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Abstract: The use of multiparametric magnetic resonance imaging (mpMRI)-derived radiomics has
the potential to offer noninvasive, imaging-based biomarkers for the identification of subvisual
characteristics indicative of a poor oncologic outcome. The present study, therefore, seeks to develop,
validate, and assess the performance of an MRI-derived radiomic model for the prediction of prostate
cancer (PC) recurrence following radical prostatectomy (RP) with curative intent. mpMRI imaging
was obtained from 251 patients who had undergone an RP for the treatment of localized prostate
cancer across two institutions and three surgeons. All patients had a minimum of 2 years follow-up
via prostate-specific antigen serum testing. Each prostate mpMRI was individually reviewed, and
the prostate was delineated as a single slice (ROI) on axial T2 high-resolution image sets. A total of
924 radiomic features were extracted and tested for stability via intraclass correlation coefficient (ICC)
following image normalization via histogram matching. Fourteen important and nonredundant
features were found to be predictors of PC recurrence at a mean ± SD of 3.2 ± 2.2 years post-RP.
Five-fold, ten-run cross-validation of the model containing these fourteen features yielded an area
under the curve (AUC) of 0.89 ± 0.04 in the training set (n = 225). In comparison, the University of
California San Fransisco Cancer of the Prostate Risk Assessment score (UCSF-CAPRA) and Memorial
Sloan Kettering Cancer Center (MSKCC) Pre-Radical prostatectomy nomograms yielded AUC of
0.66 ± 0.05 and 0.67 ± 0.05, respectively (p < 0.01). When the radiomic model was applied to the test
set (n = 26), AUC was 0.78; sensitivity, specificity, positive predictive value, and negative predictive
value were 60%, 86%, 52%, and 89%, respectively. Accuracy in predicting PC recurrence was 81%.

Keywords: prostate cancer; radiomics; recurrence; machine learning

1. Introduction

Prostate cancer (PC) recurrence following definitive therapy via radiation therapy
or radical prostatectomy (RP) is common, ranging from 15% to 30% in the contemporary
literature [1–3]. Biochemical recurrence (BCR) of PC following RP is a significant source
of anxiety for patients, as it signifies the return of their PC and, often, the need for further
treatment and their associated side effects. These additional treatments may include the use
of androgen deprivation therapy (ADT), radiation therapy, and/or salvage surgeries—all of
which may be indicated with BCR years after their initial treatment [1,2]. As such, several
groups have suggested that early prediction of patients at high risk for BCR may allow for
more proactive treatment regimens planned at the time of initial intervention [3–5]. This
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would not only take advantage of the synergy of combination therapy, but it would also
ease patient anxiety prior to and following their PC treatment.

Unfortunately, at the time of diagnosis, clinical characteristics such as stage and grade
of disease have proven to be inadequate in predicting treatment success [4]. Several tools,
such as the University of California, San Francisco Cancer of the Prostate Risk Assessment
(UCSF-CAPRA) [4] and the Memorial Sloan Kettering Cancer Center (MSKCC) preradical
prostatectomy nomogram [5], have been proposed in an effort to model adverse outcomes
following RP. However, these nomograms use only demographic and clinicopathologic
features and, thus, are limited in their ability to capture adverse features and predict tumor
molecular heterogeneity. Furthermore, the predictive capability of these nomograms varies
widely between different cohorts [6].

In the PC clinical care pathway, multiparametric magnetic resonance imaging (mpMRI)
represents a potential avenue for pretreatment prediction of PC recurrence. In 2018, the Na-
tional Comprehensive Cancer Center (NCCN) guidelines recognized the utility of mpMRI
in PC staging [7], and several studies have since reported improved correlation between
diagnostic versus pathologic staging with the use of mpMRI [8–10]. While this represents a
step in the right direction, the use of mpMRI remains unstandardized in the use of treatment
outcome prediction and depends heavily on user interpretation and classification.

Modern advancements in machine learning methodologies have facilitated the devel-
opment of radiomics, a computer-based method of extracting and quantitatively analyzing
subvisual characteristics on medical imaging [11]. Radiomic features (i.e., qualities of
intensity, texture, shape, or wavelet) can be extracted from a variety of medical images
using advanced mathematical algorithms, aggregated into predictive models, and applied
to enhance personalized therapy. In this regard, several groups have applied radiomics
to screen cancer patients [12], predict adverse pathologic features [8,10,13], and grade can-
cers [9,14,15]. Even further, radiomic features have also been shown to be associated with
tumor markers, tumor microenvironment, and other high-risk genetic features correspond-
ing with poor oncologic outcomes [12]. As PC is highly heterogeneous, the identification
of noninvasive, imaging-based biomarkers indicative of clinical outcomes can facilitate
disease-tailored treatment planning. For instance, if these technologies are ultimately
applied to identify men more likely to experience recurrent PC following initial treatment,
these models could supplement discussions regarding treatment strategy, tolerable risks
and benefits to the patient, and the need for individual and/or systemic therapies. To
this end, the present study seeks to develop, validate, and assess the utility of an mpMRI-
based radiomic model for the prediction of men more likely to experience PC recurrence
following RP.

2. Materials and Methods
2.1. Patient Selection

From March 2012 through November 2018, mpMRI was obtained from 251 consecu-
tive patients who had undergone a robot-assisted radical prostatectomy (RARP) for the
treatment of localized PC at two institutions. All surgeries were performed by three sur-
geons: one with over 20 years’ experience (TA) and two with over 10 years’ experience
(SB and CL). Patients were extracted from an institutional database consecutively under
approved institutional review board protocol and were included in this study only if they
had a pre-operative mpMRI study of the prostate and/or pelvis prior to RP. All patients
had ≥2 years follow-up via serum prostate-specific antigen (PSA) levels, consistent with
the average time to recurrence in RP patients. A PC recurrence was defined as a biochem-
ical recurrence (BCR) or two consecutive blood serum prostate-specific antigen levels of
0.2 ng/mL or greater. Patients with any neoadjuvant or adjuvant treatment in conjunction
with RP and/or had any PSA persistence following RP were excluded. Ethical access to
follow-up information was maintained only by those with an existing clinical relationship
with the subjects and/or who had existing professional responsibilities that required access
to protected health information. All data, including medical imaging, were abstracted for
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analysis in a manner that did not include identifying information and without retaining
the code to the identifiers. All data was transferred to the main institution (UNMC) for
analysis after the establishment of a data use agreement and individual institutional review
board approval.

Descriptive statistics were generated using Statistical Package for Social Sciences (SPSS)
v28 © IBM Corporation (Armonk, NY, USA) to describe the full cohort and its subgroups,
with categorical variables reported with n, % and continuous variables reported with mean,
standard deviation for normally distributed variables, or median (interquartile range) for
skewed variables. Patient demographics and clinicopathologic characteristics were com-
pared between the training and testing datasets via Student t-tests for continuous variables
and Pearson chi-square tests for categorical variables. Levene’s test for homogeneity of
variances was used to assess for nonparametric distributions, and the Mann–Whitney U
test was used for distributions violating homoscedasticity assumptions. Differences were
assessed in the following subgroups: those with and without mpMRI, patients between the
two institutions, and between the model training and testing sets.

2.1.1. Feature Extraction and Selection

Figure 1 illustrates the overall workflow and radiomics pipeline for the present study.
Each prostate mpMRI was individually reviewed, and the prostate was delineated as a
single slice (ROI) on axial T2 high-resolution image sets. One author [LMH] performed
all contouring after extensive training by the senior investigator [MB]. All contours were
checked for accuracy and corrected [MB]. Contouring of the region of interest was com-
pleted manually utilizing the Varian Velocity system (Varian Medical Systems, Palo Alto,
CA, USA), and all investigators were blinded to the clinical outcome during this process.
Bias correction was applied to all images to compensate for intensity nonuniformities using
the N4 Bias Correlation approach [12]. In addition to this bias correction, we also applied
a piecewise, linear histogram matching the intensity normalization algorithm (Nyul et al.
methodology [16,17]) to standardize the set of MRI images prior to radiomics analysis and
extracted features. All radiomic features were then extracted utilizing an open-source pack-
age on the PyRadiomics 2.0 platform, an open-source Python package for the extraction of
radiomics features from medical imaging [18]. DICOM images were converted to nearly
raw raster data (NRRD) file format using a batch process in the 3D Slicer 5.4 software [19]
as previously described [20] prior to export.

The effects of various bin widths and resampling on the stability of extracted features
were investigated [18,21–23]. Gray-level discretization in five different bin widths (5, 10, 25,
50, 75) was chosen and applied to the volume images and masks with original resolution.
The feature extraction process was repeated with ten different parameter sets, and intraclass
correlation coefficient (ICC) was utilized to quantitatively assess the stability of radiomic
features against various uncertainty sources [21,22,24]. With five bin widths on images
with/without resampling, the ICC of ten sets of extraction parameters categorized by
feature groups was also assessed.

2.1.2. Model Development

For model development and training, patients were randomly split via random num-
ber generation from 9 to 1 into training (n = 225) and testing (n = 26) datasets. After
verification that there were no statistically significant differences between the training
and testing datasets (described above), the training dataset was used to iteratively train
and test the best parameters with a Random Forest (RF) predictive model. Redundant
features were excluded with a Pearson Coefficient less than 0.4, and the most important
features were selected based on five widely used classifiers (Stability Feature Selection,
Random Forest, Extra Tree, Adaptive Boosting, and Extreme Gradient Boosting). From
the top feature list, the most important features were selected based on the importance,
redundancy, and correlation with other features after multiple iterations on five-fold, ten-
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run cross-validation. Based on the selected features, a predicted model was built, and a
’radiomic score’ predicting the likelihood of PC recurrence was produced for each patient.
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2.1.3. Model Assessment

The radiomic score predicting the likelihood of PC recurrence was assessed against
the follow-up data for PC recurrence for each patient. PC recurrence was defined as
biochemical recurrence, or two consecutive PSA levels greater than or equal to 0.2 ng/mL.
The receiver operatorcharacteristic area under the curve analysis was utilized, and model
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV) were reported.

The final radiomic model was then compared to two clinical nomograms used to
predict biochemical recurrence from presurgical patient characteristics: the University of
California, San Fransisco—Cancer of the Prostate Risk Assessment (UCSF-CAPRA) score [4]
and the Memorial Sloan Kettering Cancer Center (MSKCC) preradical prostatectomy
nomogram [5]. Utilizing previously published model properties, equations, and coefficients,
the predicted probability of PC recurrence was calculated for each patient from each
nomogram. Predicted probabilities were aggregated via receiver operatorcharacteristic
curve (ROC) analysis. The ROC area under the curve (AUC) analysis was conducted for
each model and compared pairwise to the radiomic model. A p-value less than 0.05 was
considered statistically significant for all analyses.

3. Results
3.1. Patient Demographic and Clinical Pathologic Characteristics

There were no statistically significant differences between the demographic and clini-
copathologic features of the 251 included patients versus patients who had met inclusion
criteria but did not have an mpMRI at the time of RP (n = 109). Overall, the mean ± SD
age and preoperative PSA were 64.1 ± 7.3 years and 9.6 ± 9.8 ng/mL, respectively. The
mean ± SD follow-up time was 3.2 ± 2.2 years. Of the 251 patients, 19.5% (49/251) expe-
rienced recurrence. All patients had follow-ups of at least two years, consistent with the
average time to recurrence in PC patients following RARP.
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After random characterization of 9:1 into training and test datasets, there were no
statistically significant differences in any of the patient demographics or clinicopathologic
features between groups (Table 1). In the training and test datasets, 19.6% (44/225) and
19.2% (5/26) patients experienced recurrence, respectively.

Table 1. Demographic and Clinicopathologic Characteristics.

Training Dataset Testing Dataset
n = 225 n = 26

Mean SD Mean SD p

Age, years 63.4 7.2 64.5 6.9 0.460
Preoperative PSA, ng/mL 9.8 10.2 8.0 5.1 0.368

Follow-up Time, years 3.2 2.2 3.2 1.9 0.850

n % n % p

Clinical Tumor Stage 0.315
1 141 66.5 18 69.2
2 60 28.3 5 19.2
3 11 5.2 3 11.5

Missing 13 5.8 0 0.0
Preoperative Gleason Grade Group 0.096

1 32 14.7 1 3.8
2 91 41.7 11 42.3
3 42 19.3 3 11.5
4 30 13.8 4 15.4
5 23 10.6 7 26.9

Missing 7 3.1 0 0.0
Pathologic Tumor Stage 0.814

2a 55 24.4 8 30.8
2b 56 24.9 7 26.9
2c 21 9.3 1 3.8
3a 64 28.4 8 30.8
3b 24 10.7 1 3.8
4 1 0.4 0 0.0

Pathologic Gleason Grade Group 0.528
1 21 9.5 2 8.0
2 110 49.8 9 36.0
3 50 22.6 8 32.0
4 14 6.3 1 4.0
5 26 11.8 5 20.0

Seminal Vesicle Invasion 22 9.8 1 3.8 0.564
Extraprostatic Extension 76 33.8 9 34.6 1.000
Lymph Node Invasion 5 2.2 2 7.7 0.157

Positive Margins 60 27.3 66 24.0 0.467
Recurrence 44 19.6 5 19.2 1.000

3.2. Feature Extraction and Selection

Figure 2 depicts the image histograms before and after imaging processing via the
application of intensity normalization by histogram matching. After image normalization,
feature selection among 924 radiomic features yielded 137 (14.8%) stable features for
assessment. Following ICC normalization, these features were reduced to fourteen stable,
nonredundant, and robust features predictive of PC recurrence. Feature importance ranking
is illustrated in Figure 3.
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3.3. Radiomic Model Performance

The fourteen most important and nonredundant radiomic features were aggregated
into a model to predict PC recurrence and tested in the training dataset. Repeated five-fold
cross-validation yielded a mean ROC-AUC of 0.89 ± 0.04 (Figure 4a). Sensitivity, specificity,
positive predictive value, and negative predictive value in the testing set were 60%, 86%,
52%, and 90%, respectively. The accuracy of the final radiomic model was 80.88%.
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Prediction of PC recurrence via the UCSF-CAPRA score and MSKCC preradical prosta-
tectomy nomogram in the training set yielded ROC-AUC of 0.66 ± 0.05 and
0.67 ± 0.05, respectively. A pairwise comparison between the AUC for the radiomic model
versus that of the UCSF-CAPRA score revealed a statistically significant improvement in
the prediction of PC recurrence with the radiomic nomogram (p < 0.0001). Comparison with
the MSKCC preradical prostatectomy also yielded a statistically significant improvement
in the prediction of PC recurrence (p = 0.0018).

When the radiomic model was applied to the testing set, ROC-AUC analysis yielded
an AUC of 0.78 (Figure 4b). Application of the UCSF-CAPRA and MSKCC prerad-
ical prostatectomy nomograms in the test set yielded ROC-AUC of 0.69 ± 0.13 and
0.75 ± 0.193, respectively.

4. Discussion

mpMRI-derived radiomics is an emerging field with the potential to offer noninvasive,
imaging-based biomarkers for PC risk stratification and prediction of treatment response.
The ability to prognosticate may not only alter risk stratification at the time of initial diagno-
sis but may also inform further treatment planning. The present study is unique to previous
explorations utilizing radiomics as a tool for screening and/or staging during initial PC
diagnosis. While these are valuable explorations, the prediction of patients at high risk for
cancer recurrence is significant in its potential to enable physicians to consider proactive
measures to prevent poor outcomes. The prognostication of recurrence, for example, may
lead to changes in treatment strategy, the addition of adjuvant therapies, and/or the recom-
mendation to pursue a different treatment modality. Overall, our radiomic model yielded
excellent predictive capability in identifying patients at high risk for PC recurrence at a
median follow-up of 3.0 (1.2) years, with no patients having less than the average two-year
follow-up time for detection of a recurrence. Even further, when compared against the
UCSF-CAPRA score and MSKCC preradical prostatectomy nomogram, our model yielded
significantly improved prediction of PC recurrence. As we look forward to future validation
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and the possible creation of a radiomic-clinicopathologic nomogram, these results represent
great potential in the prediction of PC recurrence.

Our goal in the use of mpMRI-derived radiomics with prognostic intent is congruent
with several other groups [25–28]. A 2020 study by Bourbonne et al. was the first to
report their efforts in the training and validation of an MRI-derived radiomic model for
the prediction of post-RP PC biochemical recurrence (BCR) and BCR-free survival [28].
This group utilized T2WI and ADC maps of 107 patients prior to RP to extract radiomic
factors correlating with BCR. Utilizing Cox regression analysis, the final radiomic model
yielded a high negative predictive value of 96%, i.e., a reliable indicator of patients who
were at very low risk of recurrence following RP. These results were echoed by three other
groups [22,25,26]. First, Yan et al. reported similar models with ROC-AUCs between
0.84 and 0.88 for the prediction of 3-year BCR [22]. Similarly, Shiradkar and colleagues
developed an MRI-derived radiomic model [25] that was significantly and independently
correlated with 3-year BCR in Cox proportional hazards regression modeling (HR: 2.91,
95%CI: 1.45–11.51, p = 0.02). Finally, Li. and colleagues [26] found that integration of
clinicopathologic features with radiomic analysis yielded a model also independently
associated with recurrence following RP (HR:7.01, 95%CI:1.21–40.68, p < 0.05).

Of four above-mentioned studies, the present study is the second largest series overall
(second to Yan et al. [22]) and includes the largest number of patients in the model training
set. This increase in sample size not only translates to improved statistical power but it also
introduces significant heterogeneity to the patient cohort. As such, it is important to note
that the present cohort underwent RARP by three different surgeons across two institutions,
each surgeon with differing years of experience, different preoperative protocols, and
varying use of mpMRI in PC staging. Moreover, of these three surgeons, one also operated
based on a referral system—i.e., most patients included from his cohort were diagnosed
and imaged off-site. This significantly increased the number of different imaging protocols
throughout the dataset, with mpMRI imaging coming from several institutions and trans-
ferred via different electronic health record systems. However, despite the multitude of
inter- and intra-cohort differences, the imaging normalization techniques employed herein
allowed the generation of a strong radiomic model for prediction in all patients. In this
regard, to our knowledge, the present study is also the only investigation to compare a
radiomic model’s performance to currently established predictive models in clinical use.
This, combined with the image normalization techniques and expanded sample size of
the present study, allows for increased generalizability and applicability of our model to
external institutions in future explorations.

While the result of this investigation is promising, radiomics in PC prognostication
is still in its infancy, and there are several limitations to the present study. First, method-
ological modifications to the radiomics pipeline must be intentional, and results must
be considered within this context. Given that radiomic models are highly sensitive to
modifications to the procedures of image segmentation, feature extraction, and feature
selection, investigations regarding radiomic feature variability, robustness of available
datasets, and reproducibility in multiple cohorts are required prior to consideration for
clinical integration [29,30]. While the present study optimizes the feature selection pathway
to include morphologic features, a correlation of these radiomic features must be estab-
lished with clinicopathologic characteristics prior to expanding the radiomic model to more
institutions for external validation. Similarly, the limited sample size in our testing cohort
and differences in institutional procedures continue to be challenging as we continue to
explore applications to a larger patient cohort. While standardized feature extraction and
histogram matching in our cohort were adequate in controlling for most of these differences,
this will have to be even further confirmed.

As the field of radiomics continues to grow and develop, intersectionality with his-
tology [31,32], pathology [33,34], and genomics [35,36] offers high potential for biologic
validation and improved clinical interpretability of radiomic models. Correlation with
local pathologic analysis, for example, can provide a direct comparison of quantitative
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pathologic features to explain structural characteristics underlying radiologic textures.
Even further, correlation with genomic data can provide a link to the molecular pathways
underlying tumor biologic characteristics. These explorations would not only facilitate
a comprehensive understanding of the interplay between macroscopic imaging features
and microscopic tissue properties, but they can also facilitate the translation of radiomic
findings into clinically actionable insights.

5. Conclusions

Given that radiomics has the potential to facilitate noninvasive characterization of
tumor heterogeneity, the present study offers a multi-institutional development and valida-
tion of an mpMRI-derived radiomic model in predicting PC recurrence. In our cohort of
251 prostate cancer patients, radiomic analysis yielded fourteen radiomic features sig-
nificantly associated with BCR following definitive treatment. When these features were
aggregated into a radiomic signature, the model predicted PC recurrence with 81% accuracy.
Furthermore, when the predictive capability of this radiomic model was compared with
the clinical standard of the UCSF-CAPRA score and MSKCC preradical prostatectomy
nomogram, the radiomic model illustrated significantly higher ROC-AUC. As external
validations and expansion of the current study are considered, future projects will aim
to incorporate patient demographics and disease characteristics to further improve the
model’s sensitivity and PPV. Prior to consideration for clinical integration, however, these
radiomic models must be biologically validated.
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