a reduced propagation of features from
the square frame to the target stimulus, and thus a lower
discrimination threshold. Our model constitutes a new ap-
proach for explaining the counter-intuitive phenomenon of
uncrowding, using bidirectional information flow in the si-
multaneous processing of global and local features of the
visual scene.

Our model is related to other mechanistic models that
involve the feed-forward and feedback loops in visual per-
ception (e.g. Lamme & Roelfsema, 2000), but our model is
distinctive in being a normative Bayesian generative model
(a “computational” model in the parlance of Marr’s three
levels of analyses (Marr, 1982)). It is also related to other
Bayesian models of visual processing (Yu & Dayan, 2005;
Dayan & Solomon, 2010), although those models all essen-
tially utilize localized pooling operations and thus cannot
be easily modified to accommodate the non-local uncrowd-
ing effects. At an abstract level, our account of uncrowd-
ing is somewhat analogous to the Bayesian account of mul-
timodal cue combination (Kording et al., 2007), whereby
the diminishing of auditory-visual cue integration at larger
spatial separations is explained in terms of a higher-level
perception that the cues may not originate from the same
object source. In terms of the crowding literature, the
current model is closest in spirit to the compatibility bias
model we proposed earlier to explain flanker congruency
effects in the Eriksen task (Yu, Dayan, & Cohen, 2009).

Our model makes several predictions that can be tested
in future experimental work. For example, in the un-
crowding condition, vernier discriminability depends on
the relative probability of the central square plus venier
being perceived as a single or two separate visual objects
as a function of the surrounding flankers. If instead of us-
ing square flankers, one used “window” flankers (squares
with a vertical bisecting segment), then our model would
predict an increased probability of perceiving the vernier
stimulus and the square frame as being the same object,
and thus result in an even worse discrimination thresh-
old than without the additional flankers. Another sub-
tle prediction our model makes, is that the deterioration
in vernier discriminability in the presence of the square
flanker is due to a systematic bias (under-estimation) of
the offset distance, as opposed to an increase in the vari-
ance of perceived offset distance. We therefore predict,
that if subjects were asked to compare two vernier stim-
uli, one alone and the other framed by a square, then they
should consistently report that the flanked vernier has a

smaller offset distance, even when the two are the same.

This paper primarily focused on the representational
component of the vernier task, which deals with how in-
formation about the vernier stimulus and the rest of the
visual scene are propagated, integrated, and distributed;
the paper did not focus much on the decision component,
which has to do with the transformation from the visual
representation to the behavioral output, such as when and
how to respond. It is a reasonable approximation in that
people’s performance on the visual discrimination task,
in terms of the percentage of correct decisions, is gener-
ally well-captured by a sigmoidal psychometric function of
the inferred stimulus magnitude. An alternative approach
might be to assume that observers may make a Vernier
decision based on a few samples drawn from the pos-
terior distribution over offset magnitude, similar to pre-
vious models of human probabilistic decision-making in
other contexts (Vul, Goodman, Griffiths, & Tenenbaum,
2009). More importantly, the current model lacks a prin-
cipled way to explain how perceptual representation and
response tendencies evolve over longer viewing time, espe-
cially in light of recent experimental results showing that
contextual effects in vernier crowding depends on view-
ing time (Manassi, Clarke, Chicherov, & Herzog, 2014).
Future work are needed to explore more explicitly the de-
cisional and the temporal aspect of vernier discrimination.

Finally, the model presented here exemplifies a new nor-
mative approach for capturing and explaining local-global
interactions in visual processing. In particular, it points
out the important role played by perceptual grouping at
multiple levels of hierarchical organization. Currently, our
model focuses on capturing the global representation for
the specific vernier crowding task. But this hierarchical
framework can be extended to explain other visual phe-
nomena, such as many of the Gestalt principles for group-
ing. A fruitful direction of future research would be to
extend the model to account for broader classes of visual
perceptual phenomena that involve complex interactions
among stimuli in the visual scene.
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