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Abstract

In this dissertation, we study the effects of new physics involving the Higgs boson. Where
possible, we avoid making any effective field theory (EFT) power counting assumptions and
instead parametrize the new physics using a bottom up approach. We identify the energy
scales at which one might detect Beyond Standard Model (BSM) physics given deviations
in the Higgs couplings. We also provide lists of linearly independent primary operators for
3 and 4 point functions involving the Higgs, as well as a rough estimate of the size of their
coefficients. Finally, we examine measuring anomalous Higgs couplings at a muon collider

and focus on the top Yukawa coupling.
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Chapter 1

Introduction

Before we discuss the details of Beyond Standard Model (BSM) physics, we begin with a
brief description of what is within the Standard Model (SM). In simple terms, the Standard
Model describes the strong and electroweak interactions between the fundamental particles,
which consists of four gauge bosons, six quarks, six leptons, and the scalar Higgs boson.
The SM Lagrangian has a SU(3) x SU(2) x U(1) symmetry. The SU(3) invariant part
describes Quantum Chromodynamics (QCD) and the SU(2)xU(1) part is concerned with

the electroweak interactions, which we discuss in more detail in the following section.

The SM also has a history of reliably predicting experimental results. One of the more
famous examples of its accuracy is the electron’s anomalous magnetic moment, where there
is strong agreement between the measurement and the SM prediction. The particle content

in the SM has also been detected at colliders with the Higgs boson being the most recent.

However, there are compelling reasons for expecting physics beyond what is contained
in the SM. Some of these reasons are theoretical, where some features appear unexplained.
One of the most well known examples is the hierarchy problem, where the Higgs mass value
seems artificial. There is also the strong CP problem where, like the hierarchy problem,
the small value of the strong CP phase appears unnatural. In addition, the SM fails to

explain some phenomena. One example is the existence of neutrino masses. The other



massive particles gain their mass through the vacuum expectation value of the Higgs, which
is explained in the next section. However, the purely left handed neutrino cannot acquire
mass by a similar process. We also have good motivation for the existence of dark matter,
with many experimental efforts to detect it and yet the SM does not include dark matter at

all.

In the work presented in this dissertation, we do not attempt to model build or directly
explain the theoretical problems or phenomena. Instead, we acknowledge that there is good
reason for assuming BSM physics and use effective field theory (EFT) to understand their
effects. This chapter briefly discusses some concepts and background that are relevant to

most, if not all, of the chapters in this dissertation.

1.1 Higgs Couplings

The Higgs boson is important to symmetry breaking in the Standard Model. The SM
contains a doublet H, which in unitary gauge is
1 0

H:E ol (1.1.1)

The v refers to the vacuum expectation value (vev) of 246 GeV, which spontaneously breaks
the symmetry SU(2) x U(1)y to U(1)gn and the h is the Higgs boson. Goldstone’s theo-
rem states that we should expect one massless Goldstone boson for every broken symmetry
generator. After symmetry breaking in the SM, we are left with one massless boson (the pho-
ton) and three massive bosons (W= and Z) whose longitudinal modes contain the “missing”

Goldstone bosons in unitary gauge.

The symmetry breaking by the vev also gives mass to the gauge bosons and fermions. In



the SM Lagrangian, we find the terms
(D, H)'D'H, —Y3L'Hep+ hc., -YIQyHdy —YiQiHu} (1.1.2)

where H is related to H by H = 109 H where o9 is the Pauli matrix. The Y’s are 3 x 3
Yukawa coupling matrices. The second term involves leptons, where L is the left handed
lepton doublet and ey is the right handed lepton. up and @y are the quark fields where
ug(dg) is the right handed up (down) field and @), is the doublet containing the left handed
fields. Since D, is the covariant derivative that contains the gauge bosons, it is easy to see
that the vev of the Higgs doublet generates a mass term for the massive gauge bosons. By
the same process, the vev also generates a mass term for the leptons and quarks, though in

order to explicitly find the terms, we first must rotate into the mass basis.

In this work, we are particularly interested in the interactions between the Higgs boson
and other Standard Model particles. From Eq. [1.1.2] the Standard Model predicts the

following 3 and 4 point interactions involving the Higgs:

2 2 2
%hff, %hvv, W p2yy —%h?’, M pa (1.1.3)

v v 8v?
along with effective couplings with gluons and photons. The V' refers to the massive vector

bosons W* and Z, the h to the Higgs boson, f and f to the fermion fields, myx to the mass

of the relevant particle, and v to the vev of the Higgs.

We are interested in deviations from these predicted couplings and interactions, because
they would indicate new heavy physics, which we discuss in more detail in the effective field

theory section.

Measurements at the Large Hadron Collider (LHC) have constrained some of these cou-
plings. In previous runs, the kappa framework was introduced to describe the Yukawa and

gauge boson couplings. The x’s are defined by relating the cross sections of Higgs production



and decay to the predicted SM cross sections so that

2 0j 2 L

K = or K; =
J U?M J F;S'M’

(1.1.4)

where the j denotes the production or decay and ¢ and I' refer to the relevant cross section
and partial decay width [1]. x = 1 is the predicted Standard Model value. From the
processes that involve tree level diagrams with fermions and massive vector bosons, we can
infer that ¢ and xy modify the SM couplings by /{f%hff and /{VmT%/hVV. For these types
of coupling modifications, we primarily use the quantity ¢ to discuss anomalous couplings in

this dissertation. The ds and the ks are related to each other by
k=149 (1.1.5)

so the ¢ purely involves BSM physics and is 0 in the SM. The xs that are related to processes
that involve loops are related to kv, k¢, and kp, where V refers to the W and Z bosons and

t and b to the top and bottom quark respectively.

ATLAS results constrain the top Yukawa coupling and Higgs to vector boson couplings,
which are extensively discussed in this dissertation, to be around 20% at the 95% confidence
level [2]. There are also recent projections for kappa measurements at the High Luminosity
LHC (HL-LHC) [3].

Lepton colliders, which have reduced QCD background compared to hadron colliders,
can also be potentially interesting for measurements of Higgs couplings. There are analyses
for ttH production and the top Yukawa coupling at CLIC [4]. The future muon collider is
also a possibility for such studies and could compete with the LHC in terms of constraining
couplings [5,/6].

In the runs at the LHC, the constraints on the Higgs couplings are extracted by examining

Higgs decays [3]. Since these processes contain a Higgs decaying to other particles, they will



naturally be sensitive to the couplings of the Higgs.

However, we can also examine scattering processes that do not explicitly involve an on-
shell Higgs and extract information about the Higgs couplings |7]. For example, if we were
interested in probing the top Yukawa coupling, instead of Higgs decays, we can also examine
vector boson fusion (VBF) production of a top and antitop. This process involves diagrams
where the Higgs is a propagator and is therefore sensitive to the value of the Higgs and top
coupling. As we see in [7,§], such processes benefit from increased cross sections particularly
at high energy. In this dissertation, we primarily focus on these types of scattering processes

when considering phenomenology.

1.2 Effective Field Theory

Effective field theories (EFT) are theories that describe physics at low energies. The particles
with masses much greater than the low energy scale are integrated out and not explicitly
present in the effective theory. However, they still affect probability amplitudes because the
process of integrating them out introduces interaction terms involving the remaining fields.
In other words, even at low energy, evidence of the heavy particles still be found even if the

particles themselves are not directly produced.

One difference between EFTs and theories like the SM is that EFTs allow for irrelevant
operators, which are terms in the Lagrangian where the coupling’s mass dimension is neg-
ative. Renormalizability prevents irrelevant operators from appearing in the SM. The loop
diagrams in general contain divergent terms and renormalizability ensures that not only can
such terms be absorbed by counterterms, but that there are a finite number of these coun-
terterms. In other words, it is essentially the quality of being a predictive theory where the
calculations are finite. When irrelevant operators appear in a theory, attempting to renor-
malize becomes an infinite recursion. However in an EFT, such operators contain inverse

powers of the cutoff energy scale and so we can truncate the infinite recursive process by



only working to some power of energy.

In this dissertation, we are primarily concerned with Standard Model Effective Field
Theory (SMEFT) and a ‘bottom up’ EFT, where in both cases, our EFT consists of the
SM plus additional operators. The existence of such operators would indicate that the SM
is not valid for all energy scales, but is instead an EFT with heavy states that have been

integrated out.

One possible way of parametrizing new physics is by using dimension 6 SMEFT. The
mass dimension of all fields in each SM operator are at most dimension 4, implying that
their couplings have either positive or no mass dimension. SMEFT consists of adding irrel-
evant operators that can be grouped by their dimension. We assume that higher dimension
operators are more suppressed and the leading contribution to BSM physics occurs at di-

mension 6.

With the inclusion of these new operators, existing 3 and 4 point interactions deviate
from their predicted SM coupling. As an example, suppose we consider adding a single
SMEFT operator to the SM so that the Lagrangian of the theory is

Co - ~
L= Lgy + PHTHQLHuR. (1.2.1)
The Lgp denotes the Standard Model Lagrangian. cg is the dimensionless coefficient of the

SMEFT operator and A is the energy cutoff scale for the EFT. Qp,ug, H and H are the
quarks and doublets as described under Eq. [1.1.2]

The new term in Eq. contains a piece proportional to tth, so the new Higgs and top

quark coupling contains a term proportional to ¢o in addition to the original SM coupling.

We can also consider a completely bottom up approach, where instead of first identifying

higher dimension operators and then finding the resulting 3 and 4 point interactions, we



simply add in additional interactions. Under this approach, we would have

L = Lgy + dutth (1.2.2)

as opposed to Eq. where dy; is a coupling.

The difference between the two can be appreciated when we consider higher point interac-
tions that are related to lower point ones through SMEFT operators. As a concrete example,
we can consider the fth and #th? couplings. Both terms are contained in the dimension 6
SMEFT operator and their couplings are not independent of each other. In the bottom up
approach, we can simply add a dy»tth? to Eq. which implies that one can conduct a

measurement of the quadratic coupling #th? without considering the linear tth.

This is not to say that it is impossible to consider this situation in the SMEFT framework.
Measuring tth? alone can be justified in SMEFT by including a dimension eight operator
and assuming that some cancellation between the two operators occurs so that tth? is the
leading BSM effect. The difference is that the bottom up approach more explicitly illustrates
the possibility of considering higher point interactions without including discussions about
higher dimension operators. A more detailed discussion of the comparison between SMEFT

and a bottom up approach can be found in Chapters 2 and 3 of this dissertation.

1.3 Outline

The remainder consists of three papers where the author of this dissertation was a co-author

and some overall concluding remarks.

Chapter 2 is from [9] and uses the concept of tree level unitarity to predict the scale of
new physics. Specifically, it considers deviations in the Higgs couplings to massive vector
bosons and top quarks and identifies the energy scales where one might expect to detect BSM

physics at colliders. Chapter 3 is from [10] and identifies the list of linearly independent 3

7



and 4 point primary operators that involve the Higgs in a framework that connects directly
to phenomenological observables. Chapter 4 is from [6] and discusses the measurement of the

Higgs and top quark coupling at a future muon collider. Chapter 5 presents some conclusions.



Chapter 2

Higgs Coupling Measurements and

the Scale of New Physics

2.1 Introduction

As discussed in the introduction, despite the success of the Standard Model, there are com-
pelling reasons for expecting new physics. In this chapter, we use tree level unitarity to
determine the scale of new physics given a Higgs coupling deviation from the SM prediction.
Essentially, we assume that our low energy effective theory consists of the SM and additional
interactions between the SM particles. As discussed above, these additional interactions can
indicate the presence of heavy BSM particles. We then show that the BSM couplings can
indicate the energy scale where this EFT should break down. In our analysis, we focus on

the Higgs couplings to itself and other SM particles.

Before we discuss the reasoning behind this chapter, we briefly revisit the arguments first
made in the 1970s, where unitarity led to a spontaneously broken gauge theory [11-14] (see
[15-17] for a modern approach). More specifically, one can determine the energy scale for the

Higgs sector by imposing tree level unitarity on longitudinal vector boson scattering [18-23].

Our approach is similar to the argument originally proposed by Lee, Quigg, and Thacker

9



[18,19]. As is, the SM respects tree level unitarity. If we introduce new physics in the form
of anomalous Higgs couplings, we expect that the cancellations that remove energy growing
terms from scattering amplitudes will no longer hold, thus leading to tree level unitarity
violation. Recall from the introduction that given our effective field theory framework, these
anomalous couplings are the result of integrating out heavy particles. In other words, tree
level unitarity violation indicates the existence of non SM particles with masses above the
EFT’s cutoff scale. Furthermore, since the BSM terms introduce energy growing terms in
the amplitudes, we can also use tree level unitarity to determine the energy scale that we

should expect to detect the new physics.

We use a “bottom up” framework that is model independent, where the only assumption
is that there are no light BSM particles. In theory, our approach can be applied to any SM
coupling. However the Higgs anomalous couplings are constrained at the 20% level (for dy4
and d&;) or worse (for d3, dyo, and ¢;2) compared to the percent level of the SM parameters.
Furthermore, we anticipate these measurements improving at the HL-LHC run and future
colliders. For these reasons, we focus on the Higgs to top couplings, the Higgs to vector

boson couplings, and the Higgs self couplings. Our effective Lagrangian is

m? m? = ¢, m
L= Loy — 03—2h® —04—2pt =y D —hpnyp ...
SM 350 13,2 Z +

2
2myiy,

mzZ m2Z 2 mt%v 2
+ 0, —=hZ"Z,, + own hW“J“WM_ +0z0—5h"Z1 2, + dwa—-h WHYW =
v 202 V2 »

v

> 2 2m2
+Z CZ_”%hnZMZM_i_CW”MhnWwa 4.
— Lnl v n! on K

oo
mye . — Cin, Ty _
— 0y —htt — 5 — —h"t+ -
1 —~ nl vn

(2.1.1)

where, as in the introduction, Lgy refers to the SM Lagrangian, h is the physical Higgs boson,
Z,, and Wj are the massive gauge bosons, and ¢ is the top quark. The BSM couplings are

parametrized by ¢ and ¢, where ¢ refers to deviations from SM couplings and ¢ refers to new

10



interactions. The relationship between ¢ and the ks of the x-framework can be found in Eq.

1ol

While there has been some previous work in this area with using unitarity to contrain
2 — 2 partial wave amplitudes [18-21},24,125] and inclusive cross sections [22,23,]26-28], our
analysis contains some new features. The bounds that we find are model independent in the
sense that the bound arising from one anomalous coupling is insensitive to the value of other
couplings, which may be related by specific EFTs such as SMEFT. Furthermore, using the
techniques outlined in Ref. [29], we use n — m amplitudes that not only result in stronger
bounds, but also contain potential IR enhancements that can be the subject of future work.
We also discuss the effect multiple nonzero anomalous couplings have on our bounds. Finally,
despite our framework being completely bottom-up, we find that we are able to estimate the

accuracy of SMEFT predictions for coupling deviations given the unitarity violation scale.

In this chapter we extend the work of Ref. [29]. We first examine the Higgs cubic
coupling and elaborate more on the model-independent nature of our bounds. We also
discuss obtaining an optimal bound by considering other couplings and show that it is not
significantly better than our model-independent bound. Finally, we estimate the deviation
of the quartic Higgs coupling from the SMEFT prediction given the scale of new physics. We
then perform the same analysis for the hV'V and hit couplings, where we find that the scale
of new physics could potentially be reached at the HL-LHC.We continue with the hAVV and
hhtt couplings and finish with a summary of our conclusions. The details of our calculations

can be found in Appendix [A]

2.2 New Physics from the Higgs Self-Coupling

In this section we discuss the model-independent bound on the scale of new physics from
measurements of the cubic Higgs self-coupling. This section is based on Ref. [29], but goes

beyond it in a number of respects. First, we include a more complete discussion of the

11



model-independence of the bound and the role of additional deviations from the SM that are
poorly constrained. Specifically, we explain why couplings with additional derivatives and
powers of gauge fields do not affect the bounds. We also show that marginalizing over the
infinitely unmeasured couplings does not substantially improve the bound. Second, we show
that if the scale of unitarity violation is large compared to 1 TeV, unitarity alone implies that
the deviation in the Higgs quartic coupling is related to that of the Higgs cubic coupling as
predicted by the dimension-6 operator (HTH)?. We are able to give a quantitative estimate

of the error purely from bottom-up considerations.

2.2.1 Model-Independent Bound on the Scale of New Physics

Suppose that the experimentally measured value of the Higgs cubic coupling differs from the
prediction of the SM. Obviously, this implies that there is physics beyond the SM, but at
what scale?” Omne possibility is that this physics is near the electroweak scale, for example
additional Higgs bosons that mix with the observed Higgs boson. In this case, the new states
can be potentially produced and observed in direct searches. But it is also possible that the
new physics responsible for the deviation is at higher energies that are not directly probed by
current experiments. Because the SM is the unique UV complete theory with the observed
particle content, the scale of this new physics cannot be arbitrarily high. One sign of this
is that any effective theory that can explain this result without the addition of new light
particles violates tree-level unitarity at high energies. This scale can be computed without

any additional assumptions, and gives an upper bound on the scale of new physics.

In a theory without gauge interactions, a cubic scalar interaction is a relevant coupling
whose effects are small at high energies. Nonetheless, a deviation of the Higgs cubic coupling
from the SM prediction implies a breakdown of tree-level unitarity at high energies. For
example, this can be seen in the process Vi,V V, — V ViV, where Vi is a longitudinally

polarized W or Z. This has a tree-level contribution from the Higgs cubic coupling, as

12



X AL AN

Fig. 2.1: Feynman diagrams contributing to scattering processes involving six
electroweak gauge bosons.

shown in Fig. 2.1} By itself, this contributes to dimensionless amplitudesﬂ with high-energy
behavior ~ E?/v?, which would violate unitarity at high energy, but in the SM this diagram
cancels with other diagrams to give high-energy behavior that respects unitarity. If the
Higgs cubic coupling deviates from the SM prediction, this cancellation is destroyed, and the

amplitude violates unitarity at high energies.

The scale of unitarity violation depends on the high-energy behavior of the amplitude.
The calculation of this can be considerably simplified using the equivalence theorem, which
tells us that the leading high-energy behavior of scattering amplitudes for longitudinally
polarized gauge bosons is given by the amplitude for the corresponding ‘eaten’ Nambu-
Goldstone bosons [14,130]. We assume that experiments can be described by the effective
Lagrangian Eq. , with no new degrees of freedom below some energy scale E,., 2 TeV.
In this section, we focus on the couplings d3 and d, in Eq. , which parameterize the

deviations of the Higgs cubic and quartic couplings coupling from the SM values:

9ps — Q(SM) 9pa — Q(SM)

__ Jh3 h3 __ Jhpt h4

53 — W, 54 — W, (2-2.1)
9p3 Ipa

while the ¢, parameters in Eq. (2.1.1)) are couplings that are not present in the SM.

The Lagrangian Eq. (2.1.1]) is written in unitary gauge. To use the equivalence theorem
to compute the leading high-energy behavior of amplitudes, we must restore the dependence

on the Nambu-Goldstone fields. We do this by writing the Higgs doublet in a general gauge

1 'We use amplitudes that are many-particle generalizations of partial wave amplitudes normalized so that
the unitarity bound is |[M| < 1. See Appendix |A| for details.

13



as

g L G' +iG? (222
V2 v+ h+iG3 ’ B

where G = (G', G?, G?) parameterizes the custodial SU(2) triplet of ‘eaten’ Nambu-Goldstone
bosons. We use a linear parameterization of the Nambu-Goldstone fields because the SM
part of the Lagrangian has manifestly good high-energy behavior when written in terms of

these fields. To use the equivalence theorem, we must restore the dependence on the Nambu-

Goldstone of the non-SM couplings in Eq. (2.1.1). We do this by writing them in terms of
the Higgs doublet Eq. (2.2.2):

e G’ G* G®

Because X = h in unitary gauge, the generalization of Eq. (2.1.1) to a general gauge is
obtained simply by the substitution A — X [28,29]. Note that X is non-analytic at H = 0,

but we are interested in the expansion around (H) # 0.

The X3 term contains interactions with arbitrarily high powers of the fields h and G.
However, such vertices also get contributions from terms of the form X" with n > 4, and
these terms are unconstrained experimentally. In order to obtain a bound we call our model-

independent bound, we only consider processes that do not get corrections from the unmea-

14



sured couplings 6, for n > 4. From Eq. (2.2.3)) we have

X+ G*RHR )+ GH h+R )G (L h )
+G(1+h+- )+ GQ+h+-)+---,

X~ R+ G+ 4 )+ G R AR )+ GO (R R ) 2.24)
2.2.4
+G(1+h+ )+ GO(L+h+- )+,

X~ P+ G R+ )+ G R R ) GO R R )

+G(h+R+- )+ G(L+h4- )+

where we have set v = 1 and ignored numerical factors. We note that the hG* and G°
couplings violate unitarity at high energies, and are not affected by the unconstrained terms
X™ for n > 4. We see that the unitarity-violating amplitudes that depend only on d3 are

(restoring factors of v)

R R E2

FE
M(VLVL — VLVLh) ~ )\(53;7 M(VLVLVL — VLVLVL) ~ )\(53; (225)

The strongest constraint comes from W, W/} W, — W/ W W, and gives the bound

14 TeV

For details of the calculations, see Ref. [29] and the Appendix.

Experimental sensitivity to a deviation in the Higgs cubic coupling comes mainly from
measurements of di-Higgs productionﬂ However, a deviation in this process can also be
explained by new physics contributions to the h?V? or h?tt couplings. This will be discussed
in Sec. below, where we show that a model-independent unitarity bound can be obtained

by considering these couplings together.

2 It is also possible to constrain a cubic deviation by looking for the hV* process in VBF production of
rV2 7).

15



2.2.2 Model-Independence of the Bound

We claim that the bound Eq. (2.2.6) is valid independently of the infinitely many uncon-
strained couplings that parameterize possible deviations from the SM. In this subsection, we

discuss this point in more detail.

The discussion above has assumed that a measured deviation in the Higgs trilinear cou-
pling is explained by a h? coupling with no derivatives. (The same assumption is made by
the experimental searches for this deviation.) However, there are infinitely many derivative

couplings that can contribute to an observed deviation in the Higgs cubic coupling:

AL =" ey s 0D, (2.2.7)
=1

p2n+l

Here we have only shown the schematic dependence of the derivatives, but not the detailed
Lorentz structure. If the experimentally measured h* coupling deviates from the Standard
Model prediction, this is potentially due to some combination of the c;,, couplings above. If
the deviation is dominated by a single coupling c; ,,, this requires

Ogns mp\ 27
" ~esn (—) 2.2.8
(SM) €3, ( v ) ( )

Gp3

since the Higgs coupling extraction is dominated at energies ~ my,. The V7 — V7 process

leads to a unitarity violating scale (neglecting order one numerical factors)

1287304 (SM) \ 1/(2n+2)
SO In ) . (2.2.9)

Emax ~m
h < mi (Sghd

If one takes dgp3/ ggM) ~ 03 to compare with the earlier bound Eq. (2.2.6)), one finds the

unitarity bound gets more stringent with increasing n and thus interpreting a Higgs trilinear
deviation with the operator with the fewest derivatives leads to the most conservative new

physics bound.
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An important assumption in the argument above is that the number of derivatives in an
operator determines its scaling with energy. In particular, we assume that each additional
derivative give an additional factor of 0 ~ E in scattering amplitudes at high energy. This
is what is expected in general, but it can fail in certain choices of operator basis. This is
because field redefinitions and integration by parts in the effective Lagrangian do not affect
scattering amplitudes, so there are ‘flat directions’ in the space of effective Lagrangians. For
example, the field redefinition h — h — (63/2v)h? can be used to eliminate the deviation
in the h? coupling, but will induce correlated couplings of the form h20h, h?V? and h2tt.
In this basis, the h20h, h?V? couplings typically lead to E* growth in the V5 amplitude
as expected from counting derivatives, but with the correlated values induced by the field
redefinition the leading growth is canceled, resulting in the same E? growth as the original
h3 deviation. Thus, a basis which eliminates h? is a poor basis for our purposes, since it
obscures the energy scaling through non-trivial cancellations. To our knowledge, it has never
been proven that there exists a basis where the naive energy scaling holds, even though this
assumption is commonly used in applications of effective field theory. In this chapter we will

assume that such a basis exists, and leave further investigation of this point for future work.ﬂ

Since the unitarity bound Eq. comes from scattering of gauge bosons, we must
also consider effective couplings involving gauge fields. For example, from the unitary-gauge
diagrams shown in Fig. we can see that a deviation in the hV? and h?V? couplings can
also give rise to unitarity violation in the V¥ amplitude at high energy. The hV? and h%V?
couplings are phenomenologically interesting in their own right, and will be studied in detail
in Sec. and Sec. respectively below. Here we preview some of the results of Sec.
to understand how modifications of the hV? and h?V? couplings contribute to the V2

amplitude. To use the equivalence theorem, we restore the Nambu-Goldstone bosons in the

3 A natural guess is that this basis can be defined using amplitude methods [15,31], where the connection
between the number of derivatives and the energy scaling of amplitudes is manifest.

17



gauge boson fields in unitary gauge (see Eq. (2.3.3]) below):

9,G  ho,G
gVM—>gVM+“T+U—/;+---, (2.2.10)

where g is the gauge coupling. This gives (temporarily setting v = 1)

X(gVP ~PG*h+h+- )+ G (A+h+ )+ G+ h+-)+-],
X2(GVP ~ PG (W + b )+ GHA R ) GOkt ) o], (2210)

X3 gV ~ PGP + R+ Y+ G2+ P+ )+ GO+ R+ )+ -],

Here we have assumed custodial symmetry so that the Nambu-Goldstones appear in a cus-

todial singlet G*. These give a contribution to the V¢ amplitude (restoring the factors of

v)

~ E4

AM(VL VLV, = VViEVE) ~ (dy1 + 5V2>Fa (2.2.12)

where 0y and dy9 are defined in Eq. and their coefficients in the above equation are
only schematic. We see that deviations in the AV? and h*V? couplings contribute to the
amplitude the same way as higher-derivative couplings at high energy, and therefore they
can only lower the scale of unitarity violation. Similar results hold for modifications of the
V3 and V* couplings, as well as terms with additional derivatives. These give contributions

to the V5 amplitude that grow even faster with energy, and therefore do not invalidate the
bound Eq. (2.2.6)).

To determine the unitarity bounds from a Higgs cubic coupling deviation, we conserva-
tively assume that dyq, oy, and higher-derivative couplings are zero and focus on the 5
coupling. Contributions to the amplitude that are higher order in d3 involve propagators

that give additional 1/E? suppression at high energies, so the leading unitarity violation is
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given by a single insertion of d3 even for d3 > 1E|

2.2.8 The Optimal Bound

The bound Eq. makes no assumption about the nature of the new physics other
than that it is at high scales, and is valid independently of the values of the infinitely many
unmeasured couplings d4, ¢, in Eq. . However, it is not guaranteed this it is the best
possible bound, because it does not take the effects of all possible unmeasured couplings
into account. The reason is the following. If we allow additional unmeasured couplings to
be nonzero, these predict additional higher-body processes that depend on d3 as well as the
unmeasured couplings. Requiring that these additional processes do not violate unitarity
below the scale Eq. places additional constraints on these couplings.ﬂ It is possible
that there is no choice of the new couplings that satisfies the unitarity bound Eq. ,
in which case we obtain a stronger unitarity bound. In other words, an optimal bound is
obtained by marginalizing over the unmeasured couplings, while the bound Eq. is

independent of these couplings.

We have not found a general method to obtain the optimal bound. However, in the
case of the V¥ amplitude we can constrain the optimal bound to show that it does not
significantly improve the bound Eq. . To do this, we consider a theory consisting of
the SM plus the dimension-6 interaction (H'H)3. This corresponds to a particular choice of
the higher dimension X" operators that includes terms only up to six scalars (see Eq. )
Therefore, for this choice of couplings we can simply check all unitarity violating processes
and put a bound on the scale of unitarity violation. The optimal bound will always be weaker
than the unitarity violating scale obtained from the (HTH)? theory, since this corresponds

to a particular choice for the infinitely many unconstrained couplings. If this scale is the

4 For other processes, we will find that the leading contributions to the unitarity bound include diagrams

with propagators, for example Eq. ([2.4.5).
5 In fact, we know that at least some of these couplings must be nonzero, because the theory with only

d5 # 0 violates unitarity at the TeV scale [2829].
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Fig. 2.2: The unitarity bound as a function of the deviation in the h? coupling.
The optimal bound lies between the model-independent and SMEFT estimates.

The band around the model-independent scale reflects the uncertainty of the

bound from varying the unitarity constraint to % < ]M| < 2. For comparison,

we show projected 95% C.L. limits on d3 from a combination at HL-LHC and
a 100 TeV pp collider from [3].

same as Eq. (2.2.6), we will know that this is the optimal bound; if not, we learn that the
optimal bound is between the bound Eq. (2.2.6) and the one just described.

We find that the strongest bound in the (HTH)? theory comes from the V5 amplitude

for small values of 93, but for larger values the process hh — hhh dominates and gives

2 T
By ~ 221V (2.2.13)
03]

The results are plotted in Fig.[2.2] The scale of tree-level unitarity violation is an estimate for
the scale of strong coupling, and is therefore subject to theoretical uncertainty. As a rough
parameterization of this uncertainty, we vary the constraint from % < |M]| < 2. Within this
range, we see that there is no important difference between the model-independent bound

and the optimal bound.
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2.2.4 SMEFT Predictions from Unitarity

If the scale of new physics is high, we expect that the new physics must be of the decoupling
type. This means that the effects of the new physics at low energies can be captured by
adding to the SM a series of higher-dimension gauge-invariant operators. This is the SMEFT
framework. If experiments reveal a deviation in one or more SM measurements, without any

sign of new physics, it is most natural to interpret the results in terms of SMEFT.

SMEFT is predictive because the same SMEFT operator controls more than one observ-
able. However, these predictions assume that we can neglect higher-dimension terms, and
the size of these corrections is unknown without further theoretical input. We now show
that we can make an interesting quantitative statement about this purely from unitarity
considerations. Specifically, we show that if the scale of new physics is much larger than
the TeV scale, we can bound the error of the SMEFT prediction, and this error bound gets

better as the scale of new physics gets larger.

To be specific, we assume that d3 # 0, and the energy scale of new physics is lower than
some value F... In this case, we expect that the observed deviation in the Higgs cubic

coupling can be explained by the dimension-6 SMEFT operatorﬂ

2

1 v2\?
6L =— (H'H-—) . 2.2.14
sweer = 37z (H1H - 5 ) 2214
This form of the operator keeps the Higgs mass and electroweak VEV at their tree level val-

ues, but modifies the Higgs mass parameter and quartic coupling. If this operator dominates,

it predicts

20

03 = ———
2,27
M=mj

54 = 6(53, Cy = Cg = 4553 (2215)

We expect these predictions to become more accurate if the scale of new physics is larger since

6 Technically, this operator is a linear combination of dimension 0, 2, 4 and 6 operators, but we will refer
to these linear combinations by their highest dimension.
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Fig. 2.3: Unitarity violating scales from processes that depend on d3 and d4 as a
function of the fractional deviation €4 from the dimension-6 SMEFT prediction

(see Egs. and ([2.2.16))).

these additional couplings themselves generate new unitarity violating amplitudes which

require coupling correlations to be canceled.

To make this quantitative, we simply require that any deviation in the quartic coupling
does not give rise to tree-level unitarity violation below the scale Fy,.,. This requirement not
only bounds the quartic coupling from being too large, but it also predicts that its deviation
must be close to the prediction of the dimension-6 SMEFT operator Eq. :

dim 6
B 54 _ 541m

€= g5 <L (2.2.16)
4

The reason for this is that adding a X* term to the effective Lagrangian means that there
are now additional processes that violate unitarity, which are not affected by couplings of

the form X" with n > 5. The one that is most sensitive to new physics is the process
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WiW W, w, — WWW, W, | which gives the bound

8.7 TeV

Erax ~ ————-
|04 — 6031/4

(2.2.17)

The denominator vanishes for §; = 605 because the SMEFT operator does not contain a G®
term. Requiring that the theory violates unitarity above some scale that is large compared
to 1 TeV therefore requires that the deviations are close to the SMEFT prediction 9, = 645.
Taking into account all of the processes predicted by the X3 and X* couplings, the results are
shown in Fig. [2.3] For example, we see that for Ep., ~ 10 TeV, the deviation in the quartic
coupling is within ~ 10% of the value predicted by dimension-6 SMEFT. This shows that
not finding new physics below some scale can be complementary to direct searches [32-34]

in constraining the quartic coupling.

2.3 New Physics from hVV Couplings

The Higgs couplings to vector bosons V = W*, Z provides another sensitive probe for new
physics. In this section, we work out the model-independent constraints on the scale of new
physics from measurements of these couplings. Note that we will not consider Higgs coupling
to massless gauge bosons, which can be probed by h — v7v,Z7v, gg. These lie outside the
thrust of this chapter because they do not lead to high-energy growth in V7, scattering. Also,
because these couplings are loop-induced in the Standard Model, we expect that deviations

from the Standard Model predictions will give rather weak unitarity constraints.

2.3.1 Model-Independent Bound on the Scale of New Physics

It is well known that a deviation in the hV'V couplings leads to unitarity violation in lon-
gitudinal W and Z scattering at high energies (see [18|19] and more recently [35]). In the
SM, the Higgs exchange contribution cancels the £? growth of other diagrams, so any mod-

ification of the AV'V coupling will ruin this cancellation and lead to unitarity violation. We
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can reproduce this result using the same model-independent bottom-up approach we used
for the h3 coupling. We write down the most general deviations from the SM involving the

Higgs and vector bosons that are quadratic in the W and Z gauge boson fields:

1 9 m? 2m3, I
L= Lo — adT (kmy 2" 2,) + 611 —2hZ"Z,, + dun hWH W,
v (%
e . e (2.3.1)
+ 0205 S h* 2" 2y + dwar s WPWITW crsgrgh* 2 2yt

where h is the scalar field that parameterizes the physical Higgs boson (see Eq. )
As before, we do not assume any power counting for the higher terms, we only assume
that their values are compatible with experimental constraints. Our bounds are obtained
by marginalizing over the values of the infinitely many unmeasured couplings. For now, we
do not assume that custodial symmetry is preserved by the deviations from the SM, and
therefore we have included an additional contribution to the 7" parameter from shifting the

7 mass.

To understand the implications of the couplings in Eq. (2.3.1) for processes involving
longitudinally polarized vectors at high energy, we use the equivalence theorem. To do this,

we write the new couplings in Eq. (2.3.1)) in terms of gauge invariant operators using

H= = +0(G). (2.3.2)

This transforms under electroweak gauge symmetry just like a Higgs doublet. This allows

us to write the vector fields in terms of gauge-invariant operators:

- - 1
HYiDH = -"27, - ~9,G° + - ,
v v
x . 2 V2
HYD,H = MW; T ﬂaucﬁ R (2.3.3)
v v
- x 2 /2
HTZ'DuH — \/_mWWu _ iaﬂG* +o
v
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where we have defined

i = eH”, €= . (2.3.4)

We then use Eq. (2.3.3) to write Eq. (2.3.1)) as a sum of gauge invariant operators. We

therefore have

av?0T

L= Loy — \H'D,H? + 6,0 X |H'D,H> + oy X|H D, H? + -, (2.35)

where X is defined in Eq. (2.2.3). We can now expand this expression in powers of the
Nambu-Goldstone fields G' and Higgs field h using

V26T

g (1. ¢ e Y
(v+ h)?

GO
L
+ Zv +h
0 1 [ V2GT 2 0
= + - L? +O(G?). (2.3.6)

The only model-independent couplings arising from 07, 671 and dy; are then

50— aéT:— 071 hor G0, G0 + 25W1 WL porGto,G + O“S_T(@ ho*GO)GP
T T
ZO((S o GO(G MGt — GTo*G™ )+ %(G+a G -G 0 G+)
TN ar

+ é [(30&5T — 201 + 2071)hO*G° + T Goa“h} (GTO.G™ = G0,G7)

+ (2007 = by +071) (G CUGH0,G — G0,G™).

Interactions involving higher powers of Nambu-Goldstone or Higgs fields can be gen-

erated by next order couplings such as dz5 and dyo, which are much less constrained ex-
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perimentally. Notice that the 0T term contributes to these interactions at the same order
as 0z1,0w1. However, given the stringent experimental constraints on the 7' parameter,
adT < 0.001, these effects are subdominant because we are considering significantly larger

deviations dz1, dy1 ~ 0.1, so we will often neglect 67" in the following discussionm

The unitarity constraints on dz; and dy1 come from the amplitudes V.V, — Vi h, Vi,V —
ViV, and ViV Vi, — Vi V. These get contributions from a contact term from Eq. (2.3.7))

while the last two also have a contribution from a Higgs exchange giving the schematic form:

R E?
M(VEVy — Vph) ~ (&/1)57
E2
F7
. E?
M(VLVLVL — VLVL) ~ (5\/1 + 63/1)5

M(VpVg — ViVi) ~ (1 + 02,) (2.3.8)

Because of the experimental constraint |dy;| < 0.2, we neglect the quadratic terms. The

processes that give the strongest constraints are:

1.2 TeV
1/2°

WHWS - WW, e By =~ B

1.5 TeV
R ~
ZLZL_>WL WL . Emax— m,

1.0 TeV
+ +7 . ~
. 15TeV
[0z = own |V

(2.3.9)

WW W, - W/} Z, : Enax

There are no unitarity constraints depending on dz; alone. This is because the Z7Z — ZZ
amplitude does not grow at high energies, since it is proportional to s +t + u = 4m?%. Note
that a measured deviation on one or both of these couplings of order of the current 20 bounds
1021], [0w1] ~ 0.2 would imply new physics below a few TeV, a scale that can be explored at

the HL-LHC itself. We plot the strongest bounds from Eq. (2.3.9) in Fig. [2.4] together with

T Ref. [36] recently pointed out that the Wi W, Zh amplitude violates unitarity only if custodial symmetry
is broken. This can be verified by the fourth line in Eq. (2.3.7). From the last line, we see that this also
extends to the Z, W} and Z3 W? amplitudes.
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Fig. 2.4: The unitarity-violating scale that depends on dz; and dy1 assuming
that custodial symmetry is not preserved. The solid black line represents the
current ATLAS 95% C.L. constraints while the dotted black line gives the
HL-LHC projections [3].

the ATLAS limits on 071 and oy [2] and the HL-LHC projections [3]. Notice that dz1 = oy
(the positive diagonal on the plot) corresponds to the custodial symmetry limit which has

weaker unitarity bounds than the maximally custodial violating direction dz; = —dyq, due

to the last two processes in Eq. ([2.3.9)).

2.3.2 Optimal Bound with Custodial Symmetry

As emphasized in Sec. , bounds such as Eq. make no assumptions about the
nature of the new physics other than that it is at high scales, and are valid independently of
the values of the infinitely many unmeasured couplings. However, as discussed in Sec. [2.2.3]
marginalizing over these unmeasured couplings may give a stronger bound, which we call
the optimal bound. In this section we show that if we assume that the new physics preserves
custodial symmetry, the model-independent bound from Eq. is in fact optimal. We

will discuss the case without custodial symmetry in Sec. below.

We focus on the custodial symmetry limit where 07" = 0 and oy = dz1 = dy1. This

limit is well-motivated by the strong experimental bounds on the 7" parameter. We consider
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the dimension-6 SMEFT operator

1 v?
S LsMEFT = P (HTH — 3) |D, H|>. (2.3.10)
This does not contribute to the T" parameter, and gives a custodial symmetry preserving
deviation to the hVV couplings. Making a field redefinition to remove the momentum-

dependent terms hoh? and h20h?, we find that this operator predicts

’U2

ovi = SYVER Ove = 4dv1, cysz =8dy1, cye =8y, (2.3.11)

where dy9 = 079 = dwo, and cy,, = 0 for n > 5. Using this, we can calculate the additional
amplitudes predicted by Eq. that violate unitarity, namely h?Z? and h*W} and
check whether these give a lower scale of unitarity violation for a given value of ;. We find
that these new processes give weaker or equivalent bounds to the model-independent bound

for (521 = 5{/{/1,

1.1 TeV

Em =
ax |5Vl|1/2

(2.3.12)

which is therefore also the optimal bound in this case. This is shown in Fig. along with
the constraints from ATLAS and a HL-LHC projection, showing the potential to constrain

new physics below ~ 5 TeV.

2.3.8 SMEFT Predictions from Unitarity with Custodial Symmetry

If the scale of new physics is high, we expect that an observed deviation in the Higgs couplings
can be described by the lowest-dimension SMEFT operator. In this section we assume that
the new physics preserves custodial symmetry, and consider the question of the accuracy of

the SMEFT prediction, following the logic explained in Sec. [2.2.4] The dimension-6 SMEFT
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Fig. 2.5: The unitarity bound as a function of the deviation in the hV'V cou-
pling. The optimal bound lies between the model-independent and SMEFT
estimate from the dimension-6 operator Eq. and thus they are the
same. The band around the model-independent scale results from varying the
unitarity bound to 3 < IM| < 2. For comparison, we show the 95% C.L. limits
on dyq from ATLAS [2] and a projected HL-LHC combination [3].

operator Eq. (2.3.10) predicts dyo = 40y, and we define

dim 6
dva2 — Oy’

€y = -
5d1m 6
V2

(2.3.13)

When we include both dy; and dyo, we have the additional model-independent processes
hh — ViV, WiV — ViV and ViV Vi, — ViV V. Requiring that these do not violate
unitarity constrains Ey.x for a given value of eyo. The results are shown in Fig. 2.60 The
results are qualitatively similar to the case of the Higgs self-interaction. The predictions of
SMEFT become accurate for F., 2 10 TeV, corresponding to values of dy; much smaller
than what will be probed in upcoming experiments, and since the unitarity-violating scale

is low even for dy1 of O(1%), in this case a general value of dy5 does not change the bound

much.
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Fig. 2.6: Unitarity violating scales from processes that depend on dy1 and dyo
as a function of the fractional deviation of §y 5 from its SMEFT prediction,
(5\/2 = 451/1(1 + 6\/2).

2.83.4 Optimal Bound Without Custodial Symmetry

We now consider the unitarity bounds for the case dz; # dwy. This case is somewhat
unnatural, in the sense that for values of §z; and dy; that violate custodial symmetry at a
level that is observable in upcoming experiments, the small observed 1" parameter appears to
require an unnatural cancellation. Nonetheless, 071 and dy1 will be independently measured,

and it is interesting to explore the implications of dz; # dy1.

For concreteness we consider the case 671 # 0, dw1 ~ 0, adT ~ 0. In order to explain

this in SMEFT, we must introduce the dimension-8 operator

1 v?
i <HTH — 5) |H'D,H|?, (2.3.14)

which has been chosen so that 67" = 0. This operator predicts the following coupling

30



deviations:

U4

dz1 = TNVER ow1 =0, dz2 = 8071, dwe = —0z1,
Cz3 — 40521, Cws = —8521, Cz4 = 1365Z17 Cwa = _325Z1; (2315)
Czs — 288(521, Cwy — —72521, Cz6 — 288(521, Cwe — —72(521.

There are now many more unitarity-violating amplitudes, and the unitarity violating scale
that we obtain assuming that the dimension-8 operator dominates is somewhat stronger than

the model-independent bound. The results are shown in Fig.

6 T T T
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Fig. 2.7: The unitarity bound as a function of the deviation in the hZZ coupling,
assuming dy1 = 0, 4T = 0. The optimal bound lies between the model-
independent and SMEFT estimate from the dimension-8 operator Eq. .
The band around the model-independent scale results from varying the unitarity
bound to % < |M| < 2. For comparison, we show the 95% C.L. limits on 1
from ATLAS [2| and a projected HL-LHC combination [3].

2.4 New Physics from hit Couplings

The Higgs couplings to top quarks htt provides another sensitive probe of new physics. In
this section we work out the model-independent constraints on the scale of new physics from

measurements of this coupling.
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S

Fig. 2.8: Feynman diagrams contributing to ¢t — WZ“ W, in unitary gauge.

2.4.1 Model-Independent Bound

If the htt coupling deviates from the SM value, processes such as ¢t — W, W, will violate
unitarity at high energy. This observation goes back to Ref. [20], which put a bound on
the scale of fermion mass generation in a theory without a Higgs boson. The diagrams
contributing to this process in unitary gauge are shown in Fig. 2.8, We see that they are
sensitive to both the #th coupling and the hV'V coupling, and we will see that the unitarity
bound depends on both d;; and dy1 in Eq. . Unitarity violation for more general top

couplings in 2 — 2 processes has been recently studied in [37,38].

As in the previous sections, we use the equivalence theorem to compute the high-energy
behavior of amplitudes involving longitudinally polarized vector bosons and Higgs fields. We
do this by writing the deviations from the SM in Eq. (2.1.1)) that depend on the top quark

in a general gauge:

_ = X X?
0L = —mt(QLHtR -+ hC) 6151; -+ Ctgw + - s (241)

where X is given by Eq. (2.2.3) and His given by Eqgs. (2.3.2) and ([2.3.4]). Expanding these

terms in terms of the Higgs and Nambu-Goldstone bosons gives

_ = _ 1 _ _ _
QpHtp +h.c. = tt—;:;;Bﬁw%t+vﬁG_mmy+v§GﬂRMJ).(24@

G2
1+ Ginpe
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This leads to the following interaction pattern (temporarily setting v = 1)

X ~ttlh +iG(h+ - )+ G*(1 4 ) +iG°G* (1 + - )+ G* (L +--- ) +---]
+0t°GT[(h+ )+ G*(1+--- )+ G*(1+---)+---] + hec,
tHX? ~ tth? +iGO(h2 + - )+ G*Hh+ ) +iG°G*(h+ - ) + G114 ) + -]
+ot°GH (P4 )+ G*(h+- )+ G*(1+--+)+---]+he,
X3 ~ 1R 4+ iGO(R 4+ - )+ GPHR2 4+ - ) + GG (W2 4 - )+ GHh ) + -]
+ 0GR+ )+ G(R 4+ )+ G h+--)+--]+he,
(2.4.3)

where the parentheses allow arbitrary higher powers of h. Examining the structure of the
interactions in Eq. (2.4.3), we see that the model-independent couplings that depend only

on 0, are

| , 1 0
5L D — 6t Kh + —G2> it — (h + —G2) G—ti%t} (2.4.4)
v 2v 2v v

2 1 _
+ 00 f;”t Kh + —GQ) G bty + h.c.] .
v 2v

As discussed previously in Sec. [2.2.2] we can also consider tth interactions with additional
derivatives, but again we expect these will give a parametrically lower scale of unitarity
violation, and therefore in terms of new physics bounds, it is conservative to interpret a tth
coupling deviation in terms of the coupling with no derivatives. We can then determine the

schematic form for the following model-independent amplitudes:

~

FE
M(qq — VLVL) ~ yi (01 + 0v1 + 616v1)

)
v

v E

M(qq — Vih) ~ y; (61 + 0v1) P (2.4.5)
. o
M(qq — VEViVi) ~ yi (5t1 + Ov1 + 00yt + 5\2/1) 02
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Fig. 2.9: Unitarity violating scales given values of d;; and dy1. The solid line
represents the 95% C.L. at the LHC [2] and the dashed line is the HL-LHC
projection for ATLAS [39).

where ¢ = t,b. For the bt initial state processes, the first process vanishes. Amplitudes
related to these by crossing have the same scaling. The terms depending on dy; arise from
diagrams with propagators (see Eq. ) The 2 derivatives in vertices from dy cancel
the energy suppression of the extra propagators, so these contributions are the same order.
For contributions with a propagator, there is a possibility of log(E/m) terms arising from
the phase space integrals in the amplitudes. By direct calculation, we show that these are
absent in all of the terms in Eq. , except possibly for the 6%, term in the last line. This
contribution is numerically small even if a log is present, and so we will neglect all quadratic

contributions.
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Fig. 2.10: The unitarity bound on d¢ assuming dy1,0z1 = 0. The model-
independent bound is equal to the optimal bound for all values of §;; shown.
The band around the model-independent scale results from varying the unitarity
bound to % < |M| < 2. For comparison, we show the 95% C.L. limits on the
coupling from ATLAS [2] and a projected HL-LHC combination [3].

The best bounds on §;; from these processes are

_ 5.1 TeV
tptr = WiW: : Epax ~ ————,
R LL |01 + dv1]
- 3.6 TeV
trb Wih: Epayx ~ ——,
ROR = W 100 — Ov1] (2.4.6)
3.3 TeV

Lpbi = WHWIW, B =~ ——0 2V
\/ 160 — 56v1]
where we assume custodial symmetry d7; = oy = dy1. As already mentioned above, these

bounds are numerically stronger than previous bounds [20}22}23].

Fig. 2.9 shows the unitarity violating scale from these processes as a function of d;; and
Oy, together with projected HL-LHC constraints on these couplings. From this graph, we
see that upcoming measurements of dy/; are sensitive to lower scales of new physics. However,
if measurements of hV'V agree with the SM, a deviation in the htt coupling at HL-LHC that

is compatible with current constraints can still point to a scale of new physics below 8 TeV.
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2.4.2 Optimal Bound

To further discuss the implications of d;;, we consider a scenario where d;; is nonzero, but
all the other Higgs couplings are compatible with the SM. To estimate the scale of new
physics in this scenario, it is conservative to assume dy1,0z; = 0, since unitarity bounds
from Eq. are stronger than Eq. (2.4.1). As in previous sections, we consider the
optimal bound obtained by marginalizing over the infinitely many unmeasured couplings.

The optimal bound can be constrained by considering the SMEFT operator

v\ - -
0LsMEFT = % (HTH — ?) (QrLHtR +h.c.), (2.4.7)
which gives
02
5t1 - _W, Cig = Ci3 = 35t17 (248)

and ¢, = 0 for n > 4. This imposes additional unitarity bounds. We find that the bounds
for the model-independent processes considered above give the most stringent bound for

small 4,1, but for larger values of d;; the strongest bound comes from ¢zt — hh, which gives

2.4 TeV

Brpax = —— . 2.4.9
5] (2.4.9)

However, this only dominates over the bounds in Eq. (2.4.1)) for 6,1 % 0.6, which is larger
than allowed by current constraints. In Fig. [2.10] we show the unitarity bounds on §;; along
with the experimental bounds from ATLAS and the projected sensitivity of a HL-LHC

combination.

36



25

20}

E Max (TeV)
o

-
o

-1.0 -0.5 0.0 0.5 1.0
€2

Fig. 2.11: The unitarity bound from processes that depend on 61, ¢ = 341 (14
€12) where €;9 = 0 is the prediction of the dimension-6 SMEFT operator. Due
to these amplitudes depending on coupling dy1, it has been set to zero in this
plot.

2.4.83 SMEFT Predictions from Unitarity

If the scale of new physics is high, we expect that an observed deviation in the Higgs couplings
can be described by the lowest-dimension SMEFT operator. In the case of the ¢th coupling,
this is the operator given in Eq. , which makes the predictions Eq. for the
higher-order deviations. We can constrain the accuracy of these predictions from unitarity,
as outlined in previous sections. The results are shown in Fig.[2.11] As expected, the SMEFT

predictions are accurate only if the scale of new physics is 2 10 TeV.

2.5 New Physics from hhVV and hhit Couplings

In this section we discuss the implications of a deviation in the hhV'V or hhit coupling,
parameterized respectively by dyo and ¢y in Eq. (2.1.1)). Since there are no symmetries to
prevent this, any new physics that contributes to these couplings should also contribute to

a comparable deviation in dy1 and d;1, which will be measured to greater precision. On the
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other hand, it is possible that dy; and d;; are suppressed by an accidental cancellation. In
any case, experimental constraints on dy9 and ¢, will improve dramatically at the HL-LHC,
and will give us additional information about possible new physics. Another motivation for
studying these couplings is that they directly contribute to di-Higgs production. Therefore,
an anomalous rate for di-Higgs production may be due to dy9 (in vector boson fusion) or d;y
(from gluon fusion). Therefore we should consider these couplings in order to determine the

unitarity bounds from any future di-Higgs anomalies.

2.5.1 hhV'V': Model-Independent Bound on the Scale of New Physics

We now work out the model-independent bound on the scale of new physics coming from an
observation of dy5 # 0. This coupling can be measured from di-Higgs production via vector
boson fusion [40]. Although this process in principle is sensitive to an anomaly in the A3
coupling, this sensitivity is strongly reduced by requiring large di-Higgs invariant mass to
suppress backgrounds. Because any new physics that contributes to dyo will also contribute

to dy1, we assume that both couplings are nonzero in the present discussion.

The procedure we use to obtain the model-independent bound is an extension of the one
used in Sec. to include 8y # 0. This adds the model-independent processes h2V72, hV},
and V?. Because the dy; and dy» couplings each contain 2 derivatives additional insertions of
these vertices can cancel the 1/E? from additional propagators. This means that the leading
diagrams at high energy include diagrams with multiple propagators. We find

E2

)
U2

MV VL = hh) ~ (81 + dya + 6%)

~ ES
M(VLVL — VLVLh) ~ (5\/1 + dye + 5{2/1 + dy10y9 + 5%/1) F, (2.5.1)

~ E4
M(VLVLVE = VLV V) ~ <5V1 + Oy + 0y g + Ovidva + 0 0va + Oy + 531) pry

Amplitudes related to these by crossing have the same scaling. Current experimental con-

straints give |0y1| < 0.2, while dy5 has a weak constraint of —1.8 < dyo < 1.9 at 95%
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Fig. 2.12: Unitarity violating contours from dy1 and dy2. The solid lines rep-
resent the ATLAS bound on dy; [2] while the dy2 bound [41] is outside of the
plot range. The dashed lines show the projected bounds for dy4 [3] and dy o at
HL-LHC, where the dyo bounds are the 95% C.L. bounds from doubling the
68% bounds from a projected vector boson fusion di-Higgs search [40].

C.L. [41]. We can therefore neglect the nonlinear terms in these amplitudes (which are also
much more difficult to compute). Assuming custodial symmetry (671 = dw1, 072 = dwz) the

strongest bounds are

1.5 TeV
W+W7 hh : Emax ~ )
e |0ve — 20v1|1/2
1.9 TeV
AN MVIW: 0 B ™ , 2.5.2
L4 — LWL |0ya — 46y |1/3 ( )
2.6 TeV

WiWrz, — Wiwilz, - Emax:|5v2—45v1|1/4'

In Fig. 2.12] we show the unitarity violating scale given values of dy, and dy9 along with
the bounds on both coupling deviations from standard searches and a search for vector

boson fusion di-Higgs. The figure shows that HL-LHC searches for VBF di-Higgs could find

coupling deviations with unitarity bounds below 3 TeV.
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Fig. 2.13: The unitarity bound from as a function of dy 2 neglecting small terms
proportional to dy1. The optimal bound lies between the model-independent

and SMEFT estimates. The band around the model-independent bound results

from varying the unitarity bound to % < |M\ < 2. For comparison, we show

95% C.L. limits on the coupling from the vector boson fusion di-Higgs analysis
projected for the HL-LHC and a 100 TeV pp collider [40].

2.5.2 hhV'V: Optimal Bound and SMEFT Predictions

We now consider the optimal bound obtained by marginalizing over the infinitely many
unmeasured couplings. As in previous sections, we do this by considering a scenario where
these couplings are given by a single SMEFT operator. In the present case, we use the

dimension-8 operator

1 02\ ?
o (HTH — 3) D'H'D,H, (2.5.3)
which gives custodial symmetry preserving couplings. Performing field redefinitions to re-

move the Higgs self couplings at order 1/M*, we have find that the Higgs couplings to the

vector bosons are given by

4
v
5V1 = Oa 5V2 = 274

api vs = 8va, cCya=320v2, cys=T20ys, cyg=T20y2, (2.5.4)

and cy,, = 0 for n > 7. The unitarity bound obtained from this operator is always stronger

than the optimal bound, so the optimal bound lies between this bound and the model-

40



14 6v1=0 8
12¢ 6v2=0.001 -
10} ]
3
£ 8 -
g 0.01
'E 6l /\ |
4t 1
—_— 0.3
2r T
O 1 1 1 1
-1.0 -0.5 0.0 0.5 1.0

Ev3

Fig. 2.14: The unitarity bound from processes that depend on dys and
cys = 8Jy2(1 + ey3) to linear order, where €3 = 0 correspond to the SMEFT
predictions, assuming dy1 = 0.

independent bound computed above. In Fig. [2.13] we plot both the model-independent
and the SMEFT unitarity bound as a function of dy», neglecting terms proportional to oy,

showing that the optimal bound is close to the model-independent one.

Next, we consider the accuracy of the SMEFT prediction for dys from the operator
Eq. (2.5.3). (We again consider the case where dy1 = 0). We expect the predictions of this
operator to become more accurate as the scale of new physics becomes large. In Fig. [2.14]

we plot the quantity

cyg — cim 8
€ys = T dms (255)
3
where ¢lim8 = 8fy5. As in previous cases, we find that the SMEFT prediction becomes

accurate when the scale of new physics is larger than a TeV.
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2.5.8 hhtt: Model-Independent Bound on the Scale of New Physics

We now consider a deviation in the hhtt coupling ¢;5. The study of this coupling is strongly
motivated by the fact that di-Higgs production is sensitive to this coupling, and therefore
di-Higgs production does not measure the h? coupling in a model-independent way [42].
However, measuring htt and hhitt production has been shown to break the degeneracies

between the hhh, hit and hhtt couplings [43-45].

In this subsection we focus on the unitarity bound on ¢;5. We are interested in model-
independent processes that do not depend on ¢y, for n > 3. The relevant couplings are given

in Egs. (2.4.3) and (2.2.11). We can work out that the model-independent processes have

the schematic form at leading order in the energy expansion:

~

_ E
M(tt — hh) ~ YiCrg —,
v
EQ

M(Et — Vth) ~ Yt (57&1 + Cpo + (SVl + 5V2 + 5t15V1 + 6\2/1) ?7

M(ft — ViVih) ~ y, (5t1 + ¢ + Ov1 + Oy + 0110yt + 002
EZ

+ Ct25V1 + 5‘2/1 + (5,51(5{2/1) F’

M(Et — VLVLVLh) ~ Yt (5t1 + Cr2 + 6V1 + 5V2 + 5151(5\/1 + 5t15V2 (256)
E3
+ 20y + 5%/1 + 0y10y2 + 5751(5‘2/1 + 5%)’/1) PR

Mt — VEVEVEVEVE) ~ v, (601 + ci2 + Ov1 + dvo + byt + 0dya + Crady

+ 0%y + Sy10ve + 0udyy + 0udvidva + cdiny
E4

+ 5?/1 + 5\2/15V2 + 5t15:\3/1 + 5#/1) A

For tb initial states, the first and third process vanish while the second process does not have
a 0y term. Amplitudes related to these by crossing have the same scaling. Again, due to
constraints on d;1, dy; we can neglect the nonlinear terms. At linear order, we see that only
the tt — hh amplitude is independent of 4y, which is poorly constrained experimentally and

thus can substantially affect the constraints on c¢s;. These linear contributions involving dy4
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Fig. 2.15: Unitarity violating contours from d3 and ¢o. The 95% C.L. projec-
tions from gluon fusion di-Higgs searches are shown for the LHC (solid) and
for the HL-LHC (dashed), which were obtained by expanding the 1o contours
of by 1.6 to estimate the 95% C.L. sensitivity.

and dy5 involve diagrams with propagators, which are significantly more difficult to compute
so we have focused on the terms from dy5. Due to this contamination from dy9, we will use
only tt — hh to set unitarity bounds on c,. The bounds taking into account the dominant

linear contributions are:

tptr — hh: Epax ~ %
trtr — Wi WL h:  Epa o — ;L(gz Fi‘e\%/(gm‘l/w
trbr — Wih? . Fpax ~ P ;L(; T_e\§[5v2|1/2, (2.5.7)
trbrWy = WWEWL & B |cro — ??5?1 r1—;-6\%/'(5X/2|1/37
4.2 TeV

trbrW, — W WIW, W, © Epax

e — 30n + %5V2|1/4.

In Fig. we plot the unitarity violating scale as a function of ¢;5 and d3. Superimposed
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on the plot are estimates of the current bounds and sensitivity to these parameters from
gluon fusion di-Higgs production [42]. We see that it is plausible that the HL-LHC could
find deviations that point to a scale of new physics below 3 TeV, even allowing for the

experimental degeneracy between ¢y and 0.

2.5.4 hhtt: Optimal Bound and SMEFT Predictions

To obtain the relations between co; and higher order couplings, we use the dimension-8
SMEFT operator

2\ 2
% (HTH - %) (QuHt, +h.c.), (2.5.8)

which gives the predictions

4

0n=0, cp=-2 -

W’ Ci3 — 6Ct2, Ciy = 156752, Ciy — 150152, (259)

and ¢, = 0 for n > 6. As in the previous cases, we can use Eq. to obtain unitarity
bounds from processes that we classified as model-independent. Fig[2.16[shows the unitarity
bounds predicted by the model independent approach and the SMEFT operator, where we
assume d;; = dyp = o = 0 to focus on ¢in. Thus, the optimal bound is still within our
estimated uncertainty of the model-independent bound.

Once again, we can see the effect that a high scale of unitarity violation (compared to
1 TeV) has on the SMEFT predictions in Eq. . Fig. [2.17| shows the unitarity scale
dependence on €3 where ¢;3 = 6¢42(1 + €43) and we assume dy; = dy1 = dyo = 0. As with the
other couplings, at high scales of unitarity violation (e.g. 10 TeV), ¢3 is close to its SMEFT

value.
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over other couplings should be somewhere between these two lines. We assume

0p1 = dy1 = dye = 0. We also plot the projected 95% C.L. limits on the
coupling from the gluon fusion di-Higgs analysis at the HL-LHC and a 100 TeV

pp collider
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Fig. 2.17: The unitarity bound from processes that depend only on ¢;2 and
c3 = 6¢2(1 + €3) when 0,1 = dy1 = dy2 = 0. Setting €,3 = 0 corresponds to the
SMEFT prediction from the dimension-8 operator.

2.6 Conclusions

In this chapter, we have investigated the scale of unitarity violation due to nonstandard Higgs

self-couplings, and Higgs couplings to W/Z bosons and top quarks. In the SM, good high
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energy behavior for multiparticle scattering amplitudes relies on delicate cancellations among
the various Higgs couplings. If these cancellations are upset by new physics contributions to
the Higgs couplings, this leads to tree-level unitarity violation at high energies, signaling the
breakdown of perturbation theory and the onset of new physics. In this way, we can give a
model-independent bound on the scale of new physics directly from any observed deviation

from the SM prediction for Higgs couplings.

In this work, we focused on the couplings h3, h*, hVV, h2VV . hit, and h2tt where
V =W or Z, which will be probed at the HL-LHC and future colliders. In the SM, these
couplings are predicted at the percent level while current constraints are only at the 10%—
100% level. Upcoming experiments will significantly improve these constraints, giving many
opportunities to discover physics beyond the SM. Our work translates these searches into a

direct probe of the scale of new physics.

For the hV'V, hit couplings, the current constraints allow coupling values that require
new physics below 3 TeV for W/Z couplings, and below 8 TeV for the top coupling. The
Higgs trilinear coupling is much more weakly constrained, allowing a scale of new physics as
low as 4 TeV. The couplings hhtt and hhV'V are of particular interest for di-Higgs searches
in gluon-fusion and vector boson fusion, and their constraints allow a scale of new physics
as low as 2 TeV. These results show that measurements of Higgs couplings can point to a

scale of new physics within the kinematic reach for HL-LHC and future colliders.

Unitarity bounds can also place indirect constraints on couplings that are difficult to
measure directly, such as the h* coupling. For example if there is a nonstandard Higgs
trilinear coupling, we show that to keep the new physics bound above 10 TeV, the quartic
coupling must closely approximate the coupling correlation from the dimension-6 SMEFT
operator (HTH)3. We present similar results for the W/Z and top couplings as well. We
emphasize that these predictions do not make any assumptions about the smallness of higher-

dimension operators, and rely only on unitarity.

Our main conclusion is that, from a purely data-driven viewpoint, our current knowledge
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of the Higgs couplings allows new physics at the few TeV scale. This scale will be extensively
probed at the HL-LHC and future colliders, both through direct searches and Higgs coupling
measurements, and there is a great deal of room for discovery in both types of analyses. In
particular, the scales probed by the upcoming HL-LHC are not sufficiently large that we
can confidently neglect higher-dimension operators in SMEFT. We have therefore adopted a
completely bottom-up and model-independent approach to translating these measurements
into direct statements about the scale of new physics. We hope that these results will
be useful in interpreting and further motivating the precision study of the Higgs boson’s

properties.
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Chapter 3

Primary Observables for Indirect

Searches at Colliders

This chapter is taken from [10]

3.1 Introduction

In this chapter, we are interested in enumerating the 3 and 4 point operators that can appear
in a BSM Lagrangian. We also make a few phenomenological comments and estimates. As
discussed in the previous chapters, the motivation for considering SM coupling deviations
and new interactions between SM particles is that under our EFT framework, they can
be indicative of new heavy physics. Once again, we adopt a bottom up framework where
we assume there are no new light particles and for the 4 point operators, we focus on the
interactions involving the Higgs. We restrict our analysis to three and four point functions,
since the motivation for our work is phenomenological. For this same reason, since we are
interested in connecting our work to collider searches, for practical purposes, we assume that

linearly independent operators are independent observables. We are also only interested in
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the leading terms.

We introduce the distinction between primary and Mandelstam descendent operators.

For example, we have

) hzZff
M(flfg — Zgh4) = (ﬂng/guLl) |:1 + OélM + 51_ + O(E4/M4):|
hfo
+1 2 3 ———€po (UraYur1) (p1 — p2)” (P5e5 ™ — ples”) {1 + 049@ + 59— + O(E4/M4)} +

(3.1.1)

from Table . The prefactors are the primaries E| and the terms that are proportional to
the Mandelstams are the Mandelstam descendents. Our problem then essentially becomes
finding a list of linearly independent primaries. To accomplish this, we use some brute force
numerical techniques, a new analytical approach, and cross check against the Hilbert series
prediction [47-53]. As stated before, we are interested in the leading terms, which we assume
are the primaries. There exist cases where the primary operators are suppressed and the

descendent becomes the leading term, such as in [42,54,55]. We do not consider these cases.

There is some ambiguity because the basis of operators is not unique, since we can always
integrate by parts or perform field redefinitions [56-59]. We choose to use the fact that each
local on-shell amplitude corresponds to an independent EFT operator [16,31,60-64], so that
our operators are written in terms of the physical fields and each amplitude is simply the

Feynman rule of its operator.

While the main focus of this chapter is presenting the techniques for determining the
independent primaries and listing them for 3 and 4 point interactions, we also discuss some
phenomological estimates. For each of the primary operators that we find, we provide a
rough estimate of the size of their coefficients allowed by tree level unitarity. In order to
identify the most phenomenologically interesting ones, we use these values to identify those

that are most relevant to Higgs decays. We also examine the effects of precision electroweak

L We borrow the terminology of [46|, where the leading contributions are referred to as “BSM primaries”
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constraints.

There has been some previous work that also attempts to list the independent observ-
ables and operators, such as the “Higgs basis” [65] and the “BSM primaries” [46] which
use dimension 6 SMEFT. Ref. [66] goes beyond dimension 6, but only examines 3 point
functions. Refs [16,63] performs similar work to us using the spinor helicity formalism.
Our work differs from these papers in that we use a bottom up approach and do not make
any model assumptions. In particular, we do not assume that all interactions arise from
dimension 6 SMEFT. The advantage to this is that we are not limited to decoupling new
physics, since dimension 6 SMEFT does not accurately capture the effects of non-decoupling
physics [67-70]. Furthermore, as discussed in the previous chapter and [9], the SMEFT
prediction is most accurate if the scale of new physics is high. We also analyze cases with

massless and/or indistinguishable particles and list primary operators.

In this chapter, we begin by discussing the 3 and 4 point functions that we will consider.
We then discuss our methods for determining linear independence amongst the operators,
followed by our phenomenological estimates. Finally we list our operators and summarize

our conclusions.

3.2 Scope of Paper

The aim of this chapter is to classify the primary operators that are relevant for Higgs signals
at hadron and lepton colliders. Specifically, we focus on all 3- and 4-point couplings that
are relevant for Higgs decays, di-Higgs production, and Higgs associated production. In this
section, we specify the couplings that we will study in the remainder of the chapter. We will
also define our notation and normalization conventions, and comment on ambiguities in the

operator basis associated with off-shell 3-point couplings.
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Fig. 3.1: Three and 4-point couplings relevant for Higgs decays and Higgs
production. Dashed lines denote the Higgs particle, solid lines denote fermions,
and wavy lines denote any of the SM gauge bosons v, g, W, or Z. The crossed-
out diagrams are not relevant because they vanish on shell (see text).

3.2.1 Topologies and Couplings

The 3-point and 4-point couplings that involve at least one Higgs boson are shown in Fig. (3.1}

The most general couplings compatible with SU(3)c x U(1)gy gauge invariance are

3-point : hf f,hZZ,hWW, hZ~, hyv, hgg, BRZ , Ttkq, hhh, (3.2.1a)

4—pOiIlt : hfoa th_‘f/a h’Yffa hgff’
WVW Z hZ Z Z, WV W, hZ Z~y, hZyy, hZgg, hyyy, hvgg, hggg, ( )
3.2.1b
hhff, RkWW,hhZ Z, hhZ~, hhvy~, hhgg,

hhhZ, hhhy, hhhh.

Some of these three-point couplings vanish on-shell, and we have crossed these out aboveE|

In addition, there are 3-point couplings that do not involve the Higgs which contribute
to some of the 4-point processes that get contribution from the couplings in Eq. (3.2.1b)).

These are shown in Fig. [3.2] These couplings are given by

ZFfWIF Aff aff,
WW Z, Z&Z, WW~, 229, Z54., ¢4, ¥, %94, 999,

(3.2.2)

2 These operators can be nonzero off-shell, but field redefinitions allows us to eliminate them in favor or
redefining the 4-point functions, as explained in Sec. below.
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A

Fig. 3.2: Exchange contributions to 4-point amplitudes involving BSM 3-point
couplings that do not contain the Higgs. The notation is the same as Fig.
We do not show diagrams involving Higgs exchange that involve 3-point func-
tions already shown in Fig. We also do not show diagrams involving two
Higgses and a neutral gauge bosoon, since these vanish on shell (see text).

where we have again crossed out couplings that are not allowed on-shell.

These interactions parameterize the BSM contributions to general 2-body and 3-body
decays of the the Higgs boson. They also parameterize the BSM contributions to the pro-

duction of a single Higgs, a pair of Higgs, and Higgs associated production via the processes

(ff.99,WW™,ZZ) — (h, hh,hZ, hv, hg)

(fI ZW) = hW,

(fg, v, fZ) = hf,
fW — f'h.

(3.2.3)

Note that the hhhZ, hhh~y amplitudes can be used to calculate exchange diagrams for hhh
production, e.g. ff — (Z*,7*) — hhh, but fully characterizing the 5-point amplitude would

require us to classify the 5-point couplings hhhff.

Because of the large number of couplings that we are considering, we will use a uniform
notation for their couplings. The operators contributing to a 3- or 4-point coupling X =
ABC or ABCD will be denoted by OFX, where ¢ runs from 1 to the number of primary

1)

operators of type X. For a primary operator O with mass dimension d(0O), we write the
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coupling as

Co

A'C’BSM = W

o, (3.2.4)

where v = 246 GeV is the Higgs VEV, and ¢y is a dimensionless coefficient. Note that if
co ~ 1 we expect the effects of the inserting such an interaction into an electroweak process to
be roughly of order the SM contribution, since in that case all couplings are order unity, and
all mass scales are of order 100 GeV. For operators that are present in the SM Lagrangian,

the coupling ¢y is related to the associated ‘k parameter’ by

co + CEDSM)
(Sm)
Co

Ko = (325)

where chM) is the coefficient of O in the SM Lagrangian.

3.2.2  Off-Shell Ambiguities

The correspondence between local on-shell amplitudes and EFT couplings completely re-
moves any basis ambiguity as long as the EFT couplings are used at tree-level and on shell.
However, some of our processes of interest involve 3-point couplings where particles are ex-
changed and thus potentially off-shell. In this case, there are residual ambiguities in the

basis. These are straightforward to remove, but we discuss them here for completeness.

To explain the point, it will be sufficient to consider a simple example, the coupling
hff. If all particles are on shell, then this interaction is equivalent to the higher-derivative

couplings

ORr)ff, hfGDf), ... (3.2.6)

For off-shell kinematics, these operators parameterize ‘form factor’ corrections to the minimal

on-shell coupling hff. They parameterize the ambiguity in continuing the coupling hf f off-
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shell. We can use field redefinitions to reduce any linear combination of such couplings to
the minimal three-point coupling hf f [58,/59]. However, making such a field redefinition also
shifts the values of some of the 4-point couplings so that amplitudes that involve both the
3-point and the 4-point couplings remain invariant. The conclusion is that the choice of basis
for 3-point functions is part of the definition of the basis for the 4-point couplings. Said in
another way, if we allow for the most general local and on-shell 3 and 4-point interactions,
then using them in Feynman diagrams generate the most general 3 and 4-point on-shell

amplitudes in an expansion in Mandelstam invariants.

3.3 Independence of Operators/Amplitudes

In this section, we explain the methods we used to determine a basis for the independent

primary operators. This is done in 3 steps:
Enumerating an over-complete basis of amplitudes
Determining the independent primary amplitudes

Checking the result against the Hilbert series counting We will give a short summary of

each of these steps before going into the details in the subsections below.

The first step is to find an over-complete basis of local amplitudes for a given process.
These basis elements are scalar monomials in the momenta and wavefunctions of the particles
involved. They are Lorentz invariant, so the indices are contracted using the metric and the
Levi-Civita tensor. When there are no indistinguishable particles, we can omit monomials
where the momenta are contracted with other momenta, since these can be written in terms
of Mandelstam invariants and masses. Operators with indistinguishable particles can be
treated by appropriately symmetrizing these amplitudes, as we will discuss below. In this
way, we obtain a finite number of amplitudes such that any local amplitude is a linear
combination of these amplitudes and their Mandelstam descendants. This step is done by

hand, and in some cases we used Mathematica [71] to enumerate the index contractions.
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The second step is to find the independent primary interactions. The fact that these are
parameterized by on-shell amplitudes turns this into a problem about linearly independent
functions. We proceed order by order in the number of powers of momenta. Note that the
number of momenta determines the mass dimension of the amplitude (and the corresponding
EFT operator), so we are also working order by order in the operator dimension. We first
determine the linearly independent amplitudes of lowest dimension that do not contain inner

products of momenta. We look for linear relations of the form

> Ca(m)Ma(p, s,m) =0, (3.3.1)

where the basis amplitudes are denoted by M,(p, s, m), where p denotes the momenta, s
the spins, and m the masses of the particles. The notation reminds us that the coefficients
in the linear relations can depend on the masses, but not the momenta and spins of the
external particles. These amplitudes have no Mandelstam factors are thus are guaranteed
to be primary amplitudes, since there is no operator that they can be descendants of. Then
we consider operators of higher dimension, including Mandelstam descendants of primary
operators found in earlier steps that have the same dimension. Eventually, we reach a
dimension where all of the amplitudes at that dimension are linear combinations of the
Mandelstam descendants of operators we already haveE] At that point, we know that we
have found all of the primary amplitudes. We used several methods to find the linearly

independent amplitudes, including a new analytic method, and these are described below.

Finally, we compare the results to the Hilbert series counting of operators of different
dimension [47-53]. The Hilbert series gives a direct counting of the primary operators up to

certain redundancies, which we review below.

We now turn to a detailed description of each of these steps.

3 For technical reasons, we have not been able to do this for operators involving 3 identical particles. In
that case, we used the Hilbert series to tell us when to stop. The details are discussed below.
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3.3.1 Enumerating the Local Amplitudes

The first step is to enumerate all possible local amplitudes of a given topology and symmetry
that do not involve any Mandelstam invariants. We will explain the procedure using the

example of the hZ ff coupling. The most general form of the corresponding amplitude is
M(flfz — Zshy) = ?72F“U16§,, (3.3.2)

The choice of the channel is arbitrary, and does not affect the results.ﬁ We do not use massive
spinor-helicity variables because momentum conservation is a quadratic constraint in terms
of them, while if we work with 4-momenta we can simply write all possible functions of the
3 independent momenta. Also, the Mandelstam variables are manifest when the amplitude

is written in terms of the 4-momenta.

For the amplitude Eq. , the problem reduces to enumerating all possible I'*. This
is obtained by forming all possible 4-vectors formed from py’, 3 and 4* with indices contracted
with the spacetime metric and up to one power of the Levi-Civita tensor (since products of
Levi-Civita tensor can be written in terms of Kronecker deltas). We omit terms where the
momenta are contracted with other momenta, since these are Mandelstam descendants of

other amplitudes. This gives a finite list of operators that includes all primary operators. In

4 We can also choose the masses arbitrarily, as long as we do not take the massless limit.
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this way, we find

[ =c1pl + coply + caphiys + caphys + eV + copiPs + cophis
+ 87" + cophPsys + crophdsys + ey psy
+ P71 P pp3o (Crz + 1ays + Craphs) + €77y, (CispipP2o + C16P1 P30 + C1TD2pP3 o)
+ € p1up2 pp3o (018,’{153’75) + 79,795 (C19P1 pP26 + CooP1 P30 + C21D2pP30) (3.3.3)
+ C22€0p0 Y DEDI D3 + €7 YD (CosD1 P20 + CoaD1 pP3 0 + Co5D2pP30)
+ €77y, (C26P1 6 + C21P20 + CosD3 o)

+ ﬁaﬁﬁ%{pl BD2~P35 (c20pi + c30ph + 1P Y5 + C32ph7s) -

Note that terms containing 5 and ~*~v; implicitly contain one power of the Levi-Civita
tensor since 5 o €407 y777. We have omitted terms that can obviously be simplified
by equations of motion, for example p1u; = myu; and p; - €5 = 0.

There are several complications that are not illustrated in the present example. The
first involves amplitudes containing massless gauge bosons, which for us means photons and
gluons. In operator language, there are local interactions involving massless gauge bosons
that arise from expanding covariant derivatives. However, these do not give rise to gauge
invariant local amplitudes because they are always accompanied by exchange diagrams in-
volving the same interaction. For example, the WWZ BSM coupling 77 (W BVWV_ )Z»
contributes to the amplitude WW Z~ both through a a direct 4-point coupling and an ex-
change diagram with a SM W W+~ vertex. In the amplitude approach, we find the WW Z local
amplitude when characterizing the 3-point amplitudes, and the gauge invariant operator is

parameterized by the usual replacement d,, — D, acting on charged fields.

The gauge invariant local on-shell amplitudes involving massless gauge bosons must sat-
isfy the Ward identity, and are therefore proportional to the combination p,e,(p) — pye.(p).

In the operator language, these correspond to gauge invariant operators involving the field
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strength tensor.

Another complication that is not illustrated in our example above occurs when we have
identical particles. For 3-point functions, this is a simple matter of symmetrizing the am-
plitudes, but it is nontrivial for 4-point functions because they can depend on Mandelstam
invariants. In this case, some of the primary amplitudes may contain powers of the Mandel-
stam invariants because the operators do not satisfy the appropriate Bose/Fermi symmetries
without them. For the operators we consider, we only have identical bosons, and we discuss

the relevant cases below.

Two identical bosons: We want to find a basis for the primary amplitudes M(1234)
where 1 and 2 are identical bosons. We find these starting with the amplitudes where 1 and
2 are distinguishable and then symmetrizing 1 <+ 2. To do this, we first write a basis for the
distinguishable amplitudes M(1234) that do not contain any Mandelstam invariants. We

then define the symmetric and antisymmetric combinations

~

M (12;34) = L[M(1234) + M(2134)]. (3.3.4)

1
2

We then construct all Mandelstam descendants of these operators that are symmetric under
1 < 2. This exchange acts on the Mandelstam invariants as ¢ <+ u, so the most general such

amplitude symmetric under 1 <+ 2 can be written as
M(12;34) = F(s, (t — u)?)M,(12;34) + (t — u)G(s, (t — u)?)M_(12; 34), (3.3.5)

where F' and G are polynomial functions of their arguments. We see that the amplitudes
of the form M, (12;34) and (¢ — u)M_(12;34) are an over-complete basis for the primary

operators in this case, and the higher order terms in F' and G give the descendants.

Three identical bosons: Now we want to find a basis for the primary amplitudes

M(1234) where 1, 2, and 3 are identical bosons. In this case, we proceed by first symmetrizing
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with respect to 1 <> 2 as above, and then symmetrize the results with respect to the remaining

symmetries. This implies that the most general symmetric amplitude has the form
M(123;4) = H(s, (t —u)®*)M(12;34) + (2 ¢ 3) + (3 <> 1), (3.3.6)

where M(12; 34) is a symmetrized amplitude as in Eq. (3.3.5)) and H is a polynomial. Noting

that 2 <» 3 implies s <> ¢t and 3 <> 1 implies s <+ u this gives

M(123;4) = H(s, (t — u)*)M(12; 34)

+ H(t, (s —u)*)M(13;24) + H(u, (t — 5)*)M(32; 14). (3.3.7)

We can therefore start with the primary operators invariant under the symmetry 1 <+ 2 and

expand in powers of the Mandelstams:

dimension d @ M(12;34) + M(13;24) + M(32; 14),
d+2 ¢ sM(12;34) + tM(13; 24) 4+ ud(32; 14),
d+4  $2M(12;34) + 2M(13;24) + u*M(32; 14), (3.3.8)

(t — u)®M(12;34) 4 (5 — u)*M(13;24) + (t — 5)*M(32; 14),
The amplitudes generated in this way are not guaranteed to be Mandelstam descendants of
primary operators of 3 identical particles. Such descendants have the form
descendants :  M(123;4) = J(stu, s* + ¢ + u*) M (123; 4), (3.3.9)

where M is a primary amplitude and J is a polynomial. (Note that s+t 4+ u = 3m? +m3.)

Because of this issue, we cannot claim that we have rigorously enumerated all primaries to

arbitrarily high mass dimension. The Hilbert series determines the maximum dimension of
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the primaries if we assume that there are are no relations among operators at lower dimension
(see discussion below). The results we obtain are compatible with the Hilbert series, so this
would require a cancelation in the Hilbert series between the new primary operators and
a constraint that appears at the same mass dimension. This appears to be unlikely, but
we cannot rigorously rule it out. We emphasize that our methods correctly classify all the
operators up to the highest dimension that we checked. For example, we have determined
all operators of the form hyvv and hggg up to dimension 15, and we will see that this is

more than sufficient for the phenomenology of Higgs decays at the HL-LHC.

3.3.2 Independence of Amplitudes: Numerical Methods

We now describe the methods used to determine which of the amplitudes are independent.
This means that we have to find all linear redundancies of the form Eq. (3.3.1]). In this section

we describe ‘brute force’ numerical methods similar to those used in previous works [72].
We start with a basis of amplitudes M, with a = 1,...,n. The first approach is to

construct an n X N matrix X whose rows consist of the values of M, for N > n values of p

and s and at fixed values for the masses. This matrix can be written as
Xap.s) = Ma(p, 5), (3.3.10)

where the index (p, s) runs over N kinematic configurations p, including all possible choices
of the helicities s for each configuration. For each linear redundancy Eq. (3.3.1]), this matrix

satisfies C'- X = 0, so the redundancies are associated with the singular values of X.

Equivalently, we can consider a rectangular matrix ¥ whose columns are given by deriva-
tives of the amplitudes with respect to the independent kinematic variables, evaluated at a
canonical kinematic point py:

Y, O M (p,m) (33.11)
(n,s)a apn a\Ds : .

pP=Po

60



Here the notation 0™/0p™ is schematic: it means that we consider a large number of mixed
partial derivatives with respect to the independent kinematic variables (see below). We again
include all possible choices of the spin variables s for each 0" /9p™. We expect that this will
work for any choice of kinematic point pg, but we chose to expand the amplitudes around

threshold in several channels.

We find that both of these methods work well for moderately large matrices, typically less
than around 1000 columns. However, for sufficiently large matrices, the numerical methods
will find more ‘nonzero’ singular values because of the effects of round-off errors in the nu-
merical calculation. This can be addressed using a smaller numerical tolerance, and checking

for robustness of the results by looking at different kinematic configurations.

3.3.8 Independence of Amplitudes: Analytical Method

The shortcomings of the numerical approaches described above motivated us to develop an
analytical approach, which we now describe. To explain it, we will need to be specific about
the kinematic variables involved. In the center of mass frame for a 12 — 34 process, we can

write the momenta as

El E2 E3 E4
0 M 0 1Y 0 14 0
Py = y Do = y P3 = y Py = s (3312)
0 0 pysinf —p;sinf
Di —Di pfcost —py cos 0
where
El + E? = E3 + E4 = Ecma (3313&)
Ip1| = |pol = pis P3| = |p4l = Dy (3.3.13D)

61



and Ey = /|p,|> +m3, k = 1,2,3,4. There are 2 independent kinematic variables, which

can be taken to be p; and #, for example.

For vector bosons, the polarization vectors can be taken to have the form

1 0 0

€lo = €r12 +ey12 4 222 ; (3.3.14a)
0 1 mi2 1 g
0 0 E

i 1 0 1 0

€34 = €34 t€y34 + ez —— : (3.3.14b)
0 cos ¢ 34 | E34sinf
0 —sin 6 Es5 4cos0

Here e, , are the coefficients of the transverse polarizations (linear combinations of helicity
+1), while e, is the coefficient for the longitudinal polarizations (helicity 0). For massless

vectors, only the transverse polarizations are present.

Let us first consider a 4-point amplitude involving only vector and scalar particles (no

fermions). From Eqs. (3.3.12)) and (3.3.14]), we see that these are polynomials in the variables

Pis Py Fr234, sinf, cos. (3.3.15)

If these variables were independent of each other, then finding the linear redundancies
Eq. would be a simple matter of requiring that the coefficient of each monomial
vanishes. However, there are in fact only 2 independent variables. Nonetheless, we show
that there is a sense in which we can in fact treat the amplitude as a polynomial in a set of

independent variables.

To illustrate the idea, suppose that the amplitudes were polynomials in cos# and sin 6
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only. These are not independent because of the relation cos? + sin®# = 1. We consider the
polyomial to be a function of the two complex variable ¢ = cosf, and s = sinf. We can use
the relation to eliminate all powers of s larger than one, so that we can write the redundancy

condition as
0= CM, =P(c) +Q(0)s, (3.3.16)

where P(c) and Q(c) are polynomials in ¢ and since we are working with an upper bound
on the operator dimension, they are also finite polynomials. Even though s and ¢ are
not independent, we claim that the constraint that the function vanishes implies that the
polynomials P and () vanish identically, just as if s and ¢ were independent variables. To
see this, note that we can view the right-hand side of Eq. as a function of ¢ alone,
with s = v/1 — ¢2. For general coefficients C,, there are singularities in the complex ¢ plane
that are branch cuts starting at ¢ = +1. In order for this function of ¢ to vanish identically,
the coefficient of this singularity must vanish, which implies that the polyomial ) vanishes

identically:

Q(c) = 0. (3.3.17)

P(c) = 0. (3.3.18)

We can extend this method to include the full set of kinematic variables in Eq. (3.3.15)).

We consider the remaining variables to be a function of E.,,, which we think of as a complex
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variable. Then p; ; are given by

b= 2Elcm \/[Egm = (my +mg)?] [EZ, — (my —mg)?] (3.3.19a)
Pr=5 Elcm \/[Egm — (mg +ma)?] [B2, — (my —ma)?] . (3.3.19D)

These have branch point singularities at 4 points, E., = 4(my 4+ ms), £(ms = my). The

energies Fj, can be written in terms of F,, using

2 2 2 2 2 2
my —my + B, my —mi + Eg,

FE = Fy, = 3.2
! 2B, 2 Y (3:3.202)
m2 —m? + E? m2 —m?2 + E?
E — 3 4 cm E — 4 3 cm. 3.9
3 o ; 4 Yo (3.3.20b)

We can use Eqgs. (3.3.19)) and (3.3.20]) to eliminate the dependence on Ej and even powers of
pi.s. The resulting function of E,, has 1/E”  singularities, which we eliminate by multiplying
by EX for some sufficiently large N. The result has the form of a polynomial in E.y, s, c,

pi, py with at most linear powers of s, p;, and py:

m

0=E}) CM,

=P+ Qs+ Rp;+ Spy +Tspi+Usps+ Vpipr + Wspipy, (3.3.21)

where P,...,W are polynomials in E., and x. Because s, p;, and p; all have different
singularity structure when written as functions of E.,, and ¢, we can treat all of the variables
in Eq. (3.3.21]) as independent when solving the constraints, which again requires that all of

the polynomials separately vanish.

Extending these ideas to amplitudes involving fermions is nontrivial because the spinor
wavefunctions contain factors of /E £ p; . We were able to extend the method to ampli-

tudes involving 2 fermions, for special choices of the fermion masses. Taking the fermions to
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be the incoming particles, the spinor wavefunctions are functions of \/E; o £ p;, for example

VE —p; 0

&s
0 VE1+ p;
(u1)s = : (3.3.22)

VE1 +pi 0
0 VE —pi

€s

where s = 1,2 is the spin label and &; 5 are a basis for 2-component spinors. The analytic

method can be extended for the following special cases:

my1 = me: In this case By = FEy = E;. The amplitude is proportional to the product of

spinor wavefunctions for particles 1 and 2, which contain the following square root structures:

VE: + pi/E; — pi = my = ma. (3.3.24)

The constraints therefore have the same form as Eq. (3.3.21)).

mey = 0: In this case we have

2 2
Ecm —my

3.3.25
2Fcm ( )

pi = Eo =

so p; no longer has a branch cut singularity as a function of E,, but p; does. The spinor
wavefunctions contain the following square root structures:

ECm
Eern, VE —p = AV Zem (3.3.26a)

Eer

\ 2]9“ v E2 — Pi = 0. (3326b)

vV E1 + pi
vV Es + p;

The amplitudes are proportional to one factor from Eq. (3.3.26a) and one factor from

Eq. (3.3.26b)), so the nonzero amplitudes are all proportional to \/Ecm+/p;. By multiply-
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ing by \/Ecm\/E-EéYn for some N, the constraints can therefore be written as a polynomial

in Eem, s, ¢, py that is linear in s and py:

0=/ Eeu/BiEN, Y _ CaM,

=P+ Qs+ Rpy + Spys, (3.3.27)

where P,...,S are again polynomials in F., and ¢. The same argument above therefore
shows that we can treat all of the variables in Eq. (3.3.27)) as independent when solving the

constraints.

We find that both methods find the same sets of independent amplitudes with 2 fermions,
and that these methods also agree with the numerical methods for generic masses. This is
reassuring, since we do not expect the independent amplitudes to be different for special

choices of the fermion masses.

To summarize, given that the redundancies require the polynomials to individually van-
ish, we can analyze the number of independent amplitudes by choosing the kinematic vari-
ables E.,,, pi, pf, ¢, s where we treat them independently, as long as we’ve replaced factors of
s p?, p? in terms of ¢ and E.,,. It would be interesting to generalize this analytic argument
to general amplitudes, for example involving 4 fermions. The method relies on the fact that
the singularities of the amplitudes are simple square root branch cuts. In comparison to the
spinor helicity formalism, the local amplitudes are polynomials in spinor-helicity variables.
These variables are also not independent, but the constraints they satisfy are quadratic
polynomial equations. It is natural to speculate that this underlying structure allows us to

generalize the results above beyond special kinematic points.
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3.3.4 Hilbert Series

An important check of our results is the Hilbert series that counts the number of independent
EFT operators, described in Refs. [47-50,53]. The Hilbert series counts the number of
operators at a given mass dimension, taking into account symmetry constraints as well

redundancies due to integration by parts are field redeﬁnitions.ﬂ

The Hilbert series for our trilinear interactions are the following:

Hyjp=2¢", Hpyz = Hypy = Hagy = 2¢°,  Hizz = Haww = ¢° + 2¢°,
Hynz = Hppy =0, Huw = ¢,
H.fp = 2¢°, Hypr = Hyp = 2¢" + 2¢°, (3.3.28)

Hwwz =5¢" +24°,  Hwwy = 20" +2¢°,  Hggy = 2¢",

Hzzz = Hzzy = Hzyy = Hzg9 = 0.

Here ¢ is a parameter that counts the mass dimension of the operators. The power of ¢ in
each term is the mass dimension of the operator, and the coefficient gives the number of
operators at that dimension. So for example, H,5; = 2¢* implies that there are 2 operators

with dimension 4.

> We thank X. Lu for patiently explaining Hilbert series to us.
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The Hilbert series for our four-point interactions are the following:

20° 46"+ 40" 2¢° + 4q" + 2¢°
Hyz5p = Hywip = -7 Hy5p = Hygjp = o
Hizyy = Hnzgg = 3q" 7’ + 29 hode = 2¢" + 2¢° + 4¢™ + 6¢" + 2¢'°
T e (=0 —a)
49" + 4" 2¢" +4¢" +2¢"°
Hh’Ygg = ) TR Hh’y’y'y = — — ’
(1 =)~ (=)0~ )
H 2q5 + ].4617 -+ 2q9 I 8q7 + 8q9 + 2q11
AWW = ) hZZy = ’
Y (]. - q2)2 Y (1 _ q2>(1 . q4)
9¢° + 18¢7 @ +6q7 +8¢° + T¢" + 5¢"
a b o (3.3.29)
2¢° + 2¢8 3
H 3 =
hhff (1 _ q2)(1 _ q4)7
H q4+3q6—|—5q8 H q4_|_3q6+2q8
W W = , hhZZ =
(1 - q2)(1 - q4) (1 _ q2)(1 . C]4)
2q6 + 4q8 2q6 + qS
Hppzy = v Hihyy = Hpngg = ;
Ty T e T e - )
T+q¢” +¢" 13
Hhth = ’ Hhhh _ 7
(]‘ - q4>(1 - q6) g (1 — q4)<1 . q6)
1
H, = _
== )

The denominators represent the infinite series of Mandelstam descendants. For the couplings

where all particles are distinguishable, this factor is given by

=1+ ¢+ +-) 3.3.30
1= ) I+q¢ +q +--)7, ( )
which counts the series of products of the two independent Mandelstam variables (s and ¢
say). For couplings containing indistinguishable particles, the denominator factor is modified

because the series of Mandelstam variables is constrained by symmetry. For example, for

hhff in the channel hh — ff, the independent symmetric Mandelstam invariants are s and
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(t —u)%. The denominator factor is given by

1
(1—=¢*)(1—q)

=(1+¢+q¢"+)1+¢"+ +-) (3.3.31)
which counts the series of products of s and (¢t —u)?. For hZZZ, the independent symmetric

Mandelstam invariants are s+ 2+ u? and stu, which is matched by the denominator factor

1
(1 —¢*)(1—¢%

=+ +F 4+ )+ g+ (3.3.32)

This suggests that the the numerator factors simply count the number of primary opera-
tors at each dimension. While this is the simplest interpretation, it is not necessarily correct.
The reason is that there can be relations between Mandelstam descendants of independent
primary operators. For example, two lower dimensional primaries may become redundant at
higher mass dimension when one includes enough Mandelstam factors. If there are n such
relations that arise at dimension d, this is parameterized in the Hilbert series by an infinite

series

which subtracts off the redundant terms in the Hilbert series. (The remaining positive terms
in the Hilbert series must of course ensure that the coefficient of each power of ¢ is positive.)
In fact, negative terms in the numerator of the Hilbert series appear for 4-fermion couplings,
which are not considered in this work. Although all of the coefficients in the numerators
of the Hilbert series above are positive, it is possible that there are relations at the same
mass dimension that we have new primaries. In other words, the coefficient of ¢¢ in the
numerator is equal to the number of independent primaries minus the number of relations
between Mandeltam descendants that appear at dimension d. For all operators other than

those that contain 3 identical particles, our methods determine all primary operators up to
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arbitrary mass dimension independently of the Hilbert series. In these cases, the Hilbert
series is used only as a check, and we find that the coefficients in the numerators do in fact

count the number of primary operators in all cases.

For the case of 3 indistinguishable particles, as discussed in Sec. 3.3.1 , our methods
do not guarantee that there are no additional primary operators at dimensions higher than
we have explicitly checked. In these cases, the primary operators we find are equal to the
coefficients of the numerators of the Hilbert series above, so we again have agreement with
the Hilbert series. However, we cannot exclude the possibility that at higher dimensions
there are additional primary operators with an equal number of additional constraints at
that dimension. Even if this is the case, we have determined all primary operators up to

dimension 13, and any additional operators are unlikely to be phenomenologically relevant.

3.4 Phenomenology from the Bottom Up

In this section, we discuss some of the basic phenomenology of the operators that we have
found. We first show that unitarity bounds can give us an upper bound on the couplings of
the SM deviations. As emphasized in [29], any new interaction that is not included in the
SM implies that tree-level unitarity is violated at some energy scale, and this scale can be
estimated without a complete EFT framework. Assuming an energy scale where unitarity
is valid to, enables us to to give an upper bound on couplings of the interactions. In this
section, we will describe the assumptions and methods that we use to obtain these bounds.
We also give rough estimates of the size of physical effects of the new interactions for Higgs
decays. Comparing these to the unitarity bounds gives an idea of which operators may be

plausibly large enough to be observed in upcoming Higgs searches.
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3.4.1 Perturbative Unitarity Bounds

We now describe how we place bounds on the coefficients of the primary operators from
unitarity considerations. It is a classic result that the SM is the unique theory with the
observed particle content that does not violate tree-level unitarity at high energies |14] (see
[73] for a purely on-shell derivation). Therefore, any deviation from the SM will lead to
a violation of tree-level unitarity at some scale, which can be used to bound the scale of
new physics. We now turn this around to determine the allowed coefficients of the primary
interactions such that the scale of unitarity violation is larger than some value, for example
1 TeV. This gives a theoretical upper bound on the deviations from the SM that can be used

to decide which searches are sufficiently motivated to carry out.

As emphasized in [9,/29], the unitarity bounds can be obtained from a purely bottom-
up perspective (without assuming any EFT power counting), but the unitarity bounds do
depend on what assumptions we make about other couplings. To illustrate this, we consider
the coupling hhit. We want to know whether this coupling could possibly be the first
observed sign of new physics. In order for this to be the case, we must assume that the BSM
contribution to the htt coupling is suppressed, due to the greater sensitivity of experiments
to this coupling. This assumption affects the unitarity bounds on the hhtt couplings, as we

will now explain.

The strongest constraint on the hhtt coupling from unitarity violation at the highest
energies comes not from the 4-particle amplitudes such as hh — tt, but from higher-point
amplitudes involving longitudinally polarized W and Z bosons. This arises because the
hhtt coupling ruins cancelations that otherwise ensure tree-level unitarity of these higher-
point amplitudes. As shown in Refs. [9,2829], these can be understood at the level of the
Lagrangian using the Goldstone boson equivalence theorem [14,21,/30]. The point is that
gauge invariance implies that couplings like hhtt have associated dependence on the triplet

of eaten Nambu-Goldstone fields G, and the amplitudes for the Nambu-Goldstone bosons
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are the same as the longitudinal W and Z bosons in the high-energy limit, which can be

determined by replacing

h — (U+h)2+G2—U7 (3.4.1>
_ 1 ~ - - )
it — e <(v + h)tt + GOtiyst — V2G T bpty, — ﬂG—bLtR) ‘ (3.4.2)

For simplicity, we only consider amplitudes of the form tG™ from h"tt couplings, so we can

then expand the expressions above to give

Z Ct’nhnft
" 0

3ci1 — 2 5¢1 — 4 2 . GY_
o %Gﬂ 3¢ Ct2 G4 Ct1 Cto + 2C34 GS 1 ... ft+ —Firyst | + -
20 Sv3 1605 v

(3.4.3)

Note that ¢; 2 gives rise to amplitudes of the form ¢¢G™ for n > 4, but these can be canceled
by other couplings. Because we are assuming that c; ; is small, its contribution cannot cancel
the contribution to the ttG* and ttG® couplings, but the higher couplings can be canceled by
the unconstrained couplings ¢;,, for n > 3. We can therefore use the ttG* and ttG® couplings
to obtain a unitarity bound on ¢, 5. We see that with the assumptions that we are making,
the hhitt coupling effectively behaves like a dimension 8 operator at high energies. This can

also be understood from the perspective of SMEFT, as we will discuss below.

In general, we compute the unitarity bounds for 4-point couplings under the assumption
that the 3-point couplings are sufficiently small that their contribution to the unitarity bound
can be neglected. If a deviation from the SM is observed in any channel, one would obviously
want to perform a complete analysis including all experimental constraints, but we believe

that the bound we are presenting is appropriate for the purpose at hand.

To calculate the unitarity bounds from higher-point processes such as tt — G°, we use

the results of Refs. [9,29]. We will use a simplified version of these estimates that neglects
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some numerical factors of order 1. A coupling of n distinguishable scalars can be written

Cn
Lint = Un74 ¢1 o ¢na (344)

and the associated scattering amplitudes are

M(G1- 65 = Gusr = 6a) ~ 2 (3.4.5)

pn—4
The unitarity bound on this amplitude is [9]

1
VeH(E)®,1(E)

M(r - b — i1 dn) < (3.4.6)

where

Op(E) ~ % (g)ﬂH (3.4.7)

is the total massless phase space for k distinguishable massless particles with total energy
E, where we have neglected a combinatoric factor 1/(k — 1)!(k — 2)!. By ignoring those
combinatorial factors, the combination ®,®,,_; that appears in Eq. is independent
of k, and we do not have to optimize the number of incoming and outgoing particles. If we

require that unitarity is satisfied up to some maximum energy F,.x, we obtain the unitarity

bound
Ao \ "
Cn <8 . 3.4.8
”(&m> (345)
For a fermion coupling
Cin -
AL = Unﬁlttqsl e (3.4.9)
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we have

i Cin
M(EtGy - bt = P Gn) ~ UntilE’ (3.4.10)
7;:2 ntk
and we obtain the bound
o, < (A " (3.4.11)
N B ) &

In this way, we obtain the approximate unitarity bounds
tt—G* : ¢ < 6/FBrey, (3.4.12a)
tt—G* 9 < 20/E3y (3.4.12b)
tt— G* 1 0 S 60/ESy (3.4.12¢)
tt—G° : 0 <200/ By, (3.4.12d)

where Erey is Fiax measured in TeV. Even though these estimates were obtained by ignoring
combinatoric factors in the phase space and matrix elements, they agree well with the results

of |9], where all such factors are included.

Which of the unitarity bounds in Eq. is the strongest depends on the scale
FEL.x. For asymptotically large values of Ey.., the process with the most particles gives
the strongest bound, but for low values of F,., the process with the smallest number of
particles dominates. If we neglect combinatoric factors, these bounds cross at the NDA scale
Erax ~ 4mv ~ 3 TeV. In the tables, we will give the unitarity bounds in terms of Er.y,

since 1 TeV is roughly the scale that has been probed by measurements at the LHC.

Although every Higgs interaction can be understood from the bottom-up approach de-
scribed above, we find it convenient to use SMEFT operators as a proxy for calculating the

unitarity bounds in our tables. Specifically, for 3-point functions, we use the lowest-dimension
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SMEFT operator as a proxy, while for 4-point functions, we use a combination of SMEFT
operators of lowest dimension that does not modify the 3-point functions. This is motivated
by the fact that 3-point functions are generally more constrained by experiments. In the
example of hhit, we use a combination of the HI HQ Hty and (HTH)QQL}NHR SMEFT op-
erators, and assume that the deviation in htt is suppressed by a cancelation between them.
This could be viewed as an accidental cancelation, or it may be that the SMEFT power
counting simply does not hold for new physics at low scales. The SMEFT approach predicts
that interaction behaves as a dimension-8 operator with at most 7-particle interactions, just
as we found from the bottom-up point of view. When we estimate the unitarity bounds
for couplings such as hZtt and hWtb, we will assume that they come in combinations that
preserve custodial symmetry, since this gives weaker unitarity constraints. The fact that
custodial symmetry is straightforward to incorporate in SMEFT is another reason we make

use of it.

Let us illustrate the use of SMEFT operators to obtain the unitarity bounds with the

example of the coupling hZ,t;7*tgr. We assume that the 3-point coupling Z,t,v"tx is not
© _

modified, so this requires a cancelation between the SMEFT operators (H'D, H)Qv" Q1

hg _
and H'H(H'D,H)Qv"Qr. We have

hZtt hZtt

_ <~ _
L hZ, "t C A— HTH(H'D,H)Q11"Qy, (3.4.13)
) mgyv

where the additional factors of mz and v on the right-hand side come from expanding the
Higgs doublets and covariant derivativesﬁ (We are ignoring order-1 numeric factors, since
we are performing a rough calculation.) We see that at high energies, the unitarity growth

is that of a dimension-8 operator, and that we can consider amplitudes with a maximum of

6 From the bottom-up point of view, we can understand the factor of 1/my from the equivalence theorem
Z, — 0,G°/myz at high energies.
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7 particles. The fastest energy growth at high energies can be read off from the amplitude

hZtt 511/2
z N 2 (8) hZtt 5
M(tt — G7) mzngmax < [87r BT = S B (3.4.14)

Processes with 7 particles such as tt — ZG* trade one derivative (power of energy) with an
additional Z boson and give a slightly weaker bound at high energies. At lower energies, the

bound comes from the processes such as

hZtt
_ 0.6
ME = G~ I F2 <81 = g Y (3.4.15)
mzv TeV

As mentioned above, with these approximations all of the unitarity bounds become degen-
erate at Fy. ~ 4mv ~ 3 TeV, so it is sufficient to compute the one with the bounds for the

processes with the largest and smallest number of particles.

3.4.2 Precision FElectroweak Constraints

Precision electroweak measurements also give stringent constraints on corrections to the SM.
In our approach, primary operators that are not directly constrained by precision electroweak
measurements are simply treated as independent. For example, y decays constrain one linear
combination of the Wy couplings, but allow large deviations in individual couplings if there
is a cancelation in the combination that controls the p decay rate. From a bottom-up
perspective, precision electroweak constraints are similar to naturalness constraints, since

they can be satisfied by fine-tuning different contributions to the same process.

However, the degree of cancelation required to obtain an observable signal is an important
factor in deciding which observables are sufficiently well-motivated to merit further investi-
gation. We therefore performed estimates of loop-induced precision electroweak corrections,
even though we are not working in a complete EFT framework. That is, we treat the primary

operators as interaction terms in an SU(3)¢ x U(1)gy invariant EFT, and estimate the size
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of loop corrections with a UV cutoff A that we identify with the scale of new physics. We
have not analyzed all of the primary operators, but we generally find that requiring the ab-
sence of cancelations in precision electroweak observables gives weaker constraints than the

unitarity constraints as long as we assume that the new physics satisfies custodial symmetry.

As an example of a strong constraint in the absence of custodial symmetry, we consider
the operator hhZ"Z,. Closing the Higgs loop gives a quadratically divergent contribution
to the Z mass. If this is not canceled by a custodial preserving contribution to the W mass,
we obtain the constraint on the coefficient

whzz _ 107°
hzZ < (3.4.16)
ATeV

where Aoy is the cutoff in TeV units and we are using the operator numbering in Table|3.13]
If we identify A with the unitarity violating scale E,.., the precision electroweak constraint
is stronger than the unitarity constraint for A < 40 TeV (see Table . Approximate
custodial symmetry can significantly weaken this constraint, but its implementation in EFT
is subtle (see [74]). Therefore, we will not attempt to estimate corrections to precision

electroweak observables that are sensitive to custodial symmetry violation.

We now some examples of the precision electroweak constraints for some of the operators
that are the most promising for Higgs decay phenomenology (see Sec. below). For ex-
ample, the CP-even operators hZ"Z,, and hZ"" Z,,, give a 1-loop contribution to the Z kinetic

term, generating a correction equivalent to the S parameter. This gives the constraints

0.5
C}ILZZ SJ 2OA2Ter C}QLZZ <

. 3.4.17
~1 +0.4- log ATeV ( )

where we have used the operator numbering in Table [3.1} These are weaker than the corre-

sponding unitarity constraints.

Next, we consider the CP-even hZ f f couplings in Table [3.3] At one loop these induce a
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correction to Z f f couplings, which are highly constrained by LEP. Operators 1 and 2 induce

a correction to the vector and axial-vector Z couplings, and give

0.5
hZ1] < 3.4.18
‘2~ +0.4 -log Arey’ ( )

which are comparable to the unitarity bounds for A ~ TeV, but are otherwise weaker.
>

Operator 5 corrects the coupling ¢ Z#1)9*1), which flips the fermion helicity. This has a weaker

constraint at LEP because it does not interfere constructively with the SM Z coupling. Using

the results of [75], we find the weak constraint

60
haIT < . 3.4.19
S 1104 logAny (34.19)

Operator 7 corrects the coupling (9“2#1;1#, which vanishes on shell. To get a nonzero cor-
rection, we must go to higher loop, and this will give weak constraints. Operators 9 and 11

~ _ <~
correct the coupling ¢Z,,1y* 0", which gives the constraint

3
hZff < 3.4.20
G~ 1+04- IOg ATeV, ( )

which is weaker than the unitarity bound.

The general pattern that we find is that the unitarity bounds are more sensitive to the
UV scale than the precision electroweak observables, at least if we neglect the corrections to
the W and Z masses that violate custodial symmetry. It would be interesting to give a more
complete analysis, including constraints on CP-odd operators, but we leave this for further

work.

3.4.83 FEstimates for Higgs Decays

We now perform some crude estimates determine what ranges of BSM couplings can be

probed in Higgs decays at the LHC. Specifically, we will estimate the corrections to the
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branching ratios of Higgs decays to determine which operators can give an observable number
of Higgs decays. These couplings can then be compared to the unitarity bounds discussed

above to determine whether it is motivated to search for a particular coupling.

We will focus on operators that are not present in the SM. In the case where the BSM
operator O modifies a Higgs coupling, the phenomenology can be studied in the so-called ‘x

framework’ [76]. The x parameter associated to O is given by

CEQSM) + co
CEDSM)

Ko = (3.4.21)

Projections for the sensitivity of the HL-LHC to various s parameters can be found in Ref. [3].

We will therefore focus on couplings that are not present in the SM.

We are interested in the sensitivity to Higgs decays at the HL-LHC, where we expect
about N, ~ 10® Higgses to be produced with 3 ab™!. Estimating the SM Higgs branching
ratios to the decays we consider, we find that they all have branching ratios larger than 1078
so that all of these searches have a SM background. Thus, looking at total decay rates, we

should compare the new contribution to the fluctuations in the SM Higgs background.
ey 1/2
—— N R (_Nh> : (3.4.22)

If this is satisfied, there is at least the possibility to distinguish the new contribution from

the SM Higgs background.

We begin by considering the case where the interference between the BSM and the SM
contribution is negligible. This may occur because the SM contribution is so small that the
BSM contribution dominates. Another interesting case is where the BSM contribution is
CP odd. If the measurement performed is sufficiently inclusive that it weights CP conjugate
final states equally, the interference term between CP-even and CP-odd amplitudes cancels.

This occurs for example in the total rate summed over final state spins. Measurements of
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differential distributions may be sensitive to interference terms, but these are beyond the

simple estimates performed here and should be studied on a case-by-case basis.

We will estimate the size of the BSM contribution assuming that the matrix element of
the decay is constant, and that the decay is not phase space suppressed. The matrix elements

for 2- and 3-body decays due to the insertion of a BSM operator O are then approximated

by
Mo(h — 2) ~ Udio%m?f*?’, (3.4.23a)
Mo (h — 3) ~ %m;j@—“, (3.4.23b)

where dg is the dimension of the operator O. The corresponding decay rates are approximated

by
1 2 mp, 2 mi do—4
Lo (h — 2) ~ r—— | Mo(h — 2)|" ~ E’co‘ = : (3.4.24a)
STk = 3) = T |No(h — 3)|* = o (™ o (3.4.24D)
v ~ 512730 ~ 5120800 2 -

To be of interest, we need to compare this deviation to the fluctuations in the SM Higgs
background Eq. (3.4.22)), which is conservative since many of these will have additional

backgrounds. This gives the bounds

N\ /A

2-body, no interference: |co| 2 (4 x 107%) (BRSM)1/42dO_4 (1—0};> ; (3.4.25a)
» N\

3-body, no interference: |co| 2 (7 x 107%) (BRgy) ' 2%~ (1—08> : (3.4.25b)

where BRgy is the branching ratio of the decay in the SM. The estimates for higher-dimension

operators are more uncertain due to the high powers of ratios of scales involved.

Now we consider the case where there is significant interference with the SM. In this

case, we obtain a rough estimate by also approximating the SM amplitude as a constant.
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For example, for 2-body decays this gives

1

FSM(h — 2) ~ —

[ Mani(h — 2)|*. (3.4.26)

The correction to the decay rate due to the BSM operator O is then

1
1 1/2 do—4
~ ﬁ[l&rmhFSM(h = 2)} o (%) T (3.4.27)

To be observable, the difference in the number of Higgs decays compared with the SM must
be larger than the fluctuations in the SM background, as in Eq. (3.4.22]). In this case, we

find that the dependence on I'sy; cancels out in the bound, and we obtain the bounds:

N\ 12

2-body, interference: |co| 2 (4 x 107%) 2%~ (1—0};) ; (3.4.28a)
N\ L2

3-body, interference: |co| 2 (7 x 107°) 2%~ (1—0};) : (3.4.28b)

Note that comparing to the no interference case, we see that when there is interference it

allows better coupling sensitivity since we’ve estimated that BRgy = 1075.

These approximations made above are very crude, and are intended only as a rough
guide. It will be interesting to compare them with detailed phenomenological studies, but
we leave that for future work. In Sec. 3.5 we will combine these estimates with the unitarity

bounds to identify some BSM operators that are worthy of further study.

3.5 Results

In this section, we present our results for the independent primary operators for the 3-point
and 4-point amplitudes. We do not consider flavor-violating operators. Equivalently, our

results are presented for a single generation of quarks and leptons. This section consists
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mainly of the tables of operators, with some brief comments in the main text. We then use

the results to discuss the most promising primary observables for Higgs decays.

3.5.1 3-Point Couplings

We begin with the 3-point couplings. These are equivalent to on-shell 3-point amplitudes (for
complex momenta), which have no Mandelstam invariants. Therefore, all 3-point functions
correspond to primary observables in our terminology. This problem has been previously
studied by many authors, see for example Refs. [16,,61,/66]. Our main focus is the enumeration
of the 4-particle observables, but we have taken a fresh look at the 3-point functions to check

our approach.

The 3-point functions involving the Higgs boson are shown in Table|3.1} and the additional
3-point functions needed for Higgs processes that do not involve the Higgs boson are shown
in Table The table gives the CP of the operator, the lowest-dimension SMEFT operator
that contains the interaction, and the unitarity bound for the coefficient of the operator,

where the normalization for the couplings is defined by Eq. (3.2.4)[]

For the triple gauge boson couplings, we note that our approach differs from the classic
work Ref. [77] in that we are performing a systematic low-energy expansion of the kinematic
dependence. As explained in Sec. above, this necessarily involves an interplay between
3-point and higher-point couplings. We have put the effects of possible ‘form factors’ of our
3-point couplings into higher-point couplings. Ref. [77] instead defines this in terms of form
factors whose momentum dependence must be specified to define a model for experimental
searches. In particular, they include form factors for couplings of the form OZVéWZ with Z,
replaced by A, even though these couplings are not U(1)gyv gauge invariant. (They restore
gauge invariance by using a specific non-local form factor for these couplings that contains

massless poles.) We believe that our approach is more physically transparent and can be

7 The SMEFT operator is included for comparison only; we are not claiming that using the SMEFT operators
in our tables is a consistent EFT basis.
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systematically matched to EFT frameworks such as SMEFT.
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W SMEFT ¢ Unitarity
i onts CP | do,
s i Operator Bound
1| mbpr+he | + HYHQHug + h.c. o
_ 4 o 2
2 | ihprpp +he. | — iH'HQ Hup + h.c. Erev? Egey
. W27 SMEFT ¢ Unitarity
! 0i CP | do, Operator Bound
1 hz,z" + 3 H*HD”HTDMH Eo%.ezv
2 th“,Zuy + HTHW'S«VWGMV ,
> 5 — 2
3 hZMVZ'uV —_ HTHWSVWH;LV Ech
AW W SMEFT ¢ Unitarity
' 0: CP | do, Operator Bound
1 hVVJW*H + 3 HTHD*H'D, H E02.2
TeV
2 thj;jW_“V + HTHW&VWa;u/
— 5 L 2
3| AwiLwer - HYHWS, W Blev
h SMEFT c Unitarity
i 0,7 CP | do.
@ i Operator Bound
1 hEu, 28 + Hg"HW, B"
~ 5 . EQL
2 hF,,Z"" — HTO’“HBMVW‘”“’ Tev
hyy SMEFT ¢ Unitarity
' Oi CP | do, Operator Bound
1 h’F‘lWFHV + HTHBHIJB'MD )
~ 5 _ _2
2| hEu, P — HHB,,B" Brev
. hGC SMEFT ¢ Unitarity
' O CP | do, Operator Bound
1 hG ., G* + HYHG,,G"™ )
~ 5 ~ 2
2] hGuGH ] - H'HG,,G" e
SMEFT ¢ Unitarity
Ohhh CP | do,
g Operator Bound
6 80 _200
hhh + 3 |H| Faey PR

Table 3.1: Three point functions that involve the Higgs boson. We write V,,, = 9,V,, —
0,V,, and XN/W = %EWWV”“ for V.= W, Z, while F,, and G, are the field strength
tensors for the photon and gluon, respectively. We have omitted the color indices of
the gluon fields. The last column gives the maximum allowed value for the coupling
¢ defined in Eq. allowed by tree-level unitarity, where ETey is the unitarity
violating scale in units of TeV.
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SMEFT

¢ Unitarity

: VFf
! Oi CP | do, Operator Bound
1 F/‘Lul/_)LUMVwR+h.C. + BHVQLO'HUHUR+}1.C. )
_ 5 _ - S
2 | iFMLo, R + b - iB,, QLo Hug + h.c. Frev
. oz SMEFT ¢ Unitarity
L (Z — W gives Wff) CP | do, Operator Bound
— <> _
1 24 ) iH D, HQ1A"Qs g
— e 2
2 PR iH'D, Hugy"ug Brev
3 ZM o, + hee. We,Qro o Hup + h.c. ,
_ 5 _ _ 7
4| Z™idroutr +he. | - iWe,Qrot o Hup + h.c. Plev
— SMEFT ¢ Unitarity
! O CP | do, Operator Bound
>
1| iWhLW #Z¥ +he. iHo"DFHDY W,
2 WEW Zm 4 i(D, H)too D, HW v o
3 WEW, Zm - i(D, H) gD, HW
4| -Wiwy(rzy +ozr) | — | 4 iD,H'D,HH D" H + h.c. 40>
TeV
>
5| e (WiDW)Z, |+ | 4| e (Hio"D,H)Ws HID H +he. | SR1, 4L
6 W WLz + ; €abc W5, WO, W .
— —~ oL
7 W W 7 = Cape W5, WhH, e Flev
. oWy op | 4 SMEFT ¢ Unitarity
@ 0i Operator Bound
1 W W, P + (D, H)D, HB" .
- 4 - 5
2 W W, B - i(D,H)'D,HB" Frev
3 W W e E s + €ape V2, W VPRV en i
_ 6 — 7=
4 iW;jVW7 "PE N - €abc W, wb YPWSH Etev
. 990 SMEFT ¢ Unitarity
! Oi CP | do, Operator Bound
1 fABcGﬁVGB VPGSM + 6 fABchVGBVpGSM )
~ ~ 2
2 faBcG,GBYPGSH - fABchVGBVpGS” ey

Table 3.2: Additional three point functions needed to calculate 4-point amplitudes
involving the Higgs. The notation is the same as in Table ﬂ Here o = Z[v*,7"],

<~
o are Pauli matrices, and H'D,H = H'D,H — (D, H)! H.
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3.5.2 4-Point Couplings

Our results for 4-point operators are summarized in Tables [3.3H3.14. The notation is hope-
fully self-explanatory; to save space, we have used 0, = 0,0,0,, D,,,, = D,0,0,, etc. There
are several cases for which we do not provide separate tables, because the operators can be

read off from other tables by simple substitutions:

AW ff' can be read off from hZff in Table [3.3] with the substitution Z,ff — W,ff’
and 0, — D,,.
hgff can be obtained from h~ff in Table with the substitution F},, — nyTA. The

operators are SU(3)¢ gauge invariant only if the fermions are quarks.
hZgg can be obtained from hZ~v in Table 3.5 with the substitution F,, F,, — G;‘VG;‘U.

hhZZ can be obtained from hAW W in Table by replacing W, — Z,,. When this is
done, the operators numbered 5, 7 and 8 vanish by symmetry, so there are only 6 nonzero

operators in this case.
For hhhh the only primary operator is h*, and we have not made a table for that.

There are other cases where the results are closely related, but additional corrections must
be made. For example, we can take operators involving Z and convert them to operators
with a photon, by taking Z, — A, and forming the field strength for the photon by using

derivatives and anti-symmetrizing. This allows hZ f f, hZgg to be respectively converted to
hyff and hygg.

The tables list the primary operators. In the on-shell amplitude language, the remaining
amplitudes are obtained by multiplying each operator by a power series in the Mandelstam
variables. In the operator language, these correspond to operators with additional derivatives
with the Lorentz indices contracted between them. For operators where all particles are
distinguishable, this is simply a series in the Mandelstam variables s, ¢, and u (with s+t +u

fixed). For operators with identical particles, these additional terms must be appropriately

symmetrized. For hZ~y, hygg (Table , hZZ~ (Table , hhff (Table|3.12), hAWW,
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hhZ~ and hhv~y (Table , we can add arbitrary powers of s and (t — u)?. For hyyy
(Table[3.6), hggg (Table[3.7), hZZZ (Table[3.11), hhhZ and hhhy (Table[3.14)), we can add
arbitrary powers of s? +t? + u? and stu. As an example, adding a factor of s? + t* 4+ u? to
hotZ" 7,7, can be done by adding four derivatives, i.e. haﬂzvaaaﬁzuaaaﬂz,,.

The tables give unitarity bounds on the coefficients of the operators (see Sec. |3.4.1)).
As one might expect, the unitarity bounds become more stringent for operators of higher
dimension. These bounds should be used only as a very rough guide, especially for the

operators with high mass dimension.

Our final results are in full agreement with the Hilbert series counting in all cases (see
Sec. [3.3.4). We also agree with the results of Ref. [63] in all cases where they overlap. We
found a discrepancy in the results for AWW Z (see Table in an earlier version of their
paper, but our results agree after they identified and corrected a mistake. Our results also
include massless particles, the effects of symmetrization for identical particles, and we have
found all primary operators to arbitrarily high dimension, at least in the cases where there

are two or fewer identical particles (see Sec. 3.3.1).

3.5.8 Primary Observables for Higgs Decay

We now use the results in the tables to identify promising primary observables to search for
new physics in Higgs decays. We limit ourselves to CP even operators, so that it is clear
that there is interference with SM processes. (Also, CP-odd new physics effects may be
suppressed by approximate CP symmetry.) In this case Eq. gives an estimate for
the minimal value of the coefficients in order for the new contribution to the decay to be
observable at the HL-LHC. We compare this to the bound on the coefficient arising from the

unitarity bounds in the tables.

In this way, we find that the following operators are potentially observable at the LHC
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assuming a unitarity violating scale above 10 TeV:

hf hz h hZf. RW ff’ hvf
Olffa Ofll,gva Ol ’Yv 01777 OIIZGG7 OI,Q,J;fv 01,2,?{f7 Ol’Yffa (351)
where V' = W, Z. The next class of operators are those that are potentially observable with
a unitarity violating scale between 1 and 10 TeV:
hZf hW ff! hf hZ h hggg,

05,7,};{117 05,7,&{17 032{7]07 01,4}38,97 013997 Ol,g?)gg f' (352)
These are also interesting, but it may be that new physics models that can give these effects
can be better probed by direct searches for new heavy particles. The remaining operators

are observable only if the unitarity violating scale is below 1 TeV:
hZ h h hggg,d hggg,
077", 0587, O1%).,, O%07, 0577 f (3.5.3)

These are presumably already constrained, and not as theoretically motivated as the others.

We see that there are a large number of observables that worthy of further investigation.
This motivates searches for BSM effects in Higgs 2-body decays, as well as 3-body decays to
Zff, WEf, ~ff, gff, Zvv, 799, and ggg. The decays to strongly-interacting particles are
likely very challenging due to QCD backgrounds that we have neglected. We note that some
detailed phenomenological studies on the effects of higher-dimension operators on 3-body
decays have already been performed. For example, [78] considers effects equivalent to some
of the operators above in the decay h — e~e®p~put, but not all of them. We leave further

detailed study of these effects for future work.
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_ SMEFT ¢ Unitarity
i oh21f CP | do,
Operator Bound
- ) © -
1 hZMpryupr + i(H'D,H)Q QL
0.6 5
- g hg Egrev E%ev
2 hZMppyuibr + i(H'D,H)ugy ug
3 hZW?/_JLO'W@ZJR + h.c. + QLU’“’URJ“I;TWEV + h.c.
6 = T
4 z'hZWzZLa‘“’wR + h.c. — iQLUWuRaaITIWN/ﬁV + h.c. ey e
_ = _ ~
5 | ihZF(Yrdur) +he. | + (HTD H)(QLD"ugr)H + h.c.
6 | hZtOu(YrvR) +he. | — i(H' D, H)D*(Qrug) H + h.c.
i 6 P Py
7 | ihZFOu(YrR) +he. | + (HTD H)D*(Qrug)H + h.c.
_
8 | hZM(¢r0uR) +he. | — i(HTDHH)( LD“uR)H +h.c.
> - = . QN ~ g
9 ZhZ,uzz (¢L7” aqu) + Z’H| weany (QL’VMO-GDVQL)
10| hZu 0" (Pry 1) - |H[2W** D,,(Qry,0°Qr) s
174 7 < 7 = pg E’%‘e\/ E’le"eV
11| ihZuw (bpy" 0¥ yR) | + i|H|*B" (ipyuDyur)
12 | hZ,0" (VY UR) - |H[>B* D, (ary,ur)

Table 3.3: Primary operators for couplings of the form hZ ff. As noted in the text, the hWW frf
operators can be obtained from the hZ f f operators by the replacement Zff — W ff’.
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, SMEFT ¢ Unitarity
i omnif CP | do,
Operator Bound
1| hF*9ro,r +he | + Qro"™urHB,, + h.c.
o S P Bl
2 | thF,YLo*yr + h.c. — iQro*urHB,, + h.c.
1 T i DE¢ . 20 ~ P
3 ZhF,uz/ (ZZ)L’VNaVQ;Z)L) + 7’|H| BMVQL’V/LDVQL
4 hﬁuuau (&L’YV?ﬂL) - |H|2§NVDM (QL%/QL) 04 1
o~ _ <~ 7 i 2 ~ _ hag E%‘ev ’ E’%‘e\/
5 ihF, (way“ 8”@/}3) + i|H|*B* (uR’yuDl,uR)
6 hﬁm/au (&R’YV'LﬁR) - ‘HPE"“’D# ('L_"R’YVUR)
7| ihF*™3,18,0R +he. | + iB" D,QrD,urH + h.c.
0.09 0.9
- 8 = =~ E%‘ev’ E%e\/
8 | hFM™ o pr0,p +hec. | — B*D,QrD,urH + h.c.

Table 3.4: Primary operators for couplings of the form hvyf f. As noted in the text, the hgff
operators can be obtained from the hyff operators by the replacement Fj,, — G ..
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SMEFT

¢ Unitarity

i orer CP | do,
Operator Bound
~ <> ~
1 hOHFeP FopZy + iH'D,Ho*B*? B, 5 o
! o ey
2 hOMFYPF,, Z, - iHTD,HO"B"?P By,
3 hF* E, 0, Z° - |7 iHTD,DPHB""B,,, + h.c. 2 Fa—
TeV TeV
4 hd, Fov Frd gy, 70 + HY 6% Ha, B B D, W9
0.02 0.07
9 E5 '’ E6
>~ 8 >~ aB TeV TeV
5 hF* Q¥ Fo50y Z,, + Hto® HB** 9% B, D, W,
6 hFH 99 F 050, Z° |, iHTDyyp HB* 97 By, + h.c. p10-7 000
ES ' B8
TeV TeV
7 hOHFYP Fu00,0° Z,, - iH'D,D? D, HO* B¥? B,» + h.c.
A ﬁ 6 o~
8 | hFH OV E,p0,(0,2°P +05Z,) | + iH'D, (D, + D",)HB**9" Bog + h.c.
o~ . o~ 21073 0.02
9 hOHFB OV Fopdy Zy + 19 iH'D, HO* B*® 9¥ B,g + h.c. B8y By
g g
10 hOMFYP 9% F,05Z, - iHTDyp HO* BY? 9% By, + h.c.
11 hO,Fov 8P FH3,0, 7 11 | HYo"HD,, W 8,8 5°BM +h 1073 41073
g pOvLas + 7 v WasOn +he Bley ' Blev
> v g —4 —3
12 hOREFP 07 Flug0y0p0° Zy - |1 iH' D" HO* B, 07 Byus + h.c. 110~ 110

8 ) 10
ETcV ETcV

Table 3.5: Primary operators for hZ~~. As noted in the text, the hZgg operators can
be obtained from these by the replacement F),, — G,
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SMEFT

¢ Unitarity

ohv99 CP | do,
Operator Bound
hD,G GH3 9, Fpos + HYHO,G* G 8, By
> ~ ,B >~
hG**D,G 450" F), + HYHG*"D, G 30" B,
9 0;_02 0607
E%CV’ ETc
hDsGH G0, FOP - HYHD,G"G,,,0,B°? v
hGH* Dy G0, FOP - HYHGM D,G,,,0, B
<~ o~ > o~
hDy G Dy, G 30", F78 + HYHD,G* D, Ga30%,B?"
> ~ <> ~
hD,G*8 Dy DG opd” FoH + HYHD,G*®*D, DG 50" B* 5 5
11 1-1707 441807
E E
MVH . vp _ T HVH . o TeV TeV
DG DG pd%, F HYHD,G"” D,G,,0% B
> >
hD*GYP Dy DG 87 F7, - HYHD*GYP Dy DyG8° B,
SMEFT ¢ Unitarity
o CP | do,
Operator Bound
>~ >~
hOo FOH D, Fopd, FoP + HTH9, B 8, Bogd", B°P
11 0.901 0.8004
PR > ETeV7 ETeV
hdy FHY 8 o Fy 0%, F1P - HYHO,B" 8, B,,,0%,BP
hOpupo FV8P° 99, Fy5 + HYH8,,p0 B* 877 B39, By
> ~ B g ~
hdpo FOH 8 ,,0°° Fo 0¥ F), + Bps B 9,0°° B, gd” B, 10-5 5104
Efev ’ BErdy
hOoagF*" 0o p FlupOy FOP - HYHO,05B"" 00pBupdy B
hO*BFHY 8, o5 Fup0u FOP — HYHO*PBMY 8,45 Bup0y B7?
<> ~ 5 <> ~
hOype FOH 3 ,,87P° F, 30" F, + HYHOppo B 9,077 Bozd” B’ e B
15 5-10 2-10
Vv

hONBERY 9y o5 Fpup Oy FOP

HYHO"*PBHY 9505 Bup8y B

Table 3.6: Primary operators for hygg and hy~yy.
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ohoggd SMEFT ¢ Unitarity
CcP do,
Color indices contracted with dagc ‘ Operator Bound
> o~ >~
hDy G D, GapDY, G + HTHD,G**D,Ga3D", G 5 5
11 1-10— 4-1807
Ed > ETeV ’ ETeV
hD~LGH DyG,,D°,G7P - HYHD,G* DyG,,,D% G"°
RD,p0 G DPT GO D, G o5 + HYHD,,0 G DP° G D, G o5
Ot/LH po Y vy B t Ot/LH po Y vy B
hDpo G Dy, DP? G DV G, + HYHD, o G** D, D’ Gop D" G,/ 10-5 310-4
13 “Zo s “Rio
ETeV ETeV
hDSP G D 3Gy Dy GOP - HTHD PG Dy G up Dy GoP
hDYBGHY Dy 5Gpup Dy GP - HTHD*PGH D 405G 1p Dy GOP
thpoGauDanpGGaBaVGu + HTHangGa“DanngaﬁDyG# 5.10-6 2.10-5
15 T iz
ETeV ETeV
hD"BGRY D ;o 6Grp Dy GTP - HYHD"BGH D ;o 5GrpDy GTP
ohoo9.f SMEFT ¢ Unitarity
CP do,
Color indices contracted with fapc ¢ Operator Bound
RGH Gy G, + HYHG* G, G, i
_ T _ Bey’ Bhoy
hGor GG s - HYHG*GP,G oz
hDHGYYGppDPG u + HYHDEGYYGYpDPGryy vor 0
9 5 I 6’
~ ~ ETeV ETeV
hD*G?? G o3 DPG o — HYHD*GP?G o3 DPG s
<> <>
hDHGYY Dy Gy DGy, + HYHDrGYY Dy Gy DGy, L,
; . ; Ll
RD*GP? DG o DG pe - HYHD*GP? DG o D" G o
<> <>
RAD7HGYY Dy Dy Glyp D0 Gy, + HYHDRGYY Dy DG p D Gy . .

o~
hDX®GP? Dy Dy G o D" G o

>~
HYHDX®GP? Dy DyG g D"P Gy

Table 3.7: Primary operators for hggg.
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SMEFT

¢ Unitarity

i OhwWy CP | do,
Operator Bound
1 ihWF W, F* + hee. + iD,HY D, HB"" + h.c. vor o1
5 T3 FA
~ ~ ETeV ETeV
2 ihWtew—8F, 5+ h.c. - iDPHYD*HB,4 + h.c.
Rg Rg
3 ihDFWF Dy W, F¥7 + h.c. + iD% H' DDy HBYY + h.c.
+<—> _ ,
4 hDWF DyW;; F¥7 + hec. - DY, HYD,D,HBYY 4 h.c. 0=3 108
7 . 5 I - 6
“ - Erev ' Erev
5 ihD, W+ D, W,” F*¥Y + h.c. + iD%, H' DD, HB* + h.c.
> g
6 ihW,I DyW, 94 F¥7 + h.c. + iDyH' Dy Dy HO* B¥Y + h.c.
7 ihDY W5, Wy F7# + h.c. + D*Wg HYe*D,HB'" + h.c.
8 hDYWE W, F7* + h.c. - iDYW@ Hfo*D, HB + h.c.
9 RW LW, 8¥ F#Y 4+ h.c. - iWe,H 02D, HO” B*7 + h.c.
e <> 5 S~ <> 5
10 hWD,W=7F% 4 h.c. + iWasD,y(Ho" DYH) B + h.c.
BT D W Wwe D (Ht 5
11 ihW D W=7F% 4 h.c. - ; WD, (H o DYH) B + h.c. -3 oo
—~ —~ E%e\/ ’ E%ev
12 RDPWEW, FO7 + hc. + iDPWeH 04D, HB%Y + h.c.
ol vy
13 thDPW W, FO7 + hee. - DPWasH 0" Dy HBYY + hec.
14 hW W, 0PFF 4 hec. + iWayH 09D, HO? B + h.c.
15 ihW Wy 9P Fof +hee. - Wa,HI oD, HOP B + h.c.
16 ihW 3, DOW, FPP 4+ h.c. - Wa,HYo* DY HBPP 4 h.c.
3 2 1.10=% 4.10=%
17 | shD* W5 D,DYW, F"? +he. | + | 9 iD*, H'D,DVD,HB"? + h.c. L 4y
TeV TeV
P g —~
18 | ihD,W0oW=°TFP? £ he. | — 9 | i€ HIHD W Do WP TWer? the. | 502, o7
TeV TeV

Table 3.8: Primary

operators for hW W+.
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SMEFT

¢ Unitarity

i orz7 CP | do,
Operator Bound
g <>
1 hZy, 8~ 2y OV FHY - D, H' D, D, H3" BH
<~ - “— _ 10-3
2 hZ® 9,280 Fupg + 7 DYHTD,DPHO?Bug + h.c. 3E1%1v , EO%(”V
e v I TH v
3 hOHZy B o Z, F¥Y - D H'D,D,HB" +h.c.
4 RO Zyyy Zoy FH - iDYWS Hig®D, HB + h.c.
By 0.03 _0.3
! By’ Bhev
5 R Zry 1 20 0¥ FHY - iWe, HY 0" Dy HOY B*Y + h.c.
~ g —
6 hZ.,50 ,ZYF°P + iWsDp(H 0" DYH)B? + h.c.
= . — 0.03 0.3
7 hoPZ,5Z, FOY + 7 iDPWAH 0" D, HB®Y + h.c. Bi B,y
8 hZop Z,0P FOB + iWa,H 09Dy HO? B + h.c.
z a0p paf Gra B t,a op paB 2.107%  0.02
9 hZop d o Zpd°PF + 9 W2,Do(H'0%D,H)97? B*# + h.c. e B
> o >
10 RO Zy 8 p D Z, 0P F¥ - DY H'D,D.,D,H8 B"Y + h.c.
p o2 , P gy , 2.10-% 6.1074
11 RO ZY B p D~y 2, OP FHY - 9 D,*HYD,D, D, HO? B* + h.c. ETu " ES.y
> > o
12 RZH p O o 2y O FVY - D*H'D,D~,D, H",B"" + h.c.
T g 21073 0.08
13 RO Zyuny O p 2y OP F Y - 9 iDYWg, D,(H0%D, H)9? B + h.c. B B
~ Axdi g >
14 hZ.,50 40 ,Z79° FO° + WDoDy(H 0" DYH)8? B + h.c.
~ & —~ & .10~ 3
15 hoP Zys5 0 o 2,07 FOY + 9 DPW Do (H1o* Dy H)° B + hic. D wll
>~ >~
16 hO®ZP O 5 Zop0° FP8 + (HTaaDaPH)DUW;BaJBpﬂ +h.c.
a9 =g =g 11075 4.107°
17 | hd"%2,0,0,072,0°Fr | — 11 D", H'D,D,DYD, H3" B'? + h.c. B9 BT,
~ Audhnd — > o — —
18 | hOpZy50y 00 257N FPT + | 11 | HIHD,W%DyDy W 975 + h.c. 1};%0€V3 , 4;%1:

Table 3.9: Primary operators for hZ Z~.
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SMEFT

¢ Unitarity

i ohwwz CP do.
‘ Operator Bound
1 hW LW =FZY + hee. + Hio*DFHWE,HI DY H + h.c.
2 W5 W—HZY 4 hee - 5 iDFH' gD HW e
g e wv Erev’ Etev
3 ihZ WHW =" + hee. —~ iDFHTo* DY HW,
>
4 ihDFW YW, Z, + h.c. + iH'D,H (DyH'Dyy H + hec.)
>
5 hRDFW YW, Z,, + h.c. - iH'D,H (DyH'Dy H + hec.)
5
<«
6 ihDFW W, Z,, + h.c. + iH'D,H (D, H' Dy H + hec.) 210-% 0.8
PN E4C ’ Eéc
7 hDPFWH W, Z,, + h.c. - iHD, H (DyH' Dy H + h.c.) e
8 ihZMWE W + | s iD,H 0" D, HWan o
9 RO ZVWE W, + hec. — 5 iHtD*"HD,H'D,H + h.c. 454073 , EO(;OS
TeV TeV
— <> —
10 hou Wi, W =B Zk 4+ h.c. + iH'D, HDFW P W2,
— > —~
11 o Wi,W=eBZ1 4+ hee. - i Hi 0" Dy HDFWPPWE 5
~ g —
12 ROFW L, ZPW, + h.c. + e Ht gD, HDFWOAWE ) + h.c.
af of 0.03 _0.3
= 7 © —~ Biev’ Bev
13 hoHW I, ZoPW, + hee. - ic**H1o D HDFWPBWE 5 ‘ ‘
—~ g —~
14 hot ZogWHeBW, + h.c. + ¢***HTo% D, HDFWPPWE , + h.c.
— g —
15 ihOM ZagWHePW,, + h.c. - ic**Ho D HDFWPPWE 5
16 | hOHWHOW,,0°7, + h.c. + DreHY G DA, HW S, + hec.
17 | ihOFWHeW 07, +he. | — iDke T D, HW 4 + h.c. oot 008
. 7 _ &5
18 | ihd“WI W 0478 +hec. - iD% Hio*DHPHWS ;5 + h.c.
19 | ihd*WFW;0°Z¢ + he. - iD%, H o DPHHW ;5 + h.c.
20 RO W, F0PW,; Zy + h.c. + DM HYDP,HHTD,H + h.c.
21 ROFYW S OPW,; Z,, + h.c. - iD* HT D, HHT D, H + h.c.
22 tho** W or Z, W, +h.c. + DM HYD,HHTD?, H + h.c.
+ —_ .
23 hoM* W 0P Z, W, + h.c. - iD"" H'D, HHT D, H + h.c. 210=% 21073
! Bv " Fiev
24 | $hOM Z,0PWEW, +hec. + DP,HTD,HHID", H + h.c.
25 hOMY Z,0°PW,F W, + h.c. - iD?,HYD,HHT D" H + h.c.
26 | tho*W,F 0¥ W, 9 Z, + h.c. + DY, HTDY,HHTD’, H + h.c.
27 | hOMWF W, 0P Z, + h.c. - iD", H' DY, HHT D", H + h.c.

Table 3.10: Primary operators for AW W Z.
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SMEFT

¢ Unitarity

i Ohz2z CP | do,
* Operator Bound
1 hoHZ¥ Z,, Z,, -1 5 iHTD*W HHYD, H + h.c. 51073 " 004
ETcV ETcV
2 Y VALY + 7 z'DMWwB”VT/;/BHTDHH+h.a 0.0 ©_0.3
ETcV ETcV
~ > — g —
3 W Zopg 0 uZ®)orZ8 + 7 W3 Du(D*HTo*DHFH) + h.c. 3‘]51#3 o
TeV TeV
4 hOMY ZP8, 2, Z, - iHTDMPHHY Dy H + hec.
5 hOHZY 8, ZP 0,2, - iHIDWHD,SHI D,y H + hec. 510-4 3.10-3
< And Egrev ’ E’%ev
6 h(OFZY 8 pZ,,)0P Zy, - i(HT D" H) 8 ,(D,H D", H) + h.c.
Ed A d
7 h(O*ZY 8 ,2,)0P Z,, - iW(HY D" H) 3 ,(D,HDP, H) + h.c.
>~ >~
8 h(O*ZB 9 4 Zop)0P Z,, + . i(DFW B D, Wi )HI DF H + h.c. 510=% .02
6 787
uzaBy 13 S DEVeaB) D i PV @ Frev ” Frev
9 h(O"Z%P 8 pZ,)0P Z o + i(DFWaB)D,(HT Dy H)DPWE 5 + hec.
> o~ — >
10 h(O*Z* 0 pZ0p)0PP Z, + WgﬁDp(D#aHTaan’iH) + h.c. 210-% 6104
9 A7 ’ AS
o~ g hug E e E e
11 MOV ZH D pZe3) 00, 2P + W, Dp(D*HH1o" D’ H) + h.c. eV e
g <>
12 h(O*Y ZP 0 50pZ1,)0° Z,, - iW(HTDM*PH) 8 o (D, HT D7, H) + h.c.
<> <>
13 h(OMY ZP 8 5 20,)0%, 2y, - . i(HTDMPH) O o(D,HI D, H) + h.c. 210-5 2.10—4
8 ) 10
or v 'S 14 _ CHY Derv N S T po Brev ~ Brev
14 h(9PHZY 8 50y 2,)0° Z,, i(HYDPHY H) 3 D, HY DO, H + h.c.
g <>
15 h(OPHZY 8 50, 2,)0° Zy, — i(HTDPHY H) 0 5 (D H' D9, H) + h.c.
> ~ <> —
16 | h(0FZYP 0 05 Zap)0P Zy + i(DTFW P Dy (DeWa3)HIDF H + h.c. 10-4 1.10-3
11 ‘877 '10
o p aﬁH o7 i(DoHV e D tga PV G Frev " Prev
17 | hOHFZYP D p0s2,)0P Zug | + i(D7HWeeB) Dy (H 0" Doy H)DPW 5 + hec.
<~ ~ P <>
18 | h(87MZ%8 05 Z0p)0PPZy | + (Do W) Dp(D# H o DPY H) + h.c. o=5 a10-5
11 9 =10
19 | R(O7Z1D 8y Zos)0 2P Dy Wa,)D,(D°mHi6o D PH) + h Frev - ey
( pOo a[i) 7 + (Do a@) ol o I )+ h.c.
d <>
20 | h(OVHYZP D 40y pZu)0% Zy, — i(HYDY"P H) O o (Drypp HY D2, H) + h.c.
> > 10-6 1.10—5
21 | (@M ZP0,0,2,)0% %, | — | 11| i(HIDYPH)O o (Day HID%, H) + he. | piv—s e
g >
22 | h(OVPEZY 0 50yp2)0° Zy - i(H' D" H) 8 o (DypuHT D%, H) + h.c.
> ~ nd —~ — —
23 | h(0"HZ%F 0 yOyo Zap)0P Zy | + | 13 | i(D"7HWB)D (Do W) H DA, H + hc. | 81070 1072
ETeV ETeV
> ~ —~ >
24 | h(OMHZ% D yOnoZap)OPPZy, | + (megﬁ)p,,(DWHQHTUGDP%H) + h.c. 2 10=7 2.10-6
13 T P12
25 | W87 Z45 ,0, 5 Z1)008 Z D" WD, (Dyd" H 0" DPP, H) + h Frev - Pev
( B89 pOns ) H + ( 55) o(Dno o wH) + h.c
g <>
26 | h(O"MPYZP O 6OnypZu)0° Zy | — iW(HT D™ DPH) 8 6 (Dyrypp HI DO, H) + h.c. 610-F 6.10-7
13 17— 514
> — E, E o
27 | WO ZY 8 5Oy Zp)0°P Zyy | — i(HT D" HYOy (Dyryup HT D76, H) + hec. v

Table 3.11: Primary operators for hZZZ.
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SMEFT

¢ Unitarity

Ohhif CP | do.
Operator Bound
Rk + hc. + H'HQHug + h.c.
5 e
7 — o~ TeV TeV
ih*Prir + h.c. - iH'HQHup + h.c.
— <~ _ <~
10" hOY hi)p 1y, 0,91 + iDPHTDYHQ1v,D, Q1
8 JYL92109
_ g Ead TeV
iOhO” MRy, 0 bR + iDFHTDYHigy,Dyug

Table 3.12: Primary operators for hhff.
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SMEFT

¢ Unitarity

Qhrww CP do,
) Operator Bound
R2WFW = + 4 HYHD,HTDHH E%i,’ﬁ
W2 Wik, W=k + HYHW 2, Wanw o
6 E2 I E4
2y + 7 —uv + a Tirapy TeV TeV
=W, W - HTHWS,W
ho* hW i W - 6 HYD#HD, H' D, H + h.c. o, 5
ihom hW W, P 4 hee. + 8 eabe Hig* DP HWY WP + hec. Bl B
hoR DWW, ¥ 4 he. + HIDWHH' 0D, s HW." + h.c.
ihoH* hD, W W, # i he. + cabe Higa D HHTob D, s HWS + hc. e
8 ES b ESA
. -8 be 7t ~a Puv b B TeV TeV
iho" hD W W, P + hee. - e Higo D HHYoY D, s HWSP + hec.
hoRhD W W, ¥ + hee. - HIDWHH' 0D, s HW.® + hec.
SMEFT ¢ Unitarity
ohhay CP | do,
Operator Bound
hZFU«VZ v + HTo.a,HWLzu,VB v
. " 2 10
6 E2 ' g4
~ —~ TeV TeV
h2 Fu 71 - Higo HWar B,,,
hOS hEH Zyp + Hto%D,f HWa,,B* + h.c. EO%??/’ E%;?v
> PGS .
h0, 0 hFH 0P Z, + H'D,D,HH' D", HB"" 4 h.c. B0 0.2
8 TeV TeV
oS REM Zy - Hto%D,f HWayp, B* + h.c. fg;i ) E%gv
> ~ o & ~ —
hd 0 yhIH 0P Z, - H'D,D,HH'D?, HB"" + h.c. 8-E1§f VB , Tgfv
SMEFT ¢ Unitarity
o CP | do,
Operator Bound
h?Fyu FHY + HYHB,, B
6 E22 7 E}lo
2 Ny t Buv TeV “TeV
h2F,, Fr - HTHB,,B
ho', hFo FYe + 8 HYD* HBaB"® + h.c. EZ;OQ 7 Eo6.9

TeV TeV

Table 3.13: Primary operators for hhAWW , hhZ~, and hhvyy. As noted in the text,
the hhZZ primary operators can be obtained from the hhWW operators by the re-
placement W, — Z,, and the hhgg primary operators can be obtained from the hhy~y

operators by the replacement Fj,, — G, .
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SMEFT c Unitarity
i OthhZ CP d(‘)i
Operator Bound
& > .
1 (ha,,auh> VAL - 7 iH'D,D,HHTD* H + h.c. = 03
TeV TeV
& < o s
2 (amaw,,am) Y hzt - 9 iDYH'D,D,D,HH'D*H + h.c. % %
<> > —
3 | €apy60"7%hOns 8 ,0PhOPOTRZS + 13 €aprs D" *HY Dy D,DPH DSHTDPYH + hec. 8&%;
SMEFT ¢ Unitarity
i ohhhy CP | do,
Operator Bound
> ~ > ~
1 AM°hdy 8 0P hOPhE, g + Dn°HT Dy D,DPHHTDP HByp + h.c. s a
<> 13 <> 8'E19I(?V ’ SE%%‘OlV
2 0P Hhdpg 0 4OV ROV hE ), - DrerHT D, DyDYHHTDYHB,, + h.c.

Table 3.14: Primary operators for hhhZ and hhh~y.

3.6 Conclusions

This chapter has analyzed the most general observables that parameterize the indirect effect
of new heavy physics at colliders. An important conceptual point is that the space of these
observables is finite, with a finite basis that can be enumerated. This can be most easily
seen in the language of on-shell amplitudes: any local amplitude can be written as a linear
combination of a finitely many ‘primary’ amplitudes, each of which is multiplied by an infinite
series in Mandelstam invariants. Under very general physical assumptions, the additional
Mandelstam invariants are suppressed by powers of a heavy mass scale M, and the leading
approximation is given by the first nonzero term in this expansion. Each primary amplitude
can be associated with a local operator, up to the usual ambiguities from integration by parts
and integration by parts. However, these ambiguities do not change the on-shell amplitude,

so we can make the simplest choice when defining the operator basis.

The major results of this chapter are a systematic method for determining all primary
operators, and an explicit determination of the 3-point and 4-point primary operators rel-

evant for Higgs signals at colliders. The 3-point on-shell amplitudes have no Mandelstam
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invariants, so there is a finite list of 3-point operators, which has previously been found in
the literature Refs. [16,/61,66]. Partial results for primary 4-point functions have been given

in [1663], and our results agree where they overlap.

The correspondence between local on-shell amplitudes and EFT operators has been in-
valuable in this work. For example, we found that if the on-shell amplitudes are expressed
in a specific set of kinematic variables, the amplitudes can be treated as polynomials in the
kinematic variables for purposes of determining the linearly independent amplitudes. This
allows us to efficiently and reliably determine the independent amplitudes. The Hilbert series

that counts independent operators is also an invaluable check on these methods.

The primary operators are a natural set of observables for searches for new physics at
colliders, and they can be matched onto theoretical models or EFT frameworks (such as
SMEFT or HEFT). We have considered the unitarity and precision electroweak constraints
on these observables, and made a first pass at determining which may be promising for
searches for new physics in Higgs decays. In particular, the three-body decays into Zff,
WFf, ~vff, and Z~y are estimated to be of interest at the HL-LHC. Investigating the

phenomenology of these observables is an obvious direction for future work.

It is our hope that this framework will prove useful for the LHC program of constraining
(or discovering!) the indirect effects of new particles too heavy to be produced. Under the
general assumptions made here, the primary observables are independent of each other, and
experiments can measure them without worrying about correlations with other observables.
These results can then be compared with predictive theoretical frameworks. In subsequent
work, we plan to study experimental strategies for carrying out such searches and reporting
the results in a way that can be compared with searches in other channels, or in future

colliders.
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Chapter 4

Top Yukawa Coupling at the Muon
Collider

This chapter is taken from [6].

As explained in the introduction, we are interested in deviations in the predicted SM
Higgs couplings because they may indicate the existence of new physics. In constructing
effective field theories, we integrate out particles with masses above a certain scale, which
introduces new interactions among the light particles and SM coupling deviations could
be indicative of such interactions. In this chapter, we discuss a few of these anomalous
couplings in the context of a high energy muon collider and provide a detailed analysis on

the measurement of the top Yukawa coupling.

There are two common experimental methods for detecting new physics. The first, preci-
sion measurement, involves measuring parameters at particle pole masses [79,[80] to search
for deviations from the SM predictions. The second, direct resonance searches, uses the
kinematic variables of the decay products to detect evidence of new particles. Specifically,
peaks in the distribution of such variables (particularly invariant mass) could indicate new

particles.
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In searches for anomalous Higgs couplings, we benefit from energy growing behavior |14]
(see |73] recently for the on-shell derivation). We also discuss this feature in detail in Chapter
2. Experimentalists have used this fact in combination with the high energy bins at the LHC

to conduct precision measurements [81-84].

In addition to hadron colliders, high energy muon colliders also seem promising for new
physics searches [5,18,85-112]. The muon collider is able to reach energies = 10 TeV and
maintain low systematic uncertainty with a potential high integrated luminosity of

(VALY 1
L_<1OTeV x 10ab™", (4.0.1)

which allows us to better constrain measurements. For example, muon annihilation elec-
troweak processes with di-fermion and di-boson final states can achieve percent-level pre-
cision in the = 10 TeV bins [107], effectively probing the 100 TeV scale.E] Furthermore,
because the electroweak gauge boson parton distribution functions grow logarithmically, we

can consider a high energy muon collider as a gauge boson collider [5]8,89].

In this chapter, we are concerned with the prospects of measuring the top Yukawa cou-
pling at a high energy muon collider. We begin with a general analysis of signal significance
for vector boson fusion processes given anomalous couplings, followed by a more detailed
analysis of WTW~ — tf. We then examine the sensitivity to the top Yukawa coupling in
VBF production of ¢f and briefly present results for ¢t¢h. Finally we summarize our conclu-

sions.

4.1 General Analysis of Weak Boson Fusion Processes

In this section, we will study the energy scaling behavior of S/v/B and S/B in the presence
of anomalous couplings for the weak boson fusion processes in the two particle final states

at the high energy muon collider. We will focus on the hard scattering regime where the

L This is higher than the flavor physics scale in composite Higgs scenarios. [113,114]
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scattering angle is in the central region, i.e. —t ~ § = E?. We start from the analysis of
the partonic processes VV — XY and then employ the Effective W-boson Approximation

(EWA) |115-117] to analyze the energy scaling at the u*u~ collider.

4.1.1 Energy Scaling Behavior in WW~ — XX, Z7 - XX, WZ — XY

As a preliminary step to understanding the energy scaling behavior of processes at a muon
collider, we consider the simpler problem of VV — XY where the V stands for a W or Z
boson and X,Y can be any SM particles with electroweak charges such that the processes
have non-zero tree-level contributions. We can later relate the results from this analysis
to utp~ cross sections by the Effective W Approximation [115-H117]. Restricting to 2 —
2 processes where the initial state contains two massive bosons, we can express our cross
sections schematically in terms of amplitudes as:

ManMs, M3y,

Oint ™~

where Mgy refers to the SM amplitude and Ms, refers to amplitudes containing BSM physics.
As only the energy scaling is concerned here, we also neglect the possible phase of the
amplitudes. Note that we also study the hard scattering regime which is away from the
possible scattering angle singularities (mainly from ¢-channel or u-channel). Then given our
processes, Ms, is linear in the anomalous couplings ¢; and we see that o;,,; is the interference
term. We start from the analysis by assuming that we can exactly measure the helicities of

the initial bosons and final state particles, so we are really considering;:

Shl...h4

T (4.1.2)

where the signal in the helicity configuration S is linear in the coupling modifier §;. In
what follows, we only consider the SM process VV — XY as our dominant background. It

is straightforward to see that under our simplified assumption, for the case where statistical
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error dominates, the dependence on the SM amplitude of the statistical significance cancels

out:
hy--h
Shl...h4 O.hl ha M 1 4
int 0;
— ~ ~ (4.1.3)
N hiha E
SM

Note that we have neglected all the constant factors, like the integrated luminosity. Then
we can see that in order for the significance to grow with energy, M;, must be at least
quadratic in E. This is certainly true for the Higgs gauge boson coupling modification in the
vector boson scattering processes V.V, — V;V;, and for the anomalous gauge boson fermion
coupling in the V;,V;, — ff processes. However for the top Yukawa coupling, we only have
linear energy growing behavior and we expect that the significance stays constant as the bin
energy increases. This does not mean the high energy bins are completely irrelevant, as one

can still improve the significance by combing all the energy bins.

In reality, we cannot measure the helicities of the final states exactly and there is always
contamination from other helicity categories. At the muon collider, it will likely be difficult to
determine the initial gauge boson helicities, especially for the W+ bosons. We now consider
the inclusive case, where we sum over the cross sections from all the helicity configurations

for the initial and final states. In this fully inclusive case, the statistical significance scales

like:
hi...ha
S Zhl...h4 Oint

Y
hi...h
\/E \/Zhl...}m O-S}W *

where we have used the fact the inclusive SM cross section has the following energy scaling:

1
~ ) Ml (4.1.4)
Eh h
4

1
> ok~ (4.1.5)

2
hi...hg E

We can see that in order for the significance to increase with energy, not only should the BSM
helicity amplitude Mf;;'“’“* grow as E2, but the corresponding linearly mixing term Mg‘f\&"h“

should also stay constant as the energy increases E| Before studying the energy scaling of

2 When taking into account the angular distributions of the decayed products of final particles, the require-
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s X<

Fig. 4.1: Tree-level diagrams for WTW ™~ — tf. The gauge boson propagator in the last diagrams
can be either Z or ~.

the weak boson parton luminosity in detail, we comment on the systematic uncertainty. If

the systematic error dominates, the signal significance becomes:

Shl...h4 0.h1-"h4 Mgl”'m

int
~ ~ i 4.1.6
Bhl...h4 O_gﬁ/-[--hzl MFSLII\/[}M ( )
while for the inclusive case, it reads:
S O_hl...h4
P Zhl...h4 int =~ 2 : Mgllv.[‘.hlegil-..hzx (4_1.7)

B - hi...
Zh1-~~h4 USM hi--hg

In the exclusive case, since the SM helicity amplitudes M'Slllv'["h“ are at most a constant for

the 2 — 2 processes, any energy growing behavior in the BSM amplitude ng"'h“ will lead to
enhancement of the signal significance at high energy bins. This is especially the case at the
hadron colliders like the LHC, as one generally has large systematic errors ranging from a
few percent to tens of percents. For the inclusive case, similar to the statistical uncertainty
dominance, we need both ng"'h“ to increase with energy and M}S‘M'h“ to not decrease too

quickly.

4.1.2 Anatomy of WYW~— — it

In this subsection, we focus on the VBF production of the top pair and study in detail the
helicity amplitudes of the subprocess W*™W ™= — ¢t in the presence of anomalous couplings.

The relevant Feynman diagrams are shown in Fig. [£.1} For completeness and also for future

ment may be relaxed as different helicity configurations of XY can interfere with each other |118}/119].
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Table 4.1: High energy limit of the Helicity amplitude for WTW ™~ — tf with h; — hy = F1. Here

mgsm denotes myy, my, my,.

(ht hf) (hW+hW—> M%lx+hw4ht hi ]I?‘/Svl\fhwf;ht hi
(+1-1),(1+1)| il O(duwsn)
m2 Co2E2 s2,(Ay—
1 (+1 +1),(-1-1)|  O(™5) R N
2 2 m >
(+10),(0-1) | O(™4) (097, 0K 27, Owin, 071, Az)
(_]‘ 0)7(0 +]‘> o<m§M) o mgM (691Zv 5I€Z7’y7 5Wtb7 5ZtL7 )\Z,’y)
(0 0) e %W (=34 45%,)(6kz + Oz¢,) + 60wy — 45%,0k,))
(ht h{) (hWnLhW*) ?LI\M/{+}LV¥7;M hz ]f?fvl\fhvg*?ht hi
(+1-1),(-1 41) O(7¢) O(=3)
(+1 +1),(-1 -1) O(™au ) [ V205 B2 00 0z)
(l _ l) ’ L2 A 3m3,
P (+10)000) O(=) |0 (L (697, 0k 2. 02t0: A 2)
(-1 0),(0 +1> O(%) O mgM ((59127(5%277,52”%,)\2’7)
(00) i\/éggQ + %2(2—\{?219) iﬂgjj%Ez (0kz — 0Ky + O715)

possible studies, we also include the anomalous triple gauge boson couplings (aTGCs), the
gauge boson fermion couplings and Higgs gauge boson coupling. The full formulae and
the conventions are presented in the Appendix |C| (see Ref. [37,[120] for tW — tW helicity
amplitudes). Here we discuss their high energy and threshold behaviors. We start from
the high energy hard scattering limit and consider the central region, where 1 £ cos#@ is
large enough to justify our expansion. As before, we denote E = /5. The results for the
(+3.F3
Table while the results for the helicity-violating configurations i.e. (h, hi = (£3,+3))

helicity-conserving configurations of the top quarks, i.e. (hy, hi )) are listed in

are presented in Table The energy scaling for the helicity partonic cross section and the
exclusive statistical significance is given in Table [£.3] Several comments are in order. First,

for the SM helicity amplitudes, only the following helicity configurations survive in the high
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Table 4.2: High energy limit of the Helicity amplitude for W+*W ™~ — tf with hy — hy = 0. Here
mgm denotes myy, my, my,.

(he hi) e R L MG she hy
(+1-1),(-1 +1)|  O(™4) O (™24 by )
3
(—l — l) (+1 +1) ( S ) 0 WSM>\27
2 2
(1) o(z54) 0 (L2
<+]‘ 0)7(0 _1) O(WLESQM) V) 5glz)§,€Z,Wa6Wtb7AZ,’Wétha(SZtR)
(-10) Z'QQW O (097, 0K2,y, Owihs A zys 021, 02t
(0 +1) O(=£1) O 591 0K 2 OWins N2y Oty 5 Ozt )
(00) O(=1) - (5hWW + Oten + O(0K 2,4, 6211, 02t5))
(ht h[) (hw+ hwf) M%i\//{vﬁ- hyy— ihe b Mgfvl\fhw— shy hy
GFT-D,(1+T)| O O o)
o (+1 +1) O () O(nfMAZv)
RIS O£ Mz)
m@‘?’ mgm 2
(+]‘ O)’(O _1) O( %S;w) V) (591275’%2,7751/1/7%7 AZ,’yaCSZtLv(SZtR)
(_1 0) O(nIE“S;VI) V) (691Z76HZ,775WH)7 >\Z,775ZtL75ZtR)
(0 +1) 197 o) O (697, 0K 2., Owins A2y, 02ty 5 Ot )
g =
(0 0) O(mEM) Zg4nTZ€VE (5hWW +5tth+O(5’€Z,775ZtL75ZtR>>
energy limit:
1 1 1 1 1 11
(hW+7hW77ht7ht) - (i17$17_§7§)7 (OaOa:Fiaj:E)a (_170a_§7_§)7 (0717§a§>
(4.1.8)

The results can be understood by using the Goldstone equivalence theorem and by working
in the electroweak-symmetry-unbroken phase of the SM where the Goldstone scalars ¢.
appear as external states and the SM gauge bosons and top quarks are massless particles.

For the longitudinal W* bosons processes, we can see that the SU(2); x U(1)y quantum
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numbers of the top quarks appear in the helicity amplitudes:

Tf(trr)g” + Y (tr)g" (4.1.9)

where TL is the third weak isospin generator and Y is the hypercharge. The presence
of the SM top Yukawa coupling squared term m?/v? associated with ¢-channel pole in

the (0,0, %, —%) configuration is due to left-handed bottom quark exchange diagram in the
¢T¢~ — tt process. Note that if the bottom quark mass were not set to zero in our calcula-

11

tion, there would be a similar term with mj /v? in the (0,0, —3, ) configuration. Following

this reasoning, we can understand the processes involving only one longitudinal gauge bosons

W*eT — tt.
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— tt in different helicity categories with different

anomalous couplings. The results for dp 7 has the same behavior as d;;, and therefore are not shown here.

Table 4.3: Energy scaling for cross sections and statistical signal significance of W+ W

ZlB
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5=
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Secondly, we can see from the Table that for the anomalous triple gauge boson
couplings dk 7, in the (:F%, j:%) top quark pair helicities and the anomalous top quark elec-
troweak coupling Oy, 071, (62¢5) in the (—3,2) ( (3,—1)) top quark pair helicities, the
helicity amplitudes from longitudinal gauge bosons scale like E?, while the SM contributions
stay constant in the high energy limit. As discussed above, this means that for both the ex-
clusive channel with all the helicities of the particles fully measured and the inclusive channel
where all the helicity configurations are included, the statistical significance scales like E,
which results in larger sensitivity for higher energy bins. However, for the modification of
the top Yukawa coupling 4, in the high energy limit EL the helicity amplitude only grows
linearly as E in the (0,0, :F%, :F%) helicity configuration and the SM contribution decreases
like 1/E. This in turn leads to the constant behavior for the statistical significance in the
exclusive channel and decreasing statistical significance as O(1/E) in the inclusive channel.
This means that in the realistic case at the muon collider, the sensitivity on the top Yukawa
coupling from the electroweak top pair production would mostly come from low energy bins.
The high energy muon collider benefits us from the growth of the VBF cross sections, i.e.
the enhancement of the vector boson parton luminosity. We finally note that for the case of
systematical uncertainty dominance, the significance grows as energy increases for all anoma-
lous couplings in the exclusive channel. For the fully inclusive channel, the significance grows
as B2 for the anomalous couplings 0Kz ~, Owiw, 07ty , 0 zt,, Dut stays constant for aTGC Az,

and the anomalous top Yukawa coupling dy,.

Now we examine the threshold behavior of top quark electroweak pair production. We
expand the helicity amplitudes in terms of the top quark velocity §; around the /s ~ 2m;.
For simplicity, we also keep only the leading power of m%u »/m?. The results are presented
in Table for the helicity configurations (h;, hy) = (:F%, i%) and listed in Table for

the helicity configurations (h, h) = (F3, F3). We can see from the tables that all the SM

helicity amplitudes arise at the zeroth order of top quark velocity (Y except the helicity

3 Likewise for the anomalous Higgs gauge boson coupling &, , as only the combination of 8y + Spww
appears in the helicity amplitudes at linear order.
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Table 4.4: Threshold behaviors of the Helicity amplitude for WTW ™~ — tt with h; — h; = F1. Here

2

we keep the leading terms in the top velocity 5; expansion and mnVIVQ’Z expansion.
t
(he hi) (hw+ hyw-) M%xww,;hthg -Mgvsvl\fhw,;htht—
LD+ | 0(8) —0(wa)
g2 g2 (3A 24852, (A\y—Az))m
(1 £ 1) (+1 +1),(-1 -1) —i52s i NS L
. ®m m
PV 10,00 | =i |0 (2 Owi Az 097 0Kz, 21, 011
N th m
(-10),(0 +1) —li T 0 <ﬁ()\z,m591Zy5/’€z,7,5ZtL,5ZtR)>
- 2m2 . 2(—3(6ﬁz+52t )—‘1-482 (26}{2—26I€ry+62t +6Zt ))mf
(00) v i L LT0%tp
myy myy

configurations for (hy+, hw-) = (£1,F1) as they arise from the J > 2 partial waves. We
also find that for the processes involving the longitudinal W bosons, there is an additional
factor of m;/my enhancement for each longitudinal mode. For the anomalous TGCs 0k,
in the helicity configuration of the longitudinal W= bosons and Az in the helicity configu-
rations (hyy+, hy-) = (£1,+1)), the amplitudes at threshold are enhanced by m?/m3, for
all the helicity configurations of top quark pair. Since the SM contribution to amplitudes of
(hw+, hw-) = (£1,+£1)) at threshold are not suppressed, it provides an interesting possibil-
ity to measure aTGCs Az, which we leave for future studies. For the top Yukawa coupling
modification dyy,, its leading contribution to the longitudinal W* gauge boson arises at order
B¢, which means that the linear BSM helicity cross sections arise at 32 E| The statistical
significance will scale like Bf /2 in the small [; approximation and we need to have sizable

top quark velocity to achieve maximal sensitivity.

We finally comment on the scattering angle 6 distribution, where 6 is the polar angle
between the outgoing top quark and incoming W™ boson. As is well-known, there is a
t—channel singularity in the cross section of this process, which can seen from the high
energy limit in Table and appears in the helicity configuration (hy+,hy -, hy, hg) =

(—1,+1, —%, %) Note that to obtain the # distribution for the helicity amplitudes, one needs

4 The extra 3, comes in because the final two-body phase space has linear dependence on the velocity of
the top quark.
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Table 4.5: Threshold behaviors of the Helicity amplitude for WTW ™~ — tt with h; — hy = 0. Here

2

we keep the leading terms in the top velocity 5; expansion and 2 Z expansion.
my

(Bt he) (hw+hw-) M%xww,;htht— Mil?vsvl\fhw,;htht—
LD D[ o) — O{in)

( X 1) <+1 +1),<—17—1) i92i274c080 g (3/\2+85W6(2;/2V;>\Z))mt cos 6

? ? (+1 O)?<O _1) 9222;;, 0 <7nm_‘;,(5Wtb7)\Z,’w6glz75/€Z,775ZtL75ZtR)>

(L0),(041) | —ig?gae O (22 (2,097 0K 213021, 0211 )
ZQZ(—36(I{2+5ZtL)+45‘2/V(26NZ 26N7+6ZtL+6ZtR))m%COSQ
9 m? 6m
(O 0) “lom 7 COSG —H ﬁt(5tth+5hww)
(mh 4mt )m%v
(hehe) | (hwshw=) [ MGE 0k, Mo, ihehs
(+1-1),(-1 +1) O(5) O(Bidw)

(+1 —|—1),(—1,—1) 7/g2 :I:2+cos€ 92(3/\24-88%4/()\7—)\2))7”% cos 0

2
6my;,

o
22 (‘l’l O),(O '1) Zg 2mW 0 <TT_V;(5Wtb,)\Zm591Z>5/432m5ZtL75ZtR)>
(_1 O)7<07+1) 92223‘, 0 (nTVtV ()‘Z,w591275RZ,7,5ZtL75ZtR)>
. g2(736(nz+62%)+4s%‘,(26n2726n7+62%+JZtR))mf cos 6
-g2m? 6m2
(O O) Z2m ; COSH 229 mtﬁt(étt‘;v+5hww)

(m 2* )mW

to bring back the Wigner d-functions. For the ¢-channel singularity, the relevant functions
are as follows:

1 1
d2_27_1 =3 sinf(1 + cosf), d2_| = ~3 sinf(1 — cosf) (4.1.10)

We can see that for other helicity configuration (hw-+, hw-,hi, hi) = (+1,—1,—3,3), the
t-channel pole is cancelled by the kinematical zero in the Wigner function dj ,(#). The
differential helicity cross section with respect to cosf for the t-channel singularity in the

high energy limit scales like:

dohwhw =)= 6in2 9(1 4 cos0)2 (1 + cosb)?
dcosf (1 — cos )2 1 —cosf

(4.1.11)
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which strongly peaks in the forward region with an enhanced factor of s/4m?. On the other
hand, the anomalous top Yukawa coupling d,, appears in the longitudinal gauge bosons

helicity configuration and the differential cross section in the high energy limit reads:

do—(hW+ shyy— )=(0,0)

2
Toos 0 sin” 0 (4.1.12)

which has its maximum near the central region 6 ~ /2. This means that at the high energy
bin, the sensitivity on the top Yukawa coupling measurement will mostly come from the

central region where the transverse W-PDFs are suppressed.
At the threshold, the top quark pair production from the longitudinal gauge bosons fusion

is enhanced by a factor of m}/my,. By focusing on this helicity category, the statistical

significance for the top Yukawa coupling behaves as:

i ~ sin 6 cos 0 (4.1.13)

VB

where for the SM background, we only include the helicity conserving top quark pair pro-
duction, i.e., (hy, hf) = ($%, j:%), which is a factor of 2 larger than the helicity violating

ones. The significance peaks around 6 ~ 7 /4.

4.1.8 Weak Boson PDF and Energy Scaling Behavior

In this section, we analyze the energy scaling behavior of utu~ — XXvo processes by
making use of the Effective W-boson Approximation (EWA) [115H117]. As illustrated in
Fig. 4.2l EWA states that at sufficiently high energies and suitable kinematical regimes,
the cross section for the process utpu~ — XXvp can be factorized into the on-shell hard

subprocess VV — X X convoluted with the W-boson parton distribution functions:

oty — XXvo)(s) = / dTZCDij(T, py)o(ij — XX)(7s) (4.1.14)
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Fig. 4.2: Tllustration of the EWA approximation at the muon collider.

where /s is the center-of-mass energy of muons and V/§ = \/7s is the center-of-mass energy
of the XX. Here V = W%, Z denotes any of the SM massive electroweak gauge bosons .

The parton luminosity ®;;(7, pty) is given by [8]:

T

1
d
Biy(r 1) = / ffi@,uf)fj( Fo) (4.1.15)

Here 15 is the factorization scale in the process under study and the weak boson PDFs at

muon collider read:

H H H _ 2
o€ = +1) = € (9v F 9i)* + (gv £ g2)*(1 5)210g(”f>

E 1(67”2 51 e Mg (4.1.16)
ol A =0) = 15 (@ + h) ()

The coupling constants C, gy;, ¢y denote the corresponding muon-weak-boson couplings and
for the W*-boson, it reads:

c=%L, gi=—gt=1 (4.1.17)

> We will not discuss about the vy PDF here.
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while for the Z-boson, we have:

2
S 0 Loy 4 gin? _Loan
C=cogor =@y +sw*bw,  ga=—5(T7) (4.1.18)

where we have neglected the masses of the muons. Note that (T7)"r = —1, (TF)*# = 0.
We will focus on the WTW ™ parton luminosity, since it is dominant compared with ZZ.
To obtain the energy scaling behavior of the parton luminosity ®y+y—, we first divide the
allowed values of the parameter 7 into four regions: [107%, 0.01], [0.01,0.2], [0.2,0.8],[0,8,0.95]
and then approximate the dependence of @y +y— on 7 as 77" in each region. The results are
shown in Table , where we neglected the scale-dependent logarithmic terms ﬁ Recalling
the relations 7 = f and V3§ = E, the dependence on 7 can be translated into the dependence
on the invariant mass of W*+W~ system E~2" for constant invariant mass of pwh T system.
We can see that due to the absence of (1 — £)? term in Eq. for the plus helicity of
the W boson, the parton luminosity ®y+w-(7) in the (hy+, hy-) = (+,+) category has

the most mildest decrease as 7 increases.

Table 4.6: Best fit for @+~ for different ranges of 7 without including the log terms.

hw+ | hw- | 107 <7<0.01 | 001<7<02 ] 02<7<08 | 08<7<0.95

- 1 1 1 1
12 717 739 72T

1 1 1 1

0 0 712 715 3.0 18
1 1 1 1

+ + = 713 21 780
1 1 1 1

- + 12 714 729 18
1 1 1 1

+ - 712 P 729 718
] 0 1 1 1 1
12 715 34 722

0 - 1 1 L 1
712 715 734 722

1 1 1 1

+ T 714 725 13
1 1 1 1

0 + | 714 725 13

Then from Eq. (4.1.14)), we can see that the differential cross section in the invariant

6 We have checked that the results won’t be changed significantly by including the log terms.
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mass of XX becomes

do
dE

2B £ _
(it — XXvb) Z Pyt v (E)o (W W, = X X)), (4.1.19)

ha,h2

Now for the most ideal scenario where the helicities of the initial and final particles can be

measured and assuming that statistical error is dominant, the signal significance scales like:

dog o - hihahghy
S —= Wik W,
dE hihahzhy 0;
~ ~ ~ Mél ~—— (4.1.20)
VB dop E £t
dF

where we have used the energy scaling of the parton luminosity @y +p- ~ E~2" and keep
the center-of-mass energy of the muons /s as constant. From Table , we can see that the
statistical significance decreases for the linear energy growth of BSM helicity amplitude in
the whole considered regions and increases or stays constant for the quadratic energy growth
for 7 € [107*,0.2]. For higher 7 values (7 2 0.2), the statistical significance decreases at least
as B! for the quadratic energy growth of the BSM helicity amplitude. Similar conclusion
holds for the fully inclusive case if we replace M?j'"h“ with Mgil"'h“f]\/[gllv'["m, as can be seen

from the energy scaling of the statistical signal significance as follows:

ha h1 ha
d"s 1 Zhl ha W*W‘M M

S
\/_ \/d;? \/_\/Zhl -y W+ (M )

By using the energy scaling behavior of parton luminosity ®y+y - in Table and

(4.1.21)

partonic cross section in Table for the process pu*pu~ — ttvv in the presence of anomalous
couplings, we can obtain the energy scaling for the statistical signal significance in the fully
inclusive case. For the top Yukawa coupling d;;, and the Higgs gauge boson coupling d,pw,

the result reads :

~ BTV B2 B for  7€[107%0.01], [0.01,0.2], [0.2,0.8], (4.1.22)
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where we have omitted the highest 7 region. As expected, the sensitivity on the top
Yukawa coupling decreases as bin energy becomes larger. For the anomalous coupling

0Kz, Owib, Ozt, , Oztp, the sensitivity scales like:
o E_Q; for T E [10_470'01]7 [001702]’ [02’08] (4123)

from which, we can see that there is a mild increase for the signal significance at low 7, a
mild decrease for the intermediate 7 and a decrease at high 7. Finally, we find that for the

anomalous coupling Az, the energy scaling behaves as:

A A

~ BN BT 22 for  7€[107%0.01], [0.01,0.2], [0.2,0.8].

5«

(4.1.24)

and for the coupling dg7, we have:

S . R R
ENE—M, E7Y E3 for  7€[107%0.01], [0.01,0.2], [0.2,0.8]. (4.1.25)

which decreases with the energy bins.

4.2 Top Yukawa couplings at the high energy muon collider

In this section, we study in detail the prospects of measuring the top Yukawa coupling at
a high energy muon collider. To quantify the importance of the anomalous couplings, we

parametrize the cross sections as
0 = OsM (1 + R16 + R252) s (421)

where §; signifies some fractional deviation in a SM coupling. Throughout this chapter, we
will be primarily considering the interference term which is linear in §, but we also remark

on the inclusion of the quadratic term. In terms of the kappa framework [1], §; and &; are
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Fig. 4.3: Cross section of SM pu*pu~ — tt, u*p~ — tth, and p™p~ — ttvv with the onshell Z
contribution removed.

related by k; = 1+ d;.

Before we present the detailed analysis for the VBF production of top quark pair, we
make some comments about the Drell-Yan processes which are also involving top Yukawa

coupling. The relevant processes are:

utp~ — tt tth (4.2.2)

in which there is no energy growing behavior for the anomalous top Yukawa coupling 0.
In Fig. [4.3] we have plotted the SM cross sections as functions of center-of-mass energy of
the muon collider for both DY and VBF productions of top quark pair and top quark pair
plus a Higgs boson. We can see that due to the logarithmic growth of the VBF processes
and the inverse of energy squared decrease of the DY processes, the VBF productions start
to become dominant at 5 (8) TeV center-of-mass energy for the t¢(tth). Besides the small
cross sections at the high energy muon collider, the R-values defined in in Eq. are also

very small for the DY production of top quark pair. In order to have the ¢t process involve
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the top Yukawa coupling, it is necessary to include the non-zero muon masses. In this case,
the dependence of the cross section on d;, will be suppressed by the muon Yukawa coupling
squared m” /v* ~ 2 x 1077, We have checked that for this process, the R-ratios defined in
Eq. for the anomalous coupling &y, are very small:

R, =2.337x 107, R, =1.169 x 107> @10 TeV
(4.2.3)

Ry =2.343 x 107°, Ry, =1.172x 1075 @30 TeV

and we will not consider it any further. For the DY process pu*pu~ — tth, the R-values are:

R; =1.62, Ry, =0.797 at 10 TeV
(4.2.4)

Ry =1.56 Ry =0.774 at 30 TeV

We can see that the R-values stay almost constant as the center-of-mass energy of the muon
collider increases. We expect that the sensitivity on the top Yukawa coupling from this
process will come from the lower energy stages of the muon collider. Such analysis has been

performed at CLIC in the baseline energy of 1.4 TeV [4].

4.2.1 Simulation and Cuts

We now turn to the simulation and analysis of the process p*p~ — ttv,v,,tthy,p, in the
presence of the anomalous top Yukawa coupling d;y,. We are using Madgraphb [121] to
calculate the cross sections and generate the events at LO. The anomalous coupling 4y, is
implemented by using the BSMC model file [122]. We will work at the level of top quarks

and no decaying of the top quarks will be simulated.

One advantage of the lepton colliders compared with hadron collider is that the initial
energies of the colliding leptons are known very precisely [79], as a result, the invariant mass
of the two outgoing neutrinos is indirectly determined by the momenta of the top quark pair

or the top quark pair plus Higgs boson. This is defined as recoil mass and for the ttv,p,

120



Table 4.7: Cross sections for signal and background. For the VBF processes, the cut on the recoil

mass in Eq. (4.2.7) has been imposed.

V5 (TeV) \ogu(fb) 3 6 10 14 30
ttv,, 4.93 10.9 16.4 20.5 30.1
tthu,,, 0.0121 | 0.0460 | 0.0914 | 0.141 0.269
tt 19.7 4.95 1.78 0.909 0.198
tth 0.414 | 0.131 | 0.0547 | 0.0305 | 0.00793
WHW-v,b, 120 259 399 515 815
W*Zu¥(v,/v,) [ 96.6 215 340 443 717

process,
recoil — (p,u+ +p,u’ — Pt — p£)27 (425)
For the tthy,p, process, it is given by:
MrQecoil - (pu+ +plf — Pt — Dr — ph)Q' (426)
We will impose the following cut on the recoil mass at the generator level:
Mrecoil > QOOGGV; (427)

which will remove the contribution from the process t¢Z — tt(vv). In Table , we have
presented the cross sections of the VBF t¢ production and the potential relevant backgrounds

for some benchmark scenarios at the high energy muon collider. For all the VBF processes,

the cross sections are presented after the cut in Eq. (4.2.7)).

The decaying branching ratios for the top quark pair are respectively 45%, 28%, 4.4%

in the fully hadronically decaying channel, semi-leptonically decaying channel and fully lep-

7 Sum of the cross sections for Wt Zu~ v and W~ Zutv with pr > 30 GeV for charged leptons and the
on-shell W — pv contribution removed.
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Fig. 4.4: Standard Model distribution of # and ppr of the top quark at 3, 10, and 30 TeV muon
colliders after the cut on the recoil mass in Eq. (4.2.7).

tonically decaying channel [123] [124] F] We will focus on the semi-leptonically decaying
channel where the top quark and anti-top quark can be reconstructed and distinguished by
the charges of the decayed leptons. To suppress the beam induced background, we put the

following cuts on the polar angles of the top quark pair in the laboratory frame:
10° < 0,7 < 170° (4.2.8)

where in our convention, the z-axis align with the direction of the u™ beam. As shown in
Fig. [£.4] the 6, distribution peaks strongly in the forward region at 3, 10, 30 TeV muon
collider and peaks also mildly in the backward region for 10, 30 TeV center-of-mass energy.
The cut efficiencies for the 6,7 cuts at the 10 TeV and 30 TeV muon collider are 0.57 and
0.43, respectively. This reduces the cross sections of the SM #tv? in the semi-leptonically
decaying channel to 2.63 fb and 3.61 fb for 10 TeV and 30 TeV muon collider respectively.
Here the numbers have also taken into account the branching ratios of the semi-leptonically

decaying channel of top quark pair.

We expect that the signal manifests itself in the kinematical region where effective W

8 In the estimation of the decaying branching ratios, we have neglected the 7v decay of the W bosons.
Including it will have mild effects on the final results.
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approximation applies as this is the hard scattering regime. To maximize the sensitivity and
also to help to reconstruct the effective W boson partonic center-of-mass frame, we impose
the following criterion:

Er < 200GeV (4.2.9)

where at the truth-level, the missing transverse energy [ is equal to the magnitude of the

transverse momentum of the two neutrino system or top quark pair system:

Er = |pr, + Drol = [Pry + Pryl (4.2.10)

Note that we also require the missing transverse energy to be larger than 20 GeV

Er > 20GeV, (4.2.11)

which is used to reduce the background from DY production of ¢t with initial state radiation
or bremsstrahlung effects [4]. The cut efficiencies we obtain from comparing the £ and 6, ;
cuts to the 6, ; cuts alone are 0.50 and 0.44 for 10 TeV and 30 TeV, which further reduces the
SM cross sections to 1.32 fb and 1.59 fb, where again we include the semi-leptonic branching
ratio. This sizable suppression from ' cut is as expected as from Fig. For illustration,
in Table we have listed the values of the SM cross sections in the semi-leptonically

decaying channel and the R; 5 in different bins of m; for the VBF production of top quark

pair after all the preliminary cuts in Eq. (4.2.7), (4.2.8)), (4.2.9),(4.2.11) at 30 TeV muon

collider. We can see that there is no energy growing behavior for the interference term, as
expected from the previous analytical study. On the other hand, we do see the R-value
for the squared term possess larger values at higher energy bins. For comparison, we have
also presented the SM cross sections R-values for the process pu*p~ — tthvp with semi-
leptonically decaying top quark pair and Higgs decaying to bottom quark pair at 30 TeV

muon collider. We can see that there is indeed energy growing behavior for the linear term.
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Table 4.8: The SM cross sections and the R-values for anomalous top Yukawa coupling in the
process upu~ — ttvi, tthuvi after all the preliminary cuts in Eq. (4.2.7), (4.2.8), (4.2.9), (4.2.11)
with semi-leptonic decay for tt, and bb decay for the Higgs boson in different invariant mass bins

at 30 TeV muon collider.

m(tt) osym (fb) Ry R,
0-1TeV 1.28 -0.0803 1.33
1-5TeV 0.325 -0.220 12.3
5-10TeV 0.00538 -0.155 157

10-15TeV 4.17-1074 -0.152 468
15-20TeV 5.21-107° -0.163 886
20-25TeV 6.36 - 1076 -0.0608 1199
25-30TeV 1.06-107° -0.00202 355
m(tth) osm (fh) Ry Ry

0-1TeV 1.10-1073 5.75 15.5

1-5TeV 2.74-1073 7.73 320
5-10TeV 1.72-107% 26.8 9090
10-15TeV 2.14-107° 49.8 51400
15-20TeV | 3.48-10°¢ 72.8 147000
20-25TeV 7.44-1077 58.7 186000
25-30TeV 1.16 - 1077 16.5 76500

As discussed in previous sections and also shown in Fig. [4.5] the scattering angle in the
partonic center-of-mass frame 6#* can be used to enhance the sensitivity to the top Yukawa
coupling. Here we have used an asterisk to distinguish between the polar angle of top quark
in the W*W~ frame and the polar angle in the ™ p~ frame. Furthermore, in determining
the scattering angle #* in the partonic frame, we assume that the neutrinos are collinear

with the muon beams. To be explicit, the scattering angle #* can be obtained from the
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kinematical variables in the lab frame as follows:

\/DPia + Dy
(4.2.12)

tan 0% = )
— LB pyg + pr.2 Bir

where p;, is the z-component of the momentum of the top quark and similarly for the
Dty Dt-- My is the invariant mass of the top quark pair and (Eyz, py;) is the four-momentum
of the top quark pair. Here we have used the fact that the transverse momentum of the top
quark is the same in both frame and the z-component of the momentum of the top quark in

the partonic frame is obtained by a boost.

10°
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1 30Tev 1079
1044 ]
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A S o]
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Sl
1072 4 _10-6 4
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—1073 4 — 10Tevsm
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(a) 6* (the angle between the top and the W™ in the(b) 0* (the angle between the top and the W™ in the
WTW ™ center of mass) distribution WTW ™ center of mass) distribution.

Fig. 4.5: The distributions of 6* for the SM (left panel) and &y, = 10% (right panel) after the all
the preliminary cuts in Eq. (4.2.7)), (4.2.8), (4.2.9), (4.2.11).

Table 4.9: Efficiencies from CLIC analysis of the semi-leptonically decaying channel with P(e™) =
—80% [4].

Vs 380 GeV | 1.4 TeV (Vs >1.2TeV) | 3 TeV (Vs > 2.6 TeV)
eei(eTe™ — tt — qqqqlv) 64% 37% 33%

In addition to the invariant mass bins of the top quark pair in Table [4.8] we also divide
the scattering angle 6* into six bins with bin width of 30°. The corresponding cross sections

and R-values in each two-dimensional bin are shown in Table and Table B.3]
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Fig. 4.6: Ax? plot as a function of anomalous top Yukawa coupling &, for processes utpu~ — ttvw
and ptp~ — ttvvh at 10 TeV (left panel) and 30 TeV (right panel) muon collider. Here Rp(Rz2)
denotes the interference term and the squared term respectively.

[B.4] respectively in Appendix [B] In order to take into account the reconstruction efficiencies
of the semi-leptonically decaying top quark pair, we have extracted the numbers from the
analysis of top quark pair production at 380 GeV, 1.4 TeV and 3 TeV center-of-mass energy
of CLIC [4]. The results are listed in Table We will use the following values for the

reconstruction efficiencies for different my; bins:
[0,1]TeV :  64%, all other bins:  33% (4.2.13)

and assume that the SM reducible backgrounds has been reduced to a negligible level. Similar
efficiencies apply to the bins of myg, for the process ptu~ — tthvi with the Higgs boson
decaying into bottom quark pair h — bb with a branching ratio of 58% [123] [124].

4.3 Results and Discussion

We follow the procedure in Appendix [D] to construct the likelihood functions by combing
all the two dimensional bins defined in Table and Table for 10 TeV, 30 TeV muon

collider correspondingly. The integrated luminosity is assumed to be 10 (90)ab™! at 10
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(30)TeV muon collider. The Ax? as functions of the anomalous top Yukawa coupling dy, for
the semileptonically decaying channels of the ttvi, tthvi are presented in Fig. [4.6] For each
process, we have considered two cases: with only the linear term R; and with both the linear
term Ry and the quadratic term Ry. The 95% C.L. interval for the d,, for different scenarios
are shown in Table[4.10] We find that due to the lack of energy growing behaviors in the ttvw,
the expected sensitivity on the anomalous top Yukawa coupling &y, is not majorly affected
by the inclusion of the quadratic term at both 10 TeV and 30 TeV. In contrast, for the tthvv,
the quadratic terms can make a big difference (a factor of 2-3) on the top Yukawa coupling
sensitivity, which is a reflection of the energy growing effects. For this process, a dedicated
study should be provided to address the issue of the effective field theory breaking down,
which we leave for future work. Here we are focusing on the results obtained by including the
linear term R; only. At 10 (30) TeV muon collider, the 95% C.L. on the anomalous coupling
dun from ttvo reads 5.6% (1.7%), which is generally in agreement with the results of [5].
These can be compared with 4% and 2 % projections at 95% C.L. for the HE-LHC under
the base and optimal scenarios respectively [3] as well as the 2% projection at a 100TeV
collider |125], which are also listed in Table . For the process tthvp, without worrying
about the issues of EF'T mentioned earlier, we find that the result is comparable with ttvi,
especially at 30 TeV muon collider. It deserves further detailed study, which we leave for

future work.
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Table 4.10: 95% C.L. on the anomalous top Yukawa coupling &, for different scenarios at 10 TeV
and 30 TeV muon collider.

VSt Process Sensitivity
ttvy Ry [—5.9%, 5.6%)]
ttvy Ry + Ry [—4.5%, 4.5%)
tthvy Ry [—7.6%, 12%)]
10 TeV @ 10 ab™? ~
tthvo R1 + RQ [—52%, 55%]
ttvo + tthvv R, [—4.8%, 5.0%)]
ttvv + tthvy Ry + Ry [—3.7%, 3.7%)
ttvr Ry [—1.7%, 1.7%)
ttvy Ry + Ry [—1.4%, 1.4%)
tthvv Ry [—1.6%, 2.0%)]
30 TeV @ 90 ab~! -
tthvy Ry + Rs [—0.68%, 0.69%]
ttvv + tthvy Ry [—1.2%, 1.3%)
ttvv 4+ tthvy Ry + Ry [—0.64%, 0.65%]

Other Colliders

14 TeV HL-LHC @ 3 ab™! tth — Multiple Leptons 6.9% 3
1.4 TeV CLIC @ 1.5 ab™! tth — 65 + bb, (vdj + bb 7.4% 4]
100 TeV Collider @ 20 ab™! tth — (v4j + bb 2% [125]

4.4 Conclusion

In this chapter, we have performed a detailed analysis about the measurement of the top
Yukawa coupling at the high energy muon collider by studying the process utu~ — ttvo.
In particular, we have studied the energy scaling behavior of statistical signal significance
S/ VB for the subprocess WHIW~ — ¢t and for the full processes at the muon collider by

employing the effective W-boson approximation. In addition, we have presented the explicit
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formulae for the helicity amplitudes for the subprocess WHtW = — tt in the presence of
anomalous couplings, where for completeness, we have also included anomalous triple gauge
boson couplings and anomalous gauge-boson-fermions couplings. The high energy limits of
the different helicity amplitudes are shown in Table [4.1] whereas the threshold behaviors
are given in Table [4.4] We have found that the sensitivity on the anomalous top Yukawa
coupling d;, decreases as the energy of the bin increases as shown in Eq. . This is
partially due to the fact that the SM amplitude for the helicity configurations (0, 0, :I:%, :I:%)
scales like my/E. As a result, the interference between the SM and BSM amplitudes will
stay constant instead of growing linearly with E. Secondly, the suppression of the parton
luminosity ®y -+ - (1) at high 7 also reduces the signal significance S/+/B at high energy
bins. As a byproduct, we also found that in the case of triple-gauge- boson couplings dx .,
and the gauge-boson-fermion couplings dww, 074, ,0zu,, the statistical signal significance
mildly increases for small values of 7, mildly decreases for intermediate values of 7, and

decreases at large 7 values.

The semi-analytical analysis has been confirmed by our numerical simulation, where we

studied the prospects on the top Yukawa coupling measurement at 10 TeV and 30 TeV

muon colliders. We have imposed the basic selections cuts in Eq. (4.2.7), (4.2.8), (4.2.9),

and focused on the semi-leptonically decaying channel of the top quark pair. The
reconstruction efficiencies in this channel have been extracted from the CLIC analysis for
different stages. Similar efficiencies are also applied to the ¢thv,, process, where the Higgs
boson is assumed to decay into a bottom quark pair. Furthermore, we used the distribution of
the scattering angle in the partonic center-of-mass frame for the ttv,, to enhance sensitivity.
The precision on the anomalous top Yukawa coupling at the 95 % C.L. is projected to be
5.6% (1.7%) for VBF production of a top quark pair at a 10 (30) TeV muon collider. The
precision from VBF production of tth is comparable to the top quark pair, but is sensitive to
contributions from the quadratic term. Therefore, it demands further detailed study, which

we leave for future possible work.
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Chapter 5

Conclusion

In this dissertation, we discussed BSM physics connected to the Higgs boson and its couplings

to other SM particles.

In Chapter 2, we determined the energy scales at which new physics should emerge given
some deviation in a Higgs coupling using arguments based on tree level unitarity. We showed
energy scales for deviations in the top Yukawa and massive gauge boson couplings at both
linear and quadratic order and compared the results to the ATLAS runs. We also examined
the differences between the bottom up approach of adding operators with increasing powers

of the Higgs boson and SMEFT.

In Chapter 3, we found the number of independent primary operators at each dimension
for 3 and 4 point functions involving the Higgs boson and listed a set of them. In order to
determine linear independence, we used a combination of the Hilbert series, analytic methods,
and brute force numerical methods. We also used tree level unitarity to estimate the possible
sizes of the coefficients of these operators in order to identify the more phenomenologically
interesting ones. As mentioned in the chapter, some detailed phenomenological studies have
already been conducted for a few of the operators listed in the tables and similar work can

be done for the others.
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In Chapter 4, we examined the possibility of measuring the top Yukawa coupling at a
future muon collider by examing VBF processes. We used EWA to perform an analytic
analysis on general couplings to the Higgs boson and then ran Madgraph simulations for
ppi— — ttvv and pypu_ — tthv. Analysis of the results shows that measurements at a

muon collider are competitive with those at a 100 TeV hadron collider.

In each chapter, we initially establish a general framework, then specialize to specific
anomalous couplings and interactions, particularly those involving the Higgs. The results
can serve as guides to searches for new physics. Future work can follow the steps we have
outlined and produce similar results for other iteractions that can further inform searches at

particle colliders.
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Appendix A

Calculation Techniques and Results

In this appendix we define the multi-particle amplitudes we use to obtain the unitarity
bounds, explain how they are computed, discuss potential infrared enhancements, and give
the results of the calculations used in the main text. We extend the results of Ref. [29] to

include fermions, momentum-dependent couplings, and tree-level diagrams with propagators.

A.1 Scalar Amplitudes

We first discuss amplitudes involving only scalar fields, which includes amplitudes with
longitudinal W and Z bosons when we use the equivalence theorem. Given r species of

scalars ¢1,..., ¢, we define the states

~ i, [A0(Pipicccpi)lon(p) - 0up). (ALY

Here ky, ..., k. are non-negative integers that give the number of each species of particle in

the state, qbz(-_) is the negative frequency (creation operator) part of the interaction picture
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field ¢;, |¢1(p1) - - - ¢ (pr)) is an ordinary k-particle state with k = ky + -+ + k,., and

d3p1 1 d3pk 1

GryaE mypam O it P) (A.12)

dPy(P;p1,...,pp) =

is the Lorentz invariant k-body phase space. These states are s-wave states defined by
integrating k-particle states over the full phase space. The normalization of the states is

chosen to be

(P k| P; k) = (2m)*0*(P" — P) 0w, (A.1.3)

where we use the abbreviations

|P,k> = |P;k1,...,]€7«>, 5k’k:5k’1k1"'5k{nkr7 Ck:Ck1 7777 k- (A14)
The normalization constant is given by
e k1a(P) (A.15)
|Crel? ’
where
1 B\ 24
Op(P) = [dPr(P) = — Al
K(P) / k(P) 8m(k — 1)k —2)! (4#) ’ (A.1.6)

is the total volume of phase space for massless particles with center of mass energy £ = v/ P2.

We then consider S-matrix elements between these states:
(P';K|T|P; k) = (2m)'6*(P' — PYM(P; ky, ...k — K, ... KL, (A.1.7)

where S = 1+ 4T. The amplitude M is Lorentz invariant and depends only on P, so it is

a function of E only. With the normalization Eq. (A.1.3)), unitarity of the S matrix implies
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that these amplitudes satisfy
M| < 1. (A.1.8)

For non-forward amplitudes this follows directly from the unitarity of the S-matrix. For
forward amplitudes (k] = k;) a few additional steps are required to show that this holds
for tree-level amplitudes, see Ref. [29]. This is the unitarity constraint we employ in this

chapter.

The Feynman rules for these amplitudes follow straightforwardly from the standard rules.
The result is that the amplitude M are obtained from the standard Lorentz invariant am-

plitude M by averaging over the initial and final state phase space:
M (P) = CiC, /dcbf(P)ch)i(P)Mﬁ, (A19)

where My; is the usual Lorentz-invariant amplitudeH Because we are averaging over final
state momenta, these amplitudes have contributions from disconnected diagrams, with each
disconnected component contributing a M factor, leading to a form M o ILM; . However,

the leading contribution to high-energy amplitudes always comes from connected diagrams.

In simple cases, these amplitudes can be computed in terms of the total volume of phase

space given in Eq. (A.1.6). For example, for a single insertion of a coupling with no derivatives

L In more detail, Eq. (A.1.9) is

M(Piky,... ke — K, .. k) =ChC, [d®w(P;p,,. .. ph)d®s(P;ip1,. .. pk)

X M(¢1(p1) -+~ or(pr) = G1(p1) -+ ¢r(phe)).  (A.110)
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we have

(P K| [d'z gt (x) - ¢p (x)| P k)
(2m)*54(P' — P)

1 n!--n,!

T CwCr el R R KL

(A.1.12)

where we assume n; = k; + k}. For diagrams with a single insertion of a vertex containing

derivatives, we use the identities

pr

/dq)k(P;pl,...,pk)p‘f: Iék(P), (A.1.13)
p2

/d¢>k(P§P1, c s DE)D1 P2 = mq’k(P), (A.1.14)
2

which hold for the case where all particles are massless.

A.2 States with One Fermion

We consider a state containing a single fermion and k scalars

\Piky, .. ko, a) = C / Az e ()M O (@)t (2)]0)

=Gy /d%ﬂ(P;pl,---,pk,q)?f%(Q)Mﬁl(m)"'@(pk)@%(q»’ (A.2.1)

where 17, is a left-handed Weyl spinor field, « is a spinor index, and a is a gauge index
(e.g. a color index). Note that these states are given by phase space integrals of scattering
states weighted by a spinor wavefunction, so Eq. ({A.1.9)) is modified for amplitudes involving

these states. (In the example above, the state created by the left-handed spinor field is a
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right-handed antifermion.) The normalization of these states is given by

<P,) k767b|P’ ka a7a> = (27T)454(P/ - P)kll o k?"'|C]/c|2 /d(bk-i-l(P;plw .. 7pk7q)qu0-566ab

P-g
E+1

= (2m)*6* (P — P)ky! - k| CrP0a Dy, (A.2.2)

where we used Eq. (A.1.13]). We choose the states Eq. (A.2.1) to have normalization

P-g

/.10 . o 4 ¢4 /
y vy My y Tvy Ly - - ab
(P, 3.0 Pik, o) = (2m) 6 (P — P)Sudin—

(A.2.3)

Note that in the P* rest frame we have P-g®? JE = (5"‘5, so this is the natural generalization

of the normalization condition Eq. (A.1.3). The normalization constants are therefore given
by
1 E

— kK
jcrz k+1

®p1(P). (A.2.4)

A.3 States with Two Fermions

We now consider states with two fermions and k scalars of the form

|Piky, ... ke, L/R) = C / dhae P ¢ (@) o0 (@)D () ()]0)
= Cllf, /dq)kJrQ(P;pla -5 Py q, q,>aR/L(q/)/UL/R<q)

x Z [$1(p1) - '¢r(Pk)¢?%/L(q/)1Z;/L(CI>>7 (A.3.1)

where ¢, (1) are left-handed (right-handed) Weyl spinors. In the massless limit the states
|...L) and |... R) are orthogonal s-wave states, with the L (R) state containing a fermion-

antifermion pair which are both right-handed (left-handed) in helicity. These states are
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normalized as in Eq. (A.1.3) if we choose

1 INE2
k) P
icrpp — (k+1)(k+2)

(P), (A.3.2)

where a = 1,..., N and for a top quark, N = N.. To compute amplitudes for these states,

we use

(PLK| [dagi(2)™ - 6n(2)" Y1 r() R/ (2)|Ps k, L/ R)
(2m)*64(P' — P)

2N E?
= CLC ! - -, Oy (P)Dpso( P
1 nyl---n,l
= A.3.
Co (O il K- KL (4.3.3)
(PLK| [d'wgi(x)™ - ¢p(2)"br r(2)rL(2)| Pk, R/L)
— 0. (A.3.4)

(27)464(P' — P)

A.4 Example Calculations

We now give some examples of calculations involving these rules. The amplitudes involving
a single insertion of a vertex without derivatives is straightforward using the formulas given
above, and will not be discussed further. Diagrams with derivatives are less trivial because
the derivatives may act on fields that are connected with either initial or final state particles.

For example, consider

(P2] [d'2¢(09)°|P;2)
S (P2 0l P2

+(P';2|(09)%]0)(0]¢*| P; 2)

+ (P 2(60"610)(0160,0|P;2)|

1 —iPHiP
= 4]Cy? (—2 B+ 22 ZT“) Dy(P)2=0. (A1)
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The cancellation can be understood at the level of the ordinary amplitude from the fact that
crossing symmetry implies that the amplitude is proportional to s +t +u = 4m?¢, which

vanishes in the massless limit.

We now give an example of a diagram that contains a propagator:

(P';0,0,2| [d*z(0¢s)*ps /d4y¢2<a¢1)2lP’;2,0,0>
(27)464(P' — P)

i
= |Co]? [d®o(P'; pl, ) d®o(P; 1, pa) (20 - Ph) (201 'pz)ﬁ

- ]C’Q‘Zé[EZCDZ(P)f. (A.4.2)

Diagrams with propagators are generally subleading at high energies compared to diagrams
with a single insertion. There are a few relevant exceptions, which are discussed in the main

chapter.

A.5 IR Enhancement

The amplitudes M are dimensionless, and once coupling constants have been factored out,
they depend on a single dimensionful variable £ in the massless limit. The dependence on
is therefore determined by dimensional analysis, provided that there are no IR enhancements
in the massless limit. Such IR enhancements can arise because the integration over initial and
final state phase space can go over regions where internal propagators go on shell. We now
present arguments that such IR enhancements do not invalidate the leading large F scaling
for any of the processes used to set the unitarity bounds in this chapter. First, we show
that many (but not all) possible IR enhancements can be ruled out by a simple parametric
argument. Second, we give a diagrammatic argument that IR enhancements can modify the
naive power counting by at most corrections of order log(E/m)™ for some positive integer
n, where m is the mass of a SM particle such as my, or my,. Finally, we point out that the

gauge boson equivalence theorem itself is invalid in the phase space region of the potential
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IR enhancements, since these are regions where some Lorentz invariants p; - p; ~ m%,[, rather
than E?. Therefore, phase space integration over these regions is suspect. (We note that this
issue arises already for 2 — 2 partial wave amplitudes.) We argue that, because the singular
phase space regions are parametrically small, they cannot give rise to additional log(E/my,)
enhancements, and therefore the Goldstone amplitudes correctly give the correct leading

behavior at large E.

For the parametric argument, consider an amplitude with leading large- £ behavior

M~ C <§)n (5) log(E/m)", (A5.1)

(% m

where C' is a BSM coupling, m is an IR mass (such as my, or my), and n, r, s are non-
negative integers. Observe that if r + s > 0 this becomes arbitrarily large for any fixed F
in the limit m — 0 with v and ¢ fixed. But the amplitude cannot become arbitrarily large
in this limit because the massless limit is equivalent to a weak-coupling limit where the SM
couplings g, A, y; — 0. The coupling C is held fixed in this limit, but can be chosen to be
arbitrarily small. It is clear that we cannot have unitarity violation at arbitrary energy scales

in this limit, so IR enhancements of the form Eq. (A.5.1)) are ruled out.

Note that the combinations Ad3, Ads, Acp, y:041, and ¢y, should be viewed as BSM
couplings that are held fixed in the limit \,y; — 0. On the other hand, the couplings dy1,
Oy, and cy,, for n > 3 should be held fixed in the ¢ — 0 limit, since these give Nambu-
Goldstone interactions of finite strength in this limit. This limit rules out many possible

IR enhancements, but it is not sufficient to justify the power counting of the amplitudes in

Egs. (2.2.5)), (2.3.8), (2.4.5)), (2.5.1), and (2.5.6]). In particular, it does not rule out power IR

enhancements proportional to additional powers of the SM couplings g, A, y;, for example

B2 E? E E , B> E?
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which have a finite weak-coupling limit as well as log terms such as
An(E?/m}), Yy In(E/my), g In(E?*/m3,), (A.5.3)

which go to zero as A\, y;, g — 0.

Next, by examining the structure of the exchange diagrams, we will now argue that the
IR enhancement of tree diagrams is at most logarithmic. In all the amplitudes we computed,
we find that such logs are absent, although they may well be present in more complicated
diagrams that we have not computed. As we point out below, even though the equivalence
theorem cannot be trusted in parts of the phase space where the IR enhancement occurs, it
is valid for a parametrically large region that could contribute to a logarithmic enhancement.
Therefore, the absence of logs in our calculations prove that the corresponding longitudinal
gauge boson scattering amplitudes are free of logs. By excising the small untrustworthy
regions, we will then argue that the Nambu-Goldstone amplitudes can be used to set a
conservative limit on the unitarity violating scale. A better theoretical understanding of

these log corrections is desirable, but we will leave this for future work.

We now consider possible IR enhancements from a general tree diagram contributing
to the integrated amplitude M, whether computed in the full SM or using the equivalence
theorem. An IR divergence can arise only from integrating over a region where an internal
propagator becomes large. This can happen if the momentum flowing through an internal
line goes on shell, or is soft. If only a single propagator goes on shell, it is easy to understand
why the correction is at most logarithmic. Consider an internal line with momentum ¢ — ¢/,
where ¢ (¢') is the momentum of one of the initial (final) state particles. Then the relevant

part of the phase space integral is (in the massless limit)

1 o d|lq|d|q’|dcosf
(g—¢')? 1—cosf

d*qd(q*)d*q 6(¢”) (A5.4)
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where 6 is the angle between q and q’. This integral diverges at most logarithmically because
the integral has a simple pole in cosf, which is one of the integration variables. A general
propagator with more legs attached can be analyzed by considering the following momenta
structure Py + P, — Kj + Ky where Py = (p1 + -+ p.), Po = (pra1 + -+ + pn), K1 =
(k1 + -+ ks), Ko = (ksy1 + - -+ + k) and the momentum flowing through the propagator
is K1 — P,. By factorizing the incoming n—body phase into r + (n — r)-body phase space
and similarly for the outgoing, we also see this propagator gives a log when integrating over

cos = Py - K1/(|P1|| K1)).

Next, we have to consider regions of the phase space integration where more than one
propagator gets large at the same time. In all the cases we studied, the denominator of each
of the large propagators has a linear zero that depends on an independent parameter, either
another angle or invariant mass of a set of particles, that is integrated over. That is, near
the singularity the integral behaves like [dzdy/xy and not [ dx/z*. We checked this for
2 — 2 and 2 — 3 topologies, but we do not have a general proof for all topologies. However,
this makes intuitive sense given that a set of n internal propagators going onshell requires n
independent conditions on the phase space. Integrating over each of these conditions, then
gives at most a log™(E/m) singularityf]

We now note that in cases where there is a log enhancement in an amplitude involving
longitudinal gauge bosons, it is not obvious whether the corresponding Nambu-Goldstone
amplitude correctly reproduces these logs. The gauge boson equivalence theorem guarantees
that the Nambu-Goldstone amplitude correctly reproduces the full amplitude if |p;-p;| > mi,
for all external 4-momenta p; and more generally for all Mandelstam invariants. To see this,

compare the exact dot products of longitudinal polarization vectors

EyEy (|P1||p2| )
€ - € = —cosf A55
L(p1) L(Pz) m%/ ELEs ( )

2 In Ref. [12] it is stated without proof that the 2 — n partial wave amplitudes have at most logarithmic
singularities.
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with the approximation € (p) ~ p*/my:

P1 P2 EL\E, \p1Hp2|
I e O e a1 L] 6 A56
my my mé ( E\E, s ( )

where 0 is the angle between p, and p,. For E; 5 > mi, and cosf < 1, these are equal up
to corrections suppressed by m# /E?. But for § ~ my /E, the dot products are completely
different. (For 6 = 0, they even have opposite sign.) This means that we cannot expect the
equivalence theorem to be correct in regions where some of the Mandelstam invariants are

small.

This is relevant for the present discussion because these regions are precisely the ones
where one or more internal propagators can go on shell in the massless limit, potentially
giving an IR enhancement. However, we note that the regions where the gauge boson
equivalence theorem does not apply are a parametrically small part of the phase space
integral. Integrals over such regions cannot give rise to IR singularities of the form log(E/m),
which instead arise from integrals of the form ~ [ dx/x over a parametrically large range
Ax ~ E/m. Thus, for example, when we obtain a Goldstone amplitude M that does not
have a log(E/m) enhancement, we know that the corresponding gauge boson amplitude also
does not have such an IR enhancement. Omitting the singular region from the phase space
integral in a Goldstone amplitude without a log IR enhancement only changes the answer by
a small correction suppressed by powers of my, /E, and therefore gives a good approximation

to the exact amplitude.

The discussion above has been less systematic than we would like. It would be nice
to have a better understanding of the gauge boson equivalence theorem for partial wave
amplitudes, including the IR enhancements and subleading contributions. We leave this for

future work.
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A.6 Results

We now give the results for the leading high-energy behavior for the processes used in
the main text in tables All gauge bosons are understood to be longitudinally
polarized. Also, note that since Z; is CP-odd, amplitudes involving an odd number of
Z1’s will be purely imaginary, however, these amplitudes can be made real by redefining
the Z; states. All other processes are related to the ones listed in the tables via charge

conjugation and/or crossing symmetry. All of these amplitudes are calculated in the contact

approximation. As Egs. (2.3.8]), (2.4.5), (2.5.1), and (2.5.6)) show, the nonlinear terms are

small due to constraints on dy 1, 6;1. However, there are linear terms proportional to dy1, dyo

in the top processes Eqs. (2.4.5) and (2.5.6)), so we've calculated the largest terms as shown
in Bqs. (@41) and (259,

Process ‘Sgl—E; Process X (6‘/1;%6;/2)}32
27 = WW- —V2 hZ — hZ 1
WHW* — W+ 1 727 = hh 1
ZW+ = ZW+ 1 AW+ — hIV+ 1
WHW= — W~ -1 hh — WHW— V2

Table A.1: 4-body model-independent unitarity-violating process from modifi-
cations to the Higgs coupling to W/Z bosons. The left-hand side amplitudes are
model-independent since they only depend on éy/; while the ones on right-hand
side depend on dy9 as well.

Process X % Process X (6‘/29;15‘5?1 -
MWWt > W+ V2 WV-W+ = ZZ -2
MWW= = WHW~ —V?2 IW-W+ = hZ 0
W-W*Ww+ — piw+ 0 73 5 hZ 0

ZZW+ — hW+ 0 Z%h — 72 0
hZW+ — ZW+ V2 Z2h — WHW - -2

Table A.2: 5-body unitarity-violating processes that depend on dyo and dy.
One can see that the dim-6 SMEFT prediction dys = 46y1 gives vanishing
amplitudes for all processes.
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Process % Process gf;f;
77 = 27 0 WIW = 2° 0
Z2Z - Wrw- | -4 (1 + )\WZ> ZW+ — Z2W+ 0
2wt = Zzwt | (14 Awz) 72— ZWHW- 0
WHW= — WHW- Nz WHW= — ZWW- 0
WHW* — W Az WHW* — ZWW+ 0
AW ZWE S (=) || 2w W |1 )
WHW~ — hZ 0

Table A.3: 4-body and some 5-body unitarity-violating processes without as-

suming custodial symmetry. Here Ay z

limit.

= 5"‘/11 = 1 in the custodial-preserving

Process X %
LLZ — L7 0
WHWHW+ — WHWw+w+ 1
ZWHTW+ — ZW+W+ 1
IWAW™ = ZZZ —/2
ZZIW*T — WHW+TWw- -2
ZIW* — ZZW+ 2
ZWAW= — ZW+W- 1
WHWHW = — WW+W- ~1

Table A.4: 6-body unitarity-violating processes that depend on &2 and dy1.
One can see that the dim-6 SMEFT prediction dyo = 4y gives vanishing
amplitudes for all processes.
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Process X 1155%
hZz? — hZ? [46y1 — 20v2 + Scvs]
hZ — 7° —Y3(4811 — 209 + Levs)
W+ — Z2W —3[40v1 — 26v2 + o]
h2Z — ZWHW- — 25401 — 20y + Sevs]
RPW+T — WHW-w+ —[46y1 — 202 + Sevs)
hZW+ — hZW+ [360y1 — 130y2 + 2cv)
MWW+ — hW+IW+ 366y, — 1302 + 2cy3]
MWW= — hWW - —[288y1 — 90y2 + cvs)
hZ* — hWW+W~ —V/2[320y1 — 116y + 2cy]

Table A.5: 6-body unitarity-violating processes that depend on dy1, dy2, and
cy3. One can see that the dim-6 SMEFT prediction dy9 = 49y1 and cy3 = 8y
gives vanishing amplitudes for all processes.

Process X % Process X %
t_RtR — Zh iV N, tRW+ — tLW+ —%
tptp — Z7Z —\/Be || brtp — RWF 2N,

t_RtR — W Wt —v N, trh — bW+ %
trZ — trh : trRW= = brh 4
tprtd — 1.2 —%

Process x%ﬁff Process X %ﬁff
trtr — hh —/ 5 trh — trh -1

Table A.6: 4-body model-independent unitarity-violating processes from the
top sector.
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Process x 2oyl Process x 2oyl
tptr — 227 ivV3N, 72 S i bW 20V,
Tatn — ZWHW— | iy/2N, AW~ = Zbiiy N
trZ — t LW W+ \/L:,; tpZ — b ZW+ 2
thZ 1,27 | g3 AW~ = by 72 o
tRWT — t, ZW 7 bptp — WIWTW= | 22N,
WIW™ = it Z | iy/25" WW= = bt W= | 24/2
WHZ =it WH | iy /2B | WHW™ o W | 4y /5
2Z = trt2 VBN, || taWH = b WHWH | 2, /5
brtr — Z*WT 2N, tRW™ = bW W | 2, /2

Table A.7: 5-body model-independent unitarity-violating processes from the
top sector.

(%Ct2_5t1)mtE2

(%Cm—&l)mtEZ

Process T Process s
trtr — Zh? iv/N, tatr — WTW~h —V2N,
h? — Ztrty, i/ B WHW = = iptrh e
Zh — hity, iy 25 W+h — t t, W+ —y/ 2
trZ — tph? %@ taW+ = t,W+h —\/Lg
trh —tLZh 7 trh — t,W+HW~— -%
trtr — Z%h —/N, brtr — WHh? V2N,
Z? = trtrh —\/ 5 W~h = brtrh 2,/ 8
Zh =ttt Z —y/ 2 B2 s b f W 2N,
trh — t1,2° ~ 75 trW™ — bph? 4
trZ — trZh 7 trh — byW*h 2

Table A.8: 5-body unitarity-violating processes that depend on ¢ and d41.
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—ce2)me B3 11—Ct2)mi B
Process X % Process X %
t_RtRZ—>Z3 \/% tRZ2 —tZh \/Li
tRZ* — t, 2° . trtrZ — hW+W— —iy /B
trtRW+ — Z2W+ \/ e trZh — tyWTW~= —i
trtrZ — ZWHTW~ NT bptpW~ — hZ? — %
tRZ2 — tLW+W7 ﬁ [_)RtRZ — hZVVJr — 2];/0
tRZVVJr — tLZW+ % tRZZ — bLW+]'L —%
trtgW+ = WHWHIW - 2 trZh — b ZW+ 42
tRWIWT — e, WHW+ 1 bptgh — WIWW = |  —2,/%
tRWAIW ™ =t WHW - 2 brtgW ™= — hWTW = | =2, /2
trtgh — Z° —1 NT teW-"W= = b, W™h —%
tptrZ — Z°h —iy /2 | tgWh = b WHW —2f2
l_?RtRW+ — AW+ —2 %

Table A.9: 6-body unitarity-violating processes that depend on ¢ and ;1. One
can see that the dim-6 SMEFT prediction ¢;3 = 361 gives vanishing amplitudes

for all processes.
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Process X —(C”i}ziﬂ:;tﬁ Process X —(Ct2153‘i:ZZ§tE -
trtrZ — Z* 5 M IZWHW* =t WHW+ iyl
ErtpW* — W25 N IWAW ™ = it 22 i [
trteW — ZW-WHw+ o IWIW= =t t, WHW— b
trtrZ — WHWHW-W~ /B WHWHW ™ — tpt, ZW+ e
trZ? =t ZW-W+ i bptpW— — 74 1, /2N
trZ* =t 73 4?}6 batpZ — W73 1, /2
tRWFTWT — t, ZWTW™ o5 Z3 = bt ZW+ 1y/8e
tRW- W+ — t,2° e ZPW~ — byt 22 1R
tRW=W* =t ZWFW - s trZ% — bWt 272 1
trZWt — t, Z2W : trZW ™ — b, Z3 gg
tRZW* — t,WHIWHIW - i bptpW* — WHW+ 2?2 VR
28 = i1t 2? N bpta W= — Z2WHI - I,
Z° =t WHw- iy e WAW-W~ — i, 2> 1 /8
ZPWH = it ZWH e IW-W~= = b ZW~ VI
tRW- W™ — bW 22 z WHW=W= — byt , W= W+ VN,
tRW W™ = by Z2WH © WHWHW ™ — bt W+ Mo
trRZW™ = b, ZW-WT 3 teWFTWE = b WHWHW+ e
brtgW* — WHW W W= 20 tRW- W™ = b WIW W~ 1
bptpW = — W W -WFW+ VN, tRWTW ™ = b W WHW T 7
W-W-W~ = b, W= W~ ne trZ% — bpWHW W+ L
trtpZ — WYW~=2? s bptrZW~ — W W~-Z 2
brtgW*W = — Z2W+ oz bptrZ — WHW-W+Z 2

Table A.10: 7-body unitarity-violating processes that depend on ¢ and §;1. One can see that the
dim-6 SMEFT prediction ¢;o = 3d¢1 gives vanishing amplitudes for all processes.
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Appendix B

Cross sections, the R-values and

errors

In this appendix, we list the cross sections and the R-values for the two-dimensional bins in
terms of myz, 0*. The cross sections are presented in Table for 10 TeV muon collider and
in Table [B.2]for 30 TeV muon collider. The R-values are given in Table[B.3|for 10 TeV muon
collider and in Table [B.4 for 30 TeV muon collider. The errors in the tables are associated
with the limited number of events generated by Madgraphb [126] and we describe about how
to obtain them in the following. Note that we do not take into account the errors when we

make the projections for the top Yukawa coupling measurement.

The cross section of a given process for some set of cuts is

> Wi
o= (B.0.1)

where the w; are the weights of events that remain after the cuts and N is the total amount
of events in the run E] In the case where all events have positive weight, the error is the

familiar \/LN However, the error increases when roughly half of the events have negative

! In order to find cross sections across multiple LHE files with different cuts, we simply sum the individual

over cross sections.

149



weight.

To determine the error in the cross section, we begin by writing the cross section of each

individual run as
wimmq WMo

N N’

(B.0.2)

o=04+to_=

where N denotes the total number of events in the LHE file, m; is the total number of
positive weight events, ms the number of negative weights, and w is absolute value of the

weight. For the case where no cuts are imposed, we have that m; + my = N, but this is not

the case in general. Taking ‘i‘:—j = —L and similar for o_, we have that

N

w?(my + my)
N2
vVmi + mo

m1 — Mo

60* = 607 + 602 =
(B.0.3)
o =0

which is the error for each LHE file. The second line of Eq. (B.0.3|) assumes that m; # ma.

Since the total cross section of a given bin is found by summing up the individual cross

sections of the LHE files, we have that

005, = Y 007 (B.0.4)
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Table B.1: The SM cross sections in [fb] in the two dimensional bins myz, 6* for the process ™ u~ —
ttvp after all the preliminary cuts in Eq. (4.2.7), (4.2.8), (4.2.9), (4.2.11).

myi[TeV] / 6" [°]

. [0,30] [30,60] [60,90] [90,120] | [120,150] | [150,180]

[0, 1] 0.670 + 1.22 + 1.48 + 0.503 + 0.0933 & | 0.0145 +
0.00025 0.00039 0.00049 0.00038 0.00022 0.00011

[1, 2] 0.234 + 0.233 + 0.142 + 0.0403 £ | 0.0122 &+ | 0.00270 +

8.5x107° | 0.00012 0.00012 | 8.3x107° | 58 x107® | 3.5 x 107°
(2, 4] 0.0449+ | 0.03224+ | 0.0141 + 4.61 x 1.95 x 6.52 x
23%x107° | 26 x107° | 2.3 x 107° 1073 £ 1073 + 1074 +

1.6 x107° | 1.3x 107 | 9.0 x 1076
[4, 6] 3.08 x 1.76 x 6.49 x 2.78 x 1.40 x 8.01 x
1073 + 1073 + 1074 £ 1074 + 1074 + 107° +

22x107% | 23x107% | 1.8x 1070 | 1.4x107% | 1.1 x 1076 | 82 x 1077
[6, 8] 2.46 x 1.23 x 5.56 X 3.16 x 2.43 x 1.73 x
1074 + 1074 + 107° + 107° + 1075+ 1075+

1.9x1077 | 1.9x 1077 | 1.5x 1077 | 1.1 x 1077 | 8.8 x 1078 | 6.9 x 1078
[8, 10] 8.33 x 6.71 x 6.47 x 6.21 x 7.13 x 9.54 x
1076 + 1076+ 1076 + 1076 + 1076 + 1076 +

52x1079 | 52x 1079 | 3.9x 1072 | 3.0x 1079 | 24x 1079 | 1.9 x 107?
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Table B.2: The SM cross sections in the two dimensional bins m,;z, 0* for the process ™ u~ — ttvw
at 30 TeV muon collider after all the preliminary cuts in Eq. (4.2.7)), (4.2.8), (4.2.9), (4.2.11).

myi[TeV] / 6" [°]

. [0,30] [30,60] [60,90] [90,120] | [120,150] | [150,180]
[0, 1] 0.641 + 1.28 + 1.95 + 0.61 + 0.085 + 0.0119 =+
0.00033 0.00055 0.00080 0.00060 0.00031 0.00014
[1, 5] 0.368 + 0.376 + 0.314 + 0.0821 +£ | 0.0174 4+ | 0.00375 +
0.00021 0.00026 0.00031 0.00022 0.00013 0.000083
[5, 10] 8.33 x 6.40 x 3.03 x 9.68 x 3.90 x 1.27 x
1073 + 1073 + 1073 £ 1074 £ 1074 + 1074 +
1.2x107% | 1.4x107° | 1.3x107® | 9.0x 1076 | 6.6 x 1076 | 4.8 x 1076
[10, 15] 7.52 % 4.55 % 1.73 x 6.71 x 3.22 x 1.41 %
1074 + 1074 + 1074 £ 107° + 107° + 107° +
1.5x1076 | 1.7x107% | 1.3x 1076 | 98 x 1077 | 7.7 x 1077 | 5.8 x 1077
[15, 20] 9.77 x 5.02 x 1.97 x 9.15 x 5.65 x 3.17 x
1075+ 107° + 107° + 1076 + 1076+ 1076 +
22x1077 | 23x1077 | 1.8 x 1077 | 1.3x 1077 | 1.1 x 1077 | 8.3 x 1078
[20, 25] 1.02 x 5.29 x 2.80 x 1.83 x 1.46 x 1.12 x
1075+ 1076+ 1076 + 1076 + 1076 + 1076 +
24x107% | 24x107% | 1.8x107® | 1.4x107® | 1.1 x107® | 85x 107
[25, 30] 4.47 x 4.81 x 5.44 x 5.93 x 7.04 x 1.02 x
1077 + 1077+ 1077 + 1077 + 1077+ 1076+
72x107107.2x 1071 |54 % 10710 |41 x 1071° [ 3.3 x 10710 | 2.6 x 10710
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Table B.3: R-values in the two dimensional bins m;, 0* for the process u™u~ — ttv after all the
preliminary cuts in Eq. (4.2.7), (.2.8), (4.2.9), (4.2.11)).

m[TeV] / 6*[°]]  [0,30] [30,60] | [60,90] | [90,120] [ [120,150] | [150,180]
[0, 1]
R 0209+ | 0143+ |-0.0484 + | -0.647 + | -154+ | -2.60 +
0.070 0.052 0.047 0.081 0.19 0.48
R, 0279+ | 0563+ | 116+ 340+ |7.20+1.7]12.8 £ 4.1
0.67 0.51 0.48 0.82
1, 2]
R -0.0314 4+ | -0.0778 + | -0.266 + | -0.827 + | -1.794+ | -3.81 +
0.055 0.055 0.071 0.13 0.24 0.51
R, 1.29 + 3.06 + 843 + 2994 1.4 583+ 23| 110 + 4.5
0.57 0.54 0.70
2, 4]
Ry 0.0124 + | -0.116 + | -0.313 4+ | -0.790 + | -1.334+ | -2.68 +
0.052 0.061 0.092 0.16 0.25 0.43
R, 5.28 + 12.8 + 36.2+ | 110 £ 1.7 | 212 £ 2.7 | 362 + 6.2
0.54 0.57 0.89
[4, 6]
R 0.0109 + | -0.127 + | -0.331 4+ | -0.481 + | -0.842 + | -1.25 +
0.050 0.066 0.11 0.17 0.23 0.31
Ry 1714+ | 4474+ | 128+ 1.1 | 297 +2.2 | 556 + 4.9 | 649 + 7.1
0.53 0.60
[6, 8]
R 0.0171 4 | -0.0997 + | -0.205 + | 0211 + | -0.252 + | -0.218 +
0.049 0.069 0.10 0.14 0.16 0.18
R, 33.7 + 955 + | 207 4+ 1.1 | 365 + 1.9 | 478 &£ 2.4 | 479 + 2.5
0.52 0.65
8, 10]
R 0.0116 £+ | -0.0316 + | -0.0188 = | -0.0103 % | 0.00346 + | 0.00128 =+
0.073 0.082 0.083 0.085 0.079 0.068
R, 479 + 81.3 + 82.1 + 85.2 + 767+ | 417+
0.79 0.77 0.80 0.88 0.86 0.62
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Table B.4: R-values in the two dimensional bins my;, 6* for the process u™pu~ — ttvi after all the
preliminary cuts in Eq. (4.2.7), (.2.8), (4.2.9), (4.2.11)).

m[TeV] / ] [0,30] [30,60] | [60,90] | [90,120] | [120,150] | [150,180]
[0, 1]
R 0197 + | 0137+ |-0.0365+ | -0.694 + | -1.66 + | -2.88 +
0.0056 0.0044 0.0041 0.012 0.057 0.24
R, 0286+ | 0508+ | 108+ 3.55 + 970 + | 223+ 2.1
0.0078 0.0072 0.0091 0.042 0.32
[1, 5]
R -0.00399 =+ | -0.0849 & | -0.287 + | -0.956 £ | -2.05+ | -4.76 +
0.0057 0.0071 0.0099 0.030 0.10 0.39
R, 2.66 + 5.50 =+ 128+ | 480+ | 145 +5.2| 368 + 30
0.028 0.049 0.11 0.71
[5, 10]
R 0.0171 4+ | -0.101 + | -0.236 + | -0.824 + | -0.882 + | -2.50 +
0.015 0.022 0.041 0.095 0.17 0.41
R, 324 + 924 + | 242 £33 | 654 4+ 14 | 1459 + 54 | 3465 +
0.30 0.94 259
[10, 15]
R -0.00494 £ | -0.131 + | -0.346 + | -0.732+ | -1.094+ | -1.35 +
0.020 0.037 0.077 0.15 0.24 0.42
R, 99.5 + | 3354+ 3.6 | 890 + 14 | 1946 + 45| 4012+ | 7773 +
0.84 138 460
[15, 20]
R -0.0605 £ | -0.129 + | -0.351 + | 0.406 + | -0.914 + | -0.639 +
0.023 0.046 0.092 0.15 0.19 0.26
R, 195+ 1.5 | 738 + 7.8 | 1770 &£ 28 | 3159 + 65 | 5080 + | 9193 +
133 386
[20, 25]
R -0.0195 £ | -0.0786 & | -0.0399 + | -0.0314 & | -0.201 + | -0.268 +
0.023 0.045 0.064 0.074 0.075 0.076
R, 321 + 2.5 | 1166 + 13 | 1942 + 27 | 2519 + 40 | 3201 + 56 | 4070 + 95
[25, 30]
R 0.0111 £ |-0.00137 + | -0.0253 £ | -0.00295= | 0.00193 + | 0.00218 =+
0.016 0.015 0.010 0.0069 0.0047 0.0026
R, 339 + 4.3 | 568 + 7.7 | 488 £ 6.3 | 373 £ 4.3 | 303 £ 3.1 | 214 + 2.2
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Appendix C

Helicity Amplitudes for WTW~ — ¢t

In this appendix, we present the full helicity amplitudes for the subprocess W*TW = — tt:

MW (p)W™ (p2) = t(p3)t(pa)) = M + M7 + M" + M’

(C.0.1)

where M?%" denotes the s—channel contribution with ~, Z, h particles as internal lines and

M corresponds to the t—channel contribution. Since the initial particles have the same

masses as well as the final particles, the energies of the top quarks are equal to that of the

W bosons in the partonic center-of-mass frame:

b= Ew =5

The other Mandelstam variables ¢, % can be written as functions of §:

t= (=8¢ = Biy + 26w cos ) , a == (=B} — By — 2B:Bw cosb) ,

I VAN
= >

where the velocities of the W-bosons and the top quarks are given by:

/ Am?
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(C.0.2)

(C.0.3)

(C.0.4)



Here the scattering angle 6 in the partonic center-of-mass frame is the polar angle between the
out-going top quark and the incoming W™ gauge boson. The z-axis in chosen the direction
of the W spatial momentum. The azimuthal angles of the top quark and the anti-top quark

are chosen as:

o =0, Yr=T (C.0.5)

which will fix the possible i factors in the polarization functions of the anti-top quarks. We

will present the helicity amplitudes in terms of the Wigner d functions [77]:

Mh1h2;h3h4 = JV[hﬂm;hs/u (9)<h3 — hs + (5h3h4)(_1)h2d£)h12,Ah34 (9) (C06)
with
Ahlg = hl — hg, Ah34 = hg — h4, JO = maX(]Ahu], ‘Ah34‘) (CO?)

and to make results more compact, we have also extracted some sign factors for convenience.

The relevant d functions are listed as follows [124]:

1 1
d%,l = dl_l’_l — 5(]— + COs 0); di—l — dl_Ll - 5(1 — COS 0),

in@
di,o = _dl—l,o = _Sil/lﬁ (C.0.8)
1 1
di, = —dQ_L_2 =3 sin #(1 + cos6), di_Q =—d’,, = —3 sin (1 — cos )
which satisfy the following identities:
di?/,m = (_1)mim/dzn,m’ = dj—m,—m’ (009)
The top Yukawa coupling modification is parametrized as:
Lt = —%(1 + ) htt (C.0.10)
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For future studies, we have also included the C'P-even anomalous triple gauge boson cou-

plings (aTGC), which are parametrized as follows [77]:

A
Lwwv /gty =ig) (WLW VY = W WHVY) 4 imy WIW VR 4 i mg W W VA
W
(C.0.11)
where lefj =9,WF — 6?,,1/1/';t and V = v, Z. The SM values of the TGCs read:
glsﬁﬂvlw7 =e, M, = gcosby. (C.0.12)

where Oy is the weak mixing angle. The unbroken electromagnetism fixes g| to be 1.
So we are left with 5 anomalous TGC couplings: dg7, 8z, 0k, Az, A, defined as dg7 =
gZ? —1,0ky = ky — 1. At dimension-six SMEFT, they are further related by the following
identities [54]:

§kz = 697 — tan® Oy k., Az =\, (C.0.13)

but here we will take them as independent couplings. We also take into account the con-
tributions from the possible modifications of the top electroweak couplings and the Higgs

gauge boson coupling:

gwib gz 9z Grww
Swin =02 1, Sy = L1 Gy =21 Sy = W1 (C.0.14)
Witb 97, 9Ztr Ihww

with their SM values as follows:

SM g SM
Iwe = E7 9z, =

g 1 2 SM 2 gsin® Oy M 2mé,
5 3 v Y2t T TR T g o

. 9
— — —sin” Oy =— g =
cos Oy 3 cosfy = TPWW
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Now, we turn to the formulae for the helicity amplitudes. In order to list them compactly

in tables, we further take some pre-factors out of M:

N 2.2\/5923%4/514/ ~

3 h1h2§h3h4
~ ) 1—Ah 2 1—Ah 1+ Ah
MZ = iv2¢ B (TM@“ +0zt,) — gsav (1 * TM%Z“ + 2 - BtéZtR)) )
§ - mQZ A51h2§h3h4
~ q? S h
M = @m(l + Oun) (1 + 5hWW)5t—§ — m%Ahth;hg,m
2
_ 91— Ahyy By) 2 1
M= — 14+46 By h, — Chiho:
VA 2\/§BW ( + Wtb) h1h27h3h4 /Btz + /B‘Q/V _ 2/8t/6W CoS 0 hth,h3h4

(C.0.16)

where we have abbreviated sinfy as sy,. Note that the kinematical function in front of

Chy hoihshy 18 simply 4% and we have omitted the small bottom quark mass. The results

for the helicity configurations (:F%, :I:%) of final top and anti-top quarks are presented in

Table and for other helicity configurations (:F%, :F%)7 they are shown in Table
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Table C.1: Helicity amplitude factors for W,jl T/Vh_2 — tpytp, for Ahsy = F1.

note that dg] = 0.

Here V = ~,Z and

(hsha) (h1hs) AY hohisha AL i | Bhuhoshsha Chihashzha
(+1-1),(-1 +1) 0 0 0 —2V26:Bw
(+1 +1),(-1 -1) 1+ 097 + ﬁAV 0 1 B? — B,
(-3 3| (+10,0-1) | 2 (1 + 6g¥+6++kv) 0 DR LA G A
(10,0 +1) | =2 (14 iy 0 _ | RSB fy)
(00)  |—1=dgf —g(1+dkv)| 0 i _S(B;;gvavf
(+1 -1),(-1 +1) 0 0 0 —2v/2B:Bw
(+1 +1),(-1 -1) 1469} + ST AV 0 1 8% — B
2 =YH] (+10),0-1) nva (1 i 59Y+6++Av) 0 % ﬁ(ﬂt—ﬂxv)thwav)
(-1 0),(0 +1) _£ (1 + W++AV> 0 n\fV _ﬁ(ﬂﬁﬁ:g&(ﬁﬁﬂ%)
(00) R I g —w
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Table C.2: Helicity amplitude factors for W}Z I/Vh_2 — tpyth, for Ahsy = 0. Here V = v, Z and note

that dg] = 0.
(h3h4) (hlhg) Ai‘{1h2;h3h4 Azlh2§h3h4
(+1-1),(-1 +1) 0 0
(+1 +1),(-1-1) | 22 (1409} + 25-Av ) cos e
1 1 V2m 5gY +5ﬁv+>\v
(=3 =Y | (+10),0-1) /am, (1+ 1 ) 0
fm Vv +A
(-1 0),(0 +1) (14 2ot ) 0
2
(0 0) ‘[\}"t (1 + 591 (12;%’;‘/)) cos 6 ——ﬂmtﬁgﬁw)
(+1-1).(-1 1) 0 0
(+1 +1),(1 1) | —¥2 (1 +0gY + 25 )\V> cos 0 Vom
B3 | (F10,0-1) | -2 (14 i) 0
(_1 0>7(0 +1> \[mt (1+ 59 +5/€v+)\v) 0
. s(1+6k V2my/s(1432
(0 0) 7‘/\5/5 <1 + 691 + 7(12;%”‘/)) cos 0 —;/7;(%;6“’)
(h3h4) (h1h2) Bhlhz;h3h4 Chlhz;h3h4
_ _ _ 8muBiBw
(+1-1),(-1 4+1) 0 NENG
. me (B2 —B%, F2BtBw +2B: Bw cos §) me(BeFBw )% (B2—BZ,)
(+1 +1),(-1-1) V258t Bw V2/58: Bw
_1 1 V2m V2 (B:FBw) (Bi£8%,)
( 2 2) ("‘1 0)7(0 ‘1) th mwy .
(-1 0),(0 +1) _\2my _ V2my (BeBw ) (Be 183, )
mw mw
(0 0) _ Vsmu(B2 4By, +28:Bw cos6) _ Vsmu (B85, =B (B +8))
2v2m?2, B¢ Bw 2v/2m?2, B¢ Bw
1) (- 8m¢ B Bw
(+1-1),(-1 4+1) 0 NENG
e _ me(B7 B3, 2Bt Bw +2B¢ B cos ) ma (B 8w ) (BE—B%,)
(+1 +1),(-1-1) V2v/5BBw V2v/5BBw
(% %) (4+1 0),(0 -1) _ V2o _ V2my(BedBw ) (B F By )
9 mw mw
V2m V2 (B:FBw) (B: FB%,)
(-1 0),(0 +1) Vo w5y
00) VEme (B2 4B, +2B:Bw cos 0) Vsmi (B 4B, —B7 (B3 +Biy))
2v2m3, BeBw 2v2m3, BiBw
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Appendix D

Statistics

In order to constrain the top Yukawa coupling as shown in Fig. [1.6] we follow the frequentist

statistics procedure outlined in [123]. We first construct the likelihood function L(dyp):
L(0un) = P(n|oun) (D.0.1)

where n is the observed number of events and P(n|dyy,) is the probability under the hypothesis

of 64,. Here we have used the Poisson distribution:

P(n‘dtth) = —(S<5tth)'+ b)n 67(5(6ith)+b)_ (DOZ)

n!
where s is the number of signal events, which is a function of d;, and b is the number of SM
background events. For multi-bin analysis, as is the case in this chapter, the total probability

function is given by the product of the probability function in each bin, i.e.:

P(n|6un) :HM ) 00" oy (D.0.3)

i

The x? function is defined as:

x> =-2InL (D.0.4)
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and we will use the method of maximum likelihood to estimate the confidence interval. The

AX? as plotted in Fig. is defined as:

Ax® = X* = Xoin = 210 Ly — 20 L (D.0.5)

where L., is the maximal value of the likelihood function with given date n. The expected
sensitivity is obtained by setting the observed number of events to the SM background values
n = b. The confidence interval at m-standard deviation is obtained by solving the following
equation:

Ax? =m? (D.0.6)
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