
UC Irvine
ICS Technical Reports

Title
Interpreting programs in Static Single Assignment Form

Permalink
https://escholarship.org/uc/item/98n3s5r5

Authors
Ronne, Jeffery von
Wang, Ning
Franz, Michael

Publication Date
2003-04-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/98n3s5r5
https://escholarship.org
http://www.cdlib.org/

Notice: This
may be
by Copyright
(Title 17 .C.)

Interpreting Programs in Static Single Assignment Form

Jeffery van Ronne Ning Wang Micliael Franz

Technical Report 03-12
School of Information and Computer Science

University of California, Irvine, CA 92697-3425

April 2, 2003

Abstract
Static Single Assignment Form is a common intermediate representation for
optimizing compilers but several of its features are difficult to implement
in a traditional imperative interpreter. An interpreter for Static Single
Assignment would enable mixed-mode (interpreting and compiling) virtual
machines to be developed around program representations in Static Single
Assignment Form. We propose an extension to Static Single Assignment
Form, Interpretable Static Single Assignment (ISSA). Each of Interpretable
Static Single Assignment's instructions, including the phi instruction,' has
self-contained operational semantics. In addition, we describe a prototype
interpreter of Interpretable Static Single Assignment and report on its
pe1formance.

Contents

1 Introduction

2 Interpretable SSA Form
2.1 Unique Naming
2.2 Choosing <!>-function Operands
2.3 Simultaneous Execution of <!>-functions
2.4 Arrays

3 Discussion
3 .1 Implementation
3.2 Safety
3.3 Pe1formance .. .
3.4 Possible Improvements

4 Conclusion

A Implementation of the Interpreter Core
A.I ssa_vm.c ..
A.2 ssa_ vm.h . .
A.3 ssa_array.h .
A.4 inst.h ..

B Benchmarks
B .1 Fibbonacci Sequence (in scalars) .

B.1.1 fibonacci.ssa
B.1.2 fibonacci.c

B.2 Fibbonacci Sequence (in an array)
B.2.1 fibonacci_array.ssa
B .2.2 fib_array.c . .

B.3 Factorials
B.3.1 facto1ial.ssa .
B.3.2 factorial.c ..

ii

1

1
1
3
5
7

10
10
10
11
11

12

14
14
23
23
24

27
27
27
28
30
30
31
33
33
34

List of Figures

1
2
3
4
5
6
7
8

a simple program
execution of a simple program
a program using the if-then-else construct
execution of if-then-else construct
a program for computing the Fibonacci sequence
computing the Fibonacci sequence
a program exhibiting array manipulation . . .
dynamic execution of array manipulation

List of Tables

1
2

lines of code for prototype implementation .
execution times

iii

2
2
4
4
5
6
8
8

10
11

1 Introduction

For more than a decade, intermediate representations based on Static Single As
signment (SSA) Form [Alpern et al., 1988, Rosen et al., 1988] have been utilized
inside a large number research and industrial compilers. More recently, Amme
et al. [2001] proposed an external program representation based on SSA Form,
which is well suited for Just-In-Time (JIT) compilation. IlT compilation, how
ever, imposes a startup delay, which may not be justified for short-lived applica
tions. Java Virtual Machine implementations typically use mixed-mode interpre
tation and compilation in an attempt to combine the benefits of interpretation's
shorter startup times and IlT compiled code's better throughput. Due to several
problematic features, conventional imperative interpreters have not been written
for SSA representations. (There have, however, been some extensions to SSA
which support data driven interpretation, e.g., Ballance et al. 's 1990 Program
Dependence Web and Ananian's 1999 Static Single Information Form.) Con
sequently, Krintz [2002] recently proposed storing and transporting programs in
both JVM class files (which use a stack-based virtual machine) for interpretation
and also in SafeTSA classes (which are SSA-based) for IlT compilation, allowing
mixed-mode operations at the cost of supporting two program representations.

Several features of SSA Form are particularly challenging for direct impera
tive interpretation: the large number of variable names, the selection of ¢-function
operands, the simultaneous execution of mutually dependent ¢-functions, and the
handling of non-scalar variables. These difficulties, however, are not insqrmount
able.

This paper presents Interpretable SSA (ISSA) Form, an SSA variant in which
each instruction has directly interpretable operational semantics, discusses a pro
totype implementation, its safety, and its performance, and proposes several pos
sible improvements.

2 Interpretable SSA Form

2.1 Unique Naming

The most important characteristic of Static Single Assignment is that the left hand
side of each and every variable assignment must have a unique name. As a result,
each 01iginal program variable has several corresponding SSA variables. Map
ping these SSA variables to abstract machine registers would seem to require an

1

x=3 iload 3

y=2 iload 2 xO := mov 3

iadd yO :=mov4
z=x+y

iload 2 zO := iadd xO yO
v=z*y imul vO := imul zO yO

print v print print vO

exit exit exit

(a) source code (b) stack-based code (c) SSA Form

Figure 1: a simple program

I IP=O I I IP=2 I I IP=3 l
0 canst 3 3 0 const 3 3 0 const 3

1canst2 2 1const2 2 1const2

2 iadd (0) (1) 2 iadd (0) (1) 5 2 iadd (0) (1)

3 imul (2) (1) 3 imul (2) (1) 3 imul (2) (1)

x 4 print (3) x 4 print (3) x 4 print (3)

x 5 exit x 5 exit x 5 exit

(a) (b) (c)

Figure 2: execution of a simple program

2

0 const 3

1 const 2

2 iadd (0) (1)

3 imul (2) (1)

4 print (3)

5 exit

(d) ISSA code

I IP=4 l
3 0 const 3

2 1const2

5 2 iadd (0) (1)

10 3 imul (2) (1)

4 print (3)

x 5 exit

(d)

abstract machine with an unbounded register file. In actuality, each SSA vari
able is defined by exactly one program instruction (the right hand side of the as
signment), so it is sufficient for a program's abstract machine to have one output
register per instruction.

Figure l(d) shows the program in Figure l(a) translated into our particular
SSA based intermediate representation, Interpretable SSA (ISSA). Each instruc-

. tion in ISSA is labeled (on the left) with a consecutive instruction line number. A
few instruction types, such as the cons t instructions, take immediate integer val
ues, but most have indirect operands which refer to the output of previously exe
cuted instructions. Each of these operands selects the defining instruction's output
register by the instruction's line number (which is syntactically distinguished by
parentheses).

Figure 2 shows the dynamic execution of this program's abstract machine. The
instructions' output registers are shown by the boxes to the left of the instructions;
an auxiliary instruction pointer (IP) register is used to indicate the instruction to
be executed next. As each instruction executes, it retrieves its inputs from from the
indicated registers, performs its computation, and writes to the appropriate output
register (OR) on its left. For example, before instruction 3 executes, the machine
state is as show in Figure 2(c); as it executes it reads the values of OR2 (i.e. 5)
and ORl (i.e. 2), multiplies the two, and writes the result (i.e. 10) to OR3.

2.2 Choosing <I>-function Operands

<!>-functions pose a greater obstacle to direct imperative interpretation of programs
in SSA Form. In standard SSA Form, each ¢-function resides in a basic block
(where more than one control flow edge converges) and selects one of its input
operands (using that operand as its result value) on the basis of the control flow
edges on which the dynamic execution entered the basic block.

Figure 3 shows a simple program with converging control flow translated.into
Interpretable SSA. The ¢-functions (that would exist in standard SSA Form) are
replaced by phi instructions. Since the basic-block control flow graph (CFG)
(which is shown as the dashed boxes and arrows in Figure 3(b)) is not explicitly
represented in ISSA, it is not clear how an interpreter should decide whether the
phi instruction is to copy from OR7 or ORS. For this reason, ISSA provides an
auxiliary CFG-Edge Number (CEN) register, which is set on branching instruc
tions and is used by phi instructions to select among their operands. (This CEN
register serves the same role as the predicate of Gated Single Assignment Form's
1-functions [Ballance et al., 1990].)

3

int foo (int b)
{

int x = 5;
int y = 7;
int z;

if (b ==0)
z = x + y;

else
z = y- x;

return z;

(a) source code

0 int_arg
1 1 canst 5

2 canst 7
1 3 canst 0
I

I 4 beq (Q) (3) [7] Q
I- - - - - - ,...."':.- - - - - J

,,, - - - F ! ,,, ,,, ,,, -- :: .:: .;::-b:.._ - - - - - -

,,, 1 5 isub (2) (1) :
r------R------ I

~~~a~~ ~1g22_ ___ 1 : 6 goto [8] 1 o',, -::~r--------l 

~ 1rp111(7f(5)- - -, 
I I 

I 9 pfe I 
I I 
I I 
, 10 return (8) 1 _____________ J 

(b) ISSA code 

Figure 3: a program using the if-then-else construct 

assume b = 4 assume b =4 assume b =4 assume b= 4 

4 

x 

-------------' : 0 int_arg 

: 1const5 
I 
1 2 const 7 
I 

: 3 const 0 

L '!. ~e.9J~)_(~)_[7L ~ _ ! 
:-s-isub-czf (1)- - - -: 

L ~ ~o!<: lBl _1 _ - - - - ! 
L ! ~~l12-~2L-_ -_-_: 
: 1rp1ii Ff (5J- -- , 
I I 

: 9 pfe : 

L ! ~ :e_t~i:_n_ C.!l2 _ --! 

(a) 

4 

0 

2 

x 

,-------------1 
: 0 int_arg : 

: 1const5 : 
I I 

: 2 const 7 

: 3 const 0 

L '!. ~e_q_ C!)_ ~~ L71 ~ _ ! 
:-;i~~; c2) (1)- - --: 
L ~¥.a:<: lsL1_ - -- _ ! 
L ! 1!~~ (_1}~22-_ -_ -_ -_: 
: 1rpb1 Ff (5)- - - , 
I I 

: 9 pfe : 

L!~ :e!~i:_n_ Ql2 _ -_) 

(b) 

4 

0 

2 

x 

,- -.- - - - - - - - - - -
: Omt_a1·g 

: 1 const S 

J 2 const 7 

: 3 const 0 
I I 

~ '!. ~e_q_(!~ ~~ L7l ~ -: 
:-s-i~~; (2) (1)- ---: 
L ~ !fO!~ l8] ~ - - - - - ! 
L ~ 1!~~ (_!}gr_-_-_-_~ 
: 1(pb1 ~7f (5)- - - , 
I I 

: 9 pfe : 

L !~ :e:~r.!1-C.!lL _ ! 

(c) 

Figure 4: execution of if-then-else construct 

4 

4 

7 

0 

x 

2 

2 

x 

,-------------, 
1 0 int_arg 1 
I I 

: 1const5 : 
I I 
1 2 const 7 1 
I I 

: 3 constO : 

L '!. ~e_q_ C!)_ ~~ l"'l ~ _ ! 
:-s-i~~h <2) (1)- -- -: 
I I 

~ ~ Jf O_t~ l8] ! _____ : 
L ~ 1_'.i"~~ (_I-f~2r-_ -_ -_: 
: 8jififc7f (5)- - - -, 
I I 

'9 pre ' 

L!~:~t~r:.n_C_!lL_l 

(d) 



fibonacci () 
{ 

int f_i_2 = O; 
intf_i_l = 1; 
intf_i; 
inti= 2; 
intn= 10; 

do { 
f_i = f_i_2 + f_i_l; 
print f_i; 

i++; 
f_i_2=f_i_l; 
f_i_l =f_i; 

}while (i <= n); 

: o-const 6 - -: 
I I 
1 1const1 1 
I I 

: 2 const 10 : 
I I 

Llconst-2=:~_ -------, 
-----~-----~ ' 

: 4 phi (O) (5) I ' ' 

I I ' 
I 5 phi (1) (8) I \ 
I \ 

: 6 phi (3) (10) \ 
I I 

:7pfu : 
:8add(4)(5) ; 
I I 
1 9 print (8) 
I 

: 10 add (1) (6) 
I 
I 11 ble (lQ) (2) (4] 1 

- - - 4-.:--..:---------- = = = =: ~ 
~ ~2_r~t~:_n_: F T 

/ 
; 

; 

I 

I 
I 

I 

Figure 5: a program for computing the Fibonacci sequence 

Figure 4 shows several snapshots of this program's execution. Consider the 
execution of instruction 6 (transforming the state of Figure 4(b) into that of Figure 
4(c)); this corresponds to the traversal of the CFG edge labeled "1" in Figure 
3(b ). !SSA's goto instruction takes two immediate operands, the first is the target 
instruction number (in this case, 8) and the edge number (in this case, 1 ). When 
instruction 6 is executed the CEN register is set to 1 and the control is transfered 
to instruction 8 (the phi instruction). Because the CEN register is 1, the second 
operand of the phi instruction is selected, and 2 is read from ORS and placed in 
OR8. After this the CEN register is reset to O; the resulting state can be seen in 
Figure 4( d). 

2.3 Simultaneous Execution of <P-functions 

The observant reader will have noticed that the discussion in the previous sec
tion did not mention the pf e (Phi-Function End) instruction, which marks the 
end of the phi instructions within a basic block. The pfe instruction is needed, 
because standard SSA Form ¢-function semantics require that the ¢-functions be 
"executed" at the beginning of the basic block in which they reside [Cytron et al., 
1991]. Consequently, when one or more ¢-function (in a loop) reference the result 
values of ¢-functions within the same basic block, they must be implemented, so 
that the VM behaves as if they were all executed simultaneous! y using the previ
ous iteration's result values [Morgan, 1998]. For this reason, an ISSA interpreter 

5 



iteration= 0 

I PhiSel= 11 

: o-coilsff-: 

: I const I : 
I I 

lO : 2 const 10 : 
I I 
Ll .canst 2 _, 

: rr)hT fo) (5) - - - - - -: 

5 phi (I) (8) 

6 phi (3) (10) 

7 pfe 

8 add (4) (5) 

9 print(B) 

[0 add(!) (6) I 

._ ~t_b}i: ~1~~ <3~ L4l ! _ J 
~~_r~§~ii_-J 

(a) 

I PhiSet= 11 

: 0-c-onst_O_ -: 

: 1 const 1 : 
I I 

10 : 2 const 10 : 

L.1 .cons12 _ ! 
: ;;-p-h1 <1~ csr- ----: 
J s phi (1) (8) : 

J 6 phi (3) (10) 

: 7 pfe 

J s add (4) (5) 

: 9 print (8) 

: lO add([) (6) I 

l ~l- ~'= ~~02 ~2] !'!) _1 _ J 
~ ~1_-:e:Li_m: J 

(e) 

iteration= 0 

I PhiSel = I<( 4 ),0> I 

: 1>-ciiiist ii--: 
I I 
1Iconst1 , 
I I 

10 : 2coast10 ; 
I I 
Ll cnnsL2. _ , 

: ;; J>iir <Of cs>- -----: 
: 5 phi (1) (8) : 
: • I 
I 6 phl (3) (10) : 
I I 
I 7 pfe I 

J s add ( 4) (5) J 
I I 

: 9 print (8) : 

: lO add (1) (6) : 

l~1_b~i:g~>_<3~~E_ J 
~~2_r~t§~ii: J 

(b) 

ileralion = 0 

I PhiSet = 11 

:o-col1sCo- -: 
I I 
1 I const I 1 
I I 

lO : 2 const 10 : 

2 L.1.const.2_! 

:4-Piii co> csr- ----: 
I I 
I 5 phi (1) (8) I 

l 6 phi (3) (10) : 
I : 
: 7 pfe I 
I I 
I 8 acid (4) (5) : 
I I 
1 9 print (8) 1 

J 10 add (1) (6) J 

l ~1- ~'= i~02 F] !'!J _1_ J 
~~2_-:e:Lif12.-J 

(f) 

iteration = 0 

I PhiSet = I <(4),0>,<(5),l> I 

I 1r = 61 I CEN=O I 
: 0-coiist 0 - -: 
: 1 constl : 
I I 

lO : 2 cons! 10 : 
I I 
Ll consL2. _, 

:rp;.1 (o) c.si- -----: 
I I 
I 5 phi (J) (8) I 

16 phi (3) (10) l 
: 7 pfe 

: 8 add (4) (5) 

J 9 print(8) 

J 10 add (I) (6) 1 

~ ~1- ~1: i~ol i2] !".:l j _ J 
L-~2_-~;;!_ii_ii_:-J 

(c) 

itemtion= 1 

I PhiSel= [<(4),l>,<(5),l>,<(6),3>) 

I rr=1 I I CEN=l I 
: o-CoilSCo- -: 
: 1 consl 1 : 
I I 

: 2 const 10: 

2 ~3..cnnstL: 
:·;r jhi70;7.fF ___ -; 
I I 

15 phi (1)(8) : 
I I 

:6p/oi(3)(/0) ' 
I I 

x 17 pfe : 
I I 

: 8 odd (4) (5) I 
I I 

• 9 print(8) : 
I I 

J : JO odd (1) (6) I 

x : 11 hie (10) (2)[ 4] 1 : 

x [~2~-~e~u~~-r-----

(g) 

iteration =0 

I PhiSel = ( <(4),0>,<(5), l>.<(6),2>) 

I 1r=1 I I CEN=0I 
o :o-c-oiiSCo--• 

: 1 const 1 J 
I I 

: 2consl10 • 

Li .cuns12 _ J 

: 4-piil(oi (sf ___ _ 

i 5 phi (1) (8) 

i 6 phi (3) (10) 

x : 7 pfe 

i 8 udd (4) (5) 

x : 9 prinl(8) 

: JO udd (I) (6) 

x ~~I- ~I; i~02 £2) !4J} _ 
x L-~2_-~c.:u_~-J 

(d) 

iteration= 1 

J PhiSet= (I 

: o-col1sCo- -: 

! 1 const 1 : 
I I 

10 : 2 const 10 : 

Li .const2 _: 

::r phi7075f- - ---, 
:5phi(1)(8) l 
i 6 phi (3) (10) : 
I I 

I 7 pfe : 
I I 

: 8 add (4) (5) I 
I I 

1 9 print(8) : 

J 10 add (1) (6) : 

~ ~1-~I: S~·~ i2J!~J_1_J 
L-~2_-:e:uf12.-J 

(h) 

Figure 6: computing the Fibonacci sequence 

6 



will buffer phi instruction transfers until it executes the pf e instruction, which 
commits the transfers stored in the PhiSet buffer and resets the CEN register. 

Figure 6 shows the execution of the program shown in Figure S which com
putes the first 10 numbers of the Fibonacci sequence; this program has a ¢
function (instruction 4) that references the result of a ¢-function (instruction S) 
from the previous iteration. This happens, because the previous iteration's n-1 
becomes the new iteration's n-2; in more complicated examples, there could be 
multiple mutually dependent ¢-functions. ISSA is able to handle these cases be
cause it performs all of the reads (phi instructions) before performing any of the 
writes (at the pfe instruction). 

Figure 6(a) show the state of the program on initially entering the loop body; 
the CEN register is 0, indicating that the first operand of the phi instructions 
should be used. As each phi instruction is executed, a pair, containing the phi's 
instruction number and the selected operands current value, is added to the PhiSet 
buffer. When instruction 4 executes, it selects the first operand, reads in the con
tents of ORO (i.e. 0), and places (4, 0) into the PhiSet buffer (Figure 6(b)); for 
5 it reads in ORl and places (5,1) into the buffer (Figure 6(c)); for 6 it reads in 
OR3 and places (6,2) into the buffer (Figure 6(d)). After this, the pfe instruction 
executes; it removes each of the pairs out of the PhiSet (the order does not matter) 
and writes to the appropriate output registers (0 to OR4, 1 to ORS, and 2 to OR6) 
and resets the CEN register to 0. 

The second iteration is entered from the conditional branch of instruction 11 
(Figure 6(f)). Because the value of ORlO (i.e. 3) is less than the value of OR2 
(i.e. 10), the test succeeds, control transfers control back to instruction 4, and 
the CEN register is set to 1. Thus, in this iteration, the second operand of each 
phi instruction is selected, and the VM reads in the current values of ORS, OR8, 
and ORlO and placing (4,1), (S,1), and (6,3) into the PhiSet buffer (Figure 6(g)). 
When the pf e instruction executes, the appropriate OR's are written to and the 
CEN register is reset; the result is shown in Figure 6(h). 

2.4 Arrays 

Support for non-scalars has long been problematic in SSA, and many extensions 
have been proposed for supporting arrays and other non-scalars (e.g., Knobe and 
Sarkar's 1998 Array SSA Form). ISSA supports array manipulation through 
newarray, ace es s, and update instructions modeled after the Update and 
Access functions of Cytron et al. 1991, which treat the entire array as a single 
SSA variable. Each newarray instruction takes as an operand the number of 

7 



a= new int [3]; 
a[O] =5; 
a[l] =4; 
x = a[l] 
a[l] = 3; 
y = a[l] 

al = newarray 3 
a2 =update (al, 0, 5) 
a3 =update (a2, l, 4) 
xO =access (a3, 1) 
a4 =update (a3, 1, 3) 
yO = access (a4, 1) 

al = newarray 3 
a2 =update (al, 0, 5) 
a3 =update (a2, 1, 4) 
a4 =update (a3, 1, 3) 
xO =access (a3, 1) 
yO =access (a4, 1) 

0 consl 5 
1const4 
2 const 3 
3 const 2 
4const1 
5 const 0 
6 newarray (3) 
7 update (7) (5) (0) 
8 update (8) (4) (1) 
9 update (6) (4) (2) 
10 access (8) (4) 
11 access (9) (4) 

(a) Source Code (b) SSA Form ( c) After Code 
Motion 

(d) ISSA Code 

Figure 7: a program exhibiting array manipulation 

I PhiScl= II I PhiSet= II I PhiSet= 11 I PhiSel= 11 I PhiSet= 11 

i 1r= ul I CEN=OI I rr = 1111 cEN=O I lir = 1111 CEN=OI lir= 1111 CEN=ol I IP= I~ icEN=O I 

0 conslS 

II const5 OconsLS 5 

1 const4 1 consl4 4 

4 const l 4 const I 

S constO 5 const 0 

0 6 newurr~y (3) 6 newarray (3) 6 newurruy (3) 

7 update (6) (5) (0) 7 update (6) (5) (0) 7 update (6) (5) (0) 7 update (6) (5) (0) 

8 update (7) (4) (I) 8 updutc(7) (4) (I) 
8 update (7) (4) (1) 

9 update (8) (4) (2) 
9 updute (8) (4) (2) 

(() acccs.<(8)(4) IO ncce.x (8) (4) IOacccss(8)(4) 10 occess (8) (4) 

11 access(9) (4) II acccss(9) (4) lluccm(9)(4) 

(a) (b) (c) (d) (e) 

Figure 8: dynamic execution of array manipulation 

8 



elements, creates a new array of that size, and places a reference to it in the in
struction's OR. Every access, takes as operands a reference to an array and the 
index into the array, fetches the appropdate element from that array, and places 
a copy of its value in the instruction's OR. Each update instruction takes as 
operands a reference to an array, an index into that array, and a value, copies the 
array, wdtes the value to the element in the new array identified by the index, and 
places a reference to the new array in the update's OR. 

Copying the whole array on each update is inefficient but it is the most straight
forward way of maintaining proper SSA semantics and avoiding output dependen
cies. The output dependencies are not a problem if the SSA code was produced 
by a straight forward translation of a source program. If, however, code motion 
is performed as part of the program's optimization in SSA Form (for example, if 
partial redundancy elimination is performed on the external SSA representation 
for the benefit of JIT compiled code in a mixed-mode compilation environment), 
the interpreter must be prepared to deal with the possibility of an array access be
ing moved above updates. (Alternatively, the optimizer could be made aware of 
output dependencies for non-scalars, or output dependencies could be fixed-up by 
another code motion phase just pd or to interpretation.) 

An example program requiting non-destructive update semantics is shown in 
Figure 7. Figure 7(b) shows the direct SSA translation of the source program in 
Figure 7(a). Figure 7(c) which is semantically equivalent to the program in Figure 
7 (b) but has been altered by legal code motion and as a result accesses an old 
version of an array (i.e. a3) even after it has been updated (becoming a4). Thus, 
a3 and a4 have overlapping live ranges and, for this reason, cannot share the same 
storage space. Figure 7 ( d) shows the same program in ISSA. 

Figure 8 shows this program's step-by-step execution. Array references are 
implemented as indexes into a dynamic data structure called the array vector 
(AV), which contains pointers to all of the arrays instantiated dudng program 
execution. The execution of each newarray or update adds a new array to the 
array vector for each version of the odginal program array (Figure 8(a), Figure 
8(b), and Figure 8(c)). The access instructions select array versions by refer
encing the OR of the instruction which produced the array version; the access of 
instruction 10 uses the array produced by instruction 8, which was unaffected by 
the update at instruction 9 (Figure 8(d)), so retdeves the "old" value of element 
1 (i.e., 4). Instruction 11, however, uses the "current" version of the array pro
duced by the update at instruction 9 (Figure 8(e)) and retrieves the the "current" 
value of element 1 (i.e., 3). 

9 

I 

I 

- I 



Core /Jite1preter I File Name I Lines of Code I """M=is"-c --......-----~ I File Name I Lines of Code I 
/SSA Parser 

I File Name I Lines of Code I 
I ssa_vm.h 119 I ~sa_vm.c 364 

I Total I 383 I 

inst.h 75 
inst.c 140 
ssaJex.l 90 
ssa_parser.y 167 

vm_main.c 49 
ssa_array.h 27 
ssa_array.c 99 

I 115 .____ __ ___,_ ____ __.! I Total !_Total I 472 . 

Table 1: lines of code for prototype implementation 

3 Discussion 

3.1 Implementation 

We have implemented a simple prototype ISSA Virtual Machine (VM) in C. Dur
ing execution, it reads and parses an ASCII representation of ISSA code and then 
executes it using a simple interpreter consisting of a switch statement (with 30 
case statements, one for each instruction opcode) embedded in a loop. The vir
tual machine is untyped; all immediate and register values are 32-bit words but 
may be used as integers, single-precision floats, or indexes into the array vec
tor. Instruction numbers used as operands are also 32-bits. The PhiSet buffer is 
implemented with an array. Dynamic bounds checking is performed to ensure 
that neither invalid instruction numbers nor illegal array manipulation violate the 
virtual machine's integrity. 

3.2 Safety 

Our prototype virtual machine guarantees VM integrity by the extensive use of dy
namic bounds checks (which shut down the VM on violations) but does not check 
other safety properties, whose violation can only effect the programs correctness. 
In particular, CEN values on branches, phi instructions, and pfe instructions, 
must be used correctly in order to implement standard SSA semantics, misuse 
may produce programs that are not in SSA form. Neither does the VM distin
guish float, integer, and array reference types; instead all data exists as 32-bit 
words and each instruction uses those words as the types that are appropriate for 
that instruction; checking type safety is left to the generator of ISSA as a matter 
of program correctness rather than VM integrity. 

10 



I Computation I Elapsed Time Relative I Description 

Factorial (C) 10.0 msec 8!, 50000 times 
Factorial (SSA) 972.25 msec 97x 8!, 50000 times 
Fibbonacci Sequence Scalar (C) 67.5 msec first 100, 50000 times 
Fibbonacci Sequence Scalar (SSA) 3800.0 msec 56x first 100, 50000 times 
Fibbonacci Sequence Array (C) 4.25 msec first 100, 1000 times 
Fibbonacci Sequence Array (SSA/destructive) 137.5 msec 32x first 100, 1000 times 
Fibbonacci Sequence Array (SSA/non-dest.) 408.75 msec 96x first 100, 1000 times 

Table 2: execution times 

3.3 Performance 

Although our interpreter was designed for simplicity over performance, we mea
sured its performance on a few simple programs against that of optimized C code; 
these results are shown in Table 2. There were three benchmarks: one computes 
the first 100 numbers of the Fibonacci sequence building placing each element into 
an array sequence; another computes the Fibonacci sequence in scalar variables; 
the last calculates 8! using scalar variables. These benchmarks were executed on 
an IBM Thinkpad X23 866MHz PIII-M running Windows 2000; all I/O was sup
pressed from both SSA and C programs, and the interpreter's file parsing time 
was excluded. Relative performance of the interpreter was one to two orders of 
magnitude slower than optimized C code (compiled with g++ -03). 

3.4 Possible Improvements 

Our prototype implementation favors readability and simplicity over performance. 
A reimplementation prioritizing performance would probably result in a signifi
cant improvement based only on low-level optimizations. These, however, are 
less interesting than several algorithmic level optimizations that are worthy of in
vestigation. 

As noted above, each array update results in a copy. Most of the time, these 
are unnecessary. A live range analysis could be used to identify cases where the 
update's input array is never used again. (For most programs, this would be 
all of them.) In those cases, the update can safely avoid the copy and instead 
destructively modify the array in place and output the a reference to that same 
array. In order to approximate the performance gain of this optimization, we 
unconditionally disabled array copying and ran our Fibonacci array benchmark 
(which has 100 element arrays); this resulted in a speedup of approximately 3 x 
(the Destructive vs. Non-Destructive variants in Figure 2). 

11 



It would be possible to create a "safer" interpreter by adding a pre-pass phase 
that starts with a type safe and referentially secure SSA representation [Amme 
et al., 2001] and then adds the correct CEN operands to branches and pfe in
structions at the correct locations. As a side effect, enforced type safety allows 
the array vector to be safely dispensed with, because the array references could 
be statically verified and implemented with direct pointers. 

Another optimization we have considered is performing a "pseudo register 
allocation", which would add explicit output locations to instruction and reuse 
output registers when their live ranges do not overlap. Conceivable, this might 
reduce the cache footprint resulting in better performance. Unfortunately, this is 
unlikely occur without other changes being made to the our prototype VM, which 
assumes everything is a 32-bit word. If this is not amended, adding a (32-bit) 
output register identifier to every outputting instruction is likely to make the cache 
footprint worse rather than better. 

4 Conclusion 

It is indeed feasible to interpret Static Single Assignment Form. Programs in 
standard SSA Form may be translated into Interpretable SSA (ISSA) Form by re
naming operands to implicit registers, annotating edge numbers at branches, and 
marking the last ¢-function in each converging basic block. An ISSA interpreter 
for scalars needs only an output register for each instruction, a control-flow edge 
number register to select phi instruction operands, and a PhiSet buffer to simul
taneously commit phi instruction result values. Standard SSA Form array Access 
and Update functions can be implemented in a straight forward manner. 

A prototype ISSA interpreter has been constructed. This demonstrates the 
feasibility of a mixed-mode (interpreting and compiling) virtual machine using 
only representations in Static Single Assignment Form. 

References 

Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality 
of variables in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT 
symposium, on Principles of pro granuning languages, pages 1-11. ACM Press, 
1988. ISBN 0-89791-252-7. 

12 



Wolfram Amme, Niall Dalton, Jeffery von Ronne, and Michael Franz. SafeTSA: 
a type safe and referentially secure mobile-code representation based on static 
single assignment form. In Proceedings of the ACM SIGPLAN'Ol conference 
on Progranuning language design and implenientation, pages 137-147. ACM 
Press, 2001. ISBN 1-58113-414-2. 

C. Scott Ananian. The static single information form. Master's thesis, Mas
sachusetts Institute of Technology, 1999. URL http: I /www. cag. lcs. 
mit.edu/~cananian/Publications/. 

Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The program 
dependence web: a representation supporting control-, data-, and demand
driven interpretation of imperative languages. In Proceedings of the conference 
on Programming language design and implementation, pages 257-271. ACM 
Press, 1990. ISBN 0-89791-364-7. 

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth 
Zadeck. Efficiently computing static single assignment form and the control de
pendence graph. ACM Transactions on Programming La,nguages and Systems 
(TOPLAS), 13(4):451-490, 1991. ISSN 0164-0925. 

Kathleen Knabe and Vivek Sarkar. Array SSA form and its use in parallelization. 
In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles 
of programming languages, pages 107-120. ACM Press, 1998. ISBN 0-89791-
979-3. 

Chandra Krintz. Improving mobile program performance through the use of a 
hybrid intermediate representation. In 2nd Workshop on Intermediate Repre
sentation Engineering for Virtual Machines, June 2002. URL http: I /www. 
cs.ucsb.edu/~ckrintz/abstracts/hybrid.html. 

Robert Morgan. Building an Optimizing Compiler. Butterworth-Heinemann, 
Woburn, Massachusetts, United States, 1998. ISBN 155558179X. 

Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value num
bers and redundant computations. In Proceedings of the 15th ACM SIGPLAN
SIGACT symposium on Principles of programming languages, pages 12-27. 
ACM Press, 1988. ISBN 0-89791-252-7. 

13 



A Implementation of the Interpreter Core 

A.1 ssa_vm.c 

#include " inst . h" 
#include "ssa_vm.h" 
#include "ssa_array . h" 
#include " ssa_parser . h" 
#include < stdlib . h> 
#include <stdio . h> 

typedef struct phLassignment phLassignment ; 

struct phLassignment 
{ 

}; 

ssa_ variable v ; 
int ovi; 

typedef struct 
{ 

inst ** ia ; 
int ial ; 
ssa_array _vector *av ; 
ssa_variable *Oa; 

phLassignment *Pq; 
int pqt; 
int ip; 
int cen; 

} vm_state; 

11 v = value to be transfered 
II ovi = output variable index 

11 ia = instruction array 
II ial = instruction array length 
11 av = array vector 
II oa = output array ( size = instJength ) 
llpq =phi-assignment queue 
II pqt = phi-assignment queue top 
II ip = instruction pointer (index to insLarray ) 
11 cen = CFG edge number 

void init ( vm_state * s, inst* insLarray [], int instJength ); 
void commiLphis ( vm_state * s ); 
void prinLstate ( vm_state * s ) ; 
int execute ( vm_state * s , inst * instruction ); 

inline int pq_empty (vm_state s) {return s.pq ==NULL;} 

inline ssa_ variable decodeJmmediate ( inst * instruction , int i ) { 

14 



ssa_variable v = (( ssa_variable *) instruction ->data)[i]; 
II printf ("decoded .... immediate .... %d\n", v.i); 
return v; 

} 

inline ssa_ variable decode_operand ( vm_state * s , inst * instruction , int i ) { 
int index = ((int*) instruction ->data)[i]; 
II printf ("decoded .... operand .... refering .... to .... outpuLoL instruction .... %d\n", index); 
II printf ("which .... is .... %d\n", s->oa[index].i); 
return s->oa[index]; 

} 

inline ssa_ variable firsLoperand ( vm_state * s , inst * instruction ) { 
return decode_operand(s, instruction , O); 

} 

inline ssa_ variable second_operand ( vm_state * s , inst * instruction ) { 
return decode_operand(s, instruction , l); 

} 

void ssa_ vm ( inst * insLarray [], int insLlength ) 
{ 

} 

vm_state s; 
inst* ci; 

init (&s, insLarray , insLlength ); 
while (1) 

{ 

} 

if ( s. ip < 0 11 s. ip >= s. ial ) abort ();II we jumped out of the method 
II prinLstate (&s); 
ci = s. ia [s. ip ]; 
if (execute (&s, ci ) == 0) break; 

void init ( vm_state * s, inst* insLarray [], int insLlength ) 
{ 

II instructions -- should we copy these? 
s->ia = insLarray; 

15 



} 

s - > ial = ins Lieng th ; 
II simple registers ; 
s->ip = O; 
s->cen = O; 
11 complex data 
s->av = av_init (); 
s->oa = (ssa_variable *) calloc ( inst.length , sizeof( ssa_variable )); 
s->pq = (phLassignment*) calloc ( insUength , sizeof (phLassignment )); 
s->pqt = O; 

void prinLstate ( vm_state * s ) { 
int i; 

} 

int ial = 26; II should be s->ial 

11 Dump the current Output Array 
printf ("OA: .... "); 
for ( i = O; i < ial ; i++) 

printf ("%d .... ", s->oa[i].i ); 
printf ("\n" ); 

11 Dump Registers 
printf ("IP=%d .... CEN=%d .... ", s->ip, s->cen); 

11 Dump Phi Queue 
printf (" ....PQ={"); 
for ( i = O; i < s->pqt; i++) { 

printf ( "(%u<-%d), .... ", s->pq[i].ovi, s->pq[i]. v.i); 
} 
printf ("}" ); 

II Array Vector? 
11 Current Instruction ? 
printf (" instruction [%d] : .... ", s->ip); 
if (s->ia[s->ip] ==NULL) 

printf ("NULL"); 
else 

prinLinst (s->ia[s->ip]); 

16 



void commiLphis( vm_state * s) 
{ 

int i; 

for ( i = O; i < s->pqt; i++) { 
s->oa[s- >pq[i].ovi] = s->pq[i]. v; 

} 

s->pqt = O; 

} 

int execute ( vm_state * s, inst * ci) 
{ 

11 temporaries 
int t ,n,a, i; 
ssa_ variable x, y; 

switch ( ci - >opcode) 
{ 
case CONST: 

II puts ("decoding .... constant" ); 
x = decodeimrnediate ( ci ,O); 
II printf ("decoded .... immediate .... %d\n", x.i); 
s->oa[s- >ip] = x; 
s->ip++; 
break; 

case PRINT: 
11 puts (" printing .... int" ) ; 
x = firsLoperand (s, ci ); 
printf ( "==> .... %d\n", x.i); 
s->ip++; 
break; 

case ADD: 
x = firsLoperand (s, ci ); 
y = second_operand ( s , ci ) ; 
s->oa[s- >ip].i = x.i + y. i; 
s->ip++; 
break; 

case SUB: 

17 



x = firsLoperand ( s , ci ) ; 
y = second_operand(s, ci ); 
s->oa[s->ip].i = x.i - y. i; 
s->ip++; 
break; 

case DIV: 
x = firsLoperand (s, Ci); 
y = second_operand(s, ci ); 
s->oa[s->ip].i = x.i I y. i; 
s->ip++; 
break; 

case MUL: 
x = firsLoperand ( s, ci ); 
y = second_operand(s, ci ); 
s->oa[s->ip].i = x.i * y. i; 
s->ip++; 
break; 

case AND: 
x = firsLoperand ( s , ci ) ; 
y = second_operand(s, ci ); 
s->oa[s->ip].i = x.i && y.i; 
s->ip++; 
break; 

case OR: 
x = firsLoperand ( s , ci ) ; 
y = second_operand(s, ci ); 
s->oa[s->ip].i = x.i 11 y. i; 
s->ip++; 
break; 

case NEG: 
x = firsLoperand ( s, ci ); 
s->oa[s- >ip].i = -x.i; 
s->ip++; 
break; 

case BGE: 
x = firsLoperand (s, ci ); 
y = second_operand(s, ci ); 
t = decode.immediate(ci ,2). t; 
n = decode.immediate(ci ,3). n; 
if ( x. i > = y. i) 

11 branch target 
II CFG Edge Number 

18 



{ 
s->cen=n; 
s->ip = t; 

} else { 
s->ip++; 

} 
break; 

case BGT: 
x = firsLoperand (s, ci ); 
y = second_operand(s, ci ); 
t = decodeJmmediate(ci ,2). t; 
n = decodeJmmediate(ci ,3). n; 
if (x.i > y.i) 

{ 
s->cen = n; 
s->ip = t; 

} else { 
s->ip++; 

} 
break; 

case BLE: 
x = firsLoperand (s, ci ); 
y = second_operand(s, ci ); 
t = decodeJmmediate(ci ,2). t; 
n = decodeJmmediate(ci ,3). n; 
if (x.i <=y.i) 

{ 
s->cen = n; 
s->ip = t; 

} else { 
s->ip++; 

} 
break; 

case BLT: 
x = firsLoperand ( s , ci ) ; 
y = second_operand(s, ci ); 
t = decodeJmmediate(ci ,2). t; 
n = decodeJmmediate(ci ,3). n; 
if ( x. i < y . i ) 

{ 

II branch target 
II CFG Edge Number 

11 branch target 
II CFG Edge Number 

II branch target 
II CFG Edge Number 

19 



s->cen = n; 
s->ip = t; 

} else { 
s->ip++; 

} 
break; 

case BNE: 
x = firsLoperand ( s, ci ); 
y = second_operand(s, ci ); 
t = decode_immediate(ci ,2). t; 
n = decode_immediate(ci ,3). n; 
if (x.i != y.i) 

{ 
s->cen = n; 
s->ip = t; 

} else { 
s->ip++; 

} 
break; 

case BBQ: 
x = firsLoperand ( s, ci ); 
y = second_operand(s, ci ); 
t = decode_immediate(ci ,2). t; 
n = decode_immediate(ci ,3). n; 
if ( x . i == y . i ) 

{ 
s->cen = n; 
s->ip = t; 

} else { 
s->ip++; 

} 
break; 

case GOTO: 
t = decode_immediate(ci ,0). t; 
n = decode_immediate( ci ,1). n; 
s->cen = n; 
s->ip = t; 
break; 

case EXIT: 
puts (" exiting " ) ; 

II branch target 
II CFG Edge Number 

11 branch target 
II CFG Edge Number 

II branch target 
II CFG Edge Number 

20 



II exit (O); II in order to repeat the execution many times 
return O; 

case RETURN: 
x = decode_operand(s, ci ,O); II thing to set the element to 
printf ("return .... %d\n", x.i ); II in order to repeat the execution many 

II times 
return O; 
II exit (x. i ); 

case PHI: 
II check that the PHI is big enough for the cfg edge number 

n = ci->opdnum; 
II printf ("checking .... if .... %d .... >= .... %d ........... (then .... abort)\n", s->cen, n); 

if ( s->cen >= n) abort(); II phi must have enough operands 
if ( s->pqt >= s->ial) abort(); II can' Loverflow .... phLqueue .... buffer 

II record the data in the phi-assignment queue 
s->pq[s->pqt].ovi = s->ip; 
s->pq[s->pqt].v = decode_operand(s, ci, s->cen);; 
s->pqt++; 

II next instruction 
s->ip++; 
break; 

case PFE: 
commiLphis( s); 
s->cen = O; 
s->ip++; 
break; 

case NOOP: 
s->ip++; 
break; 

case NEWARRAY: 
x = decode_operand(s, ci ,O); II thing to set the element to 
s->oa[s->ip].a = av_newarray(s->av, x.i); 
s->ip++; 
break; 

case UPDATE: 
a = decode_operand(s, ci ,0). a; 
i = decode_operand(s, ci ,1). i ; 

II array (index of array in array vector) 
II element (index into array) 

21 



x = decode_operand(s, ci ,2); II thing to set the element to 
s->oa[s->ip].a =av _update(s- >av, a, i , x ); II result is new array 
s->ip++; 
break; 

case ACCESS: 
a = decode_operand(s, ci ,0). a; II array (index of array in array vector) 
i = decode_operand(s, ci ,1). i ; II element (index into array) 
s->oa[s->ip] = av_access(s->av, a, i ); II result is element 
s->ip++; 
break; 

case FADD: 
x = firsLoperand ( s , ci ) ; 
y = second_operand(s, ci ); 
s->oa[s->ip].f= x.f + y.f; 
s->ip++; 
break; 

case FSUB: 
x = firsLoperand (s, ci ); 
y = second_operand(s, ci ); 
s->oa[s->ip].f = x.f - y.f; 
s->ip++; 
break; 

case FDIV: 
x = firsLoperand ( s , ci ) ; 
y = second_operand(s, ci ); 
s->oa[s->ip].f=x.f I y.f; 
s->ip++; 
break; 

case FMUL: 
x = firsLoperand (s, ci ); 
y = second_operand(s, ci ); 
s->oa[s->ip].f=x.f * y.f; 
s->ip++; 
break; 

case FCONST: 
s->oa[s->ip] = decodeJmmediate (ci,O); 
s->ip++; 
break; 

case FPRINT: 
x = firsLoperand (s, ci ); 

22 



} 

printf ( "==> ... %f\n", x.f); 
s->ip++; 
break; 

default: 
abort(); 

} 
return 1; 

A.2 ssa_vm.h 

#ifndef SSA_ VM_H 
#define SSA_ VM_H 

#include "inst . h" 

typedef signed s32; 
typedef unsigned u32; 
typedef float f32; 

typedef union ssa_ variable { 
s32 i ; II 32- bit signed integer integer 
f32 f; II 32- bit floating point value 
u32 a; II 32- bit unsigned array vector index 
u32 n; II 32- bit unsigned array CFG Edge Number 
u32 t ; II 32- bit unsigned branch target 

} ssa_ variable ; 

void ssa_vm( inst* insLarray [], int insLlength ); 
#endif 

A.3 ssa_array.h 

#ifndef SSA_ARRAY_H 
#define SSA_ARRAY _H 

#include "ssa_vm.h" 
#include < stdlib . h> 

typedef struct 
{ 

23 



11 array length unsigned 1; 
ssa_variable *a; 

} ssa_array ; 
II array of ssa_variables 

typedef struct 
{ 

unsigned na; II next array 
unsigned 1 ; 11 allocated length 
ssa_array *V ; II array (vector) of arrays 

} ssa_array _vector ; 

ssa_array_vector * avJnit (); 
u32 av_newarray ( ssa_array_vector *av, int size); 
void av _cleanup ( ssa_array _vector *av); 
u32 av_update ( ssa_array_vector *av, u32 av_index, u32 a_index, ssa_variable v); 
ssa_variable av_access ( ssa_array_vector *av, u32 av_index, u32 array_index ); 

u32 av_fastupdate ( ssa_array_vector *av, u32 av_index, u32 array.index , ssa_variable v); 

#endif 

A.4 inst.h 

#ifndef INST JI 
#define INST JI 

#include < stdlib . h> 

#define MAX_JNSTS 1024 

#define BASE 257 h the first 256 is assigned to ascii char *I 

typedef struct 
{ 

int 
int 
char 
void 
int 

} inst; 

opcode; 
opdnum; h length in words *I 
* img; 
* data; 
data_type ; I* int , bool, float *I 

24 



typedef struct 
{ 

char* img; 
int opdnum; 

} insLattribute 

static insLattribute insLatt [] = { 

}; 

{" const" ,1}, 
{" fconst" , 1}, 
{"add" ,2}, 
{"sub" ,2}, 
{"div" ,2}, 
{"mul" ,2}, 
{"and" ,2}, 
{"or" ,2}, 
{"neg" , 1}, 
{"fadd" ' 2}' 
{"fsub", 2}, 
{"fdiv", 2}, 
{"fmul" , 2}, 
{"bge" ,4}, 
{"bgt" ,4 }, 
{"ble" ,4 }, 
{"bit" ,4 }, 
{"bne" ,4 }, 
{"beq" ,4}, 
{"goto" ,2}, 
{"phi" ,-1 }, 
{"pfe" ,O}, 
{"update" , 3}, 
{"access", 2}, 
{"newarray", 1 }, 
{"exit", O}, 
{"return" , 1 }, 
{"print" , 1 }, 
{" fprint " , 1}, 
{"null" ,O}, 

25 



extern inst * insts_array []; 
extern int insts_size 

/* inst . cc */ 
·inst *new jnst (int opcode); 
inst *new _unary jnst (int opcode, int opd ); 
inst * new _unary _finst (int opcode, float opd ); 
inst * new _binary _inst (int opcode, int opdl , int opd2 ); 
inst * new_tenaryjnst (int opcode, int opdl, int opd2, int opd3); 
inst *new_quandaryjnst(int opcode, int opdl, int opd2, int opd3, int opd4); 
inst * new _phLinst (int opcode, int opdnum, int opd []); 
void prinLalUnsts ( inst * insts [], int size); 
void printinst ( inst * ist ); 
void delete_alLinsts (inst * insts [], int size); 

#endif /* no INST _H */ 

26 



B Benchmarks 

B.1 Fibbonacci Sequence (in scalars) 

B.1.1 fibonacci.ssa 

II 
II F(O) = 0 
II F(l) = 1 
II F(n) = F(n-2) + F(n-1) for all n >= 2 

II 
II 
II n = 2 
II if ( n >= 2) 
II goto exit; 
II 
II while ( n <= max) 
II { 
II F(n) = F(n-2) + F(n-1); 
II print F(n ); 
II n = n + 1; 
II F(n-2) = F(n-1); 
II F(n-1) = F(n); 
II } 
II exit (0) 

II 
II 

II Block 0 
0 consLO II 
1 consLl II 
2 consLlOO II max= 16 
3 const.2 II n = 2 
II consL2 II min= 2 
4 bge (3 3) [6] 0 
5 goto [17] 0 

II Block 1 
6 phL2 (0 7) 
7 phL2 (1 10) 

II phi (LO, L{n-2}) 
II phi ( Ll , L { n-1}) 

27 



8 phi_2 (3 12) 
9 pfe 
10 add (6 7) 
11 print 10 
12 add (1 8) 

13 add (0 7) 
14 add (0 10) 
15 ble (12 2) [6] 1 
16 goto [17] 1 

II Block 2 
17 exit 

B.1.2 fibonacci.c 

#include <stdio . h> 
#include < stdlib . h> 
#include <time.h> 

void fib (); 

II phi (n, n+l) 

II L{n} = L{n-2} + L{n-1} 
II print L{n} 
II n <- n+l 
II L{n-2} <- L{n-1} 
II L{n-1} <- Ln 
II n <=max goto block 1 

int main (int argc, char ** argv) 
{ 

} 

clock_t start , end , used; 
int i = O; 

used = O; 
for ( i = O; i < 1000; ++i){ 

start = clock (); 

} 

fib (); 
end = clock (); 
used+= end - start ; 

fprintf ( stderr , "Time used %d\n", used); 

void fib () 
{ 

int L1L2 = 0, f_.n_l = 1; 
int n = 2, max = 100; 
int Ln; 

28 



} 

if ( n < 2) 
return ; 

while ( n <=max) 
{ 

} 

f Jl = f Jl-2 + f Jl_l ; 
printf ("==> %d\n", fJl); 
n = n + 1; 
f Jl-2 = fJl_l ; 
fJl_l = Ln; 

29 



B.2 Fibbonacci Sequence (in an array) 

B.2.1 fibonaccLarray.ssa 

II F = newarray (n) 
II F [O] = 0 
II F [l] = 1 
II 
II i=2 
II while ( i < n) 
II { 
II F[i]= F[i-l]+F[i-2] 
II i ++ 
II } 
II 
II i =0; 
II while ( i <n) 
II print F[i ]; 
II 
0 consLO 
1 consLl 
2 const-2 
3 consLlOO 

II 0 
Ill 
II i = 2 
II n =IO 

4 newarray 3 
5 update (4 0) 0 
6 update (5 1) 1 

7 blt (2 3) [9] 0 
8 goto [20] 1 

II 
9 phi-2 (2 18) 
IO phL2 (6 17) 
11 pfe 
12 sub (9 1) 
13 sub (9 2) 
14 access (IO 12) 
15 access (10 13) 
16 add (14 15) 

II f = newarray (IO) 
II f (0) = 0 
II f (1) = 1 

II phi (2, i+l) 
II 

II j = i - 1 
II k = i - 2 
II F[i-1] 
II F[i-2] 
II F[i-1] + F[i-2] 

30 



17 update (10 9) 16 II F[i] <- 15 
18 add (1 9) 
19 blt (18 3) [9] 1 

20 phi_3 (0 0 25) 
21 phi_3 (17 6 21) 
22 pfe 
23 access (21 20) 
24 print 23 
25 add (20 1) 
26 blt (25 3) [20] 2 
27 exit 

B.2.2 fib_array.c 

#include <stdio . h> 
#include < stdlib . h> 
#include <time.h> 

void fib (); 
int main ( int argc , char ** argv) 
{ 

} 

clock_t start , end , used; 
int i = O; 

used = O; 
for ( i = O; i < 1000; ++i){ 

start = clock (); 
fib (); 
end= clock (); 
used += end - start ; 

} 
fprintf ( stderr , "Time used %d\n", used); 

void fib () 
{ 

int f [100]; 
int n = 2, max= 100; 

31 



} 

f [O] = O; 
f[l]=l; 

if (n < 2) 

return ; 

while ( n <max) 

{ 

} 

f[n] = f[n-2] + f[n-1]; 
printf ("==> %d\n", f[n ]); 
n = n + 1; 
f[n-2] = f[n-1]; 
f[n-1] = f[n]; 

32 



B.3 Factorials 

B.3.1 factorial.ssa 

II f = 1 
II n = 10 

II while n > 0 
II { 
II f := f * n; 
II n := n - 1; 
II } 
II print f; 

II 
II 
II block 0 
II I\ 
II I \+-----+ 
II I \I I 
II I block 1 I 
II \ I\ I 
II \ I +----+ 
II \I 
II block 2 
II 
II 
II 
II 

II Block 0 
0 consLlO 
1 consLl 
2 consLO 

3 ble (0 3) [12] 0 
4 goto [5] 0 

II Block 1 
5 phL2 (0 9) 
6 phL2 (1 8) 

II n_l = 10 

II LI = 1 
II zero 

II n <= 0 goto Block 2 

II n_2 =phi (n_l, n_3) 
II L2 = phi ( Ll , L3) 

33 



7 pfe 
8 mul (6 5) II L3 = L2 * n-2 
9 sub (5 1) II n_3 = n-2 - 1 

10 bgt (9 2) [5] 1 11 n_3 > 0 goto Block 1 

11 goto [12] 1 

II Block 2 
12 phL2 (1 8) 
13 pfe 

II L4 = phi ( Ll , L3) 

14 print 12 
15 exit 

B.3.2 factorial.c 

#include <stdio . h> 
#include < stdlib . h> 
#include <time.h> 

void fact (); 
int main ( int argc , char ** argv) 
{ 

clock_t start , end , used; 
int i = O; 

used= O; 
for ( i = O; i < 1000; ++i){ 

start = clock (); 
fact (); 
end = clock (); 
used += end - start ; 

} 
fprintf ( stderr , "Time used %d\n", used); 

} 

void fact () 
{ 

int f = 1, n = 10; 

while (n > 0) 
{ 

34 



} 
} 

f = f * n; 
n = n - 1; 
printf ("==> %d\n", f); 

35 




