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Increasing Groundwater Availability and Seasonal Base
Flow Through Agricultural Managed Aquifer
Recharge in an Irrigated Basin
George Kourakos1 , Helen E. Dahlke1 , and Thomas Harter1

1Department of Land, Air and Water Resources, University of California, Davis, CA, USA

Abstract Groundwater aquifers provide an important “insurance” against climate variability. Due to
prolonged droughts and/or irrigation demands, groundwater exploitation results in significant
groundwater storage depletion. Managed aquifer recharge (MAR) is a promising management practice that
intentionally places or retains more water in groundwater aquifers than would otherwise naturally occur.
In this study, we examine the possibility of using large irrigated agricultural areas as potential MAR
locations (Ag‐MAR). Using the California Central Valley Groundwater‐Surface Water Simulation Model we
tested four different agricultural recharge land distributions, two streamflow diversion locations, eight
recharge target amounts, and five recharge timings. These scenarios allowed a systematic evaluation of
Ag‐MAR on changes in regional, long‐term groundwater storage, streamflow, and groundwater levels.
The results show that overall availability of stream water for recharge is critical for Ag‐MAR systems.
If stream water availability is limited, longer recharge periods at lower diversion rates allow diverting
larger volumes and more efficient recharge compared to shorter diversion periods with higher rates. The
recharged stream water increases both groundwater storage and net groundwater contributions to
streamflow. During the first decades of Ag‐MAR operation, the diverted water contributed mainly to
groundwater storage. After 80 years of Ag‐MAR operation about 34% of the overall diverted water remained
in groundwater storage while 66% discharged back to streams, enhancing base flow during months with
no recharge diversions. Groundwater level rise is shown to vary with the spatial and temporal distribution of
Ag‐MAR. Overall, Ag‐MAR is shown to provide long‐term benefits for water availability, in groundwater
and in streams.

1. Introduction

Approximately 36% of the population worldwide relies on groundwater for drinking water supply, and 42%
use groundwater for irrigated agriculture (Döll et al., 2012; FAO, 2011; Foster et al., 2013). In many
groundwater‐dependent regions, groundwater is often exclusively used to meet water demand during peri-
ods of surface water shortage or prolonged droughts (Scanlon et al., 2012; Siebert et al., 2010). Groundwater
resources therefore provide an important “insurance” against climate variability and climate change
(Grönwall & Oduro‐Kwarteng, 2018; Scanlon et al., 2016). However, many groundwater‐dependent regions,
particularly arid and semiarid regions including the southwestern United States, India, Pakistan, the Middle
East, the North China Plain, and North Africa, experience increasingly water scarcity and groundwater
depletion due to water demand exceeding the sustainable yield of the groundwater aquifer and the local,
renewable surface water supply from precipitation (Famiglietti et al., 2011; Konikow & Kendy, 2005;
Scanlon et al., 2016; Taylor et al., 2013; Wada et al., 2012). In many groundwater‐dependent regions,
unsustainable groundwater use not only impacts human water supply and food security (USA: Scanlon
et al., 2012; Konikow, 2015; Iran: Voss et al., 2013; India: Chinnasamy & Agoramoorthy, 2015; Australia:
Chen et al., 2016) and groundwater‐dependent ecosystems (Closas & Molle, 2016; Owen et al., 2019;
Rohde et al., 2017) but also causes water quality degradation (Harter et al., 2012), land subsidence (Faunt,
2009), and seawater intrusion (Konikow & Kendy, 2005).

Recognition of worldwide depletion of groundwater resources and its adverse effects on human and envir-
onmental well‐being has led to recent policy and legislative action toward sustainable water resources man-
agement in the European Union (European Commission, 2016), North‐America (Cannon Leahy, 2015),
New Zealand (Ministry for the Environment, 2018), and Australia (Water Act, 2007). Methods to achieve
sustainable management of groundwater resources range from conservation (i.e., reduced groundwater
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pumping), conjunctive use (substituting surface water for groundwater to reduce groundwater use), and in‐
lieu recharge (supply surface water to users who normally use groundwater) to various managed aquifer
recharge (MAR) methods, which intentionally place more water in groundwater aquifers than would other-
wise naturally occur (Bouwer, 2002; Kocis & Dahlke, 2017; Scanlon et al., 2016). MAR approaches use a vari-
ety of water sources (e.g., river water: Scanlon et al., 2016; stormwater: Page et al., 2016; treated wastewater:
Zekri et al., 2013; Bugan et al., 2016; or desalinated water: Kimrey, 1989) and methods (e.g., infiltration
basins or channels, injection and recovery of groundwater through wells, induced bank filtration, off‐season
spreading of water on farmland; Dahlke, Brown, et al., 2018; Dillon, 2005; Russo et al., 2014) to intentionally
replenish underlying aquifers.

Although most engineered MAR systems (e.g., infiltration basins, aquifer storage, and recovery) can achieve
high recharge rates (>10 m per year) their small, localized footprint (few tens of square meters to a few hec-
tares), high capital and maintenance cost along with requirements for creation and maintenance of convey-
ance and pumping systems and water quality permitting often limit their use for large‐scale (e.g., regional)
groundwater management (Bouwer, 2002; Dahlke, Brown, et al., 2018). More recently, the use of large areas
of agricultural farmland as off‐season spreading grounds of excess surface water, hereon referred to as Ag‐
MAR (Kocis &Dahlke, 2017; Niswonger et al., 2017), has emerged as a promising large‐scale MAR approach.
Ag‐MAR can be practiced in any irrigated agricultural region with water conveyance and irrigation infra-
structure in place, which can be used to move excess surface water or flood flows onto fields for replenish-
ment of depleted groundwater aquifers (Kocis &Dahlke, 2017). Although agricultural fields may not support
recharge rates of the same magnitude as achieved with carefully sited infiltration basins or injection wells
(O'Geen et al., 2015), spreading water over large land areas (e.g., hundreds to thousands of square kilo-
meters) at recharge rates of less than 1 m per month still allows capturing large amounts of water in short
time periods (e.g., days to weeks) that would otherwise overwhelm localized systems such as well injections
or infiltration basins. As such, Ag‐MAR represents a particularly promising groundwater banking strategy
for groundwater‐dominated regions where large climate variability (e.g., annual rainfall derives from a
few storm events; Dettinger et al., 2011) results in high volume rainfall‐runoff events that could otherwise
not be captured through traditional MAR approaches.

Because of its recent emergence, regional‐scale water resources and environmental benefits of Ag‐MAR have
not yet been explored much through numerical modeling or quantitative analyses. Ag‐MAR assessments
have mainly focused on recharge projects implemented at individual sites (Bachand et al., 2014; Dahlke,
Brown, et al., 2018). While a large majority of MAR modeling studies has focused on well, shaft, and bore-
hole recharge (Ringleb et al., 2016), MAR spreading methods (e.g., infiltration basins or canals) have been
mainly evaluated using site‐specific unsaturated flow and groundwater flowmodels. Models have been used
to assist in site selection (Jha & Pfeiffer, 2005; Rahman et al., 2013; Valley et al., 2005) and to assess the fea-
sibility of MAR, the design and optimization of MAR systems (Maliva et al., 2015; Smith & Pollock, 2012),
the estimation of recovery efficiency, the residence time of the infiltrated water (Tompson et al., 1999;
Vandenbohede et al., 2008), and general changes to the groundwater system (e.g., groundwater level and
groundwater storage changes; Dillon et al., 2009; Sheng, 2005). Even though there exist a few models that
were specifically developed for MAR, most studies use widely available groundwater flow models such as
MODFLOW (McDonald & Harbaugh, 1988; Mirlas et al., 2015), saturated flow models such as FEFLOW
(Diersch & Kolditz, 2002) and SEAWAT (Langevin et al., 2008), or unsaturated flow models such as
HYDRUS (Šimůnek et al., 2012) or MIKE‐SHE (Sahoo et al., 2006).

Since Ag‐MAR can be implemented over vast agricultural areas, regional‐ to large‐scale modeling studies are
needed to evaluate long‐term benefits and impacts on groundwater supply, aquifer sustainability, and
groundwater‐dependent ecosystems. They would further allow optimizing the size and location of Ag‐
MAR programs with respect to regional hydrogeologic and climatic conditions. In regions with large preci-
pitation and streamflow variability such as the southwestern United States, where increasing temperatures
and changing precipitation patterns (Dettinger et al., 2011) are putting additional pressures on water
resources, Ag‐MAR may play a central role in efforts to optimize the use of surface water to bring depleted
groundwater aquifers back into balance (SGMA (Sustainable Groundwater Management Act), 2014). While
in many irrigated agricultural regions surface water resources have been mostly tapped, including water
rights for environmental flow, recently Kocis and Dahlke (2017) identified significant unused surface
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water volumes from large runoff events (e.g., high‐magnitude flows or flood flows) for the California Central
Valley (CV). Ag‐MAR and more integrated joint management of surface water reservoirs and groundwater
storage capacity may allow for a significant fraction of this water to be captured prior to discharge into the
ocean (California Department of Water Resources [DWR], 2018a; Dillon & Arshad, 2016; Pavelic et al.,
2012). Nevertheless the diversion of large amounts of floodwaters may also lead to loss of water to estuary
ecosystems (Grimaldo et al., 2009).

Widespread adoption of Ag‐MAR programs hinges on uncertainty about the long‐term effects on ground-
water storage, levels and flow pathways, ecosystems services provided by potential increases in groundwater
storage, and subsequently the potential benefits to stakeholders. As one of the few Ag‐MAR modeling stu-
dies published to date, Niswonger et al. (2017) coupled the distributed hydrologic model MODFLOW‐

NWT (Niswonger et al., 2011) with the linked‐network optimization and operations/planning model
MODSIM (Labadie, 2010) to estimate potential benefits of Ag‐MARwhile considering heterogeneous hydro-
geologic conditions, surface water diversions, reservoir releases, and stakeholder water rights, rules, and
priorities. The coupled model was developed to represent the 698 km2 (172,500 acres) semiarid Carson
Valley in California and Nevada, USA in a simplified way, omitting some of the physiographic, land use,
water infrastructure, and water rights complexities that often plague many larger irrigated agricultural
regions such as the California CV. For the 1990–2014modeling period recharge of excess surface water avail-
able only during seven years increased total groundwater recharge between 9 and 12%, resulting in ground-
water level increases of up to 7 m, increased crop water consumption leading to greater crop yield, and
increased drought resilience of the aquifer. However, the integrated model developed by Niswonger et al.
(2017) focused on a very small study area, which would cover less than 1% of some of the most important
groundwater‐dependent agricultural regions in the United States such as the High Plains aquifer (111.4 mil-
lion acres [450,657 km2]), theMississippi embayment alluvial aquifer (49.9 million acres [202,019 km2]), and
the California CV (16.1 million acres [65,000 km2]). Nevertheless, the study illustrates that when simulating
hydrologic conditions of Ag‐MAR in developed groundwater basins with complex water use structures and
conjunctive use of surface water and groundwater in place, estimating benefits of Ag‐MAR is challenging,
because enhanced water supply due to Ag‐MAR changes the relative amounts of surface water and ground-
water used for agriculture.

In this study, we use the California Central Valley Groundwater‐Surface Water Simulation Model
(California Central Valley Groundwater‐Surface Water Simulation Model (C2VSim); Brush et al., 2013), a
large‐scale, integrated groundwater‐surface water model that covers the entire CV of California, USA (model
domain is 13.3 million acres [53,645 km2]), to evaluate potential benefits and consequences associated with
adopting different Ag‐MAR practices in California's CV. We focus on a groundwater subbasin within the CV
as a laboratory to quantify the impact of various Ag‐MAR practices (e.g., different recharge locations,
amounts, and timings) on local‐ and regional‐scale, long‐term benefits to groundwater storage, surface,
and groundwater return flows (Sophocleous, 2007) within the full domain C2VSim model and how these
benefits are distributed within the system. The study further aims to quantify the risk that Ag‐MARmay pose
for waterlogging the root zone of crops or shallow soils in urban areas and the effects that large surface water
diversions for Ag‐MAR may have on in streamflows. The modeling tool used in this study (C2VSim) has
been developed by the California Department of Water Resources. C2VSim is frequently used by Water
Districts, consultants, and other water agencies (Davids Engineering and West Yost Associates, 2018) for
groundwater‐related project assessments. In this study we also highlight some of the important assumptions
and limitations of C2VSim pertinent to Ag‐MAR assessments and illustrate a potential framework for how
this tool can be used to extract valuable information for water resources managers.

2. Methods
2.1. Study Area

The Central Valley (16.1 million acres [65,000 km2]) of California located between 35 and 41°N and 118 and
122°W is an irrigated, groundwater‐dependent region overlying the second largest groundwater system in
the United States. It is also one of the most agricultural productive regions in the world. Its 7.9 million acres
(32,000 km2) of irrigated agricultural lands are intensively farmed (Harter et al., 2017). Important crops
include fruit, nuts, vegetables, rice, corn, citrus, and grapes. The CV is characterized by a semiarid
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Mediterranean climate with hot, dry summers and cool, wet winters. Annual precipitation in the valley
ranges between 125 and 510 and over 1,000 mm/a in the Sierra Nevada mountains (1961–1990; DWR,
(California Department of Water Resources), 2003), most of which falls as rain or snow between
November and April. Mean annual temperature ranges between 16 and 19.5 °C across the valley (Kocis &
Dahlke, 2017). Land use is dominated by irrigated, mostly high‐value agricultural production. About 6.9
million acres (28,000 km2) are connected to an extensive system of reservoirs, canals, and aqueducts
(Hanak, 2011). While irrigation water is sourced from a mix of groundwater and surface water, many of
the region's communities depend on groundwater for drinking water.

The CV comprises a large, high‐yielding aquifer system formed from unconsolidated sedimentary basin
deposits (Farrar & Bertoldi, 1988). Past or ongoing groundwater overdraft in some areas has created subsur-
face storage capacity and significantly degraded the groundwater‐surface water connectivity, especially
along the thalweg (Brush et al., 2013; Faunt, 2009). Large water conveyance systems such as the CV
Project and the State Water Project link surface reservoirs in the foothills of the Cascade mountain range
in Northern California to urban centers at the central and Southern California coast but also offer water trad-
ing opportunities throughout the state (Hanak & Lund, 2012). Similar climate, land use, and water resources
conditions are found in other intensively farmed regions around the world, albeit some without extensive
canal infrastructure (High Plains aquifer, North China Plain, agricultural regions in southern Europe,
North Africa, South America, and the Middle East).

This study focuses on the Orland Artois Water District (OAWD), located in the Colusa groundwater subba-
sin in the north‐western part of the CV and the CVSim model domain, to evaluate the impact of various
Ag‐MAR scenarios on the integrated groundwater‐surface water system. The focus area of approximately
0.34 million acres (1,370 km2) is bounded by the Coast Range to the west, the Sacramento River
(thalweg) to the east, by Stony Creek—a Sacramento River tributary—to the north and the boundary
between Glenn and Colusa County to the south (Figure 1).

Figure 1. Orland‐Artois Water Districts (OAWD), the study area, is located west of the Sacramento River in the northern
part of the CV, California. Stony Creek and some smaller, ephemeral streams flow from the Coast Range, west of
OAWD across the district to the Sacramento River. Stony Creek forms the northern boundary of the district and is the
only major surface water feature besides the Sacramento River. A large diversion canal for irrigation within OAWD
and south of OAWD runs diagonally through the district. Smaller canals run throughout the district, which currently
have water rights to Stony Creek, but not to the Sacramento River (e.g., Tehama‐Colusa canal).

10.1029/2018WR024019Water Resources Research

KOURAKOS ET AL. 4



The subsurface geology of OAWD, like elsewhere in the CV, consists of a mixture of unconsolidated late ter-
tiary and quaternary continental deposits overlying a basement complex of granitic and metamorphic rocks
(Davids Engineering, Inc., 2002; Davids Engineering, Inc., & MWH, 2006; West Yost Associates Consulting
Engineers, 2012).

In OAWD, annual precipitation averages 585 mm/a (1981–2010) and the mean annual temperature is
16.7 °C. Precipitation occurs from November through April, while little or no rainfall is observed during
summer and early fall. Stony Creek flows are managed by Black Butte Lake, located in the northwest corner
of the study area. The Sacramento River has large upstream reservoirs (e.g., Lake Shasta, Lake Oroville),
which store winter runoff and snowmelt for summer delivery via the Sacramento River, irrigation canals,
and large water projects to irrigation districts and other water users throughout the CV.

OAWDdelivers surface water from Stony Creek, an ephemeral stream north of Orland, CA. Irrigation canals
deliver water to landowners within the district, irrigating approximately 28,918 acres (10,842 ha) in 2014
(California Department of Water Resources [DWR], 2018b) of predominantly deciduous tree orchards
(15,780 acres [6,386 ha], mostly walnuts and almonds, north and northwest of the study area), field crops
and pasture (4,495 acres [1,819 ha]), vineyards (1,048 acres [424 ha]), rice (867 acres [351 ha], eastern and
southern part of the study area), and idle fields (4,596 acres [1,860 ha]). OAWD receives an annual allocation
of 53 thousand acre‐feet (TAF) (65.4 million cubic meter [Mm3]) of surface water from the CV Project (i.e., U.
S. Bureau of Reclamation), which equals 1.8 ft/acre (135 cm/ha) of irrigation water. The supplied surface
water amount is not enough to grow most crops. Hence, in addition to private groundwater pumping,
OAWD is supplementing surface water supplies with groundwater from two deep (>250 m) groundwater
productionwells (5,400 acre‐feet (AF) [6.6 × 106m3]), every year as well as surface water transfers from other
water districts (about 3,300 AF [4.0 Mm3]; Orland‐Artois Water District, 2014). Importantly, growers operate
their own wells and pump as much as 58,600 AF (72.3 Mm3) in a drought year (e.g., 2014).

Groundwater recharge occurs from streams, mostly along the upper alluvial fans in the western part of the
study area away from the Sacramento River thalweg and from winter precipitation and irrigation return
flows across the landscape (Brush et al., 2013). The regional groundwater tables are relatively stable despite
supplemental groundwater pumping for irrigation. However, some local areas, which rely primarily on
groundwater and recover more slowly after extended droughts periods, have experienced significant draw-
down in recent years, especially west of the towns of Artois and Orland (north‐central portion of the
study area).

A key component in the CV and consequently the study area is the linkage between groundwater and sur-
face water. In general, near the foothills of the CV the streams recharge the aquifer. Further downstream,
some rivers receive significant inflow from groundwater that is an important component of summer base
flow and contributes to low stream water temperatures, although streamflow is also significantly affected
by upstream reservoir releases.

2.2. Model Description

This study, while focused on management actions and hydrologic responses in the region around OAWD,
simulates the entire CV aquifer system. We employ the fine grid version of the Central Valley integrated
groundwater‐surface water simulation model C2VSim (Brush et al., 2013). C2VSim was developed using
the Integrated Water Flow Model (IWFM) software (Dogrul, 2012; Dogrul et al., 2017). The IWFM software
is designed as a basin‐scale water resource management and planning tool, accounting for reservoir deliv-
eries, streamflow, stream diversions, canal distribution systems, irrigation, runoff, crop water uses, vadose
zone processes, and groundwater‐surface water‐irrigated landscape interactions typical of agricultural,
irrigated basins. In California, IWFM is an important tool for decision makers and stakeholders (Harter &
Morel‐Seytoux, 2013). For local water districts and consulting firms it is often a first choice for developing
an integrated groundwater‐surface water modeling framework and for estimating water budget scenarios
(Davids Engineering and West Yost Associates, 2018). C2VSim is an application of IWFM specifically to
the CV aquifer system and its overlying land uses and surfacewater network. C2VSim and IWFMare publicly
available and are documented andmaintained and further developed by the California Department ofWater
Resources staff. For this study, the IWFM components of interest in the C2VSim application are primarily
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those related to groundwater flows, streamflows, and stream‐groundwater interactions, which are briefly
reviewed here, but documented in detail in the above references.

The groundwater flow is simulated by numerically solving the three‐dimensional groundwater flow equa-
tion using a multilayer finite element grid subject to initial and boundary conditions detailed in Brush
et al. (2013).

−∇ −K∇hð Þ ¼ Ss
∂h
∂t

(1)

Briefly, C2VSim utilizes a three‐layer system to represent the CV aquifer system. The CV aquifer domain is
discretized into a two‐dimensional grid of 32,537 finite elements that is extruded in the vertical direction.
The OAWD study area is covered by 925 finite elements with an average element size of approximately 33
acres (13 ha; Figure 1). Assuming that storage is negligible in low‐permeability zones, flow between layers
is computed as a function of the vertical head difference between aquifer layers using a leakage coefficient
(Brush et al., 2013). The Central Valley aquifer system is bounded by low‐permeable bedrock simulated as
no‐flow or low‐flow boundaries. Specified or general head boundary conditions are only found at the inter-
face of the CV aquifer with the Bay‐Delta region, over 200 km south of the study region. Groundwater flow
dynamics are largely controlled by land surface recharge from precipitation and agricultural return flows,
groundwater pumping, and groundwater‐surface water interactions.

For stream‐groundwater interactions, three conditions are often distinguished and accounted for in
groundwater‐surface water models like C2VSim: (i) gaining stream (water table near the stream is higher
than the stream water elevation, (ii) losing stream (water table near the stream lower than the stream water
elevation), and (iii) disconnected stream (an unsaturated zone separates the stream from groundwater).
C2VSim also accounts for more complex interactions between streams, groundwater, and the irrigated land-
scape, that is, the diversion of stream water for irrigation, the increase of base flow from irrigation return
flow to groundwater, or the decrease of base flow due to groundwater pumping and, hence, decreased dis-
charge of groundwater to streams.

In IWFM, streams are represented as nodes. Their x‐y node locations coincide with the element grid nodes
used in the groundwater flow component. At each stream node the continuity equation is enforced such that
inflows (the upstream flows, surface return flows from agricultural and urban areas, direct runoff, flows
from tributaries, bypasses, and lakes) are equal to the outflows (diversions, water exchange between ground-
water, and outflow to downstream node) plus storage changes due to changes in stream stage. Stream stage
represents the discharge to the downstream node, that is, after diversions for recharge are subtracted from
the stream inflow to the node (see page 14 in Brush and Dogrul (2016) for more details).

Streamflow and surface water (e.g., irrigation canals) diversions are user‐defined time series of target diver-
sions in the model. When target diversions cannot be met by streamflow, the model adjusts the diversion
amount accordingly. In either case, the diverted amount affects the downstream groundwater‐stream inter-
action, at the node of diversion and downstream from that node, due to lower instream flows and, hence,
lower stream stage. The amount of water that is exchanged between the stream and groundwater depends
both on the stream reach balance and the head gradient and streambed conductance (Cauchy boundary con-
dition) between the groundwater head and stream water elevation; therefore, these two systems are solved
simultaneously at each time step. In C2VSim, both, the Stony Creek tributary and the Sacramento River are
explicitly simulated in this fashion, but none of the canals.

A fourth C2VSim model component of interest to recharge studies is the simulation of flow through the
unsaturated zone (zone between ground surface and groundwater table). The IWFM software behind
C2VSim includes a one‐dimensional vertical unsaturated zone flow component that is divided into two
layers: the root zone and the deep unsaturated zone. Both are operated based on a tipping bucket approach
with transfer rates controlled by hydraulic properties of the unsaturated zone. Water routed for irrigation is
applied to agricultural areas to meet irrigation demand and as such can re‐enter the groundwater system
through infiltration and vadose zone percolation. On the other hand, the software allows the user to route
recharge diversions for MAR projects directly to one or several nodes in the groundwater system, bypassing
the soil and deep unsaturated zone, when effects of recharge applied at the land surface on crop or vegetation
ET, soil moisture, return flow, irrigation water demand, etc. are neglected. This provides computational
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efficiency and is adequate for our study, which focuses on the long‐term (e.g., decadal) impacts of Ag‐MAR
on groundwater level rise and groundwater discharge to the stream network. The time required for recharge
water applied on fields to percolate through the root and unsaturated zone as well is sufficiently short to be
neglected for the analysis here. Similarly, additional evaporative or ET losses due to water storage in the
vadose zone do not have significant impact on our overall analysis. Additional ET due to shallow ground-
water would be undesirable in the agricultural landscape. In practice, Ag‐MAR would be controlled to leave
water levels well below the land surface. The exception is rice fields, where C2VSim already accounts for ET
from flooding conditions.

C2VSim parameters were either estimated prior to model development or calibrated against observed
groundwater heads, vertical head differences, and surface water flows for the period 1975–2003 and subsi-
dence observations (Brush et al., 2013). For example, parameters related to soil properties, allocation rules,
etc. were estimated, while parameters such as hydraulic conductivity, storage, curve numbers, river bed con-
ductance, and other parameters of the C2VSim hydrologic components were adjusted during calibration
using PEST (Doherty & Hunt, 2010). Details on C2VSim calibration can be found in Brush et al. (2013).

2.3. Scenarios

We developed several scenarios to assess the impact of Ag‐MAR on local‐ and regional‐scale, long‐term ben-
efits to groundwater storage, to instream flows, and to groundwater return flows. All Ag‐MAR scenarios are
developed as alternatives to the calibrated C2VSim baseline model. The C2VSim model simulates the entire
CV surface water‐groundwater system for water years 1922 through 2009 (88 years). Surface water for Ag‐
MAR is diverted starting in water year 1930 in the model, resulting in an 80‐year recharge simulation in
C2VSim. Each Ag‐MAR scenario is mechanistically defined by several design parameters:

1. Diversion point: the point of diversion of streamflow;
2. Recharge locations: the spatial distribution of land where Ag‐MAR is done; each recharge location sce-

nario describes a selected array of finite elements that receive diverted streamflow as direct recharge to
the topmost layer in the three‐dimensional aquifer system (no routing through the vadose zone);

3. Recharge target amount: the targeted maximum annual amount of surface water to be diverted from the
diversion point (e.g., stream node) and applied as recharge;

4. Recharge timing: the seasonal time period during which Ag‐MAR is conducted.

Scenarios are developed to examine the response of the basin hydrology to these four Ag‐MAR design para-
meters. Each design parameter is varied over a range of values reflecting varying potential agronomic, water
rights, and infrastructure constraints. All surface water diversions considered in the Ag‐MAR scenarios, in
any given month, are limited by the actual amount of streamflow historically available in C2VSim at the
point of diversion.
2.3.1. Diversion Point Scenarios
We test two surface water diversion points, both of which are upstream of irrigated lands used for Ag‐MAR
within the OAWD study area (Figure 1). The “Stony Creek” scenario (point A in Figure 1) diverts water from
Stony Creek, a tributary to the Sacramento River along the northern boundary of the study area. The
“Sacramento River” scenario (point B in Figure 1) uses a diversion located on the Sacramento River itself.
In the base scenario (C2VSim model without modifications), neither location is a diversion point and the
cumulative amount of stream discharge over 88 years is 34 million acre feet (MAF; 41.9 Mkm3) at point A
and 858 MAF (1058 Mkm3) at point B.
2.3.2. Recharge Location Scenarios
While a rise in groundwater tables due to recharge is generally welcomed in overdrafted groundwater basins,
a key concern in designing Ag‐MAR operations is a rising groundwater table into the root zone, which can
negatively impact agricultural crops grown in the vicinity or downgradient of the MAR operation.
Depending on subsurface conditions, large amounts of recharge may locally create a groundwater mound
that rises into the root zone, potentially causing waterlogged and anoxic conditions that damage commercial
crops or other overlying land uses. Minimizing the risk for such root zone flooding from groundwater
mounds is a critical design goal to be considered in the selection of Ag‐MAR sites. Ag‐MAR adds potential
challenges as the design inherently involves large amounts of land and potentially large amounts of
recharge. On the other hand, Ag‐MAR recharge rates per unit area are commonly lower compared to
recharge rates achieved in more focused MAR designs, lowering the risk of large groundwater mounding.

10.1029/2018WR024019Water Resources Research

KOURAKOS ET AL. 7



In this study, we evaluate four spatial scenarios of winter Ag‐MAR that reflect varying risks for groundwater
mounding to occur: The “Few Apart” scenario considers relatively few parcels (18 finite elements total) for
Ag‐MAR, scattered widely across OAWD and not in close proximity to one another. The “Few Together” sce-
narios also represents a few parcels (17 finite elements) selected for Ag‐MAR, but here parcels are in close
proximity to each other, forming four localized clusters. Both scenarios assume that only limited amounts
of irrigated lands are available for Ag‐MAR; however, the second scenario represents the highest risk for
large water level rise due to the regionally focused nature of recharge. The third and fourth scenarios assume
that a large number of farms are available for Ag‐MAR, and hence, recharge can be spread across a larger
area. The “Many Apart” scenario consists of 26 elements, nearly 50% larger than the Few Together and
Few Apart scenarios. They broadly spread across the study area. The “Many Together” scenario consists
of 62 elements that form four widely spaced, larger clusters (Figure 2 and Table 1). The Many Together sce-
nario represents more than twice as much recharge area than the Many Apart scenario.

Soil and aquifer properties are critical to recharge. The aquifer properties across the upper layer in
the study area were determined by model calibration. Hydraulic conductivities vary from 3 to 30 m/day
(median 25 m/day). Soil properties are more variable and are critical for accommodating recharge. In
Ag‐MAR particularly, the resilience of the current or future crop to the additional water application is

another important consideration. In all four recharge location scenarios,
elements were selected based on soil characteristics that are suitable for
recharge, selected from the Soil Agricultural Groundwater Banking
Index (SAGBI; O'Geen et al., 2015), a California‐wide soil assessment
for recharge capability of soils. SAGBI is based on a fuzzy logic assess-
ment of soil profile percolation rate, root zone residence time, chemical
limitations, topography, and soil surface conditions. The index ranks
soils on a six‐class scale ranging from very poor to excellent (O'Geen
et al., 2015; Figure 2). Ag‐MAR locations here were constrained to areas
with SAGBI ratings of Moderately Good, Good, or Excellent. Locations
were further constrained by selecting sites with crops that are suitable

Figure 2. Irrigated land distributions to receive the diverted water.

Table 1
Summary of Recharge Land Distribution Scenarios

Recharge land
distribution
scenario name

Number of
finite elements

Total area
acres (ha)

Percent of the
study area

Few Apart 18 10,369 (4,196) 3
Few Together 17 11,010 (4,455) 3.2
Many Apart 26 15,519 (6,280) 4.5
Many Together 62 38,048 (15,397) 11.2

10.1029/2018WR024019Water Resources Research

KOURAKOS ET AL. 8



for winter recharge. Only finite elements that had at least 50% of the area planted with alfalfa or almonds
in 2014 were selected for Ag‐MAR, following suggestion by Dahlke, Brown, et al. (2018) and Bachand
et al. (2014, 2016). Land use was determined from the 2014 USDA NASS land use data (USDA
National Agricultural Statistics Service Cropland Data Layer, 2014). We note that the average finite
element size of the C2VSim model is much coarser than the resolution of SAGBI or the land use
maps. For the actual implementation of Ag‐MAR programs on farmland within the Orland‐Artois
Water District, site‐specific field evaluations are recommended, guided by SAGBI and land use maps
and, for example, deep soil corings to provide more accurate assessments of recharge response to
irrigation.
2.3.3. Recharge Target Amount Scenarios
We test two sets of four recharge target amounts in our scenario analysis: the first set fixes the annual
recharge target depth (RTD) of water applied uniformly across all Ag‐MAR locations. Scenarios are devel-
oped with 2, 4, 6, and 10 ft/a (0.6, 1.2, 1.8, 3.1 m/a) of applied water. For a given RTD, each Ag‐MAR location
scenario requires a different volume of water diverted from the stream, because of the varying size of the four
location scenarios—the larger the area is, the larger the amount of water recharged is.

The second set of recharge target amount scenarios uses a fixed recharge target volume (RTV) as the max-
imum amount of annual diversion for recharge from the stream. Four scenarios with RTVs of 10, 30, 60,
and 100 TAF/a (12 to 123 Mm3/a) are considered. In these scenarios, the recharge target depth (depth of
applied water) will vary between Ag‐MAR location scenarios, because of the difference in acreage between
the Ag‐MAR location scenarios (Table 2). Depending on the RTV and the location scenario, the target depth
of water recharged varies from 0.3 to 9.6 ft/a (0.1 to 2.9 m/a).

Within the modeling framework only one constraint limits the actual diversions in all of these eight scenar-
ios: in any given month, the maximum diversion volume cannot exceed the amount of streamflow available
at the selected diversion point. While the recharge target scenarios considered in this study cover a wide
range of targeted recharge volumes (10–381 TAF/a, 12–469 Mm3/a; see Table 2), C2VSim automatically
reduces the maximum diverted amount for recharge if streamflow is not sufficient to provide the target
recharge amount in a given diversion month.

Other volumetric constraints facing actual Ag‐MAR implementation are not considered here as our interest
was to develop a “best case” scenario for recharge. For example, we do not consider minimum environmen-
tal flow requirements (Burke et al., 2004) or additional constraints imposed by stakeholders (e.g., down-
stream surface water rights), etc. (Deitch & Dolman, 2017). For practical applications, the latter would
need to be considered and would reduce both the amount of recharge and the effects of recharge simulated
in this study.
2.3.4. Recharge Timing Scenarios
Because of the Mediterranean climate in the study area, excess stormwater runoff is limited to winter and
early spring months, which largely coincides with the fallow or crop dormancy season. Adoption of Ag‐

Table 2
Summary of Recharge Target Amount Scenarios With Corresponding Volumes and Depths, Respectively, for the Four Ag‐MAR Location Scenarios (Few Apart,
Few Together, Many Apart, Many Together)

Recharge target depth (RTD) scenarios Recharge target volume (RTV) scenarios

Applied water
annual target
depth

Corresponding volume for each Ag‐MAR
location scenario (Few Apart, Many Apart,
Few Together, Many Together)

Stream diversion
(recharge) annual
target volume

Corresponding water depth for each Ag‐MAR
location scenario (Few Apart, Many Apart,
Few Together, Many Together)

ft/a (m/a) TAF/a (Mm3/a) TAF/a (Mm3/a) ft/a (m/a)

2 (0.61) “RTD2” 20.7, 22, 31, 76 (25.5, 27.1, 38.2, 93.7) 10 (12.3) “RTV10” 1, 0.9, 0.6, 0.3 (0.30, 0.27, 0.18, 0.09)
4 (1.22) “RTD4” 41.5, 44, 62.1, 152.2 (51.2, 54.2, 76.6, 187.7) 30 (37.0) “RTV30” 2.9, 2.7, 1.9, 0.8 (0.88, 0.82, 0.58, 0.24)
6 (1.83) “RTD6” 62.2, 66.1, 93.1, 228.3 (76.7, 81.5, 114.8, 281.6) 60 (74.0) “RTV60” 5.8, 5.4, 3.9, 1.6 (1.77, 1.65, 1.19, .49)
10 (3.05) “RTD10” 103.7, 110.1, 155.2, 380.5 (127.9, 135.8, 191.4, 469.3) 100 (123.3) “RTV100” 9.6, 9.1, 6.4, 2.6 (2.93, 2.77, 1.95, 0.79)

Note that the target amounts are expressed as totals over the water year (October–September). These totals may be applied in a single month (e.g., December) or
spread out over several months (e.g., November–April) depending on the recharge timing scenario.
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MAR is limited not only by the availability of streamflow for groundwater
recharge but also by agronomic and soil management considerations,
such as the time when crops are sown, bloom or leaf out of perennial
crops, or soil tillage. Other factors that potentially influence the timing
of Ag‐MAR include water conveyance limitations (e.g., due to canal main-
tenance during winter) or water rights restrictions.

Three Ag‐MAR season scenarios assume that recharge, up to the full
annual target amount, can only be applied in a single month each year:
December (“D”), January (“J”), or February (“F”). The fourth Ag‐MAR
timing scenario distributes the total recharge target across three winter
months (December to February, “D‐F”). In the last scenario, recharge tar-
gets are split over a six‐month period (November to April, “N‐A”), with
more weight given to the winter months (December to February), during
which 65% of the target recharge is scheduled (Figure 3). This design con-
ceptually reflects the increased evapotranspiration and crop water use in

the shoulder months (e.g., November, March, and April), compared to the winter months. In all scenarios,
the first year of recharge is 1930, continuing through 2009.

In summary, we evaluate two surface water diversion points (Stony Creek, Sacramento River), four Ag‐MAR
location patterns within OAWD (Few/Many Apart, Few/Many Together), eight different annual recharge
target amounts specified either as recharge target volume (four scenarios: RTV10, RTV30, RTV60,
RTV100) or as recharge target depth (four scenarios: RTD2, RTD4, RTD6, RTD10), and five different
recharge timing scenarios (D, J, F, D‐F, N‐A), which are constraining the occurrence and length of the
Ag‐MAR season. While the selected scenarios are not exhaustive, they represent a wide range of plausible
Ag‐MAR practices for the CV. Across these four scenario parameters, a total of 2 × 4 × 8 × 5 = 320 different
scenarios were considered.

3. Results and Discussion

Integrated hydrologic models such as the IWFM‐based C2VSim are designed to perform multiple types of
analysis; therefore, they produce a large number of output data. In our presentation and discussion of results
we focus on the relative impact of the various Ag‐MAR scenarios. Specifically, we analyze the impact that the
different scenarios have on the groundwater budget, on the risk of creating waterlogged conditions in the
root zone due to rising water table, and on instream flows in response to surface water diversions and to
groundwater‐surface water interactions.

3.1. Water Budget: Ag‐MAR Design Impacts on Recharge Diversion

First we examine the amount of recharge achieved over the 80‐year (1930–2009) recharge period, consider-
ing the smaller of the two diversion points, Stony Creek, with the smallest of the fixed recharge target depth,
RTD2. For RTD2, the Few Apart scenario yields the smallest target recharge volume, at 1.6 MAF (2.0 km3)
for the 1930 to 2009 diversion period (Table 2). In RTD2, the Few Together, Many Apart, andMany Together
scenarios would accommodate increasingly larger volumes of 1.7, 2.4, and 6 MAF (2.1, 3.0, 7.4 km3) of
recharge, respectively, over the same recharge diversion period.
3.1.1. Recharge Amount Relative to Target Amount
Actual recharge amounts are limited by available streamflows, which vary from month to month and from
year to year. Simulation results demonstrate that even for this smaller project case, the total amount of
recharge water actually diverted by the simulation never reaches the targeted recharge amounts, regardless
of recharge timing or location pattern (Figure 4). Across all Stony Creek RTD2 scenarios, the actual amount
of recharge varies from less than 40% to about 90% of the targeted amount. Targeted recharge is not achieved
because the Stony Creek diversion point does not supply the amount of surface water targeted due to lack of
sufficient flows, especially in dry winters, under any of these Ag‐MAR scenarios.
3.1.2. Recharge Area
The effect that the size of the recharge area has on the amount of water that is effectively recharged is shown
by considering the four different Ag‐MAR location scenarios. The Many Together scenario offers the largest
recharge area (38,048 acres [15,397 ha]). In the Stony Creek scenario, the much larger annual recharge target

Figure 3. Relative seasonal distribution of target diversions as a fraction of
the total annual target diversion.
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amount of the Many Together scenario is achieved less often than in the Few Apart scenario, resulting in an
effective recharge amount of less than 40% to less than 80% of the long‐term target depth, depending on the
timing and length of the recharge season (recharge timing scenario; Figure 4). However, the Many Together
location scenario still achieves significantly more recharge volume than the Few Apart and other scenarios,
ranging from 2.2 MAF (2.71 km3) in the December‐only scenario to 4.3 MAF (5.3 km3) in the November to
April scenario over the 80‐year recharge period (Figure 4).

Among the four location scenarios, a larger designated recharge area is advantageous during very large
storm events or in wet years when large volumes of water are available for distribution across large
Ag‐MAR areas. Such events have a low probability to occur on an annual basis in the Sacramento River
basin (Kocis & Dahlke, 2017). Only when these large storm events occur, recharge becomes limited by the
targeted depth of recharge per unit area rather than by streamflow availability.
3.1.3. Recharge Timing
The timing of Ag‐MAR also plays an important role in determining the amount of recharge achieved. If the
recharge seasonmust be limited to a single month (recharge timing scenarios D, J, F) due to infrastructure or
agronomic conditions (e.g., canal maintenance, crop limitations), least recharge occurs in December, more
in January, and most recharge would be achieved in February. For example, in the Few Apart RTD2
scenario, the actually diverted amount of water for Ag‐MAR during December is 1 MAF (1.23 km3) or
60% of the recharge target amount over 80 years (1.6 MAF [1.97 km3]; Figure 4). When the diversion is
allowed to take place in either of the other two winter months (J,F) the amount of diverted water is slightly
higher, about 1.25 MAF (1.54 km3) or nearly 85% of the targeted recharge amount. This pattern occurs
because Stony Creek streamflow is lower in December compared to January and February, in most winters.

Figure 4. Recharge from the Stony Creek diversion point: total relative (and absolute) recharge target amounts (y axis)
and actual amounts of water recharge (i.e., diverted, parentheses) for the recharge target depth scenario of 2 ft/a
(RTD2). Results are shown for the four recharge location patterns and for the five recharge timing scenarios considered
(D: December, J: January, F: February, D‐F: December to February, N‐A: November to April).
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While the Stony Creek streamflow in December might not support diverting the full recharge target amount,
any amount of surface water that is diverted early in the rainy season (November, December) helps to meet
the overall recharge target. Hence, small early‐season diversions increase the probability that remaining
recharge requests toward the target amount are met by available flows in later months. For the most flexible
recharge timing scenario, N‐A, the amount of recharge therefore reaches nearly 90% of the recharge target
amount, which is 50% higher than in the December scenario (Figure 4). Hence, significant groundwater
gains are achieved over the long‐term by designing Ag‐MAR programs with flexible, longer recharge seasons
that are more likely to capture peak flow events when they occur (Figure 4). We note that the D‐F and N‐A
scenarios, while more accommodating of available recharge water over the season, are in fact also limited in
flexibility: only a fraction of the annual target amount can be recharged in any givenmonths (e.g., in the N‐A
scenario 25% of total RTD is diverted in January; Figure 3). A design that would further increase the amount
of water recharged would allow for up to 100% of the annual target amount to be recharged in any month,
until the target is achieved.
3.1.4. Recharge Target Depth
While peak flow events only occur in few years, the amount of surface water that can be diverted during
these events results overall in significantly higher recharge if not limited by low RTD. For the largest RTD
scenario, RTD10, and theMany Apart scenario, the total recharge target amount is 30MAF, nearly the entire
flow of Stony Creek. The actual recharge achieved with RTD10 varies from 3 MAF (3.7 km3) to more than
4 times as much (about 13 MAF [16 km3] or 45% of the target volume) depending on the recharge timing
scenario. The least recharge is again achieved with D, when streamflows are limited, and the most with
N‐A, which provides themost flexibility (Table S3). Regardless of timing, this recharge outcome is more than
an order of magnitude larger than can be achieved with the RTD2 Few Apart scenario. This result demon-
strates that a recharge program that must limit recharge to a single winter month, especially early winter
months (e.g., December), may still achieve significant recharge if it can accommodate large recharge target
depths and volumes.

The small amount of recharge relative to the target amount in the RTD10 single‐month timing scenarios
(D, J, F) is due to the fact that Stony Creek delivers the full target amount for RTD10 within a single month
only 5 times over the entire 80‐year recharge period. However, when recharge can be done during the entire
rainy season (N‐A timing scenario), the recharge target volume of 380 TAF/a (0.47 km3/a) can be accommo-
dated in 35 out of 80 water years. From a water management perspective, it is also of interest that the largest
amount of flow theoretically available in any given month at the Stony Creek diversion is 636 TAF/month
(0.78 km3/month) while the largest annual streamflow amount is 1,400 TAF/a (1.73 km3/a), both
far exceeding the maximum amount of recharge that can be accommodated in any of the 160 Stony
Creek scenarios.
3.1.5. Recharge Location Distribution
The effect of the spatial distribution of recharge location (Few or Many Apart, Few or Many Together) is
evaluated by considering a fixed RTV rather than a fixed RTD. In RTV scenarios, the recharge location sce-
nario has no effect on the amount of recharge, as the RTV scenarios are all designed to recharge the same
volume of water that can be diverted, constrained by the streamflow restriction in a given month. All scenar-
ios neglect potential recharge rejection, that is, due to surface runoff (return flows to surface water) or other
conditions, because the recharge water is directly injected into the first aquifer. But with a given RTV, the
recharge location scenario affects water levels and water budgets, as described below.
3.1.6. Diversion From a Larger Stream
In contrast to the above Stony Creek scenarios, where Stony Creek represents a relatively small, but locally
important tributary, the full amount of targeted recharge is obtained when diverting recharge water from the
Sacramento River (Figure 1). Except for the largest recharge depth scenario with the shortest, one‐month
recharge timing (RTD10 D/J/F scenarios: 380 TAF/month [470 Mm3/month]), the recharge amounts
requested in the Sacramento River RTD and RTV scenarios (Table 2) are significantly lower than the
actual Sacramento River flows observed in any given month, which typically exceed 240 TAF/month
(290 Mm3/month), even in dry years (USGS Water Resources, 2005). For example, in none of the
Sacramento River RTV scenarios, including RTV100 (Table 2), streamflow diversion shortages are encoun-
tered (Figure 5). For RTV10, the total diverted volume over the 80‐year recharge period (1930–2009) is 0.8
MAF (0.099 km3). For RTV100, the total recharge volume is 7.9 MAF (9.74 km3). In contrast, shortages
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occur in Stony Creek scenarios, even for the Few Apart RTV10, the scenario with the least recharge target
amount among all scenarios simulated (Figure 5).

3.2. Water Budget: Ag‐MAR Design Impacts on Groundwater Storage and Groundwater‐Surface
Water Interaction

To estimate the impact of the various Ag‐MAR scenarios on groundwater fluxes, groundwater budget terms
from the baseline model (original simulation, without Ag‐MAR implementation) were compared against the
Ag‐MAR scenarios. In C2VSim, the groundwater module reports the changes in several groundwater budget
components such as deep percolation, storage, and groundwater head. For illustration and discussion of
results, we computed the difference in groundwater storage, and the difference in the cumulative volume
of boundary fluxes from 1930 to year t (sum over monthly time steps) over all finite elements in the
C2VSim model (entire model domain) using the following equation:

ΔSc tð Þ ¼ ∑t
j¼1∑

Nel
k¼1ΔSj;k (2)

where ΔSc(t) is the difference in groundwater storage at time t between an Ag‐MAR scenario and the base
case and ΔSj;k ¼ Sscenarioj;k −Sbasej;k is the difference in the change in groundwater storage during month j at ele-
ment k between a scenario and the base case.Nel is the number of elements of C2VSim and t is the number of
months (time steps) since the start time of the recharge scenarios (October 1930). ΔSj,k > 0 indicates an
increase in groundwater storage and ΔSj,j < 0 indicates a decrease in groundwater storage. Differences in
the cumulative volume of boundary fluxes are obtained equivalent to equation (2). The exception is the dif-
ference in the cumulative discharge of groundwater to streams, which is computed as a change in base flow
contribution from groundwater, a stream budget component. It is the negative value of the same flux term in
the groundwater budget:

ΔBc tð Þ ¼ −∑t
j¼1∑

Nel
k¼1ΔQsa;j;k (3)

whereΔQsa j;k ¼ Qscenario
sa j;k −Qbase

sa j;k

h i
represents the scenario to base case difference in the flux between stream

and groundwater at element k during time step j.

Note that Qsa,j,k > 0 indicates net groundwater gains (streamflow depletion) from an overlying stream node,
while Qsa,j,k < 0 indicates net groundwater discharge to an overlying stream node (streamflow accretion).
We further note that total difference in streamflow, ΔFj,k, between the scenario and base case is

Figure 5. Comparison of effective recharge volumes between the Stony Creek and Sacramento River diversion points for
four RTVs using the December–February recharge timing. Because the simulations are based on fixed target volumes,
results are identical for all recharge locations. The numbers in parentheses on the x axis correspond to the total volume of
diverted water over the entire simulation period.
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ΔFj;k ¼ −∑all upstream nodes
k ΔQsa;j;k

� �
−Rj;k (4)

where Rj,k is the diversion volume for recharge. In this paper, “base flow
gains” and “base flow losses” refer to the increase or decrease, respec-
tively, in flux of groundwater to surface water due to Ag‐MAR, relative
to the base case, but not including the effects of Rj,k on streamflow, unless
otherwise mentioned.

All model elements are subject to groundwater storage change, but only
some groundwater elements are subject to Ag‐MAR recharge or to gains
and losses from/to overlying streams (Figure 1). Furthermore, while equa-
tions (2) and (3) are applied to the entire Central Valley model domain,
the groundwater budget changes can be shown to occur almost exclu-
sively within the study area.

Among the various fluxes into and out of groundwater, only three fluxes
are significantly affected in any of the scenario simulations: the recharge
input discussed in the previous section, the amount of groundwater in
storage, and the water flux across the groundwater‐stream interface
(Figure 6). Cumulative differences between the scenarios and the base
case are negligible for all other groundwater budget components, includ-
ing deep percolation from the landscape other than the added recharge,
aquifer boundary inflows and outflows, subsidence storage, irrigation
return flows, pumping, and tile drain outflow (Figure 6). Negative values
for the cumulative difference in the net “gain from stream” groundwater
budget component indicate that, across the model domain, more ground-
water was discharged to streams or less water was recharged from streams
to groundwater, when compared to the base case. Across all scenarios,
recharge is observed to increase groundwater storage and to significantly
increase base flow contributions from groundwater to the overlying
stream system.

We note that Ag‐MARwas here designed to support only historic and cur-
rent land use and water demand conditions. The scenarios do not consider
potential expansion of farmed lands that would have emerged as a result
of the additional groundwater storage available under any of the Ag‐MAR
scenarios. Furthermore, the C2VSim model does not constrain pumping
as a function of groundwater levels. Hence, changes in groundwater sto-
rage from Ag‐MAR do not directly affect pumping. However, changes in
streamflow due to diversions and due to the base flow gains available
under the scenarios potentially affect the simulated water allocation deci-

sions. Some water users are simulated in C2VSim with a flexible choice of water source, using stream diver-
sions above a specified threshold streamflow level and pumping groundwater below that level. With the
seasonal winter diversion for recharge and the added net base flow gains, water users may divert less or more
streamflow, depending on time of year and location, which in turn affects their groundwater pumping.
Figure 6 demonstrates that, for the diversion and recharge locations and amounts considered here, these lat-
ter effects remain negligible, even downstream of the study area, within the CV watershed. The largest
cumulative difference in groundwater pumping observed across scenarios was 121.6 TAF (150 Mm3), in
the Sacramento Many Together RTD10 D‐J scenario.

To further understand the impact of the various Ag‐MAR scenarios on groundwater storage and cumulative
base flow gains we again examine the four Stony Creek Ag‐MAR location scenarios with the five recharge
timing scenarios, using the RTD2 scenario for illustration. For the first few years after Ag‐MARwas initiated,
that is, in the 1930s, increases in groundwater storage correspond nearly 1:1 with the amount of water
diverted for recharge (Figure 7). Already after 5 to 10 years, increases in groundwater storage begin to differ
markedly from the cumulative amount of surface water diverted for Ag‐MAR. Instead, we observe an

Figure 6. (top) Cumulative monthly volume difference between scenario
and base case simulation for each groundwater budget component consid-
ered in the C2VSim model. The example shown is the Stony Creek Few
Apart RTD10 N‐A scenario. (bottom) Comparison of cumulative volume of
net stream‐aquifer water flux for the scenario (red) and the base case (black).
Negative values indicate that the aquifer is discharging more water to the
stream than it is gaining from the stream. Here the “negative cumulative
difference” between the scenario and the base case (green; see equation (3))
represents the net gains in stream base flow due to additional net ground-
water discharge to streams caused by the Ag‐MAR diversions.
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Figure 7. Difference in groundwater budget components for the four Stony Creek RTD2 location scenarios and two
recharge timing scenarios (top four panels: D and bottom four panels: D‐F). Note that the y axis has a different scale on
each panel. The net difference in groundwater gain from streamflow is shown as base flow gain (positive).
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increase in cumulative base flow gains due to additional net groundwater discharge to streams. The cumu-
lative base flow gains equal the difference between cumulative recharge and groundwater storage change.

Until the 1970s, the percentage of cumulatively recharged water that contributes to groundwater storage in
the aquifer is higher than the cumulative base flow gains. After the 1970s—nearly half a century after the
beginning of the recharge scenarios—the increased cumulative base flow contribution from groundwater
represents more than half of the cumulative recharge. Importantly, there are significant year‐to‐year varia-
tions in the cumulative recharge amount and in groundwater storage increases relative to the base case
(Figure 7). In contrast, the cumulative base flow gains continuously increase, largely unaffected by seasonal
and climatic variability. The intraannual and interannual variability in the cumulative recharge and ground-
water storage reflect the monthly varying streamflow diversions for Ag‐MAR as well as interannual climate
variations that affect streamflow availability for recharge. Base flow gains, however, are buffered against
these highly variable groundwater inflows by aquifer storage between the recharge area and the stream net-
work (here, Stony Creek and the Sacramento River).
3.2.1. Recharge Area
Notably, the percentage of cumulative recharge that contributes to cumulative base flow gains at any time
after Ag‐MAR initiation, while changing over time, is shown to be almost independent of either the absolute
amount of cumulative recharge applied or the spatial distribution of recharge between the four Stony Creek
RTD2 location scenarios. By 2009, the amount of groundwater storage gained over the base case is 33–36% of
the total amount diverted for recharge, regardless of location scenario (dashed lines in Figure 7). While the
absolute diversion amounts for recharge varied, qualitatively similar temporal patterns to Figure 7 were
observed in the time series of cumulative groundwater storage changes and base flow gains of other RTD
and RTV scenarios simulated (see Table S1). The distribution of recharge locations also does not affect the
amount of cumulative base flow gains and, hence groundwater storage, as illustrated for the Sacramento
RTV100 scenarios in Figure 8. In the RTV scenarios, the volume of recharge is identical, regardless of the
area of recharge (the area is smallest for the FewApart, largest for theMany Together scenario). In both loca-
tion scenarios, results are practically identical, across timing scenarios. The proportionally similar amount of
groundwater storage and base flow gain across all scenarios is due to the generally similar distance between
recharge areas and stream network.
3.2.2. Recharge Timing
A key difference between the different recharge timing scenarios is that larger oscillations are observed in
the cumulative groundwater storage when the recharge season lasts only one month (timing scenarios D,
J, F; see Figure 7) than when the timing allows for at least three months of recharge (D‐F, N‐A; see
Figure 7). In the latter case, some recharge occurs each year, yielding a smoother cumulative streamflow
diversion curve resulting in fewer years that witness no recharge than occurs in the single‐month recharge
timing scenario. In both cases, long drought periods lead to decreasing differences in groundwater storage
between scenarios and base case.

Figure 8 illustrates the effects of recharge timing on the seasonal variations in groundwater storage changes,
relative to the base case, for short (D), intermediate (D‐F), and long (N‐A) recharge seasons for the
Sacramento scenario, which always provides 100% of the targeted recharge volume (RTV100). Even though
the recharge volume is identical across the three timing scenarios, groundwater storage rises and declines
more quickly, when the same volume is recharged over a shorter period of time. But again, regardless of
the timing scenario, the buffer capacity of the aquifer system ensures that the effect on base flow gains
remains nearly identical across the timing scenarios.
3.2.3. Recharge Efficiency
Often (but not always), a key goal of MAR design is to maximize groundwater storage and to minimize
downstream losses to streamflow. The simulation results show that Ag‐MAR in OAWD yields significant
increases in groundwater storage, with most recharge initially remaining in groundwater storage. Once an
Ag‐MAR policy is exercised over a sufficiently long period, a new dynamic equilibrium is achieved, with
the added recharge regime leading to stable water level dynamics at a higher level than prior to policy imple-
mentation. Under the new dynamic equilibrium—absent of additional pumping—long‐term average
increases in recharge are then matched by the increased base flow. The simulations show that the 90‐year
period is too short, in this large basin, for long‐term groundwater storage gains to reach the dynamic equili-
brium plateau. The simulations also demonstrate that the plateau will be a function of the average long‐term
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annual recharge, while the transient dynamics toward the new storage plateau are similar between
scenarios. This is consistent with the underlying physics expressed in the so‐called stream depletion
function (Jenkins, 1968), where groundwater pumping (the inverse of recharge) is shown to affect stream
depletion at exponential time scales. Depletion (here: repletion) time is a function of distance to stream,
groundwater hydraulic conductivity, and groundwater specific yield and specific storage. Among
scenarios, aquifer hydraulic properties are constant, and Ag‐MAR distances to streams are rather similar,
although patterns change. From a water management perspective, therefore, groundwater storage
efficiency, that is, the ratio of groundwater storage increase to the cumulative recharge volume, declines
over time. Using the Sacramento River Few Apart RTV scenarios as an example, results show that the
cumulative groundwater storage efficiency at any given time is identical across different cumulative
recharge volumes that exceed 0.7 MAF (0.86 km3; Figure 9). For these larger volumes, and across the
specific scenario designs considered here, the groundwater storage efficiency in OAWD is 72% after one

Figure 8. Difference in groundwater budget components for three Sacramento River RTV100 recharge timing scenarios
(D, D‐F, N‐A) and for two of the four Ag‐MAR location scenarios (Few Apart, Many Together). The net difference in
groundwater gain from streamflow is shown as base flow gain (positive). The two top rows of panels show the monthly
budgets for the entire simulation, while the two bottom rows display the first decade of the same simulation scenarios.
In the RTV scenarios, the same volume is recharged regardless of location scenario (recharge area).
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decade, and exponentially decreases to 34% after 80 years (Figure 9). For
other groundwater basins that are more depleted and lack a continuous
groundwater‐stream interface, Ag‐MAR efficiencies might initially be
higher, or even 100% over the time period until groundwater reconnects
with surface water.

3.3. Ag‐MAR Design Impacts on the Spatiotemporal Distribution
of Groundwater Level Increases
3.3.1. Hydrographs of Water Level Rise
Temporal dynamics of the maximum groundwater table rise across the
region are illustrated using the Sacramento Few Together RTV100 sce-
nario, which has the most focused recharge among all location scenarios
due to the proximity of recharge sites and the relatively small overall area
to accommodate the fixed volume diversions. In the first recharge year,
the largest seasonal head increase in the study area is as much as 20 ft
(6.1 m) during the winter following recharge, but declines subsequently,
although only by about 10 ft (3 m; Figure 10). In subsequent years, the
maximum groundwater table change further increases at a relatively high
rate and the cyclical annual pattern continues (Figure 10). After about 50
years, the rate of increase levels off. At the end of the recharge period, the
largest groundwater level increase in this scenario is 90 ft (27.4 m; relative

to the base case; Figure 10). For the single‐month recharge timing scenarios the peak of the annual maxi-
mum water table rise is observed at the end of the recharge month (see inset in Figure 10). For longer
recharge seasons (e.g., December–February, November–April), which mean lower monthly recharge rates,
the annual maximum water table rise is smaller (e.g., November–April scenario; Figure 10). Distributing a
fixed recharge target volume over a longer season therefore reduces groundwater mounding. However, after
80 years, the difference in the maximum groundwater table rise is only about 5% between the different
recharge timing scenarios.

Besides recharge target amount, recharge location has the most prominent effect on localized groundwater
table increases. The Few Together scenario leads to the largest seasonal increases in groundwater levels that
are almost 25% higher during the recharge season than observed for theMany Apart location scenario, at the
same recharge volume (Figure 11).

3.3.2. Spatial Distribution of Water Level Increases
Spatially, we observe that the maximum groundwater table difference in
the relatively focused Few Together location scenario occurs at the shared
node of four elements near the southwestern corner of the study
area, upgradient of the shallow water table region on the valley floor
(see arrow in Figure 12, compare to Figure 16). On the other hand, water
table rise underneath the northern recharge locations, near Stony Creek,
was much less than in the southwestern area, regardless of location sce-
narios. There, recharge dissipated more quickly, partly due to the
nearby stream boundary, and partly due to higher aquifer K values than
in the southwestern recharge region. Interestingly, the area with the
deepest water table, in the north‐central portion of the study area
(Figure 16), does not accumulate a relatively larger amount of ground-
water storage during the simulation period (Figure 12). Similar results
were obtained in other scenarios (data not shown). At lower recharge
target volumes, the maximum groundwater table increase was lower
(compare to Figure 16).
3.3.3. Diversion Location
There is little difference in the regional distribution of water table
change, for similar recharge volume, location, and timing scenarios,
between the Stony Creek and the Sacramento scenarios. In contrast,

Figure 9. Change in groundwater storage efficiency, the ratio of ground-
water storage change (relative to the base case) to the cumulative
amount of recharge, as a function of Ag‐MAR duration. Efficiency declines
over time due to increasing base flow gains with time. The analysis uses
results from four Sacramento Few Apart RTV scenarios.

Figure 10. Maximum observed groundwater table (e.g., head) difference
between the recharge scenarios and the base case across the study area.
The figure shows the five recharge timing scenarios of the Sacramento Few
Apart RTV100 simulations. The inset shows the intraannual variation dur-
ing the last year of the simulation.
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the maximum decrease in groundwater table, observed downstream of the diversion point, depends highly
on the location of the diversion (Figure 13). When water was diverted from Stony Creek (Figure 1,
point A) the head decrease in groundwater immediately below the diversion is as high as 5 ft (1.5 m) due
to reduced stage in the stream. On the other hand, when the same amount was diverted from the

Figure 11. Maximum groundwater table differences between the recharge scenarios and the base case for two recharge
timing and all four recharge location scenarios of the Sacramento RTV100 simulations.

Figure 12. Maximum observed groundwater table difference over the simulation period, for all four location scenarios
(Sacramento RTV100 D), using the December‐only recharge timing. The left panel shows the maximum head difference
for December 2008 (last time water was diverted in model) and the right panel for September 2009 (end of simulation
period).
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SacramentoRiver (Figure 1, point B), themaximumhead decreasewas negligible, on the order of 1–2 cm, due
to the minor quantity of water diverted relative to instream flows in the Sacramento River.

To further illustrate the temporal dynamics of water level declines in the vicinity of the stream below the Ag‐
MAR diversion point, we consider the groundwater level hydrographs immediately below the diversion
point for the Stony Creek Few Apart RTV10 and RTV100 D‐F scenarios (Figure 14). Stony Creek is a mostly
gaining river throughout the 88‐year simulation period; that is, groundwater table elevations are higher than
the stream water level. However, three dry periods are observed (1976/1977, 1987/1988, 1989/1991) during
which the water table below the stream immediately downgradient of the diversion is shown to have

dropped below the streambed, effectively disconnecting the stream from
groundwater. The water level hydrographs for the recharge scenarios fol-
low a similar pattern as the base case scenario, except during drier periods.
In the RTV10 scenario, periods of intermediate and high groundwater
levels are identical between scenario and base simulation. During dry per-
iods, especially after 1970, water levels are 2–4 ft (0.6–1.2 m) lower than
the base case. For RTV100, differences to the base case are apparent
already in the 1930s, with groundwater levels as much as 0.5 ft (0.15 m)
lower during the diversion period. After 1990, water levels in the
RTV100 scenario fall below the bottom elevation of the streambed during
the diversion period, unlike in the base scenario. On the other hand, the
RTV100 scenario generates a small but notable increase in water table ele-
vation near the stream, relative to the base case, during the nondiversion
periods, including summer and fall—on the order of about 0.1 ft (few cen-
timeters). This reflects the base flow gain discussed above, which
increases overall streamflow and stream stage during the nonrecharge
season (relative to the base case). Even during the extreme droughts,
RTV100 water levels were higher than the base or RTV10 case, which
indicates that the resilience of the aquifer to prolonged droughts has
been improved.
3.3.4. Depth to Water Table
For MAR operations in agricultural areas, a major concern is the maxi-
mum groundwater table rise in response to recharge, especially in the

Figure 13. Maximum head decrease observed over the 78‐year Ag‐MAR period, relative to the base case. Results are
shown for the Few Apart RTV10 D‐F scenario. Water levels decrease due to lower stream stage below the diversion.

Figure 14. Water level hydrograph in groundwater immediately down-
stream of the Stony Creek diversion point (Figure 1, point A) for the base
case and for the Stony Creek Few Apart (top) RTV10 and (bottom)
RTV100 D‐F scenarios. The dashed line indicates the stream bottom
elevation at the location of the groundwater hydrograph.
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period during and immediately after the recharge is conducted. Water levels reaching the root zone of
commercial crops may significantly affect yields and economic output. In the study area, the actual depth
to the groundwater table, measured in spring 2009, varies between 0 and 100 ft (30 m). To assess potential
impacts of our Ag‐MAR scenarios on crops, accurate prediction of depth to water table is needed,
particularly in areas with shallow water table. However, given the large scale of C2VSim, the agreement
between measured and simulated water table depth in the base case is somewhat limited: The range and
general pattern of water table depth obtained in the base case simulation for April 2009 (last simulated
month) are consistent with measured water table depths (Figure 15a). The shallowmost water table areas
in the base case model (eastern and southern areas) mostly coincide with the rice growing region, where
fields are frequently flooded and drained. However, in the southernmost part of the study area, the
C2VSim base case simulation consistently shows water levels above the land surface, throughout much of
the simulation period (Figure 15a). The shape of the “flooded” area expands and shrinks in response to
climate conditions. The location of the area coincides with the areas in the study region that have the
shallowest water table and are least suitable for recharge storage.

To avoid carrying forward the obvious mismatch between simulated and measured water levels of the base
case, we interpret the scenario results with respect to their relative change in water level only. The relative
water level change, instead of being added to the base‐case water level results, is subtracted from the mea-
sured depth to groundwater. The measured depth to groundwater is interpolated surface from a large num-
ber (478) of water level measurements available for spring 2009 from regional monitoring programs (DWR,
(California Department of Water Resources), 2016).

To calculate the effect of each diversion scenario on groundwater table rise, we calculated the relative simu-
lated water level riseWLRsim =WTscenario −WTbase by subtracting base case groundwater elevationsWTbase
from the groundwater elevations of the recharge scenarios WTscenario. To highlight spatial patterns in these
relative groundwater level changes, we then computed the depth to the groundwater table DWT using the
following equation:

DWT ¼ GSE− WLRsim þWT2009ð Þ (5)

where GSE is the ground surface elevation derived from a digital elevation model andWT2009 are the water
table elevations measured during spring of 2009.

Figure 15. (a) Depth to the groundwater table for spring 2009 as simulated with C2VSim in the base case and (b) observed
in spring 2009 through groundwater level measurements. White areas indicate no data availability for measured data.
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To understand the full extent of the risk of root zone encroachment by the water table, we here focus on the
results from the Sacramento RTV scenarios, which consistently delivered the targeted recharge volume and
resulted in much larger groundwater storage change than Stony Creek scenarios. For the Sacramento Many
Together RTV10 and RTV30 scenarios, the rise in the water table is relatively small and appears to not sig-
nificantly affect the distribution of groundwater table depth. At RTV30, there is sufficient increase in water
levels only in the southernmost area with the shallowest water table, leading to water levels just above the
land surface (compare Figures 15 and 16).

However, for the larger diversion amounts simulated water levels in the southern portion of the study area
can be as high as 50 ft (15.2 m) above the land surface in the Many Together RTV100 scenario, while the
northwestern section of the area continues to experience large depth to groundwater. The area with water
levels higher than the land surface mostly coincides with the low‐elevation rice growing region, where
flooding occurs regularly for agronomic reasons and drainage is already installed. Results indicate that

Figure 16. Modified depth to water table for the Sacramento Many Together RTV D‐F scenarios for spring 2009. The
recharge volume is identical across the location scenarios. The Many Together location scenario has by far the largest
area; hence, results in the least water table rise compared to the other recharge location. Among the timing scenarios, only
the N‐A scenario (six months of recharge) would be somewhat less impactful.
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groundwater discharge into rice fields may increase, which would result
in additional surface return flow to streams. However, the simulations
here are not set up to handle that additional drainage.

3.4. Ag‐MAR Design Impacts on Streamflow

The implementation of Ag‐MAR has both potentially negative and posi-
tive effects on instream flows and instream flow‐dependent ecosystem
habitats: during the diversion period, instream flows are reduced below
the diversion point. During nondiversion periods, the increase in water
levels across the region relative to the base scenario leads to some addi-
tional instream flows. These additional instream flows are the result of
both reduced stream leakage in losing stream sections and increased gains
from groundwater in gaining stream sections.

From a long‐term (annual, decadal) perspective, total instream flow
volumes at the stream outlet of the study area (SE corner) are reduced
by the amount of water added to groundwater storage during the period
of interest. As groundwater storage increases and levels off to form a
new dynamic equilibrium level that reflects the Ag‐MAR policy, long‐
term average instream flows are again the same as in the base case. In this
study, the 88‐year period is not sufficient to reach that equilibrium and
some groundwater storage increase is still observed (Figures 7–9).

Seasonally, the decrease in instream flow, relative to the base scenario,
occurs during the diversion period, while instream flows are relatively higher (compared to the base case)
at all other times. The largest relative change in Sacramento River outflow from the study area, measured
as a fraction of the base case outflow, is −31% in December of 1930 and of 1976 for the Sacramento
RTV100 D scenario, among the largest Ag‐MAR scenarios and with the total annual diversion focused into
a single month (Figure 17). Both years are drought years. For this scenario, in all but the driest winters,
instream flow reductions due to diversion for recharge are less than 20%. In contrast, for Sacramento
RTV100 N‐A flow reductions on the Sacramento River during the diversion season are only 2% to 5%.
Base flow increase during the lowest flow month, September, are on a similar order, from +1% to +2% for
either scenario, after 80 years of Ag‐MAR (Figure 17).

Given that winter months are among the highest runoff months, flow reductions of 100 TAF in below nor-
mal to wet years (between December and April) are not ecologically significant, since excess flows available
for recharge during these months exceed, on average, at least 125 TAF along the Sacramento River (USGS
gauge 11425500; Dahlke & Kocis, 2018; Kocis & Dahlke, 2017). However, RTV100 D could not be repeated
in other subbasins that also impact Sacramento River flows without leading to severe cutbacks in December
flows. Spreading diversions over a longer period during winter and spring (RTV100 N‐A) is ecologically more
appropriate, especially if similar scenarios play out in a handful of other subbasins, or if diversions occur off
a smaller stream, as is the case in the Stony Creek scenarios (see section 3.1).

3.5. Comparison of Modeling Results to Other Ag‐MAR Studies

In groundwater‐dependent, irrigated agricultural areas management of surface water and groundwater sup-
ply for competing water uses, such as agriculture and environmental flows, remain an ongoing water man-
agement challenge. In California, this challenge is compounded by the recently passed SGMA (Sustainable
Groundwater Management Act) (2014), which requires stabilizing (likely through reduction) groundwater
pumping around the sustainable yield by the emerging application of the Public Trust doctrine to curtail
existing surface water and groundwater rights for the protection of stream ecosystems (Owen et al., 2019;
State Water Resources Control Board [SWRCB], 2018), as well as long‐term climate change impacts, which
are predicted to reduce surface water availability and to increase pressure on groundwater reserves in the
coming decades (Connell‐Buck et al., 2011; Mann & Gleick, 2015; Swain et al., 2018). Although climate pro-
jections differ in the timing and magnitude, many studies agree that California is predicted to experience
longer, more frequent, and more spatially extensive heat waves and extended droughts (Lobell et al., 2011;
Tebaldi et al., 2006), which can increase water demand (Chung, 2009; Mirchi et al., 2013). Total annual

Figure 17. Relative change in Sacramento River flows at the model stream
outflow boundary. The difference in flows between scenario and base case is
shown as a percentage of base case flow for the RTV100 D (blue) and the
RTV100 N‐A (red) scenarios, among the largest recharge scenarios tested.
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precipitation and precipitation frequency are expected to decrease (Dettinger et al., 2011; Pierce et al., 2013),
while extreme events during wet years are expected to increase (Berg &Hall, 2015), leading to more frequent
and more severe floods and droughts (Das et al., 2011, 2013; Dettinger et al., 2011), shifts in peak streamflow
to winter and early spring away from summer and fall (Barnett et al., 2005), and earlier spring snowmelt
(Stewart et al., 2005). Given these predictions, Scanlon et al. (2016) demonstrate that using depleted aquifers
as reservoirs for capturing flood flows during the winter rainy season could increase long‐term water supply
by reducing groundwater overdraft by as much as 1.3 MAF/a (1.6 km3/a; 2000–2014). In this study, we
sought to illustrate how large‐scale simulation modeling can provide a quantitative basis to evaluate differ-
ent Ag‐MAR management options with respect to their ability to influence long‐term groundwater reserves
and connected groundwater‐dependent ecosystems.

Model predictions indicate that implementing Ag‐MAR operations in the Orland‐Artois Water District
would have clear benefits for the long‐term groundwater storage and base flow, both of which are impor-
tant goals of water management in semiarid regions (Ronayne et al., 2017). Irrespective of the diversion
amount for groundwater recharge considered in our simulations, about 34% of the recharged water
remained in groundwater storage and about 66% returned to streams as base flow, indicating that Ag‐
MAR has the potential to stabilize and locally recover aquifer levels while increasing streamflow during
summer low flow periods and the amount of groundwater available for irrigation. Similar groundwater
storage gains were found by Niswonger et al. (2017) (e.g., 26–29% depending on aquifer hydraulic conduc-
tivity) for large‐scale Ag‐MAR simulations in the Carson Valley, NV and Ghasemizade et al. (2019) for the
eastern San Joaquin Valley, CA. Other large‐scale MAR modeling studies have seen lower gains in
groundwater storage (e.g., Ronayne et al., 2017; Scherberg et al., 2014); however, most studies observed
similar clear benefits of recharge for groundwater‐dependent ecosystems and instream flows. Similar to
findings of Kendy and Bredehoeft (2006) and Ronayne et al. (2017) recharge effects on seasonal stream-
flows and particularly summer low flows were greatest when MAR programs were extended over longer
recharge seasons that allowed capturing more surface water excess flows. The recharge caused widespread
increases in groundwater levels within the OAWD study area of as much as 90 ft (27.4 m) for some of the
recharge scenarios. Ag‐MAR benefits were sensitive to the diversion point and the timing of recharge,
both of which influenced streamflow availability for recharge. Larger Ag‐MAR recharge locations proved
advantageous for capturing flood flows from very large storm events while moderating local groundwater
mounding. Feedback mechanisms between recharge and crop water consumption, crop ET, and water con-
sumption by natural vegetation from elevated soil moisture and groundwater levels could not be estimated in
this study because themodel does not support simulation of recharge through the root and unsaturated zone.
Although such processes are important for enhancing ecosystem services of groundwater‐dependent ecosys-
tems (Bolund&Hunhammar, 1999; Dillon et al., 2009; Eamus&Froend, 2006; Fisher, 2015), Niswonger et al.
(2017), Wu et al. (2016), and Ghasemizade et al. (2019) showed that the effect of recharge on crop water con-
sumption and crop ET is modest (e.g., 3–6% increase in crop water consumption over the simulation period;
Niswonger et al., 2017), but the increase in ET by natural vegetation can be significant (e.g., 20–30%;
Niswonger et al., 2017) depending on soil moisture content.

In this study, we evaluated eight different recharge target amount scenarios ranging from a minimum
annual diversion volume of 10 TAF (RTV10) to 380.5 TAF (RTD10). Using these recharge target amounts
in potential Ag‐MAR programs has both negative and positive effects on instream flows and instream
flow‐dependent ecosystem habitats. As shown in the results, larger recharge amounts resulted in a larger
increase in groundwater levels across the region relative to the base scenario and increased instream flows,
particularly during the summer base flow period. However, the results also show that diversion of some of
the larger recharge target amounts (e.g., RTD6, RTD10, RTV100), particularly from the smaller Stony
Creek tributary, is not feasible due to a lack of streamflow during the winter season. Adoption of such large
diversion volumes might not even be feasible from a water management perspective, since the OAWD only
delivers about 53 TAF of water during the irrigation season and might not have sufficient infrastructure to
divert larger amounts (>100 TAF; Orland‐Artois Water District, 2014). Hence, it is important to note that
irrespective of the recharge amount a new dynamic groundwater‐surface water equilibrium is achieved,
leading to stable water level dynamics at a higher level than prior to policy implementation. Together these
results illustrate how different Ag‐MAR design factors can affect the benefits of Ag‐MAR projects, and that
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large‐scale simulation tools such as the C2VSim model can help decision makers determine how water
resources and ecosystem benefits are distributed within a groundwater basin.

4. Conclusions

In this study we present the evaluation of different Ag‐MAR practices (e.g., different recharge locations,
amounts, and timings) using a large‐scale integrated groundwater‐surface water model that covers the entire
CV of California, USA. The numerical modeling framework is used to evaluate local‐ and regional‐scale,
long‐term benefits and consequences of Ag‐MAR on groundwater storage, surface and groundwater return
flows, and instream flows. Specific impacts are evaluated for one groundwater subbasin (530 mi2 [1,370
km2]) located in the northwestern part of the CV in the Sacramento River basin.

Our results highlight that the location or stream from which surface water is diverted is critical for Ag‐MAR
design. Diverting streamflow from a small stream will limit the diversion target amounts for recharge, and
also increase the variability in the timing and length of the recharge season. Longer recharge seasons allow
diverting larger total surface water amounts at much lower rates. Shorter diversion periods require higher
recharge rates, in the amount of which surface water is less often available. On the other hand, if streamflow
availability for recharge does not represent a limit, the recharge timing and recharge locations do not affect
the amount of water recharged in the long term.

The water budget analysis revealed that among the different groundwater budget terms the groundwater sto-
rage and the stream‐groundwater interaction term are by far the most affected by diversions in the study
area. In all scenarios the diverted water was split into groundwater storage (about 34%) or return flow to
streams (about 66%). During the first decades of Ag‐MAR operation the diverted water contributed mainly
to groundwater storage (60–70% in the first 20 years). In the OAWD study basin, given its size and hydrogeol-
ogy, Ag‐MAR takes over a century to reach a new dynamic groundwater storage equilibrium, regardless of
recharge scenario. Ag‐MAR contributes to maintaining the higher groundwater storage levels, while bene-
fitting base flow during low‐flow periods at a rate approaching the average recharge rate.

Analysis of the maximum short‐term water table rise showed that the timing and duration of recharge is cri-
tical. Longer recharge seasons (e.g., December–February or November–April) support lower recharge rates
and result in lower peaks in the maximum water table rise. In particular, spreading the recharge over a six‐
month season (November–April) resulted in 5 ft (1.5 m) less maximum water table rise compared to the
single‐month (e.g., February) recharge timing scenarios. The maximum groundwater table rise is also sensi-
tive to the spatial distribution of recharge water applications. Larger and more widely distributed recharge
areas result in a lower amplitude of the groundwater table response but do not change the effect that
recharge has on base flow. The study area's major streams are gaining streams; that is, groundwater contrib-
uted to base flow except during a few dry periods. The simulated streamflow diversions for groundwater
recharge, when taken from the smaller tributary, caused a significant groundwater level decline below the
diversion point, mainly during dry and drought periods. We found that depending on the magnitude of
the streamflow diversion, those groundwater level drops may become more frequent especially after long
Ag‐MAR operation.

In this study we used an integrated groundwater‐surface water simulation framework; however, the move-
ment of diverted water through the root and unsaturated zone was not taken into consideration. This study
also did not considered additional drainage from rice fields due to increasing groundwater discharge into
these low‐lying land areas. But our work demonstrates the long‐term dual benefit of Ag‐MAR in the study
region, more drought resilience, and increasing contributions to base flow.
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