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ORIGINAL RESEARCH

Thought Chart: tracking the thought 
with manifold learning during emotion 
regulation
Mengqi Xing1, Johnson GadElkarim2, Olusola Ajilore3, Ouri Wolfson2, Angus Forbes2, K. Luan Phan3, 
Heide Klumpp3 and Alex Leow4*

Abstract 

The Nash embedding theorem demonstrates that any compact manifold can be isometrically embedded in a 
Euclidean space. Assuming the complex brain states form a high-dimensional manifold in a topological space, we 
propose a manifold learning framework, termed Thought Chart, to reconstruct and visualize the manifold in a low-
dimensional space. Furthermore, it serves as a data-driven approach to discover the underlying dynamics when 
the brain is engaged in a series of emotion and cognitive regulation tasks. EEG-based temporal dynamic functional 
connectomes are created based on 20 psychiatrically healthy participants’ EEG recordings during resting state and 
an emotion regulation task. Graph dissimilarity space embedding was applied to all the dynamic EEG connectomes. In 
order to visualize the learned manifold in a lower dimensional space, local neighborhood information is reconstructed 
via k-nearest neighbor-based nonlinear dimensionality reduction (NDR) and epsilon distance-based NDR. We showed 
that two neighborhood constructing approaches of NDR embed the manifold in a two-dimensional space, which we 
named Thought Chart. In Thought Chart, different task conditions represent distinct trajectories. Properties such as the 
distribution or average length in the 2-D space may serve as useful parameters to explore the underlying cognitive 
load and emotion processing during the complex task. In sum, this framework is a novel data-driven approach to the 
learning and visualization of underlying neurophysiological dynamics of complex functional brain data.

Keywords: Thought Chart, Nonlinear dimensionality reduction, Nearest neighbor, Manifold learning, EEG 
connectome, Emotion regulation
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1  Background
The Nash embedding theorems [1, 2] showed that any 
Riemannian n-manifold with a C1 positive metric has an 
isometric embedding in a Euclidean space of dimension 
2n+1, even in any small portion of this space. Since the 
Gaussian curvature of a surface is invariant under local 
isometry based on the Theorema Egregium [3], the mani-
fold properties in a low-dimensional space can provide 
an insight into the topological structure of the brain. 
Recent advent in structural and functional neuroimag-
ing has further suggested that brain imaging data may 

construct a smooth and differentiable manifold, in which 
local neighborhood properties can assist in recognizing 
the underlying pattern in trajectories of brain develop-
ment [4], discriminating different types of brain tumors 
[5], and improving the imaging registration accuracy 
[6]. However, the manifold associated with temporally 
varying brain dynamics imaging data has not yet been 
explored. Here, we propose a framework to examine 
the intrinsic geometry of the mind’s topological space of 
functional brain imaging via dissimilarity-based manifold 
learning.

We assume brain states compose a high-dimensional 
space [4, 7], which can be reconstructed and visualized 
in a low-dimensional space via dimensionality reduc-
tion. Common dimensionality reduction approaches 
including principal component analysis (PCA) and linear 
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discriminant analysis (LDA) are often used in functional 
brain networks to visualize select regions of interest [8, 
9]. However, a linear approach cannot recognize nonlin-
ear structures in a high-dimensional space [9], making it 
unsuitable for preserving the global intrinsic geometry 
for complex dynamic brain data. Nonlinear dimensional-
ity reduction approach isomap yields global coordinates 
which provide a simple way to analyze and manipulate 
high-dimensional observations in terms of their intrin-
sic nonlinear degrees of freedom and produce a globally 
optimal low-dimensional Euclidean representation [10].

The functional network data are informed by electro-
encephalogram (EEG) for its high temporal resolution, 
coupled with the emotion regulation task. The synchro-
nization of response systems is highly dynamic when 
human brains are engaging in emotion and cognitive 
tasks [11]. Thus, with proper sectioning, the synchronic-
ity between regions of a brain network can be described, 
in the form of a connectome, using a phase-based con-
nectivity analyses approach, weighted phase lag index 
(WPLI) [12]. Guided by our own published research 
results, theta wave may be the most sensitive among all 
EEG frequencies in investigating EEG networks in emo-
tion regulation task (ERT) [13, 14]. Therefore, we selected 
theta wave network connectivity as the input for our 
manifold learning.

Here, we propose a manifold learning framework, 
Thought Chart, to explore the underlying intrinsic geom-
etry of dynamic functional networks. The hypothesis of 
this manifold learning is that the reconstructed manifold 
will reflect different properties of the brain’s state during 
tasks. Additionally, by sampling the space, we can extract 
specific aspects of the trajectory in this manifold that 
reflect task performance, such as coordinates and their 
distribution and levels of scattering [15]. To recover the 
local neighborhood information needed for the nonlin-
ear dimensionality reduction (NDR) step, here we tested 
two strategies in searching for local neighbors: K-near-
est neighbor (KNN), which sets each point to search 
for its k-nearest points; and epsilon radius, which sets 
each point to search for all points within a fixed radius 
ε . Properties of Thought Chart constructed by these two 
approaches will be evaluated to see how neighborhood 
identification influences the intrinsic geometry of human 
brain.

2  Methods
2.1  Data acquisition and emotion regulation tasks (ERT)
EEG data were collected from 20 psychiatrically healthy 
participants (age: 27.2± 9.3 ) using the Biosemi system 
(Biosemi, Amsterdam, the Netherlands) with an elastic 
cap with 34 scalp channels. Each participant underwent 
one session of ERT (Fig.  1). During ERT, participants 

were requested to look at pictures displayed on the 
screen and listen to a corresponding auditory guide. Two 
types of pictures will be on display for 7  s in random 
orders: emotionally neutral pictures (landscape, everyday 
objects, etc.) and negative pictures (car crash, nature dis-
asters, etc.). An auditory guide will come after the picture 
on display for 1 s, instructing the participant to “Look”: 
viewing the neutral pictures; to “Maintain: viewing the 
negative pictures as they normally would; or to “Reap-
praise”: viewing the negative pictures while attempting 
to reduce their negative emotion by reinterpreting the 
meaning of pictures [16, 17]. A separate session of eight-
minute eyes-open EEG resting states was recorded for 
later manifold learning. All EEG data were preprocessed 
using Brain Vision Analyzer (Brain Products, Gilching, 
Germany), by first segmenting task trials into 7  s seg-
ments. A sliding window in size of 0.5 s and a step size of 
0.05 were applied to create the dynamic data. (The first 
and last five time points were discarded, resulting in 130 
time points per session.) Frequencies of interest were set 
from 1Hz to 50Hz in increments of 1Hz. The final out-
put of each subject was averaged over trials within the 
same task. Resting-state data were processed under the 
same parameter. Due to the non-trial-based setting of 
the recording, resting state will only serve as bases that 
further create contrast in manifold learning. Thus, the 
manifold properties associated with the resting-state 
connectomes in the Euclidean space are not included in 
our final analyses.

2.2  Weighted phase lag index‑based EEG connectome
As functional communications between two brain 
regions result in synchronized or phase-coupled EEG 
readouts, in this study we used weighted phase lag index 
(WPLI) computed [12] between the times series of two 
channels to form EEG connectomes (each of which is a 
symmetric 34 by 34 matrix). Mathematically, WPLI is 
defined as:

where imag(Sxyt) indicate the cross-spectral den-
sity at time t  in the complex plane xy, and sgn is the 
sign function (−1,+1or0) [12]. The connectivity 
matrices were generated with the MATLAB  toolbox 
Fieldtrip  (Donders Centre for Cognitive Neuroimag-
ing, Nijmegen, the Netherlands). The final output time-
dependent EEG connectome for an individual task 
of each subject is arranged as 34 × 34 × 50× 130 
(channel × channel × frequency× time). In this study, 

(1)

WPLIxy =
n−1

∑n
t=1

∣

∣imag(Sxyt)
∣

∣sgn(imag(Sxyt))

n−1
∑n

t=q

∣

∣imag(Sxyt)
∣

∣
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we primarily focused on the manifold informed by theta 
wave (4–7 Hz) in EEG connectomes.

2.3  Learning the manifold with graph dissimilarity space 
embedding

To collect sufficient amount of data points to learn the 
intrinsic geometry of a high-dimensional manifold, we 
utilized the EEG connectomes from all subjects at all 
time points as sampling possible states of the manifold 
that is shared among all subjects. Then, graph dissimilar-
ity space embedding is used to represent each connec-
tome as a point in a very high-dimensional space (over 
104 ), which is described below [18, 19]. Assuming labeled 
sample graph set G = G1, ...,Gn has n ”prototype” graph 
observations Gi ∈ G (the set of all possible graphs under 
consideration) and d is the distance metric that can be 
computed between two graphs d : G×G → [0,∞) , 
then any graph X ∈ G can be represented using 
ϕG
n : G → Rn , defined as the n-dimensional vector 

ϕG
n (X) = [d(X ,G1), ...d(X ,Gn)] . In this way, any graph 

set can be represented by a set of real numbers. In our 
case, all the connectomes were initially used as proto-
types for an unsupervised learning. Thus, the number of 
dimensions is in the same order as the number of obser-
vations in the dataset.

Reconstructing the local neighborhood reconstruction. 
Here, we emphasize that this step is crucial in order to 
properly learn the manifold’s intrinsic geometry, as d 
(which is used to define coordinates in the embedding 
space, and thus not intrinsic to the manifold) will not 
properly inform geodesics (the shortest paths on the 
manifold, which is an intrinsic property) except in local 
neighborhoods. While such a construction calls for a 
“good” choice of the distance function d, we posit that 
given a sufficiently large amount of data points the 
learned manifold will converge to the true manifold with 
any reasonably chosen d. Given two connectome matri-
ces X and Y, a natural choice, which we adopted here, is 
the Euclidean distance: d(X ,Y ) =

√

∑

ij(Xij − Yij)2 and 
∥

∥ϕG
n (X)− ϕG

n (Y )
∥

∥ =
√

∑

k(d(Y ,Gk)− d(X ,Gk))
2 .

2.4  Nonlinear dimensionality reduction
Once the local neighborhood is learned, a matrix rep-
resenting this high-dimensional manifold was recon-
structed into a lower dimensional Euclidean space via 
NDR. Once this is achieved, Thought Chart of any given 
individual can be constructed by tracing the trajectory 
of the time-dependent connectome of that subject for 
any given task. In this case, we selected isomap, a non-
linear prototypical isometric embedding procedure 
which entails the computation of geodesics based on 

neighborhood information followed by the (quasi-)iso-
metric embedding of the geodesics.

To provide a good approximation to geodesic distance, 
the first step of isomap is to determine the neighbors 
of each point on the low-dimensional manifold based 
on the distance matrix acquired from the previous step 
[20]. Here, we compared two common approaches to 
determine whether two points are neighbors: the k-iso-
map method and the ε − isomap method. K-isomap 
utilized the k-nearest neighbor algorithm to determine 
neighbors, while ε-isomap includes all the points within 
some fixed radius ε . The relationships of the neighbor-
hood are represented in a weighted graph D in which 
D(X ,Y ) = d(X ,Y ) if X and Y are neighbors, other-
wised(X ,Y ) = ∞ [20]. The second step relies on apply-
ing the classic multidimensional scaling (MDS) to the 
centered squared geodesic distance matrix, whose eigen-
decomposition provides the basis for lower dimensional 
embedding.

2.5  Exploration of ERT Thought Chart
The resting state and the emotion regulation will be visu-
alized in a two-dimensional Euclidean space. To quantify 
the dynamic properties and thought trajectory of emo-
tion regulation, we summarize the Euclidean distance 
along the trajectory in this 2-D space (average length) 
and the average distance from the centroid (spreadness) 
for each subject. For each subject with time length t 
∈ [1, 130] , the average trajectory length is described as:

where x, y are the position of each point in the 2-D space. 
And the spreadness is described as:

3  Results
3.1  Thought Chart construction
After averaging across theta frequencies (4–7 Hz) and 
combining both resting and ERT theta connectomes for 
all time points, 20 healthy subjects thus contributed a 
total of 10400 connectomes ( 130× 20× 4 ). We repeated 
our analyses with a range of k and ε values. In k-isomap, 
the trajectory length difference across three conditions 
is stable with k ranging from 10 to 120. Though we pre-
sented results with k = 30 (0.3% of the total points), the 
reported differences in tasks are consistent with any k 
in this range (Fig.  8a). In the case of ε-isomap, a point 
can potentially be excluded after the neighborhood 

(2)

L =
∑

t=1

√

(xt − xt+1)2 + (yt − yt+1)2/(130− 1)

(3)S =

t=130
∑

t=1

√

(xt − x̄)2 + (yt − ȳ)2/130
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construction step if it has no neighbors within an ε radius 
(unlike in k-isomap, all nodes are retained after neighbor-
hood construction). Therefore, the number of connected 
components is the main factor in selecting the ε . When ε 
is larger than 28, the size of connected components con-
verges to a constant, where 10,371 out of 10,400 points 
are connected (Fig.  8b). As the number of dimensions 
reduced from 10,400 to 2, the reconstructed theta EEG 
manifold exhibited a principal dimension that is shared 
by all four states in both isomaps (x-axis in Figs.  2, 3) 
with a secondary up–down motion from one side to the 
other. Visually, this manifold thus resembles the shape 
of a snake by spiraling around its main axis. Moreover, 
the distribution along the first dimension follows an 
ordered transition: (from low to high amplitude) rest-
ing (red), Neutral (green), Maintain (purple) and Reap-
praise (blue), corresponding to increasing cognitive load 
of the tasks. The similar task distribution was observed 
with locally linear embedding (LLE) [21] (Fig. 2), a non-
isometric NDR approach. Additionally, the embedding 
generated using simple PCA (a linear technique) does not 
recover the full nonlinear distribution seen in either iso-
map or LLE.

3.2  K‑isomap
To further understand theta EEG connectome dynam-
ics, we additionally studied the four distinct subregions 
of the manifold (i.e., segments of the “snake”): the head  
(primarily resting), the mid body (primarily Neutral), 
the posterior body (a mixture of Neutral, Maintain, and 

Reappraise) and the tail (primarily Maintain and Reap-
praise; Fig.  4). Sampling these segments reveals marked 
connectome differences. Analysis of the top ten edge 
strengths in the head region (Fig.  4a) demonstrated 
increased theta coupling in fronto-parieto-occipital 
leads while the body (Neutral-predominant, Fig.  4b; 
Maintain/Reappraise dominant, Fig. 4c) is characterized 
by predominant theta coupling between occipital leads. 
Last, the tail (Maintain/Reappraise only, Fig. 4d) revealed 
increased theta coupling between frontal and parietal 
leads.

3.3  ε‑isomap
Thought Chart of the ε-isomap presents a similar distri-
bution along the principle dimension. Taking samples 
for the head, mid body, posterior body, and tail, the over-
all connectivity of the average connectome is increas-
ing monotonically, which is different from k-isomap. 
The top ten edge strengths in the head region (Fig.  5a) 
demonstrated strong parieto-central and occipital theta 
coupling, while the body (Fig.  5b, c) presented increas-
ing theta coupling within occipital channels. Lastly, the 
increased theta coupling between frontal and occipital 
leads can be observed at the tail (Fig. 5d).

3.4  Average trajectory length and spreadness
In k-isomap Thought Chart, average trajectory length 
in the Euclidean space was significantly longer in 
more complex tasks (Fig.  6a), (one-way ANOVA: 
df = 2, F = 19.60, p < 0.001 , paired t test: Neutral 

Fig. 1 An illustration of a typical ERT session. A fixation point is on display before each trial, then followed by either a neutral or negative picture on 
the screen. An audio instruction will ask test subjects to maintain, reappraise or stay neutral
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Fig. 2 An example Thought Chart during Reappraise learned from the temporal EEG connectomes of 20 healthy subjects, both at rest and during 
ERT, using NDR methods of isomap (left) and LLE (lower right), as well as standard PCA (upper right). Visually, NDR methods yielded an ordered 
transition from resting, Neutral, Maintain to Reappraise along the manifold’s principal dimension (isomap dimension 1)

Fig. 3 An example Thought Chart using NDR method of ε-isomap, Thought Chart follows the same ordered transition of resting, Neutral, Maintain to 
Reappraise 
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Fig. 4 Mean 34× 34 theta EEG connectomes of four distinct segments: the head (a), the mid and posterior body (b, c) and the tail (d) (left). For 
each mean connectome, its ten strongest edges were visualized on the layout of the electrodes (right)

Fig. 5 An ε-isomap-based illustration of mean 34× 34 theta EEG connectomes of four distinct segments of the manifold: the head (a), the mid and 
posterior body (b, c) and the tail (d) (left). For each mean connectome, its ten strongest edges were visualized on the layout of the electrodes (right)



Page 7 of 9Xing et al. Brain Inf.  (2018) 5:7 

vs. Maintain: p = 0.008 , Maintain vs. Reappraise: 
p = 0.004 , Neutral vs. Reappraise p < 0.001 ). In ε
-isomap Thought Chart, a similar trend is observed, 
where subjects tend to “travel” longer distance 
in Thought Chart during tasks with higher cog-
nitive demand (Fig.  6b). (One-way ANOVA: 
df = 2, F = 21.75, p < 0.001 , paired t test: Neutral 
vs. Maintain: p = 0.002 , Maintain vs. Reappraise: 
p = 0.003 , Neutral vs. Reappraise p < 0.001 .) Fur-
thermore, task differences not only were reflected 
in the average distance traveled, but also observed 
in the level of scattering measured using spread-
ness (Fig.  7), in both k-isomap (one-way ANOVA: 
df = 2, F = 15.61 p < 0.001, paired t test: Neutral 
vs. Maintain: p = 0.015 , Maintain vs. Reappraise: 
p = 0.047 , Neutral vs. Reappraise p < 0.001 ) and ε-iso-
map (one-way ANOVA: df = 2, F = 19.20, p < 0.001 , 
paired t test: Neutral vs. Maintain: p = 0.008 , Main-
tain vs. Reappraise: p = 0.017 , Neutral vs. Reappraise 
p < 0.001.)

4  Discussion
In this study, we proposed a novel unsupervised mani-
fold learning framework to construct a state space, in the 
form of a manifold embedded in 2-D that quasi-isometri-
cally visualizes EEG connectome dynamics. Moreover, in 
this space one can visualize time-dependent brain activi-
ties as a trajectory or Thought Chart. Using the temporal 
dynamic EEG connectome, two neighborhood construc-
tion algorithms are applied to visualize the state space in 
2-D. Both k-isomap and ε-isomap are able to compose a 
highly dynamic and complex geometry, where distinct 
subregions are distributed along the principle dimen-
sion (x-axis in the 2-D space). The baseline resting state 
is concentrated on one end, followed by mostly Neutral 
points that can be observed later along the x-axis, while 
Maintain and Reappraise are mixed, from the poste-
rior section on to the end. Note that this transition cor-
responds to different mental states, suggesting that the 
manifold has a principal dimension that is primarily lin-
ear, and a vertical motion around this principal dimen-
sion whose amplitude increases with cognitive demands. 
In this context, this manifold may resemble dynamical 
systems on a torus [22] (the surface of a doughnut), in 
that trajectories are generated by the product of distribu-
tion along the principal dimension and a minor up–down 
motion in the second dimension.

By sectioning the region where different tasks concen-
trated, matrices can be defined to represent these regions. 
As similar Thought Chart trajectories are, regional matri-
ces of k-isomap and ε-isomap however can be different. 
There are few possible explanations. First, even if each 
region appears to have a similar composition of tasks, 
due to the different neighborhood constructing strat-
egy, the points being included in the same regions are 
not necessarily the same. Second, the sectioning of the 
head, body, and tail is arbitrary; hence, it can only pro-
vide an approximate matrix representation without rig-
orously controlling the number of points of this region. 
However, the strongest theta couplings in each region 
are similar between two methods. Based on the strongest 
coupling, the manifold comprises subspaces represent-
ing resting, visual processing (a common feature of Neu-
tral, Maintain, and Reappraise), and cognitive control (a 
distinct feature of Reappraise). Edge strength analyses of 
the manifold-sampled EEG connectomes demonstrated 
increased patterns of theta coupling that are highly con-
sistent with previous reports of frequency-band coupling 
associated with the resting state [23], visual processing 
[24], and cognitive control [25].

As it is shown in Figs.  2 and 3, Thought Chart is able 
to visualize an individual’s “mind travels” in a two-dimen-
sional space in this 7-s session. It thus allows us to quan-
tify the temporal dynamics of EEG brain networks by 

Fig. 6 Average trajectory length of each condition in 2-D isomap 
spaces, both k-nearest neighbor approach (a) and the epsilon-based 
approach (b). In k-isomap, the average length in Neutral: 46.49± 1.85 , 
Maintain: 55.99± 2.42 , Reappraise: 63.30± 1.26 ; in ε -isomap , the 
average length in Neutral: 32.21± 1.37 , Maintain: 40.62± 1.82 , 
Reappraise: 47.61± 1.74 . Both suggest that Thought Chart travels in 
longer distance in more complex task conditions. Significant findings 
in group t test are indicated with **(p < 0.01) and *p < 0.05
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looking into properties such as the distribution and tra-
jectory length. For healthy participants, the mind is more 
or less “static” when the task is simple and becomes more 
dynamic as the task requires higher cognitive demand. 
These properties can be extracted as biomarkers for mind 
state predictions in future applications.

Limitations of our approach merit further discussion. 
First, the parameter setting for ε-isomap can be very sen-
sitive since ε is defined as a distance which can be tuned 
to go either fine (local) or coarse (global) (Fig. 8b). In this 
dataset, the reconstructed trajectory is stable as the ε 
changed within a certain range. However, in future appli-
cations, it may create further complexity in determining 
the optimal ε , especially if the data are sensitive toward 
ε . Secondly, it may be inappropriate to compare these 
thought chart metrics in the resting state with those 
from Neutral, Maintain, and Reappraise. This is due 
to the nature of a task-free design (resting state) versus 
a task-related design during ERT. Unlike in the resting 
state when research participants were simply instructed 

to do nothing (and thus leading to mind wandering), in 
ERT there is a clear “begin” and “end” cue for all Neu-
tral, Maintain, and Reappraise sessions and participants 
were instructed to accomplish a certain task between the 
cues. Thus, we are able to precisely calculate trajectories 
by averaging across trials and compare them across three 
task conditions. However, the resting-state data were col-
lected from a continuous session, during which partici-
pants were not instructed to think in any particular way. 
Therefore, the resting-state data were only included as 
“baseline reference” in dissimilarity embedding and in 
isomap visualization but not during subsequent quanti-
tative analyses. Moreover, as a quasi-isometric technique 
isomap aims to preserve the pairwise geodesics on the 
manifold, i.e., approximating global isometry when the 
embedding is constrained to a given dimension. By con-
trast, other classes of local NDR methods such as LLE 
unfold the manifold by preserving local linear recon-
struction relationship (i.e., local parameterization) of 
each point within its neighborhood. Furthermore, as the 
Theorema Egregium only guaranteed the invariance of 

Fig. 7 Spreadness of each condition in 2-D isomap spaces, both 
k-nearest neighbor approach (a) and the epsilon-based approach 
(b). In k-isomap, the spreadness in Neutral: 65.61± 2.74 , Maintain: 
79.51± 3.64 , Reappraise: 88.67± 2.27 ; in ε-isomap, the spreadness in 
Neutral: 45.43± 2.09 , Maintain: 55.78± 2.27 , Reappraise: 64.30± 2.09 . 
Both suggest the Thought Chart is more scattered as the task 
condition becomes more complex. Significant findings in group t test 
are indicated with **p < 0.01 and *p < 0.05

Fig. 8 Average trajectory length of Neutral, Maintain and Reappraise 
across a range of k values in the k-nearest neighbor step (a) and the 
number of connected connectomes with a range of ε values (b)
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Gauss curvature for complete isometric embeddings of 
two manifolds, it is unclear whether the manifold con-
structed using one NDR technique is necessarily more 
“correct.” Nevertheless, both LLE and isomap recover a 
principal dimension and a up–down motion around it, 
while simple linear techniques such as PCA did not. We 
thus posit that the highly structured complex geometry 
recovered using our framework may indeed inform the 
hidden properties of brain dynamics and the underlying 
neurophysiological mechanisms that generate them.
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