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Abstract

Reservoir core measurements can help guide seismic monitoring of fluid-induced pressure variations in 
tight fractured reservoirs, including those targeted for supercritical CO2 injection. We have developed the 
first seismic-frequency “room-dry” measurements of fracture-specific shear stiffness, using artificially 
fractured standard granite samples with different degrees of mating, a well-mated tensile fracture from a 
dolomite reservoir core, as well as simple roughened polymethyl methacrylate (PMMA) surfaces. We have 
adapted a low-frequency (0.01–100 Hz) shear modulus and attenuation apparatus to explore the seismic 
signature of fractures and understand the mechanics of asperity contacts under a range of normal stress 
conditions. Our instrument is unique in its ability to measure at low-normal stresses (0.5–20 MPa), 
simulating “open” fractures in shallow or high-fluid-pressure reservoirs. The accuracy of our instrument is 
demonstrated by calibration and comparison with ultrasonic measurements and low-frequency direct shear
measurements of intact samples from the literature. Pressure-sensitive film was used to measure real 
contact area of the fracture surfaces. The fractured shear modulus for most of the samples shows an 
exponential dependence on the real contact area. A simple numerical model, with one bonded circular 
asperity, predicts this behavior and matches the data for the simple PMMA surfaces. The rock surfaces 
reach their intact moduli at lower contact area than the model predicts, likely due to more complex 
geometry. Finally, we apply our results to a linear-slip interface model to estimate reflection coefficients and
calculate S-wave time delays due to the lower-wave velocities through the fractured zone. We find that 
cross-well surveys could detect even well-mated hard-rock fractures, assuming the availability of high-
repeatability acquisition systems.

INTRODUCTION

There is increasing interest in identifying and characterizing fractures (natural and engineered) in reservoirs, 
particularly when fractures are the dominant form of permeability (e.g., Bear, 1972; Haimson, 1975; Zoback 
and Byerlee, 1975; Selvadurai and Glowacki, 2008). Most engineering efforts within fractured reservoirs (oil 
and natural gas extraction, enhanced geothermal systems, carbon dioxide sequestration, etc.) rely heavily on 
the knowledge of the reservoir permeability to conduct operations (e.g., Streltsova, 1983). Seismic imaging is 
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the primary method used to gain detailed information about reservoir structure, which includes fracture 
density and orientation (e.g., Willis et     al., 2006). Data obtained from field surveys must be interpreted within 
the framework of empirical relationships developed from laboratory tests on reservoir cores and informed by 
our theoretical understanding of rock elasticity and seismic wave propagation (Mavko et     al., 1998). It is 
important to undertake a range of laboratory experiments to isolate the reservoir processes to be monitored 
seismically and upscale these measurements to the conditions in the field.

The bulk of laboratory seismic measurements are undertaken using ultrasonic measurement techniques 
developed over the past decades (e.g., Birch, 1960; Nur and Simmons, 1969; Lockner et     al., 1977; Winkler and 
Plona, 1982; Vanorio et     al., 2002; Vialle and Vanorio, 2011), by propagating elastic waves of wavelength much 
smaller than the sample size through the specimen to measure traveltime and thus wave speeds. This 
laboratory approach cannot be used at lower seismic frequencies (1–100 Hz) because the wavelengths 
involved are much larger than the available core specimens. Resonance techniques allow lower frequencies 
with long, slender samples (e.g., Birch and Bancroft, 1938), but measurements at kilohertz frequencies usually 
require samples with meter-scale dimensions (e.g., Winkler and Nur, 1979), unless a mass loaded resonator is 
used (e.g., Cooper, 1979; Nakagawa, 2011), and then they provide data only at the fundamental resonance 
frequency and high harmonics (e.g., Katahara et     al., 1982; McCann and Sothcott, 2009). Because field 
measurements involve averaging over the scale of a seismic wavelength, it can be difficult to distinguish 
between heterogeneities at the range of scales of the field and lab and those due to intrinsic dispersion effects 
(e.g., Wu, 1982; Pyrake-Nolte and Nolte, 1992; Aki and Richards, 2002). A limited number of high-bandwidth, 
low-frequency instruments exist capable of probing rocks through the use of forced subresonance oscillation 
methods (e.g., Spencer, 1981; Jackson et     al., 1984, 2011; Peselnick and Liu, 1987; Jackson and Paterson, 
1993; Jackson, 2000; Batzle et     al., 2006; Tisato and Madonna, 2012; Nakagawa, 2013; Subramaniyan et     al., 
2014; Tisato et     al., 2014). These instruments can measure elastic moduli and attenuation in the seismic 
frequency range to probe processes that may cause relaxation at the lower frequencies used in the field.

Various fracture and fracture network wave-propagation phenomena, including tube waves, seismic focusing, 
interface waves, and guided waves, have been characterized in the laboratory and field (e.g., Hardin et     al., 
1987; Oliger et     al., 2003; Shao and Pyrak-Nolte, 2013; Shao et     al., 2015; Nakagawa et     al., 2016). The size and 
density of fractures that can be seismically imaged in the field depend on the magnitude of the elastic contrast
they induce and the wavelength of the probing seismic wave, as well as survey details such as geometry, 
source type, energy, and repeatability (e.g., Silver et     al., 2007). The detectability of fractures can be estimated 
based on the reflection, conversion, and transmission of seismic waves; or from the time delay a seismic wave 
would experience from traveling through the slower region around a fracture. Schoenberg (1980) derives 
solutions for calculating the reflection coefficients from a linear-slip interface model (LSIM) dependent on 
fracture-specific stiffness, seismic impedance, and frequency, which have been confirmed with measurements 
of ultrasonic waves across fractures at varying effective stresses (Pyrake-Nolte et     al., 1990). The results are 
frequency-dependent, but they were only initially verified in the ultrasonic range. Fracture stiffness, or 
compliance, has been measured at ultrasonic frequencies over a range of scales, fluid saturations, and 
pressures, shown to agree broadly with the LSIM theory (e.g., Trimmer et     al., 1980; Worthington and Lubbe, 
2007; Lubbe et     al., 2008). Pyrak-Nolte and Nolte (1992) show that frequency-dependent fracture stiffness can 
result from the sampling of fractures with heterogeneous stiffness at a range of wavelengths, but they also 
point out that there could be dynamic effects, such as locking or friction. Without studying these potential 
dynamic effects, it may be hard to separate them from scaling effects in the field.

Nakagawa (2013) measures frequency-dependent normal and shear fracture stiffness in an unmated, fractured
Berea sandstone sample (water saturated and drained) under a range of confining pressures from 0.09 to 
1.7 MPa (with pore pressure under a weak vacuum) in the frequency range of 1–100 Hz. A poroelastic model 
was used to show that the measurements were very sensitive to partial saturation; a small amount of gas 
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(saturation 99.5%) was needed to fit the data. To this point, there have been no fracture specific stiffness 
measurements of “room-dry” or mated fractures in the field seismic frequency range to determine the seismic 
signature of narrow single fractures in the field.

Isolating single fractures in the laboratory allows quantification of fracture surfaces and thus illuminates the 
importance of microscale asperity mechanics. Surface topography studies in rock have been used to predict 
the stress states imposed by the interaction of rough surfaces that comprise the two sides of a fracture (Brown
and Scholz, 1985; Brown et     al., 1986; Power and Tullis, 1991; Candela et     al., 2009). Greenwood and Williamson
(1966)are among the first to use statistical distributions of surface roughness to determine the heterogeneous 
distribution of normal stress along the fracture interface (see also Hansen et     al., 2000; Persson et     al., 
2002; Schmittbuhl et     al., 2006) using the framework of Hertzian contact mechanics (Hertz, 1882). Variations in 
the normal stress field are assumed to be a function of the elastic deformation of the contacting topography as
they are pressed together (Johnson, 1985). Understanding the heterogeneous distribution of normal stress has
proved important because it can determine local shearing strength of a fracture surface in the context of 
contact mechanics (Archard, 1961; Bowden and Tabor, 2001; Scholz, 2002; Campañá et     al., 2011; Afferrante 
et     al., 2012; Pohrt and Popov, 2012). A better understanding of the strength heterogeneity along fracture 
surfaces is crucial in predicting a fracture’s constitutive parameters (e.g., shear modulus) in natural settings.

Constitutive models determining how asperities form are complicated due to the self-affine nature of the 
fracture surface topography (Candela et     al., 2009; Brodsky et     al., 2016); individual contacts (asperities) may 
form due to elastic, elasto-plastic, or fully plastic interactions (Johnson, 1985) and depend on the length scales 
at which they are analyzed (Persson, 2006). In this study, we use pressure-sensitive film (Selvadurai and Glaser, 
2015a, 2015b) to empirically measure the asperity contact formation as the fracture is subjected to increased 
normal stress. The pressure film allows us to measure changes in the real contact area and local variations in 
the normal stress field as the gross normal stress is varied.

We have adapted a low-frequency (0.01–100 Hz) shear modulus and attenuation apparatus (Bonner and 
Wannamaker, 1991a, 1999b) to explore the shear mechanics of fracture surfaces to help interpret field data 
from highly fractured reservoirs. Our instrument is unique in its ability to measure shear properties at low 
normal stresses, which is particularly relevant to shallow or high-fluid-pressure reservoirs. The equivalent 
effective stress experienced on a fracture due to fluid pressure and overburden can be calculated using a 
measured or inferred Biot’s (1941) coefficient. We present calibration data that show the accuracy of our 
instrument, as well as measurements of roughened polymethyl methacrylate (PMMA) interfaces in contact, 
artificially fractured granite samples (with different degrees of mating), and a fractured dolomite reservoir core
(from a carbon sequestration target). The fracture surfaces are characterized with an optical profilometer and 
pressure-sensitive film, which measures the surface topography and normal stress distribution, respectively. 
The combined measurements of contact formation and their shear mechanics show an exponential 
dependence of the fractured shear modulus on the real contact area. We construct a simple model, which 
helps to explain these measurements, while neglecting the more complex effects of facture finite width, 
asperity geometry, and interaction (Boitnott et     al., 1992; Moore and Lockner, 1995; Yoshioka, 1997; Misra and 
Huang, 2012; Morris, 2015).

Finally, we calculate the conditions under which these fractures should be directly detectable through seismic 
wave reflection and transmission. As fractures open up, decreasing modulus and Q (the inverse of 
attenuation), with less uniaxial load, more seismic energy will be reflected and seismic velocity will decrease 
causing larger traveltimes. Both of these effects will increase the seismic signature in the field. In this way, we 
estimate the normal stress dependence of the seismic visibility of fractures (with different degrees of mating) 
in hard rock such as granite and dolomite. Although we are not measuring the direct effect of pore fluid, 
fracture measurements under room-dry conditions, in which room humidity insures some adsorbed water on 
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grain surfaces (Clark et     al., 1980), are important for understanding the stress dependence of seismic properties
as well as simulating dry environments from compressed air (e.g., Majer et     al., 1997) or 
supercritical CO2 injection. Dry frame properties are also important for rock-physics interpretation in general, 
such as for understanding the added effects of fluid substitution (Mavko et     al., 1998). More measurements of 
natural fractures with pore fluid, incorporated into fracture network wave propagation models, are necessary 
to predict the seismic signature of increased pore pressure in fractures, expected with large volume injection 
of supercritical CO2 for geologic carbon storage. 

METHODS

Shear modulus and attenuation apparatus

Our approach uses a forced torsional oscillator (e.g., Berckhemer et     al., 1982; Jackson et     al., 1984; Gribb and 
Cooper, 1998; Jackson et     al., 2011), operating without wave propagation and at subresonance conditions, to 
directly measure the complex shear stress and strain of solid right cylindrical rock samples (9 mm diameter 
with various lengths; see Table 1). The apparatus (Figure 1) is a segmented torsional spring. One end includes a
noncontact driver consisting of six electromagnets and six Nd-Fe B permanent magnets mounted on the 
central rotor (labeled 1 in Figure 1), which twists the entire bar of the apparatus in series from a fixed point at 
the other end (labeled 2). Because all the components of the apparatus are assumed to be elastic on the time 
scales of interest, the torque (and shear stress) is transmitted evenly throughout the bar’s entire length, and by
measuring the amount (approximately 10s of microradians) and timing (approximately tenths of a 
microsecond) of the twist at various locations along this bar, we can calculate the shear modulus and 
attenuation of the sample.

View Larger Version

Table 1. Comparison of standard shear moduli measured and from literature at ultrasonic and seismic 
frequencies; all measurements were performed with no confining pressure or uniaxial load.

View larger version     (99K)

Figure 1. Schematic diagram and photograph of instrument, with parts labeled as in the 
text: (1) Magnetic driver, without the black magnetic shielding in photograph. (2) End of 
the apparatus held fixed. (3) Aluminum bars that transmit stress; the fixed end bar is 
hollow. (4) Arm and targets for measuring twist on the fixed side of the sample, calibrated 
to be shear stress. (5) Arm and targets for measuring twist on the driver side of sample, 
calibrated to be shear strain. (6) Eddy current proximity detectors that measure 
displacement, and thus twist, of the two sets of arms and targets. (7) Aluminum collets 
that hold the sample. (8) Fractured rock sample, aluminum in photograph. (9) Driver end 
that is free to twist. (10) Hardened ball bearings that limit nontorsional motion in the 
driver and ensure purely uniaxial force from the loader. (11) Uniaxial loader that applies 
normal stress to the fractures. (12) Bellville washers expand like a spring as the 
compression nut is tightened. (13) Load cell that measures the applied uniaxial stress with
a calibrated strain gauge.
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The magnetic driver applies a zero-frequency “pretwist” and then applies an oscillating torque around that 
point. This pretwist allows sinusoidal oscillating torques without twisting past the neutral point, which would 
add hysteresis. The oscillator operates at frequencies between 0.01 and approximately 100 Hz, with the upper 
limit dictated by system resonances that depend on the sample length and stiffness. The driver is capable of 
achieving strains ranging from 10−7 to 10−4, spanning the linear and nonlinear domains of the specimen.

The fixed end (labeled 2) of the apparatus is attached to a hollow section of aluminum (labeled 3), with arms 
and targets at each end (labeled 4) for eddy current proximity detectors (labeled 6; Kaman Sciences KD 2300-
0.5SU and KD2300-2S). The arms on both sides of the specimen allow for measurement of specimen twist. The
mounted arms (labeled 4 and 5) are made of a carbon fiber honeycomb material, to minimize weight and 
maximize stiffness. The detectors (labeled 6) are configured to measure differential displacements, which 
depend only on the elastic deformation of the known aluminum segment (labeled 3). These sensors (labeled 6)
are used to determine the shear stress being applied throughout the apparatus by the magnetic driver (labeled
1). A set of aluminum collets (labeled 7; Acura-Flex collet chucks with straight shanks) holds the rock sample 
(labeled 8), attaching it in series with the aluminum bars (labeled 3) of the apparatus on each side. The twist is 
again measured on the driver end (labeled 5) of the sample, which captures the shear strain in the rock.

By taking a Fourier transform of the measured signals using a dynamic signal analyzer (Stanford Research 
Systems SR785), we can isolate the response at the driving frequency and obtain the complex shear stress and 
strain. Following classical anelasticity theory (Zener, 1948; Norwick and Berry, 1961; Gordon and Davis, 
1968; Lakes, 2004), the ratio between real parts of the stress and strain gives the shear modulus and the 
tangent of the difference in phase angles (imaginary parts) provides the shear attenuation. We process the 
stress-strain curves for a range of amplitudes and frequencies to calculate the shear modulus and analyze the 
linearity and dispersion properties of the rock samples. Signal averaging is used to improve the signal-to-noise 
ratio; this is especially important for measuring phase angles accurately. All data acquisition and control 
functions are automated using a National Instruments LabView code, written for this instrument.

In torsion, shear strains are not uniform throughout the cylinder of rock, and increase linearly with radius. The 
outside of the sample experiences the largest strains, thus it is overrepresented in the measurements of 
macroscopic modulus and attenuation. For this reason, we calculate and present the maximum strain values 
experienced at the outside surface of the sample. As long as these maximum strains are lower than 
approximately 10−6, the cross-sectional variation in strain in the sample remained in the linear regime (verified 
by the linear stress-strain relationship) and should not bias our results. The cylindrical geometry is also taken 
into account when calculating the shear stress by using the moment of inertia for a solid cylinder (see 
equation A-1).

Unlubricated hard bearings inside the driver (labeled 10) suppress flexural modes, ensuring we deform the 
samples purely in torsion. There is also a uniaxial loader (labeled 11), a spring-loaded fixture with another 
hardened ball bearing (labeled 10) at the far end of the driver that allows the application of up to 20 MPa of 
uniaxial stress along the centerline of the apparatus. Bellville washers and a compression nut (labeled 12) 
generate the restoring force, ensuring that it is linear with normal displacement. A load cell (labeled 13), 
including a calibrated strain gauge, measures the axial strain of a known aluminum piece, and it is calibrated to 
provide the applied uniaxial stress. This loader provides a normal stress to close cracks oriented in the plane of 
the cylinder’s diameter (those that most affect the torsional response). The hardened bearing (labeled 10) 
provides a point contact to minimize the torsional damping due to the uniaxial loading assembly, making it 
small compared with that of a fractured sample; use of this feature of the apparatus still raises the lower 
bound of attenuation we can reliably measure, which will be addressed later in the “Error analysis” section 
(Appendix B).
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The instrument is well-suited for the study of fractured rocks for several reasons. The uniaxial stress assembly 
provides normal stress to close up fractures and slowly open them with decreasing normal load. This can 
simulate, using Biot’s (1941) coefficient, important processes in fractured reservoirs, such as effective stress 
changes from injection or production. However, our study does not directly probe matrix/fluid interactions, 
such as Biot’s (1956) or squirt-type (Mavko and Jizba, 1991) effects. Our apparatus is particularly well-suited 
for very low normal stress measurements, which is inherently difficult for other instruments that rely on 
confining pressure of at least 10 MPa, and jacketing, to make frictional contact with the sample (e.g., Jackson 
et     al., 2011; Li et     al., 2014).

Calibration and error estimation

The stress and strain measurements are made by eddy current proximity sensors, calibrated using known 
values of torque and displacement. The calibration of attenuation is more straightforward because it is 
independent of the sample dimensions. Details of the calibration techniques and equations for calculating 
shear stress and strain from our raw measurements are given in Appendix A.

There are two different sources of error in our measurements: random error in the measurements themselves 
due to electrical and numerical noise and systematic errors from imperfect calibration. We minimize the 
electrical and numerical noise by taking 1000 repeated measurements at each stress condition with all of the 
samples. Each source of systematic error has also been quantified and compared with the variance in the 
measurements; both types of error are described in Appendix B. We choose to give error bars based on the 
standard deviation because this gives a better comparison between our measurements of the same rock 
sample under different stress conditions.

Surface characterization

To better understand the micromechanics of our fracture surfaces and how they change with normal stress, we
used a novel stress distribution imaging technique (Selvadurai and Glaser, 2015b). A Fujifilm Prescale medium 
range (12–50 MPa) pressure-sensitive film measured the contacting asperities formed between the interacting 
surfaces under a range of applied normal stresses. Details of the film’s capabilities and calibration are given in 
Appendix C.

For geometric comparison, surface topography was also directly measured using an optical scanning 
profilometer (Nanovea PS50/3000  μm optical pen). The spatial resolution in the r‐θ plane was 50  μm along 
the fracture surface and 0.5  μm in height. The surface topography of the fractures varies significantly between 
our samples, depending on grain size and fracturing method, and the scans are useful for characterizing the tilt
of the fracture and surface roughness. A profile across the center of the sample diameter is used to describe 
the topographic trend of the surface (either tilted, bowed, or with multiple ridges/valleys), as well as a sense of
the surface roughness (Figure 2). These profilometer images are not in the same orientation as the film images 
shown below. Although the initial contact conditions measured from the pressure-sensitive film should 
ultimately determine the physical properties of the fracture (e.g., shear stiffness; Berthoude and Baumberger, 
1999), the surface topographies were measured to provide a better understanding of the fracture and help to 
validate some of the assumptions made when using the pressure-sensitive film.
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View larger
version     (58K)

Figure 2. Optical profilometry measurements of surface topography of (a) PMMA, 
(b) Duperow dolomite, (c) WG, and (d) SW granite samples. (e) The roughness profiles 
of the perpendicular centerlines of each sample as marked on topography images, and 
the sample surfaces have decreasing roughness from top to bottom.

RESULTS

Comparison of standards

We compare our measured modulus values with those obtained by the ultrasonic pulse transmission method 
for intact samples of aluminum, PMMA (or acrylic), ABS plastic, Duperow dolomite, and Westerly, Sierra White 
(SW), and Montello granites (Table 1). Ultrasonic tests were conducted using 5 MHz S-wave transducers 
(Panametrics V155), minimal manual contact pressure and ultrasonic couplant, and subtracting the “face-to-
face” piezoelectric rise time. The ultrasonic waves were shot across the diameter of the cylindrical samples, 
the transducers inline contact with the sample, to avoid TI anisotropy in aluminum from the extrusion process, 
which the torsional measurements average. The moduli measured at low frequencies are systematically lower 
than at ultrasonic frequency for the more attenuating samples, which also show some dispersion within the 
frequency range of our apparatus. PMMA has well-known dispersion due to unwinding of complex polymer 
chains (Ferry, 1980), whereas room-dry rocks and metals can show dispersion from adsorbed water or other 
viscous/frictional regions on microcracks or grain surfaces (Zener, 1948; Cooper, 1979). In contrast, aluminum 
6061-T6 shows no difference within the error bars between measurements at different frequencies because it 
has negligible attenuation as discussed in Appendix A. The difference in modulus between measurement 
techniques is likely due to a combination of these dispersion characteristics of each material and the added 
importance of the outside of the sample in our measurements, due to the torsional configuration’s increased 
peripheral strains determined with equation A-2 (in Appendix A). The outside rind of the sample is likely to 
have a lower modulus than the sample in bulk, because of open microcracks generated during the coring 
process; these cracks are likely to be open because all of these comparison measurements were made without 
uniaxial load. Our room-dry, atmospheric pressure, low-frequency shear-modulus measurements of Westerly 
granite (WG), 17–19 GPa, are consistent with the scarce available literature data of comparable conditions. 
Cooper (1979) measures the torsional resonance at frequencies between 0.649 and 0.685 Hz, giving shear 
moduli of 16–18 GPa, in different directions to show its slight anisotropy. Simmons and Brace (1965) find even 
larger (approximately 50%) discrepancies beyond the expected error between dynamic and static 
measurements at atmospheric pressure, attributing them to open cracks that effect strain-gauge 
measurements across the entire sample more than ultrasonic wave propagation, which may bypass cracks.

We found that PMMA provides the best low-frequency standard when compared with published modulus and 
attenuation results from a range of historic and modern systems (Koppelmann, 1958; Yee and Takemori, 
1982; Capodagli and Lakes, 2008; Nakagawa, 2011; Tisato and Madonna, 2012). Although this material often 
varies in absolute mechanical properties from batch to batch due to variable fabrication procedures, the 
overall frequency dispersion characteristics of the material are fairly reproducible between batches. In 
Figure 3, we compare our measurements of PMMA with those published by other low-frequency or wide-
bandwidth instruments. Noting that absolute shear moduli of PMMA can vary significantly between batches, 
the similarities in the dispersion characteristics we measure with those measured in the literature provide 
confirmation of our system and calibration protocol.
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View larger version     (24K)

Figure 3. Measured frequency dependence of PMMA compared with published 
values; batch to batch differences are expected but the dispersion is consistent. 
Error bars are calculated by standard deviation of 1000 measurements at each 
frequency. (a) Shear modulus with a logarithmic frequency scale. (b) Shear 
attenuation with a logarithmic frequency scale.

Fracture results

In this section, we document some of the first results showing the stress-dependent moduli of fractured 
materials at seismic frequencies and normal stress states between 0 and 16 MPa. The measurements were 
made at the highest normal stresses first (often approaching intact behavior), with subsequent lower stresses 
representing the fracture opening.

Besides serving as a standard for comparing our measurements with literature values, we also used PMMA to 
test our ability to probe the elastic properties of fracture surfaces. To simulate a roughened fracture, the ends 
of our PMMA samples were sanded with P80 grit emery cloth (approximately 201  μm particle size). A single 
piece of PMMA was used to measure the intact modulus and attenuation, shown by blue circles in 
Figure 4a and 4c, respectively. Next, two pieces of PMMA were combined to study the roughened “fracture” 
surface between them. This measurement gives the fractured shear modulus and attenuation, shown by red 
circles also in Figure 4a and 4c, respectively. By subtracting the shear compliance, η = 1/G, of the intact sample 
from the shear compliance of the fractured sample at every level of uniaxial stress, using the principle of 
superposition for linear elasticity, we can estimate the shear compliance of the fracture itself (Jaeger and Cook,
1969). In Figure 4b, we show measures of PMMA shear compliance for the intact sample (blue circles), 
fractured sample (red circles), and of the fracture only (green circles). Because PMMA is relatively compliant 
and attenuating compared with rock, the effect of the fracture is somewhat masked. The fractured sample 
reaches the modulus of an intact sample at high normal loads, implying a negligible compliance for the 
fracture itself (Figure 4b). As the fracture opens due to decreasing normal stress, there is a clear effect on 
shear modulus (Figure 4a) and shear attenuation (Figure 4c). The frequency dispersion does not change 
significantly with normal stress; therefore, we only graph the value at 8 Hz for each stress condition.
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Figure 4. Fractured and intact PMMA. (a) The shear modulus of the fractured and intact 
samples. (b) Measured shear compliances with calculated compliance of the fracture 
alone. (c) Shear attenuation or 1/Q.

The closing and stiffening of the fracture with normal load correlate with the increase in real contact area (Ar), 
as calculated from the pressure film (Figure 5a). Local normal stress distribution was also measured with the 
film; the images for uniaxial loads from 1 to 9.5 MPa are shown in Figure 5b–5f. The contact surface was 
dominated by the slightly beveled topography of one of the surfaces, giving a growing circular contact at the 
center that grows linearly with normal stress.
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Figure 5. Pressure-sensitive film measurement of PMMA. (a) Measurements of the
fractional real contact area (Ar/A0) for each applied normal stress for two separate 
tests (red stars and green triangles) are shown. The data are fit with a linear 
relationship. The numbers correspond to individual contact measurements taken 
at the associated normal stress, and the images are associated with test 2 (red 
stars). Local normal stress distribution from the calibrated pressure-sensitive film 
are shown for normal stresses of (b) 9.5, (c) 6.7, (d) 1, (e) 2.7, and (f) 4.5 MPa.

To investigate the behavior of a mated rock surface, we measured the properties of a WG sample before and 
after inducing a fracture. We first measured the intact shear modulus and attenuation of the sample, while 
compliance was calculated, each plotted in blue in Figure 6a–6c. No measurements were taken for stresses 
between 0 and 4 MPa while the specimen was intact because it was uncertain whether the fractured sample 
could be tested at such low normal stress without the fracture slipping. Low-stress values for the intact sample 
were estimated with linear extrapolation from the higher stress measurements trend. We introduced a 
fracture perpendicular to the centerline of the cylindrical sample at a central location of the active length 
(i.e., L/2). The periphery of the sample was scored at a central location, and then a fracture was propagated 
using three-point bending with a hydraulic jack assembly. Although it is commonly assumed that a leading 
zone of microcracks initiates fracture nucleation in brittle rocks (Reches and Lockner, 1994), almost no material
was lost from our fracture faces during the fracturing process, suggesting that the damage zone of precursor 
cracks is on the order of a grain diameter in thickness. By using the same sample for intact and fractured 
measurements, the calculation to remove the compliance of the intact segments of the sample becomes more 
accurate. At lower normal stresses, the intact granite is considerably stiffer than the fracture, with a 
higher Q (Figure 6b and 6c). The granite sample also shows little change in dispersion over the range of 
frequencies; the reported value was measured at 8 Hz.
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Figure 6. The WG sample before and after fracture. (a) Shear moduli. (b) Measured shear 
compliance with calculated compliance of the fracture itself. (c) Shear attenuation.

The topography of the WG surface was much rougher than the PMMA sample, due to the grain-scale 
heterogeneity of the rock and the fracturing approach, as can be seen in the optical topography scan 
(Figure 2). Figure 7 shows the results from the pressure-sensitive film used to characterize the WG fracture. 
The results are presented in a manner similar to Figure 5 that described the PMMA-PMMA interface. 
Figure 7a displays the relationship between the normal stress and the measured ratio of real contact area to 
nominal contact area (Ar/A0). The inset images (Figure 7b–7f) show processed pressure film scans that display 
the normal stress distributions (assuming a planar fracture) for various uniaxial stresses mentioned in the 
caption. The increased topography is mostly visible as a ridge along the bottom of the sample, which 
dominates the contact area throughout the range of normal loads measured (Figure 7b–7f). This ridge 
provided interlocking surfaces that are not perfectly perpendicular to the cylinder, possibly translating some of 
the shear stress into normal stress and helping to hold the fracture together. Our induced fracture was very 
well-mated and reached completely clamped conditions, same shear modulus as for the intact sample, at 
normal stresses of 7.5 MPa (Figure 6a).
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Figure 7. Pressure-sensitive film measurement of WG. (a) Fractional real contact 
area with each applied normal stress, fit with a linear relationship. Local normal 
stress distribution from the calibrated pressure-sensitive film are shown for 
normal stresses of (b) 16.9, (c) 7.5, (d) 1.5, (e) 2.85, and (f) 4.85 MPa.

In contrast, we measured an existing fracture in SW granite. This granite is coarser grained (approximately 1 
versus 0.2 mm), and the fracture was not as well-mated or interlocking as the induced fracture in WG. 
Figure 8a shows the intact values of the shear modulus (blue circles) and the fractured modulus (red circles). 
We see that the fracture shear modulus never recovers to the intact modulus in the experimental range of 
uniaxial normal stresses. Because the fracture now contributes a measurable compliance even at the highest 
normal loads, we now show the calculated fracture-only shear modulus in green in Figure 8b. In contrast, the 
shear attenuation for the fractured SW granite does reach the intact value at high normal stress, and it 
increases gradually with lower normal stress until it increases dramatically at approximately 4 MPa (Figure 8c).
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Figure 8. Fractured and intact SW granite. (a) Although the slopes look similar, the shear 
modulus of the fractured sample increases almost twice as much with normal stress as the 
intact sample. (b) Measured shear moduli with the calculated modulus of the fracture 
itself. (c) Shear attenuation.

The relationship between real contact area and normal stress measured from the pressure film for SW granite 
is shown in Figure 9a, and visual distributions of local normal stresses are shown in Figure 9b–9f. Unlike the 
other samples, the SW sample preferentially formed new real contact area at the center of the interface 
(Figure 9b–9f), where the shear strains are lower in our testing configuration as described by equation A-2, and
they thus have less impact on the fracture’s shear modulus.

View larger version     (47K)

Figure 9. Pressure-sensitive film measurement of SW granite. (a) Fractional real 
contact area with applied normal stress, fit with a linear relationship. Local normal
stress distribution from the calibrated pressure-sensitive film are shown for 
normal stresses of (b) 15, (c) 7, (d) 1, (e) 3.75, and (f) 5 MPa.

As an example of a carbonate reservoir core, we measured an artificially fractured dolomite core from the 
Duperow Formation, a carbon sequestration target in north-central Montana. The sample was cored from the 
Danielson well (API 811151), at a depth of 1017.3 m (3337.7 ft). An adjacent plug (34B) was measured to have 
a density of 2.716  g/cm3, permeability of 0.01 mD, and porosity of 2.51 ± 0.07% (Kazimierz et     al., 
2004; TerraTek, 2014). We also measured the ultrasonic P- and S-wave velocities for the plug at 5340 ± 
160 and 3300 ± 100 m/s, respectively. The cores, as well as preliminary surface seismic and well-log data, 
suggest that this reservoir has relatively low matrix permeability but many healed and partially healed natural 
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fractures. Preliminary modeling (Zhou et     al., 2013) suggests that the pressure change will be significant and 
potentially the largest seismic effect from the proposed CO2 injection; existing open fractures should be 
sensitive to such increases in pore pressure. By studying a tensile fracture in the reservoir core, we estimate 
the effect changes in stress will have on seismic reflection and velocity from similar fractures in the field.

The fracturing technique for the Duperow dolomite differed from the WG. A custom-machined holder created 
the tensile fracture, in which 12 sharpened screws are positioned into a groove carved around the diameter of 
the sample. As the screws were slowly tightened evenly around the diameter, they forced open a tensile 
fracture that remained perpendicular to the diameter of the cylindrical sample. The result was a well-mated, 
fine-grained tensile fracture that had a smoother topography than the granite fractures created by bending 
(Figure 2). Studying the shear properties of the dolomite was done using the same approach as the previous 
samples; the intact modulus and attenuation were measured at various uniaxial loads (Figure 10a and 10c). 
The dolomite’s intact, fractured, and fracture-only shear compliances are presented in Figure 10b.
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Figure 10. Duperow dolomite sample before and after fracture. (a) Shear moduli. 
(b) Measured shear compliance with the calculated compliance of the fracture itself. 
(c) Shear attenuation.

Figure 11 shows the pressure film measurements for the Duperow dolomite fracture. The relationship 
between the real contact area and uniaxial stresses is shown in Figure 11a, whereas the insets (Figure 11b–11f)
show snapshots of the local normal stress distribution at the indicated normal stresses. The relatively flat 
surface contributes many evenly spaced asperities across the sample cross section, which converge into larger 
asperities at higher normal stresses. Based on our shear measurements, we find that the fracture was almost 
entirely closed until an approximately 6 MPa normal load was applied, but it opened gradually, lowering the 
shear modulus and Q, with decreasing normal stress (Figure 10a and 10c). This behavior suggests that the 
fracture was well-mated, similar to the WG fractured sample discussed previously, even though it had less 
interlocking topography.

View larger version     (51K)

Figure 11. Pressure-sensitive film measurement of Duperow dolomite. 
(a) Fractional real contact area with applied normal stress, fit with a linear 
relationship. Local normal stress distribution from the calibrated pressure-
sensitive film are shown for normal stresses of (b) 18, (c) 15, (d) 0.5, (e) 3.75, and 
(f) 7.5 MPa.

DISCUSSION

Numerical model

Most of the fracture results (except from the SW granite) follow a consistent pattern, suggesting that the 
relationship between real contact area and shear modulus could be described with a simple model. We 
attempted to model this relationship with the simplest configuration possible: a sample with a real contact 
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area on the fracture represented by an infinitely thin circular bonded area in the center of the cross-sectional 
area.
The finite-element modeling was performed using the commercial software package ABAQUS/implicit 
(ABAQUS, 2004). We attempted to develop a model that captures the stress transfer across the fracture for a 
range of real contact areas. The model is a cylindrical torsion bar with radius r0 and a discontinuity along the 
cross section located at z = L/2. The discontinuity is used to simulate the fracture. The body is given a shear 
modulus G and Poisson’s ratio ν, and behaves elastically, modeled as a classical Hookean isotropic elastic 
medium (Timoshenko and Goodier, 1951; Davis and Selvadurai, 1996). The incremental strains are given by

(1)

where λ* is the Lamé’s first parameter and summation is implied over repeated indices.

Figure 12a shows the general configuration of the model, and the numerical mesh is shown in Figure 12b. The 
boundary conditions and numerical schemes used to simulate the application of twist to the ends of the 
cylindrical sample are described in Appendix D. Using the numerical model, we calculated the torque T at the 
ends (z = 0 and L) generated from the application of the boundary conditions described by equations D-1–D-7. 
The error in the numerically calculated torque T, which can be used to estimate the maximum theoretically 
shear stress τmax (at r = r0) using equation A-1, was only −0.05 to 0.2% of the maximum shear stress calculated 
numerically.
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Figure 12. ABAQUS/implicit (ABAQUS, 2004) numerical model used to measure the
fractured shear modulus of a torsional beam with a circular cross section. 
(a) Shows the schematic representation of the geometry and boundary conditions 
(equations D-1–D-7) used to perform numerical calculations. (b) The mesh 
discretization of the finite-element model. (c) The fractured shear modulus for a 
sample with the dimensions and properties of the PMMA sample. The numerical 
results (red stars) roughly follow an exponential relationship (equation 2). The 
model was fit to the measurements of the fractured PMMA (blue circles). 
(d) Numerical results for the model with dimensions and material properties of 
Duperow dolomite (red stars) and measurements of dolomite (magenta circles). 
The equations for the exponential fits to the experimental data are in Figure 13.

In Figure 12c, the red stars represent the numerical results using material properties measured for the PMMA 
(Table 1): L = 58  mm, Poisson’s ratio ν = 0.32, and intact shear modulus of G = 1.64  GPa, each of which were 
measured independently. The numerically calculated torque T was determined for various ratios 
of Ar/A0Ar/A0and converted to a fractured shear modulus using equation A-3. We see that as the ratio of real 
to nominal contact approaches one (i.e., r* → r0), the model converges to the intact shear modulus G and, 
conversely, as r*→ 0, the shear modulus tends toward zero. For this reason, we attempt to characterize the 
numerical model using an exponential relation of the form

(2)

where Gfrac is the fractured shear modulus (see Figures 4, 6, 8, and 10) and λ is a variable that describes the 
manner in which stresses are transferred across the discontinuity (interface) and is likely determined by the 
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sample geometry and the Poisson’s ratio in the model. In the experiments, fractures with more 
heterogeneous, out-of-plane, or interacting asperities reach higher moduli at lower real contact areas, which is
captured by a higher λ fitting parameter in this formulation.

In Figure 12c, we show that the numerical model (red stars) for the PMMA parameters could be fitted using 
equation 2 (black line) using a value of λ = 5.596 (R2 = 0.99) and assuming G = 1.64  GPa. Comparing these 
results with the experimental data from the PMMA tests (blue circles), we see that the model provides a 
reasonable understanding of the evolution of the fractured PMMA shear modulus for a range of real contact 
area. The effectiveness of the model may be due to the rounded high in the center of the sample’s surface 
topography (Figure 2) causing the circular real contact area to increase radially outward as the uniaxial normal 
stress is increased (Figure 5) — geometrically similar to the numerical model described in Figure 12a.

To determine if the model could successfully replicate rock-rock interfaces, we attempted to model the 
dolomite experiment in a similar manner. A new numerical model was formulated to match the active length 
of the dolomite samples L = 25.8  mm. A Poisson’s ratio of ν = 0.1 (measured at ultrasonic frequencies) and the 
intact shear modulus of G = 16.13  GPa (measured under the highest normal stresses) were prescribed. The 
relationship calculated for the dolomite parameters is different from that for PMMA (red stars in 
Figure 12d versus 12c): The dolomite model requires higher levels of real contact to recover the intact shear 
modulus (at r*=r0), characterized by a lower value of λ = 3.651 (R2 = 0.9804). The calculated relationship also 
differs from the experimental results from the Duperow dolomite (magenta circles) characterized by G = 16.13 
GPa and λ = 14.13 (R2 = 0.9688). The comparison of numerical with experimental results shown in 
Figure 12d indicates that the dolomite shear modulus approached its intact modulus at lower real contact 
areas than the numerical model predicted.

In Figure 13, we plot the relationship between fractured shear modulus and fractional real contact area for 
PMMA, as well as the well-mated WG and Duperow dolomite. The exponential behaviors of the WG and 
Duperow dolomite were quite similar, and neither would be well-characterized by the model that was able to 
predict the behavior of the PMMA surface. The WG and Duperow dolomite increase modulus more with 
increasing contact area than the model predicts; this is likely due to the effects of the heterogeneous rock 
surface, finite-width damage zone, asperity interaction, and nonnormal, “shear interlocking,” fracture surfaces 
(Selvadurai and Yu, 2005). Surface topography has been shown to affect the constitutive behavior of fractures, 
including a variety of behavior due to the ratio of normal to shear fracture stiffness and local asperity 
interactions (Boitnott et     al., 1992; Selvadurai and Yu, 2005; Campañá et     al., 2011; Mirsa and Huang, 2012). 
Local stress transferred through these asperity interactions could cause the fracture surface to behave as if it 
has a higher contact area. These effects could be accounted for with a model that includes the complex 
fracture surface geometry (e.g., Morris, 2015), which could be input from the measured topography (Figure 2) 
or images of stress distribution at increasing normal load (Figures 7, 9, and 11).
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Figure 13. The fractional real contact area measured by the pressure sensitive film 
for various normal stresses and the shear modulus of the fractured sample 
measured at those normal stresses, fit with exponential functions. The SW 
relationship does not fit an exponential because it appears to have different 
regimes of behavior at different contact areas.
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The model assumes that the fracturing process represents the creation of a single, infinitely thin, through-
going fracture between the two sides of intact rock. This ignores the effect of the process zone of precursor 
microcracks, some of which coalesced into the fracture, whereas others were left isolated on either side of the 
fracture surface (Reches and Lockner, 1994). As stated in the fractured results section above, the fact that few 
grains were broken off from fracturing suggests that these microcracks extended on the order of a full grain 
diameter (approximately 0.2 mm for WG) into the rock surfaces. Moore and Lockner (1995) observe extensive 
microcracking approximately 10 mm away from a controlled, not through-going, shear fracture in WG, under 
much higher stress conditions: 50 MPa of confining pressure. Direct observation or modeling of this damage 
zone is beyond the scope of this work, but we believe that the microcracking was much less extensive in our 
case because the tensile fracture was under much less stress, limited only by the tensile strength of the rock, 
and because it propagated much faster through our entire sample. Still, the existence of these microcracks in 
the rock fracture zones (as opposed to PMMA) could also help to explain why the rock fractures cannot fit the 
modeled contact area versus modulus relationships (Figure 12d). The fractured rock modulus will increase 
more with normal stress as these other cracks close up, adding to the effect from increasing the contact area 
that we model. For reference, the modulus change due to stress-induced microcrack closure is shown in the 
stress dependence of the intact rock sample (blue lines in Figures 6a, 8a, and 10a). This represents a lower 
bound on the magnitude of the effect, as the microcrack density has been found to increase by a factor of 
three or more in the damage zone (Moore and Lockner, 1995).

The topography of the WG surfaces and Duperow dolomite to a lesser degree were significantly rougher than 
the PMMA surfaces, as seen quantitatively by the height variations shown in Figure 2. We believe that was due
to the grain-scale heterogeneity of the rock and the different fracturing approaches. The induced fractures 
appeared very well-mated and reached completely clamped conditions (i.e., same shear modulus as the intact 
sample), at normal stresses greater than or equal to approximately 7.5 MPa for the WG and 6 MPa for 
Duperow dolomite. In contrast, an existing fracture in SW granite was not as well-mated or interlocking as the 
induced fractures. The SW was the only fractured sample that was limited to a shear modulus of approximately
50% of the intact shear modulus at the highest normal stresses (Figure 8a). It was also the only sample that 
seemed to preferentially add contact area close to the center of the sample cross section (Figure 9), in which 
the shear strains are lowest and thus affects the fracture shear modulus the least. Our model could be adapted
to match the radius at which contact area is added, as measured with the pressure-sensitive film, which should
affect the rate at which the fractured shear modulus starts to asymptote toward the intact value. The SW 
behavior also does not fit an exponential relationship because it appears to show different stiffening regimes at
different normal loads. Less well-mated rock fractures likely need a more advanced model to account for 
frictional partial slip (Cattaneo, 1938; Ciaveralla, 1998; Selvadurai and Glaser, 2015a); they do not satisfy the 
assumption of completely bonded contact in the low normal stress regime.

Detectability calculation

Following Pyrake-Nolte et     al. (1990), we calculated the reflection and transmission coefficients for an S-wave 
normal incident on our dry fractures over a range of normal stresses at seismic frequencies. They derived 
expressions for these coefficients using an LSIM (Schoenberg, 1980) with a single, infinitely thin fracture 
represented as a displacement discontinuity between two elastic half-spaces (of seismic impedance Z). The 
model does not include the effect of other parallel microcracks, which would add to the reflectivity of the 
damage zone. It also assumes that stress is continuous across the fracture but that displacement is 
discontinuous. This is a reasonable assumption for our experiment for all but the most open fractures (lowest 
normal stress conditions on less-mated SW), where we observe partial slip and the stress transmission is 
incomplete and unpredictable across the fracture. At this point, the fractures are very compliant and should 
reflect enough energy to be detectable. Analysis of the highest normal stress measurements was also 
problematic; the calculation of fracture specific shear stiffness is inaccurate when the fractured modulus is 
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close to the same as the intact modulus because the fracture approaches infinite stiffness. These fractures 
have very small apertures, and reflect little seismic energy, thus they are not the focus of this study.

Pyrake-Nolte et     al. (1990) derive a general solution for all angles of incidence, but they focus on normal 
incidence because it represents the highest reflection:

(3)

(4)

where RSθ and TSθ are the reflection and transmission coefficients for S-waves, respectively, ω is the frequency 
of the probing wave, κθ is the fracture specific shear stiffness measured in rotation, and ZS is the seismic 
impedance measured at frequency ω also in rotation. The imaginary part of the equation is used to calculate 
phase delays, but it can be ignored in our case. Pyrake-Nolte et     al. (1990) derive these expressions to account 
for anisotropy between SH and SV waves, but our measurement is in torsion, which combines motion in the x- 
and y-directions. The value RSθ should be equivalent to RSH and RSV for an isotropic medium and planar fracture.

We calculated fracture specific stiffness values κθ from our measurements by subtracting out the compliance 
of the intact sample, the same calculation described above. This allowed us to effectively estimate the 
displacement on the fracture itself for a given applied shear stress. We believe this is equivalent to a 
measurement of stress-displacement curves commonly used to calculate fracture specific stiffness (Pyrake-
Nolte et     al., 1990). To convert our specific stiffness values to commonly used units (Pa/m), we divided by the 
circumference of the sample, which converts our shear strain back to displacement on the outside of the 
sample radius; strain is based on an angular displacement (see equation A-2) only across the fracture. We used
shear modulus measurements of the intact rock to calculate the impedance of the elastic half-space in the 
seismic frequency range.

Pyrake-Nolte et     al. (1990) also derive an extension of the model to capture fluid-filled fractures with viscous 
coupling and dissipation, in which there is a discontinuity in velocity as well as displacement across the 
fracture. Although we do not directly address this scenario here, these expressions can be used to see the 
effect of different fluids using our fracture measurements, by assuming that the fluid itself has no effect on the 
fracture stiffness in shear.

Although we are interested in the seismic signature of many fractures in a reservoir as effective stress changes 
with injection, we analyze the effect of a single fracture from our measurements. Further analysis is necessary 
to understand the effect of a natural or engineered fracture network and other details of wave propagation in 
this setting. Figure 14a shows the calculation of reflectivity as a function of normal stress for each of the 
fractured rock samples, with the SW fracture shown at each frequency measured. The SW fracture becomes 
more reflective at higher normal stresses and reaches a larger value of reflectivity than the other materials, 
likely because it is less well-mated and thus the joint is more compliant.

View larger version     (20K)

Figure 14. (a) Calculated reflection coefficients for coarse-grained SW granite, fine-
grained WG, and fine-grained Duperow dolomite fractures under a range of 
normal stresses and frequencies, using equation 3 from Pyrake-Nolte et     al. (1990). 
The WG and Duperow dolomite fracture have low reflectivity because they are 
well-mated. (b) Time delay calculated for an S-wave across the fractured sample 
relative to the intact sample. Repeatable crosswell sources can detect time delays 
as low as 6 ns when stacked sufficiently (Silver et     al., 2007); this calculation 
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suggests all of these delays could be seismically detectable.

Another way to determine the effect of fractures on seismic measurements is the direct time delay of S-wave 
arrivals due to the lower velocity of the fracture and damage zone. The time delay was calculated using 
measured modulus and active length to give a traveltime across the entire fractured sample, including any 
damaged zone, minus that in the intact sample. Figure 14b presents the time-delay calculation for each rock 
sample (there is very little frequency dependence) as a function of normal stress. Detectability of time delays 
as low as 6 ns has been achieved with well-calibrated semipermanent deployments of repeatable sources at 
higher frequencies in a crosswell configuration (Silver et     al., 2007) or at low frequencies from surface sources 
(Dou et     al., 2016). Even the well-mated single fractures at our highest normal stresses have calculated time 
delays more than two orders of magnitude above this instrumental limit. In practice, most deployments are 
not capable of such sensitivity but microsecond repeatability is straightforward to measure with piezoelectric 
or magnetostrictive sources. These calculations are only meant as an illustration for how these measurements 
could be used to guide field predictions and interpretation; more detailed wave propagation models through 
fracture networks and further measurements of natural fractures are necessary to more accurately predict the 
seismic signature in a fractured reservoir.

CONCLUSION

We present a technical description of a low-frequency (0.01–100 Hz) shear modulus and attenuation 
instrument adapted to measure fractured rock samples in a torsional configuration. We provide details of the 
calibration and error estimation methods using a sample of PMMA that conforms to shear measurements 
made in the literature. Our apparatus is well-suited for the measurement of fractured samples under a range 
of normal stresses, from fully clamped (intact) to nearly open fractures. We observe very different behaviors 
for two granite samples that have different surface topography and degrees of mating as measured with an 
optical profilometer. We highlight the importance of the out-of-plane topographic geometry in the shear 
behavior of a fracture by comparing the experimental results with a simple numerical model. We combine our 
measurement of elastic changes due to normal load with a novel surface characterization technique that uses 
a pressure-sensitive film to image the normal stress distribution on the fracture interface. This provides a 
better understanding of the effect of microstructure and heterogeneity on seismic properties.

A simple numerical model is able to explain the exponential relationship between the real contact area and the
fractured shear modulus. We were able to match the data from PMMA interfaces with the model because of 
their relatively simple surface topography, whereas the rock specimens exhibited more-complex behaviors. 
The well-mated fractures in WG and Duperow dolomite specimens followed an exponential relationship but 
stiffen more at a lower contact area than the model suggested. We propose that the out-of-plane asperity 
geometry and interaction for the more-heterogeneous surfaces become important when understanding the 
shear and seismic behavior of fractures at small length scales.

We then apply our fracture measurements to theory developed to calculated reflection and transmission 
coefficients for normally incident seismic waves in a field setting. These calculations, as well as estimations of 
S-wave time delays due to the fractures, are useful for determining under what stress and fracture mating 
conditions a fracture is seismically visible. These results are limited, representing only the specific, single 
fractures we measured, which are likely better mated than corresponding fracture networks in the field. 
Further measurements of natural fractures from the reservoir and more detailed wave propagation models 
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through realistic fracture networks can help guide seismic monitoring, such as needed during injection of 
supercritical CO2 for geologic carbon storage.

The images of stress distribution on fracture faces in combination with sensitive measurements of large 
modulus changes at low normal loads provide a detailed look into underlying mechanics of seismic waves 
incident on fractures. Further experiments are needed to probe the range of phenomena present in fracture 
systems, especially at low normal loads. These laboratory measurements could be used to extract more 
information from open fractures in the field, but understanding the results will require further model 
development, both capturing the geometry of asperity contacts and frictional partial slip on contacts at lower 
normal stresses.

ACKNOWLEDGMENTS

This research was funded as part of the Big Sky Carbon Sequestration Partnership (BSCSP) by the U.S. 
Department of Energy and the National Energy Technology Laboratory through award number DE-FC26-
05NT42587. We would like to thank L. Spangler and the BSCSP leadership for access to the Duperow sample 
discussed in this paper. We would also like to thank S. Nakagawa, who provided useful discussion and essential 
characterization help in the laboratory, R. Lakes, who provided access to data, B. Buffet, who provided useful 
suggestions and discussion, D. Swantek, who contributed to the instrument schematic, C. O. Boro, who 
provided design and fabrication expertise during the early stages of the effort, and I. Jackson and an 
anonymous reviewer, who provided valuable reviews. P. A. Selvadurai would like to acknowledge the support 
of the National Science Foundation (grant no. CMMI-1131582) and the National Science and Engineering 
Research Council of Canada (grant no. PGSD3-391943-2010).

REFERENCES

1. ABAQUS Inc., 2004, ABAQUS/Standard Version 6.4: ABAQUS Theory Manual. 
2. Afferrante, L., G. Carbone, and G. Demelio, 2012, Interacting and coalescing Hertzian asperities: A new 

multiasperity contact model: Wear, 278–279, 28–33.
3. Aki, K., and P. G. Richards, 2002, Quantitative seismology, 2nd ed.: University Science Books. 
4. Anderson, T. W., and D. A. Darling, 1954, A test of goodness-of-fit: Journal of the American Statistical 

Association, 49, 765–769, doi: https://doi.org/10.1080/01621459.1954.10501232.
5. Archard, J. F., 1961, Single contacts and multiple encounters: Journal of Applied Physics, 32, 1420–1425,

doi: https://doi.org/10.1063/1.1728372. [Crossref] [Web of Science] [Google Scholar]
6. Batzle, M. L., D.-H. Han, and R. Hofmann, 2006, Fluid mobility and frequency dependent seismic 

velocity — Direct measurements: Geophysics, 71, no. 10, N1–N9, 
doi: https://doi.org/10.1190/1.2159053. [Abstract] 

7. Bear, J., 1972, Dynamics of fluids in porous media: Dover Publications. 
8. Berckhemer, H., K. Kampfmann, E. Aulbach, and H. Schemling, 1982, Shear modulus and Q of forsterite 

and dunite near partial melting from forced oscillation experiments: Physics of Earth and Planetary 
Interiors, 29, 30–41, doi: https://doi.org/10.1016/0031-9201(82)90135-2.

9. Berthoude, P., and T. Baumberger, 1999, Shear stiffness of a solid solid multicontact 
interface: Proceedings of the Royal Society of London A, 454, 1615–1634, 
doi: https://doi.org/10.1098/rspa.1998.0223. 

10. Biot, M. A., 1941, General theory of three-dimensional consolidation: Journal of Applied Physics, 12, 
155, doi: https://doi.org/10.1063/1.1712886. 

https://doi.org/10.1063/1.1712886
https://doi.org/10.1098/rspa.1998.0223
https://doi.org/10.1016/0031-9201(82)90135-2
javascript:newWindow('https://library.seg.org/doi/10.1190/1.2159053')
https://doi.org/10.1190/1.2159053
http://scholar.google.com/scholar_lookup?hl=en&publication_year=1961&issn=0021-8979&author=J.+F.+Archard&title=Single+contacts+and+multiple+encounters&
javascript:popRefLink(128,'r4','A19613764B00002')
javascript:popRefLink(16,'r4','10.1063%252F1.1728372')
https://doi.org/10.1063/1.1728372
https://doi.org/10.1080/01621459.1954.10501232


11. Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid saturated porous solid. I: Low 
frequency range and II: Higher-frequency range: Journal of the Acoustical Society of America, 28, 168–
191, doi:https://doi.org/10.1121/1.1908239. 

12. Birch, F., 1960, The velocity of compressional waves in rocks to 10 kilobars: Journal of Geophysical 
Research, 65, 1083–1102, doi: https://doi.org/10.1029/JZ065i004p01083.

13. Birch, F., and D. Bancroft, 1938, Elasticity and internal friction in a long column of granite: Bulletin of 
the Seismological Society of America, 28, 243–254. 

14. Boitnott, G. N., R. L. Biegel, and C. H. Scholz, 1992, Micromechanics of rock friction 2: Quantitative 
modeling initial friction with contact theory: Journal of Geophysical Research, 97, 8965–8978, 
doi:https://doi.org/10.1029/92JB00019. 

15. Bonner, B. P., and B. J. Wannamaker, 1991a, Acoustic nonlinearities produced by a single macroscopic 
fracture in granite, in D. O. Thompson and D. E. Chimenti, eds., Review of progress in quantitative 
nondestructive evaluation: Springer, 1861–1876. 

16. Bonner, B. P., and B. J. Wannamaker, 1991b, Nonlinear attenuation effects outside the zone of 
macroscopic failure: Monograph on explosion source phenomenology: American Geophysical 
Union, 65, 91–97, doi:https://doi.org/10.1029/GM065. 

17. Bowden, F. P., and D. Tabor, 2001, The friction and lubrication of solids: Oxford University Press. 
18. Brodsky, E. E., J. D. Kirpatrick, and T. Candela, 2016, Constraints from fault roughness on the scale-

dependent strength: Geology, 44, 19–22, doi: https://doi.org/10.1130/G37206.1.
19. Brown, S. R., R. L. Kranz, and B. P. Bonner, 1986, Correlation between the surfaces of natural rock 

joints: Geophysical Research Letters, 13, 1430–1433, doi: https://doi.org/10.1029/GL013i013p01430.
20. Brown, S. R., and C. H. Scholz, 1985, Broad bandwidth study of the topography of natural rock 

surfaces: Journal of Geophysical Research, 90, 12575–12582, 
doi: https://doi.org/10.1029/JB090iB14p12575. [Crossref] [Web of Science] [Google Scholar]

21. Campañá, C., B. N. J. Persson, and M. H. Müser, 2011, Transverse and normal interfacial stiffness of 
solids with randomly rough surfaces: Journal of Physics: Condensed Matter, 23, 1–9. 

22. Candela, T., F. Renard, M. Bouchon, A. Brouste, D. Marson, J. Schmittbuhl, and C. Voisin, 2009, 
Characterization of fault roughness at various scales: Implications for three-dimensional high resolution
topography measurements: Pure Applied Geophysics, 166, 1817–1851, 
doi: https://doi.org/10.1007/s00024-009-0521-2. 

23. Capodagli, J., and R. Lakes, 2008, Isothermal viscoelastic properties of PMMA and LDPE over 11 
decades of frequency and time: A test: Rheologica Acta, 47, 777–786, 
doi: https://doi.org/10.1007/s00397-008-0287-y. 

24. Carnevale, E. H., L. C. Lynnworth, and G. S. Larson, 1964, Ultrasonic measurement of elastic moduli at 
elevated temperatures, using momentary contact: The Journal of the Acoustical Society of America, 36, 
1678–1684, doi: https://doi.org/10.1121/1.1919264.

25. Cattaneo, C., 1938, Sul contatto di due corpi elastici: distribuzione locale degli sforzi: Rendiconti 
Accademia Nazionale dei Lincei, 27, 342–348. 

26. Ciavarella, M., 1998, The generalized Cattaneo partial slip plane contact problem. I — 
Theory: International Journal of Solids and Structures, 35, 2349–2362.  

27. Clark, V. A., B. R. Tittmann, and T. W. Spencer, 1980, Effect of volatiles on attenuation (Q-1) and velocity 
in sedimentary rocks: Journal of Geophysical Research, 85, 5190–5198, 
doi:https://doi.org/10.1029/JB085iB10p05190. 

28. Cooper, H. W., 1979, Attenuation in igneous rocks at seismic frequencies: Ph.D. thesis, Massachusetts 
Institute of Technology. 

29. Davis, R. O., and A. P. S. Selvadurai, 1996, Elasticity and geomechanics: Cambridge University Press.
30. Dou, S., J. Ajo-Franklin, T. Daley, M. Robertson, T. Wood, B. Freifeld, R. Pevzner, J. Correa, K. 

Tertyshnikov, M. Urosevic, and B. Gurevich, 2016, Surface orbital vibrator (SOV) and fiber-optic DAS: 

https://doi.org/10.1029/JB085iB10p05190
https://doi.org/10.1121/1.1919264
https://doi.org/10.1007/s00397-008-0287-y
https://doi.org/10.1007/s00024-009-0521-2
http://scholar.google.com/scholar_lookup?hl=en&publication_year=1985&issn=0148-0227&author=S.+R.+Brown&author=C.+H.+Scholz&title=Broad+bandwidth+study+of+the+topography+of+natural+rock+surfaces&
javascript:popRefLink(128,'r19','A1985AWY9700016')
javascript:popRefLink(16,'r19','10.1029%252FJB090iB14p12575')
https://doi.org/10.1029/JB090iB14p12575
https://doi.org/10.1029/GL013i013p01430
https://doi.org/10.1130/G37206.1
https://doi.org/10.1029/GM065
https://doi.org/10.1029/92JB00019
https://doi.org/10.1029/JZ065i004p01083
https://doi.org/10.1121/1.1908239


Field demonstration of economical, continuous-land seismic time-lapse monitoring from the Australian 
CO2CRC Otway site: 86th Annual International Meeting, SEG, Expanded Abstracts, 5552–5556. 

31. Ferry, J. D., 1980, Viscoelastic properties of polymers, 3rd ed.: John Wiley & Sons. 
32. Gordon, R. B., and L. A. Davis, 1968, Velocity and attenuation of seismic waves in imperfectly elastic 

rock: Journal of Geophysical Research, 73, 3917–3935, doi: https://doi.org/10.1029/JB073i012p03917. 
33. Greenwood, J. A., and J. B. P. Williamson, 1966, Contact of nominally flat surfaces: Proceedings of the 

Royal Society of London, 295, 300–319, doi: https://doi.org/10.1098/rspa.1966.0242. 
34. Gribb, T. T., and R. F. Cooper, 1998, A high-temperature torsion apparatus for the high-resolution 

characterization of internal friction and creep in refractory metals and ceramics: Application to the 
seismic-frequency, dynamic response of earth’s upper mantle: Review of Scientific Instruments, 69, 
559–564, doi:https://doi.org/10.1063/1.1148694. 

35. Haimson, B. C., 1975, Deep in-situ stress measurements by hydrofracturing: Tectonophysics, 29, 41–47, 
doi: https://doi.org/10.1016/0040-1951(75)90131-6. 

36. Hansen, A., J. Schmittbuhl, G. G. Batrouni, and F. A. de Oliveira, 2000, Normal stress distribution of 
rough surfaces in contact: Geophysical Research Letters, 27, 3639–3642, 
doi:https://doi.org/10.1029/2000GL011757. 

37. Hardin, E. L., C. H. Cheng, F. L. Paillet, and J. D. Mendelson, 1987, Fracture characterization by means of 
attenuation and generation of tube waves in fractured crystalline rock at Mirror Lake, New 
Hampshire: Journal of Geophysical Research, 92, 7989–8006, 
doi: https://doi.org/10.1029/JB092iB08p07989. 

38. Hertz, H., 1882, On the contact of firm elastic bodies: Journal Reine Angewandte Mathematik, 92, 156–
171.

39. Jackson, I., 2000, Laboratory measurement of seismic wave dispersion and attenuation: Recent 
progress: Earth’s deep interior: Mineral physics and tomography from atomic to the global 
scale: Geophysical Monograph, 117, 265–389. 

40. Jackson, I., and M. S. Paterson, 1993, A high-pressure, high-temperature apparatus for studies of 
seismic wave dispersion and attenuation: Pure and Applied Geophysics, 141, 445–466, 
doi:https://doi.org/10.1007/BF00998339. 

41. Jackson, I., M. S. Paterson, H. Niesler, and R. M. Waterford, 1984, Rock anelasticity measurements at 
high pressure, low strain amplitude and seismic frequency: Geophysical Research Letters, 11, 1235–
1238, doi:https://doi.org/10.1029/GL011i012p01235.

42. Jackson, I., H. Schijns, D. R. Schmitt, J. Mu, and A. Delmenico, 2011, A versatile facility for laboratory 
studies of viscoelastic and poroelastic behavior of rocks: Review of Scientific Instruments, 82, 064501–
064508, doi: https://doi.org/10.1063/1.3592154. 

43. Jaeger, J. C., and N. G. W. Cook, 1969, Fundamentals of rock mechanics: Chapman and Hall Limited. 
44. Johnson, K. L., 1985, Contact mechanics: Cambridge University Press. 
45. Katahara, K. W., M. H. Manghnani, N. Devnani, and B. R. Tittmann, 1982, Pressure dependence of Q in 

selected rocks: Advances in Earth and Planetary Science, 12, 147–158. 
46. Kazimierz, T., T. Jacek, and R. Stanislaw, 2004, Evaluation of rock porosity measurement accuracy with a 

helium porosimeter: Acta Montanistica Slovaca, 3, 316–318.  
47. Koppelmann, V. J., 1958, Uber die Bestimmung des dynamichen Elastizitatsmoduls und des 

dynamischen Schubmodulus im Frequenzbereich von 10–5 bis 10–1 Hz: Rheologica Acta, 1, 20–28, 
doi:https://doi.org/10.1007/BF01982279. 

48. Lakes, R. S., 2004, Viscoelastic measurement techniques: Review of Scientific Instruments, 75, 797–810, 
doi: https://doi.org/10.1063/1.1651639. 

49. Li, Y., M. Olin, E. C. David, I. Jackson, H. Schijns, and D. R. Schmitt, 2014, Broadband laboratory 
measurements of dispersion in thermally cracked and fluid-saturated quartzite and a synthetic 
analogue: The Leading Edge, 33, 936–941. 

https://doi.org/10.1063/1.1651639
https://doi.org/10.1007/BF01982279
https://doi.org/10.1063/1.3592154
https://doi.org/10.1029/GL011i012p01235
https://doi.org/10.1007/BF00998339
https://doi.org/10.1029/JB092iB08p07989
https://doi.org/10.1029/2000GL011757
https://doi.org/10.1016/0040-1951(75)90131-6
https://doi.org/10.1063/1.1148694
https://doi.org/10.1098/rspa.1966.0242
https://doi.org/10.1029/JB073i012p03917


50. Lockner, D. A., J. B. Walsh, and J. D. Byerlee, 1977, Changes in seismic velocity and attenuation during 
deformation of granite: Journal of Geophysical Research, 82, 5374–5378, 
doi:https://doi.org/10.1029/JB082i033p05374. 

51. Lubbe, R., J. Sothcott, M. H. Worthington, and C. McCann, 2008, Laboratory estimates of normal and 
shear fracture compliance: Geophysical Prospecting, 56, 239–247, 
doi: https://doi.org/10.1111/gpr.2008.56.issue-2. 

52. Majer, E. L., J. E. Peterson, T. Daley, B. Kaelin, L. Myer, J. Queen, P. D’Onfro, and W. Rizer, 1997, Fracture 
detection using crosswell and single well surveys: Geophysics, 62, 495–504, 
doi:https://doi.org/10.1190/1.1444160. [Abstract] 

53. Mavko, G., and D. Jizba, 1991, Estimating grain-scale fluid effects on velocity dispersion in 
rocks: Geophysics, 56, 1940–1949, doi: https://doi.org/10.1190/1.1443005. [Abstract] 

54. Mavko, G., T. Mukerji, and J. Dvorkin, 1998, The rock physics handbook: Tools for seismic analysis in 
porous media: Cambridge University Press. 

55. McCann, C., and J. Sothcott, 2009, Sonic to ultrasonic Q of sandstones and limestones: Laboratory 
measurements at in situ pressures: Geophysics, 74, no. 2, WA93–WA101, 
doi:https://doi.org/10.1190/1.3052112. [Abstract] 

56. Misra, A., and S. Huang, 2012, Micromechanical stress-displacement model for rough interfaces: Effect 
of asperity contact orientation on closure and shear behavior: International Journal of Solids and 
Structures,49, 111–120, doi: https://doi.org/10.1016/j.ijsolstr.2011.09.013. 

57. Moore, D. E., and D. A. Lockner, 1995, The role of microcracking in shear-fracture propagation in 
granite: Journal of Structural Geology, 17, 95–114, doi: https://doi.org/10.1016/0191-8141(94)E0018-
T.  

58. Morris, J. P., 2015, Numerical investigation of the relationship between fracture shear compliance and 
conductivity anisotropy: Proceedings of 49th US Rock Mechanics Geomechanics Symposium, American 
Rock Mechanics Association, 15–554. 

59. Nakagawa, S., 2011, Split Hopkinson resonant bar test for sonic frequency acoustic velocity and 
attenuation measurement of small, isotropic geologic samples: Review of Scientific Instruments, 82, 
044901–044913, doi: https://doi.org/10.1063/1.3579501. 

60. Nakagawa, S., 2013, Low-frequency (<100  Hz) dynamic fracture compliance measurement in the 
laboratory: 47th U.S. Rock Mechanics Geomechanics Symposium, American Rock Mechanics 
Association ARMA-2013-343.

61. Nakagawa, S., S. Nakashima, and V. A. Korneev, 2016, Laboratory measurements of guided-wave 
propagation within a fluid-saturated fracture: Geophysical Prospecting, 64, 143–156, 
doi:https://doi.org/10.1111/1365-2478.12223. 

62. Norwick, A. S., and B. S. Berry, 1961, Lognormal distribution function for describing anelastic and other 
relaxation process. I: Theory and numerical computations: IBM Journal of Research and 
Development, 5, 297–311, doi: https://doi.org/10.1147/rd.54.0297. 

63. Nur, A., and G. Simmons, 1969, The effect of viscosity of a fluid phase on velocity in low porosity 
rocks: Earth and Planetary Science Letters, 7, 99–108, doi: https://doi.org/10.1016/0012-
821X(69)90021-1. 

64. Oberg, E., F. D. Jones, H. L. Horton, and H. H. Ryffel, 2008, Machinery’s handbook, 28th ed.: Industrial 
Press. 

65. Oliger, A., D. D. Nolte, and L. J. Pyrak-Nolte, 2003, Seismic focusing by a single planar 
fracture: Geophysical Research Letters, 30, 1203–1206, doi: https://doi.org/10.1029/2002GL016264. 

66. Persson, B. N. J., 2006, Contact for randomly rough surfaces: Surface Science Reports, 61, 201–227, 
doi:https://doi.org/10.1016/j.surfrep.2006.04.001. 

67. Persson, B. N. J., F. Bucher, and B. Chiaia, 2002, Elastic contact between randomly rough surfaces: 
Comparison of theory with numerical results: Physical Review B, 65, 1–7. 

https://doi.org/10.1016/j.surfrep.2006.04.001
https://doi.org/10.1029/2002GL016264
https://doi.org/10.1016/0012-821X(69)90021-1
https://doi.org/10.1016/0012-821X(69)90021-1
https://doi.org/10.1147/rd.54.0297
https://doi.org/10.1111/1365-2478.12223
https://doi.org/10.1063/1.3579501
https://doi.org/10.1016/0191-8141(94)E0018-T
https://doi.org/10.1016/0191-8141(94)E0018-T
https://doi.org/10.1016/j.ijsolstr.2011.09.013
javascript:newWindow('https://library.seg.org/doi/10.1190/1.3052112')
https://doi.org/10.1190/1.3052112
javascript:newWindow('https://library.seg.org/doi/10.1190/1.1443005')
https://doi.org/10.1190/1.1443005
javascript:newWindow('https://library.seg.org/doi/10.1190/1.1444160')
https://doi.org/10.1190/1.1444160
https://doi.org/10.1111/gpr.2008.56.issue-2
https://doi.org/10.1029/JB082i033p05374


68. Peselnick, L., and H.-P. Liu, 1987, Laboratory measurement of internal friction in rocks and minerals at 
seismic frequencies: Methods of experimental physics, 24, 31–56. 

69. Pohrt, R., and V. L. Popov, 2012, Normal contact stiffness of elastic solids with fractal rough 
surfaces: Physical Review Letters, 108, 1–4, doi: https://doi.org/10.1103/PhysRevLett.108.104301. 

70. Power, W. L., and T. E. Tullis, 1991, Euclidean and fractal models for the description of rock surface 
roughness: Journal of Geophysical Research, 96, 415–424, doi: https://doi.org/10.1029/90JB02107. 

71. Pyrake-Nolte, L. J., L. R. Meyer, and N. G. W. Cook, 1990, Transmission of seismic waves across single 
natural fractures: Journal of Geophysical Research, 95, 8617–8638, 
doi:https://doi.org/10.1029/JB095iB06p08617. 

72. Pyrake-Nolte, L. J., and D. D. Nolte, 1992, Frequency dependence of fracture stiffness: Geophysical 
Research Letters, 19, 325–328, doi: https://doi.org/10.1029/91GL03179. 

73. Reches, Z., and D. A. Lockner, 1994, Nucleation and growth of faults in brittle rocks: Journal of 
Geophysical Research, 99, 18159–18173, doi: https://doi.org/10.1029/94JB00115. 

74. Schmittbuhl, J., G. Chambon, A. Hansen, and M. Bouchon, 2006, Are stress distributions along faults the
signature of asperity squeeze?: Geophysical Research Letters, 33, 1–5, 
doi:https://doi.org/10.1029/2006GL025952. 

75. Schock, R. N., B. P. Bonner, and H. Louis, 1974, Collection of ultrasonic velocity data as function of 
pressure for polycrystalline solids: Lawrence Livermore Laboratory, University of California.  

76. Schoenberg, M., 1980, Elastic wave behavior across linear slip interfaces: Journal of the Acoustical 
Society of America, 68, 1516–1521, doi: https://doi.org/10.1121/1.385077.

77. Scholz, C. H., 2002, The mechanics of earthquakes and faulting, 2nd ed.: Cambridge University Press. 
78. Selvadurai, A. P. S., and A. Glowacki, 2008, Permeability hysteresis of limestone during isotropic 

compression: Ground Water, 46, 113–119. 
79. Selvadurai, A. P. S., and Q. Yu, 2005, Mechanics of a discontinuity in a geomaterial: Computers and 

Geotechnics, 32, 92–106, doi: https://doi.org/10.1016/j.compgeo.2004.11.007. 
80. Selvadurai, P. A., and S. D. Glaser, 2012, Direct measurement of contact area and seismic stress along a 

sliding interface: Proceedings of 46th US Rock Mechanics Geomechanics Symposium, American Rock 
Mechanics Association, 23–538. 

81. Selvadurai, P. A., and S. D. Glaser, 2013, Experimental evidence of micromechanical processes that 
control localization of shear rupture nucleation: Proceedings of 47th US Rock Mechanics Geomechanics
Symposium, American Rock Mechanics Association, 13–639. 

82. Selvadurai, P. A., and S. D. Glaser, 2015a, Laboratory-developed contact models controlling instability on
frictional faults: Journal of Geophysical Research, 120, 4208–4236. 

83. Selvadurai, P. A., and S. D. Glaser, 2015b, Novel monitoring techniques for characterizing frictional 
interfaces in the laboratory: Sensors, 15, 9791–9814, doi: https://doi.org/10.3390/s150509791. 

84. Shao, S., C. L. Petrovitch, and L. J. Pyrak-Nolte, 2015, Wave guiding in fractured layered media , from 
fundamental controls on fluid flow in carbonates, in S. M. Agar and S. Geiger, eds, Current Workflows to
Emerging Technologies: Geological Society, London Special Publication 406, 375–400. 

85. Shao, S., and L. J. Pyrak-Nolte, 2013, Interface waves along fractures in anisotropic 
media: Geophysics,78, no. 4, T99–T112, doi: https://doi.org/10.1190/geo2012-0464.1. [Abstract] 

86. Silver, P. G., T. M. Daley, F. Niu, and E. L. Majer, 2007, Active source monitoring of crosswell seismic 
travel time for stress induced changes: Bulletin of the Seismological Society of America, 97, 281–293, 
doi:https://doi.org/10.1785/0120060120. 

87. Simmons, G., and W. F. Brace, 1965, Comparison of static and dynamic measurements of 
compressibility of rocks: Journal of Geophysical Research, 70, 5649–5656, 
doi: https://doi.org/10.1029/JZ070i022p05649. 

88. Spencer, J. W., 1981, Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and 
modulus dispersion: Journal of Geophysical Research, 86, 1803–1812, 
doi:https://doi.org/10.1029/JB086iB03p01803. 

https://doi.org/10.1029/JB086iB03p01803
https://doi.org/10.1029/JZ070i022p05649
https://doi.org/10.1785/0120060120
javascript:newWindow('https://library.seg.org/doi/10.1190/geo2012-0464.1')
https://doi.org/10.1190/geo2012-0464.1
https://doi.org/10.3390/s150509791
https://doi.org/10.1016/j.compgeo.2004.11.007
https://doi.org/10.1121/1.385077
https://doi.org/10.1029/2006GL025952
https://doi.org/10.1029/94JB00115
https://doi.org/10.1029/91GL03179
https://doi.org/10.1029/JB095iB06p08617
https://doi.org/10.1029/90JB02107
https://doi.org/10.1103/PhysRevLett.108.104301


89. Streltsova, T. D., 1983, Well pressure behavior of a naturally fractured reservoir: Society of Petroleum 
Engineers Journal, 23, 769–780, doi: https://doi.org/10.2118/10782-PA. 

90. Subramaniyan, S., B. Quintal, N. Tisato, E. H. Saenger, and C. Madonna, 2014, An overview of laboratory
apparatuses to measure seismic attenuation in reservoir rocks: Geophysical Prospecting, 62, 1211–
1223. 

91. TerraTek, 2014, Routine core analysis report, Altamont Vecta Gas Ltd Big Sky. 
92. Timoshenko, S., and J. N. Goodier, 1951, Theory of elasticity, 2nd ed.: McGraw-Hill Book Company. 
93. Tisato, N., and C. Madonna, 2012, Attenuation at low seismic frequencies in partially saturated rocks: 

Measurement and description of a new apparatus: Journal of Applied Geophysics, 86, 44–53, 
doi:https://doi.org/10.1016/j.jappgeo.2012.07.008. 

94. Tisato, N., B. Quintal, S. Chapman, C. Madonna, S. Subramaniyan, M. Frehner, E. H. Saenger, and G. 
Grasselli, 2014, Seismic attenuation in partially saturated rocks: Recent advances and future 
directions: The Leading Edge, 33, 640–646, doi: https://doi.org/10.1190/tle33060640.1. [Abstract]  

95. Trimmer, D., B. Bonner, H. C. Heard, and A. Duba, 1980, Effect of pressure and stress on water transport 
in intact and fractured gabbro and granite: Journal of Geophysical Research, 85, 7059–7071, 
doi:https://doi.org/10.1029/JB085iB12p07059. 

96. Vanorio, T., M. Prasad, D. Patella, and A. Nur, 2002, Ultrasonic velocity measurements in volcanic rocks: 
Correlation with microtexture: Geophysics Journal International, 149, 22–36, 
doi:https://doi.org/10.1046/j.0956-540x.2001.01580.x. 

97. Vialle, S., and T. Vanorio, 2011, Laboratory measurements of elastic properties of carbonate rocks 
during injection of reactive CO2-saturated water: Geophysical Research Letters, 38, L01302, 
doi:https://doi.org/10.1029/2010GL045606. 

98. Willis, M. E., D. R. Burns, R. Rao, B. Minsely, M. N. Toksoz, and L. Vetri, 2006, Spatial orientation and 
distribution of reservoir fractures from scattered seismic energy: Geophysics, 71, no. 5, O43–O51, 
doi:https://doi.org/10.1190/1.2235977. [Abstract] 

99. Winkler, K. W., and A. Nur, 1979, Pore fluids and seismic attenuation in rocks: Geophysical Research 
Letters, 6, 1–4, doi: https://doi.org/10.1029/GL006i001p00001.

100. Winkler, K. W., and T. J. Plona, 1982, Technique for measuring ultrasonic velocity and attenuation 
spectra in rocks under pressure: Journal of Geophysical Research, 87, 10776–10780, 
doi:https://doi.org/10.1029/JB087iB13p10776. [Crossref] [Web of Science] [Google Scholar]

101. Worthington, M. H., and R. Lubbe, 2007, The scaling of fracture compliance, in L. Lonergan, R. J. H. Jolly,
K. Rawnsley, and D. J. Sanderson, eds, Fractured reservoirs: Geological Society of London, Special 
Publication 270, 73–82. 

102. Wu, R. S., 1982, Attenuation of short period seismic waves due to scattering: Geophysical Research 
Letters, 9, 9–12, doi: https://doi.org/10.1029/GL009i001p00009. 

103. Yee, A. F., and M. T. Takemori, 1982, Dynamic bulk and shear relaxation in glassy polymers. I: 
Experimental techniques and results on PMMA: Journal of Polymer Science, 20, 205–224.

104. Yoshioka, N., 1997, A review of the micromechanical approach to the physics of contacting 
surfaces: Tectonophysics, 277, 29–40, doi: https://doi.org/10.1016/S0040-1951(97)00076-0. 

105. Zemanek, J. J., and I. Rudnick, 1961, Attenuation and dispersion of elastic waves in a cylindrical 
bar: Journal of the Acoustical Society of America, 33, 1283–1288, 
doi: https://doi.org/10.1121/1.1908417. 

106. Zener, C., 1948, Elasticity and anelasticity of metals: University of Chicago Press. 
107. Zhou, Q., C. M. Oldenburg, N. Spycher, L. Pan, and A. Cihan, 2013, Summary of site characterization, 

data collection and review, development of static geologic model, and preliminary multiphase flow and 
reactive transport modeling activities: Milestone Report, Lawrence Berkeley National Laboratory 
Deliverable to the Big Sky Carbon Sequestration Partnership. 

108. Zoback, M., and J. Byerlee, 1975, The effect of micro-crack dilatancy on the permeability of Westerly 
granite: Journal of Geophysical Research, 80, 752–755, doi: https://doi.org/10.1029/JB080i005p00752. 

https://doi.org/10.1029/JB080i005p00752
https://doi.org/10.1121/1.1908417
https://doi.org/10.1016/S0040-1951(97)00076-0
https://doi.org/10.1029/GL009i001p00009
http://scholar.google.com/scholar_lookup?hl=en&publication_year=1982&issn=0148-0227&author=K.+W.+Winkler&author=T.+J.+Plona&title=Technique+for+measuring+ultrasonic+velocity+and+attenuation+spectra+in+rocks+under+pressure&
javascript:popRefLink(128,'r97','A1982QE47800017')
javascript:popRefLink(16,'r97','10.1029%252FJB087iB13p10776')
https://doi.org/10.1029/JB087iB13p10776
https://doi.org/10.1029/GL006i001p00001
javascript:newWindow('https://library.seg.org/doi/10.1190/1.2235977')
https://doi.org/10.1190/1.2235977
https://doi.org/10.1029/2010GL045606
https://doi.org/10.1046/j.0956-540x.2001.01580.x
https://doi.org/10.1029/JB085iB12p07059
javascript:newWindow('https://library.seg.org/doi/10.1190/tle33060640.1')
https://doi.org/10.1190/tle33060640.1
https://doi.org/10.1016/j.jappgeo.2012.07.008
https://doi.org/10.2118/10782-PA


APPENDIX A CALIBRATION

The shear stress applied to a specimen was calibrated by hanging weights on a radius arm coming out from the
center of the apparatus. The full range of the calibrated sensors was tested and sensor output as well as 
applied torque fit by linear least squares, R2 = 0.99. This torque was converted to a force on the periphery of 
the sample (at radius r = r0), which was then used to calculate the shear stress by dividing by the polar moment
of inertia of the sample (Timoshenko and Goodier, 1951):

(A-1)

where ττ is the shear stress (Pa), T is the torque (Nm) converted from sensor output through the calibration, 
r0 is the radius of the sample (m), and J is the polar moment of inertia (  for a solid cylinder). This 
equation was then used to convert the sensor output (mV) to shear stress (Pa).

The same method was used to calibrate the applied uniaxial load measurement. A purpose-built aluminum 
load cell was loaded in series with the apparatus, and strain was measured with four electrical resistance strain
gauges in a bridge configuration (Micro-Measurements EA-06-125TQ-350). The strain measurement was 
calibrated to determine a linear relationship between the uniaxial load and strain gauge output. The uniaxial 
load was divided by the sample cross section that it was applied over to give a stress value (MPa). The linear 
relationship (R2 = 0.99) over a range of 30 MPa was obtained by measuring the strain with a series of known 
weights as well as a hydraulic press with a range of 227 kg as determined with a calibrated Bourdon tube 
pressure gage.

A similar relationship was obtained for shear strain by calibrating the sensor output with known displacement 
inputs and then calculating the strain that this represents. The equation for shear strain on the periphery of 
the sample is (Timoshenko and Goodier, 1951)

(A-2)

where ϵ is the shear strain, d is the displacement (m) at the outside end of the sample converted from the 
sensor output, γ is the angular twist (radian) at the free end of the sample, and L is the “active” length (m) of 
the sample that is being measured. This calibration has to take into account the strain in the apparatus itself, 
which was subtracted to isolate the strain in the sample. We obtained the strain offset due to the instrument 
by comparing the measurement of two T6 6061 aluminum samples of different lengths (19.3 and 38.1 mm). 
Assuming that the shear strain is linearly proportional to the length of the sample, we calculated the strain of a
zero-length sample as a function of applied stress. This is also a linear function, which provided the amount of 
strain that is subtracted for a given stress. We calculated this relationship for data sets at different frequencies,
but it varies little over the instrument’s frequency range (because aluminum is not highly dispersive), so we 
used a single slope for simplicity. Using these two relationships, we converted our proximity sensor voltages to 
the absolute measures of shear stress (Pa) and strain (unitless), the ratio of which gives the shear modulus 
(G) in GPa (Timoshenko and Goodier, 1951):

(A-3)

Attenuation was determined by the phase lag between torque and twist (Gordon and Davis, 1968), which is 
independent of sample size. Using the small-angle approximation, we directly took the phase delay (in 
radians), instead of the tangent of the phase delay, between stress and strain signals at the oscillating 
frequency as the attenuation in the sample. There is attenuation in the instrument (system Q), but this 
represents the minimum attenuation measurable, whereas most attenuating rock samples are well above 
these values, particularly at low normal stress states. We obtained an estimate of this minimum attenuation by
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measuring a low-attenuation sample, aluminum alloy 6061-T6 (for reference, Q of another aluminum alloy 
24ST was measured as 2.5 × 105 at 840 Hz by Zemanek and Rudnick, 1961). We found that the instrument 
attenuation was higher at low frequencies (<2  Hz <2  Hz) because of low-frequency electronic drift 
and 1/f noise, as well as at low strains (< 10−6), where the signal-to-noise ratio was poorer. Even for those 
measurements, the system phase delay was less than 0.001 radians (Q equals 1000). This is at least an order of
magnitude less than rock attenuation values for samples of interest, particularly for fractured rocks.

APPENDIX B ERROR ANALYSIS

Repeated measurements of modulus and attenuation follow a normal distribution, as evaluated by the 
Anderson Darling test (Anderson and Darling, 1954; see Figure B-1 for histograms of repeated modulus and 
attenuation measurements). Modulus has a significantly smaller standard deviation than attenuation, as a 
percentage of the value. The standard error on the median of these distributions decreases with the square 
root of the number of samples taken, improving the reproducibility of our measurements by taking 1000 
samples at each frequency; this is especially important for the attenuation measurement. This number was 
chosen because standard deviation appears to asymptote at approximately 1000 measurements. These 
measurements cover a range of amplitudes and aid in assessing the linearity of the stress-strain curves.

View larger version     (14K)

Figure B-1. Histograms show the normal distribution of 10,000 repeated 
measurements for aluminum alloy 6061-T6 of (a) shear modulus and 
(b) attenuation. These measurements were made at 8 Hz and under 5 MPa of 
uniaxial stress. Bins of attenuation histogram are limited by rounding error in the 
signal analyzer, and the modulus bins were chosen to roughly match the count at 
the mean value. Error bars in Figures 3, 4, 6, 8, 10, and 13 are taken as the 
standard deviation of these normal distributions, but with only 1000 repeated 
measurements.

The linear least-squares method gives an error on the slope for each line in our calibration; by propagating this 
error, we can see the relative effect of each source on the measurement of shear modulus made using 
equation A-3 (from Appendix A).
The hanging weight calibration of shear stress was performed nine times to improve the statistics and 
contributes a ±0.104 % error to the shear modulus. The strain sensors were calibrated with a purpose-made 
micrometer, which moves the eddy current sensor in known increments relative to a metal target, and 
contributed ±0.062 % to the modulus error. Both of these errors (together ±0.166 %) can be improved by 
making repeated measurements, but the error due to measurement of the active length L of the calibration 
sample is more difficult to minimize. The sample was held by tightened aluminum collets, and the active 
length L was the part of the sample that is actively deforming, which can differ slightly each time the sample is 
loaded due differences in how far it sat in the collets. To minimize this source of error, the sample was only 
unloaded and reloaded when necessary, such as for fracturing. We measured the active length by marking 
where the sample fits in the collets while it was loaded, and then measuring the deforming length of the 
sample between the collets after the sample was removed. There is some added uncertainty in the active 
length due to edge effects; it has been suggested that the effective length is less than the distance between 
clamping points (Cooper, 1979). Given these difficulties, we estimate 93.4% accuracy in measuring the “active 
length” of the smallest calibration samples (error of ±0.127  cm from a length of 1.93 cm), which propagates to 
6.6% error in the calculation of modulus for these smallest samples (the error is much smaller as a percentage 
for the longer samples). The measurement of the active length is also a part of the zero-length offset 
calculation, but it only contributes an approximately 3% error to the modulus through this calibration.
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Another source of systematic error is the collets. We are careful to tighten the collets to the same torque with 
every loading. If they are not sufficiently tightened, the sample will slip within the collet, which is immediately 
apparent in the amount of strain recorded. If the collets are tightened too much, they will potentially open 
microcracks, or create a through-going fracture in the rock sample, also apparent in the measurements. For all 
of these reasons, it is crucial that the loading is done very carefully and as infrequently as possible. There are 
further environmental sources of variability, such as humidity and temperature changes, which are only 
partially controlled in our laboratory environment, and they are included in the variability of the 
1000 measurements greater than 1.5 h that we average.

APPENDIX C PRESSURE-SENSITIVE FILM

The pressure-sensitive film is polyethylene-based and has a thickness of approximately 90  μm. The film has 
embedded microcapsules, which have a spatial resolution and were digitized to 20 × 20  μm. When 
compressed, the capsules crush and release ink with colors proportional to the applied pressure 
(approximately 1.5 Pa resolution). According to the manufacturer, the film used in this study is rated for normal
pressures between 12 and 50 MPa, and has been validated independently by Selvadurai and Glaser 
(2015b) using a spherical indentation test. The pressure film is first placed between the fracture surfaces and 
compressed between the samples, in which it develops for a period of approximately 120 s. A specialized jig 
was constructed to ensure the repeatability of the pressure film measurements. Characterizing the fracture 
using the pressure film involved squeezing the film between the fracture surfaces under known uniaxial loads.

The pressure film offered a “one-time” estimate of the maximum normal stress — once a microcapsule 
becomes discolored, it does not return to its original state. For this reason, a new piece of pressure film is used
to characterize the interface for each level of uniaxial loads. No shear stress (i.e., torque) was applied during 
compression because we are not interested in film-mediated sliding. The pressure film measures the same 
asperity configuration as our shear measurements, in which the equivalent uniaxial load is applied to press 
together the mated surfaces before any torque is applied.

After loading, the film was removed and optically digitized using an image scanner (MUSTEK ScanExpress A3 
USB 2400 Pro Scanner). Algorithms in MATLAB were created to isolate, size, and catalog all contacting 
asperities in the static state. The light intensity of each microcapsule was converted to normal stress (σpix) using
the calibration curve documented in Selvadurai and Glaser (2015b). Once the image was converted to stress 
estimates, a lower threshold contact stress value was obtained in an iterative manner (Selvadurai and Glaser, 
2012, 2015a). We assumed that the contact occurred only along the r‐θ plane (see Figure 11a) and that the 
force on each pixel was exactly perpendicular to the plane of the fracture (i.e., z-direction). For all pixels 
experiencing stresses above the threshold, a total reactive force Fr was calculated (i.e., measured stress on 
pixel multiplied by the area of a pixel). The threshold was then varied iteratively until FrFr balanced the applied
far-field uniaxial load, i.e., Fr = Fn =  σ0. With the threshold determined, we were able to accurately 
measure the asperity contact area and normal stress, including mapping of the actual size, shape, and spatial 
distributions observed over the entire fracture surface (Selvadurai and Glaser, 2013).

APPENDIX D NUMERICAL MODEL

A cylindrical sample of length L and radius r0 was elastically modeled using finite elements in ABAQUS, as 
described by equation 1. The discontinuity in the body at z = L/2 is denoted as a positive (+) and negative (−) 
surface, which was necessary for defining the boundary conditions at this location. The entire model was 
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composed of 76,200 eight-node linear brick elements (C3D8R), and it was refined more finely at the 
bonded/frictional interface (Figure 12b). Boundary conditions are as follows:

(D-1)

(D-2)

(D-3)

(D-4)

(D-5)

(D-6)
(D-7)

where γ is the angular twist (0.004 radians). 
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