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Studies of perceptual learning have revealed a great deal
of plasticity in adult humans. In this study, we
systematically investigated the effects and mechanisms
of several forms (trial-by-trial, block, and session
rewards) and levels (no, low, high, subliminal) of
monetary reward on the rate, magnitude, and
generalizability of perceptual learning. We found that
high monetary reward can greatly promote the rate and
boost the magnitude of learning and enhance
performance in untrained spatial frequencies and eye
without changing interocular, interlocation, and
interdirection transfer indices. High reward per se made
unique contributions to the enhanced learning through
improved internal noise reduction. Furthermore, the
effects of high reward on perceptual learning occurred in
a range of perceptual tasks. The results may have major
implications for the understanding of the nature of the
learning rule in perceptual learning and for the use of
reward to enhance perceptual learning in practical
applications.

Introduction

Perceptual expertise is critical for the survival of
animals and humans. Acquiring perceptual expertise is
usually time-consuming and often specific to the
trained tasks and settings (Fahle & Poggio, 2002;
Goldstone, 1998; Lu, Hua, Huang, Zhou, & Dosher,

2011; Sagi, 2011). How to learn more, learn more
quickly, and generalize more broadly to untrained
conditions is an unsettled question. Studies of percep-
tual learning have revealed important plasticity in adult
humans that has become an integral component of our
understanding of perception (Petrov, Dosher, & Lu,
2005; Sagi, 2011; Sasaki, Náñez, & Watanabe, 2012)
and have led to noninvasive rehabilitation methods for
a variety of clinical conditions (Lu et al., 2011; Sagi,
2011; Sasaki, Nanez, & Watanabe, 2010; Skinner,
1938). Previous studies have shown that more training
increases the magnitude of learning but also specificity
to the trained task, while cross-training on multiple
tasks (‘‘double training’’) can improve generalization
across retinal locations (Jeter, Dosher, Liu, & Lu, 2010;
Xiao et al., 2008). Here we used a novel compound
monetary reward structure to investigate the effects of
different types and magnitudes of reward on the rate of
perceptual learning in trained tasks and generalizability
across stimuli and eye in a range of simple visual tasks.
To our knowledge, this is the first investigation that
shows titrated effects of reward magnitude in percep-
tual learning in addition to informational feedback.

Reward plays a central role in incentive-based
learning and development of goal-directed behaviors,
engaging similar reward networks in humans and
primates (Arias-Carrión & Pöppel, 2007; Dayan &
Balleine, 2002; Haber & Knutson, 2010; Maunsell,
2004). Reward (or punishment) has been used to
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improve task performance and/or learning in both
animals and humans (Della Libera & Chelazzi, 2006;
Kennerley & Wallis, 2009; Kim et al., 2015; Seitz, Kim,
& Watanabe, 2009; Watanabe, Náñez, & Sasaki, 2001;
Xue, Zhou, & Li, 2015).

The purpose of the current study is to investigate the
differential impacts of different reward manipulations,
independent of the information value of trial-by-trial
feedback. We also aim to discover any differential
consequences of these reward manipulations on gener-
alizability, and how it relates to the magnitude of
learning in the trained perceptual task.

There is extensive literature on the complex role of
different forms of feedback—information about re-
sponse accuracy in the task—on visual perceptual
learning and a somewhat smaller literature on the role
of reward. Although trial-by-trial feedback has been
the norm in visual perceptual learning, training
improvements can occur with block feedback or even
without feedback (or reward) in a range of task
conditions (e.g., Herzog & Fahle, 1997; Liu, Lu, &
Dosher, 2010, 2012; Petrov et al., 2005; Petrov, Dosher,
& Lu, 2006; Dosher, Jeter, Liu, & Lu, 2013; see Liu,
Dosher, & Lu, 2014, 2015, Lu & Dosher, 2009 and
Dosher & Lu, 2017; for detailed reviews).

There are previous studies investigating reward in
visual perceptual learning. One set of studies examined
task-irrelevant learning, in which properties of a near-
subliminal visual stimulus are learned when it is
temporally paired with a target in a primary task (e.g.,
Kim et al., 2015; Seitz et al., 2009). In these tasks,
perceptual learning is seen as operating through a
diffused endogenous reward signal associated with the
success in the primary task (Della Libera & Chelazzi,
2006; Pascucci & Turatto, 2013; Seitz et al., 2009; Seitz
et al., 2005; Watanabe et al., 2001). Perceptual learning
has also been documented in response to rewards only
(e.g., juice drops) that substitute for other informa-
tional feedback (Seitz et al., 2009). Subliminal reward
has been shown to have a modest effect on the
magnitude of perceptual learning in motion direction
discrimination (Xue et al., 2015).

These studies, especially those that used either
primary or secondary rewards (e.g., juice for thirsty
participants or symbols of monetary reward, respec-
tively), indicate that perceptual learning can occur in
response to reward signals. Yet questions remain: Does
reward operate differently from simple feedback? Does
reward magnitude influence learning and generaliza-
tion? Does subliminal reward operate differently?
Understanding the impact of different types and
magnitudes of reward on the speed, magnitude, and/or
generalization of perceptual learning is not only
important for our understanding of the nature of visual
plasticity, especially the learning rule (Dayan &
Balleine, 2002), but also for practical applications of

perceptual learning. Although the earlier literature
emphasized specificity of visual perceptual learning, an
increasing number of recent papers have focused on
generalization of perceptual learning (Sasaki et al.,
2012), which is important for the development of
expertise or remediation of visual conditions. Opti-
mizing perceptual learning, including the rate and
magnitude of learning and the degree of generalization,
may involve development of better reward structures
(Dosher & Lu, 2017).

In the current study, we developed a new compound
reward structure that consisted of combinations of
trial-by-trial, between-block, between-session, and ab-
solute performance rewards. Together, these rewards
are translated using a conversion rate from points to
monetary compensation (Figure 1A and B), all
secondary rewards. We evaluated the role of reward as
distinct from informational feedback about accuracy,
which is provided in all conditions, in four experiments.

Experiment 1 examined the differential effectiveness
of visual perceptual learning in five reward conditions:
no reward, block reward, low reward, high reward, and
subliminal reward in a contrast-detection task. The no-
reward condition includes no reward points, and
compensation is equal to base pay for participation.
The block condition delivers currency images (Chinese
yuan) and text rewards for improvements in perfor-
mance between blocks and sessions or for achieving
absolute performance criteria. The high, low, and
subliminal conditions delivered trial-by-trial reward
signals in addition to block and session rewards. In the
subliminal condition, currency images are brief and of
low contrast, and the block and session rewards are
supraliminal. In the high, subliminal, and block
conditions, base pay is low, and the conversion from
reward points to payoff is high; in the low-reward
condition, base pay is the same as the no-reward
condition, and the conversion from reward points to
payoff is low. Base and performance-related translation
from reward to compensation was set to approximately
equate pay across conditions in an effort to equate
overall motivation while, at the same time, amplifying
the consequences of performance achievement (see
Methods). These reward conditions are designed to
span a range of effectiveness with the no-reward
condition serving as a baseline and the high-reward
condition including the strongest performance-related
rewards in the experiment. This also permits paired
condition comparisons that isolate the effectiveness of
different reward features. Experiments 2–4 focus on
comparing high reward to no reward to investigate
other questions. Experiment 2 focuses on learned
improvements under different external noise titrations
in contrast detection to identify the mechanism of the
learned improvements. Experiments 3 and 4 examine
learned improvements in Vernier hyperacuity and
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Figure 1. (A) Reward structure. Five reward groups (no, low, block, subliminal, and high reward) differed in the combination of

rewards in multiple time scales; the visibility of the trial-by-trial reward signal (seconds), block reward signals (minutes), or session

reward signals (hours or day); and/or the conversion rate of reward points to monetary compensation (see Methods for details). (B)

Training procedure. A two-interval, forced-choice procedure was used for training and assessment of contrast sensitivity (see

Methods). (C) Learning curves—contrast threshold as a function of training session—were fit by power functions with different

learning rates for the five reward groups. (D) Schematic diagram of the area under log contrast sensitivity function (AULCSF) and the

improvement of AULCSF in trained (TE) and untrained eyes (UTE). Together with panel C, gray, light red, green, blue, and red bars and

curves denote data in no-, low-, block-, subliminal-, and high-reward conditions, respectively. CS: contrast sensitivity; SF: spatial

frequency. (E) Retention of improved AULCSF. Solid and hollow red bars denote AULCSF improvements in the first and second

posttests, respectively. Error bars are the standard error.
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global motion-detection discrimination, respectively
(with block and session rewards slightly modified to
suit the dependent measures in those tasks). Each
experiment also measures generalization to other tasks
or conditions: pretraining and posttraining measures of
monocular contrast sensitivity function in the trained
and untrained eyes (Experiments 1 and 2), of the
trained and untrained locations (Experiment 3), and in
the trained and untrained motion directions (Experi-
ment 4).

We found that high monetary reward can greatly
boost the rate and the magnitude of perceptual
learning. Generalization of perceptual learning of
contrast detection from a trained spatial frequency to
other spatial frequencies increased with the magnitude
of learning as did interocular, interlocation, or inter-
direction transfer. Perceptual learning with high reward
enhanced internal noise reduction. Finally, the benefits
of high reward occurred in a range of perceptual tasks.
The results may have major implications for the
understanding of the nature of the learning rule in
perceptual learning and for the use of reward to
enhance perceptual learning in practical applications.

Experiment 1: Monetary reward
modulates contrast detection
learning and generalization

Experiment 1 examines the relative effectiveness of
five different conditions of monetary reward—no
reward, block reward, low reward, high reward, and
subliminal reward as described above (see also Meth-
ods)—on the rate and magnitude of learning contrast
detection at a trained spatial frequency in the
nondominant eye. To assess generalization of training,
we also measured the thresholds in contrast detection
of a sine-wave patch at various spatial frequencies,
which defines the contrast sensitivity function (CSF)
before and after training and in both the trained and
untrained eyes. All observers received auditory feed-
back on response accuracy in each trial, so the titrated
impact of reward on learning and generalization is
separated from the effects of information.

Methods

Observers

Forty-one observers (23.12 6 0.29 years) with
normal or corrected-to-normal vision and informed
written consent participated in this study. None were
aware of the purpose of the study. The work was
carried out in accordance with the Declaration of
Helsinki.

Apparatus

The study was conducted on a PC computer running
MATLAB programs with PsychToolbox extensions
(Brainard, 1997; Pelli, 1997). Stimuli were displayed on
a Sony G220 monitor with a 1,600 3 1,200 pixel
resolution, 85 Hz frame rate, and 36 cd/m2 background
luminance. A special circuit was used to combine two
eight-bit output channels of the video card to produce
14 bits of gray levels (X. Li, Lu, Xu, Jin, & Zhou,
2003). Observers placed their head on a chin rest and
viewed the displays monocularly with an opaque patch
on the other eye. The display subtended 8.338 36.258 at
a viewing distance of 2.76 m.

Design

The experiment consisted of three phases: (a)
pretraining measurements of the monocular CSF in
both eyes (two sessions of seven blocks of 100 trials),
(b) training in the sine-wave grating detection task at
each individual observer’s cutoff spatial frequency
(estimated from pretraining measurements) in the
nondominant eye (eight daily sessions, each with seven
blocks of 80 trials), and (c) posttraining measurements
of the monocular CSF in both eyes (two sessions, each
containing seven blocks of 100 trials). For each
monocular CSF, contrast detection was assessed at
spatial frequencies of 1, 2, 4, 8, 16, 24, and 32 c/8 with
seven interleaved three-down/one-up staircases that
converge to 79.4% correct using 100 trials per staircase
(see Procedure). Stimuli were vertical sinusoidal grat-
ings of 28 in diameter with a half-Gaussian ramp (r¼
0.258). Observers ran about 100 practice trials before
data collection.

The compound reward structure (see Figure 1A)
could include trial-by-trial reward messages (a score-
board and image of a Chinese currency bill), between-
block reward messages (text plus a currency bill image
if the block performance had improved), and between-
session rewards (text indicating different reward points
for performance better than the last session, than all
sessions, or above absolute performance criteria). The
five reward conditions, as described above, invoked
different combinations or types of reward: (a) high
reward (n¼ 8) with all reward signals and a high
conversion rate, (b) low reward (n ¼ 7) with all reward
signals and a low conversion rate, (c) no reward (n¼ 11)
with no reward signals and only base pay, (d) block
reward (n¼ 9) with block reward signals and a high
conversion rate, and (e) subliminal reward (n ¼ 6) in
which the trial-by-trial reward signal was subliminal
(low contrast and briefly presented currency image and
no scoreboard) but was otherwise equivalent to the
high-reward condition. The reward conditions were
manipulated between groups. (The sample sizes reflect
random assignment except that, in the no-reward
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condition, we targeted a slightly higher sample size to
capture a low rate of learning.)

Observers received base pay for participating in the
experiment. In addition, observers except those in the
no-reward condition gained reward points for perfor-
mance in trials, blocks, and sessions during the training
phase. Total payment was the sum of the base pay and
performance-dependent reward. The base pay was 35¥
(Chinese yuan), 35¥, 10¥, 10¥, and 10¥ in the no-, low-,
block-, subliminal-, and high-reward conditions, re-
spectively. In trial-by-trial rewards, each correct
response was awarded two reward points with four
extra reward points following three consecutive correct
responses. In block rewards, observers were awarded
150 reward points if the threshold of the current block
was lower than that of previous blocks in the same
session. In session rewards, observers gained 400
reward points if the final threshold of the session was
lower than that of the previous session or 1,000 reward
points if it was lower than that of all previous sessions
(session reward 1, Figure 1A). They also received an
extra 10,000, 20,000, and 30,000 reward points if the
threshold in a session was lower than 0.1, 0.05, and
0.025 (in contrast unit), respectively (session reward 2,
Figure 1A).

Observers were instructed to gain as many reward
points as they could. In the high-, block-, and
subliminal-reward conditions, observers redeemed 100
reward points for 1¥ (exchange rate¼ 100:1). In the
low-reward condition, observers redeemed 100 reward
points for only 0.02¥ (exchange rate¼ 5,000:1). That is,
the block-, subliminal-, and high-reward groups expe-
rienced the same conversion rate (or magnitude of
reward), which is higher than that of the low-reward
group. Observers were informed of the relevant
compound rewards and conversion rule before the first
training session. For subjects in the subliminal group,
the existence of invisible trial-by-trial reward was not
disclosed, and they were informed only of the block
and session rewards and the conversion formula; that
is, observers in the block and subliminal groups
received the same instructions.

Images of 1¥ and 100¥ bills were matched in size
(1.308 3 0.788) and contrast. A 4.4% root mean square
(RMS) contrast was used in the subliminal-reward
condition; a 13.7% RMS contrast was used in all other
conditions. For the subliminal condition, the following
tests were performed: (a) Before and after CSF tests,
observers were told that 10 pictures of uniform
luminance will be displayed in sequence, and they were
asked to check display quality by eye at half the viewing
distance used in the main experiment; the bill image
used in the subliminal-reward condition was presented
in the center of the display. All observers reported that
the display was homogenous in luminance, and no one
ever reported they detected any other visual patterns.

(b) Observers were also required to verbally report to
the experimenter if they saw anything other than the
fixation and sine-wave grating during either test or
training sessions. No observer reported any pattern(s)
during the experiment.

All observers filled out the sensitivity to reward and
punishment questionnaire (SRPQ), consisting of 48
simple questions related to self-evaluations of reward
and punishment responses (Supplementary Table S1).
Finally, we evaluated the retention of contrast-sensi-
tivity performance in each eye for seven of the eight
observers in the high-reward condition at least five
months after the training and assessment sessions.

Procedure

A two-interval, forced-choice sine-wave grating
detection task was used for training and for assessment
of the CSF (Figure 1B). Thresholds at 79.4% correct
were measured using a three-down/one-up staircase
procedure (Levitt, 1971). A target grating was pre-
sented with equal probability in one of two 100-ms
temporal intervals, separated by 500 ms. Observers
were asked to indicate which interval contained the
grating by pressing a key on the computer keyboard.
No feedback was provided in the pretraining and
posttraining assessments of CSF. In the training task in
all reward conditions, feedback consisted of an
auditory beep after each correct response. This equates
the information about accuracy of the response in all
reward conditions. In the high and low trial-by-trial
reward conditions, a correct response was followed by
a currency image, a black bar, and a number in which
each increment of the black bar represented one reward
point and the number represented multiples of 100
points. A comparison white bar, denoting 100 points,
was also shown. A high-contrast ¥1 picture was shown
for 200 ms following a correct response, or a high-
contrast ¥100 picture was shown after three consecutive
correct responses. In the block-reward condition, no
currency image was shown after each trial; in the
subliminal-reward condition, a low-contrast ¥1 or ¥100
picture was shown for 16 ms after each correct
response. In the subliminal and block conditions, the
length of the black bar increased randomly, and the
observers were so informed.

Data analysis

Unless noted otherwise, the significance level was p
, 0.05, and marginal significance corresponded to 0.05
� p , 0.10 throughout the paper.

A power function, C(t)¼ C0 t
�q, was used to fit the

average learning curves, where C0 is the initial contrast
threshold, t is the training session number, and q is the
learning rate (Dosher & Lu, 2005). A nonlinear least-
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square method, implemented in MATLAB (Math-
Works, Natick, MA), was used to minimize the sum of
squared differences between model predictions and
observed values, SSE ¼

P
yi � ŷið Þ2, and the goodness

of fit was gauged by r2:

r2 ¼ 1�
P

yi � ŷið Þ2P
yi � �yð Þ2

; ð1Þ

where yi and ŷi represent the observed and predicted
values, respectively, and �y is the mean of all the
observed values.

We compared the learning curves in the five reward
conditions in a nested-model testing framework. The
model lattice consisted of 11 models, ranging from the
full 10-parameter model with independent C0 and q in
the five conditions to the most reduced two-parameter
model with identical C0 and q across all five (see
Supplementary Table S1 for details).

An F test was used to statistically compare the fits of
nested models:

F df1; df2ð Þ ¼
r2full � r2reduced

� �
=df1

1� r2full

� �
=df2

; ð2Þ

where df1¼ kfull � kreduced, df2¼ N � kfull, kfull and
kreduced are the numbers of parameters of the full and
reduced models, respectively, and N is the number of
data points. The model that was statistically equivalent
to the full model and superior to all its reduced forms
was defined as the best-fitting model.

The log contrast sensitivity function graphs log
contrast sensitivity (1/threshold) as a function of spatial
frequency (see inset Figure 1D). The area under the log
contrast sensitivity function (AULCSF), which provides
a broad measure of contrast sensitivity across all spatial
frequencies, was calculated to evaluate the improvement
in each eye (Koop, Applegate, & Howland, 1996).

Results

Sensitivity to reward and punishment

An analysis of variance (ANOVA) performed on the
responses to the SRPQ indicated that observers in the
five reward conditions were comparable in the tendency
to seek reward, F(4, 36)¼ 1.435, p ¼ 0.242, and avoid
punishment, F(4, 36)¼ 0.663, p¼ 0.662. There were no
notable patterns relating the questionnaire responses
and performance or learning in the behavioral task (all
ps . 0.1).

Learning rate

Figure 1C shows the contrast threshold learning
curves for the five reward conditions: no, low, block,

subliminal, and high reward, together with the best-
fitting power function learning curves. The learning
model that has different learning rates (q) but the same
initial threshold C0 in the five reward conditions
provided the best fit (1C0, 5q; Supplementary Table
S1). This six-parameter model is statistically equivalent
to the full model (5C0, 5q; r

2¼ 92.97% vs. r2¼ 94.27%),
F(4, 30) ¼ 1.704, p¼ 0.175, and provided significantly
better fits than more reduced forms (all ps , 0.05 in
nested model tests; Supplementary Table S1). The high
trial-by-trial reward condition produced the highest
learning rate, followed by the subliminal trial-by-trial
reward condition, the block-reward condition, and then
the low trial-by-trial reward and no-reward conditions.
The corresponding learning rates (mean 6 SE) were
0.74 6 0.01, 0.45 6 0.02, 0.31 6 0.01, 0.15 6 0.01, and
0.09 6 0.01, respectively. The standard errors were
estimated using a bootstrap method with 1,000
iterations.

CSF improvements

Training at the cutoff spatial frequency improved
contrast sensitivity over a range of spatial frequencies
(Huang, Zhou, & Lu, 2008). A one-way ANOVA was
performed on the increase of AULCSF in the trained
eye with reward condition (no, low, block, subliminal,
and high) as a between-subjects factor. Training in the
no-, low-, block-, subliminal-, and high-reward
conditions increased the AULCSF in the trained eye
by 0.64 6 0.18, 0.74 6 0.22, 0.80 6 0.41, 1.64 6 0.45,
and 1.92 6 0.28 log10 units, respectively (Figure 1D),
F(4, 36) ¼ 3.576, p ¼ 0.015, corresponding to the
amount of learning in the training data in these
conditions. The magnitude of AULCSF improvement
in the high-reward condition was significantly greater
than those in the block- (p ¼ 0.013), low- (p ¼ 0.014),
and no-reward (p¼ 0.004) conditions in post hoc least
significant difference (LSD) tests. The magnitudes of
improvement in the low- and no-reward conditions
were not significantly different (p ¼ 0.808), nor did
block reward differed from no reward (p ¼ 0.682).
Subliminal reward led to a larger improvement of
AULCSF than no, low, or block reward (p¼ 0.031, p
¼0.076, p¼0.080) and did not differ significantly from
that in the high-reward condition (p ¼ 0.564).
AULCSF improvements in the trained eye were
significantly correlated with the total payment (Pear-
son’s R¼ 0.746, p , 0.001; Supplementary Figure S1);
so were the AULCSF improvements in the untrained
eye (R ¼ 0.531, p , 0.001).

The observers in the five reward conditions did not
differ before training as seen in a 5 3 2 3 7 ANOVA
performed on the pretraining CSFs with reward
condition (no, low, block, subliminal, and high) as a
between-subjects factor and eye (trained and untrained)
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and spatial frequency as within-subject factors. The
main effect of reward condition was not significant,
F(4, 36) ¼ 1.496, p¼ 0.224 (Supplementary Figure
S2A), indicating that the pretraining CSFs were
comparable across the five groups. In addition, a one-
way ANOVA was performed on the cutoff frequencies
used in the training phase. There was no significant
difference among the groups (no, low, block, sublim-
inal, and high: 24.42 6 1.16, 23.43 6 1.29, 23.67 6

1.18, 22.17 6 1.25, 22.06 6 1.14 c/8; F(4, 36)¼ 0.721, p
¼ 0.583.

Generalization of perceptual learning

To quantify the generalizability to other untrained
spatial frequencies, we computed the bandwidth of
perceptual learning, that is, the bandwidth of the
difference between the posttraining and pretraining
CSFs (Huang et al., 2008). The bandwidth of
perceptual learning in the no-, low-, block-, sublim-
inal-, and high-reward conditions was 2.73 6 0.62,
2.59 6 0.23, 2.75 6 0.52, 3.28 6 0.22, and 4.40 6 0.41
octaves, respectively, F(4, 36) ¼ 3.881, p ¼ 0.010. The
bandwidth of perceptual learning in the high-reward
condition was significantly broader than those in the
no- (p¼0.015), low- (p¼0.019), and block- (p¼ 0.010)
reward conditions but comparable to that in the
subliminal-reward condition (p ¼ 0.172) in post hoc
LSD tests.

Perceptual learning also transferred to the untrained
eye with 0.25 6 0.11, 0.46 6 0.15, 0.69 6 0.31, 0.75 6

0.16, and 1.33 6 0.29 log10 units of AULCSF
improvements in the no-, low-, block-, subliminal-, and
high-reward conditions in the untrained eye. A one-way
ANOVA with reward condition as a between-subjects
factor revealed that the improvements of AULCSF in
the untrained eye differed significantly among groups,
F(4, 36)¼ 3.605, p¼ 0.014. LSD post hoc tests revealed
that the magnitude of improvements in the high-reward
condition was (marginally) significantly greater than
those in the no- (p¼0.001), low- (p¼0.012), block- (p¼
0.045), and subliminal- (p ¼ 0.099) reward conditions
although there was no significant difference among the
last four conditions (all ps . 0.1). In the high-reward
condition, the magnitude of the AULCSF improve-
ments in the trained eye was significantly greater than
that in the untrained eye (1.92 6 0.28 vs. 1.33 6 0.29),
t(7)¼ 2.612, p ¼ 0.035.

Defining the eye-transfer index as the ratio between
the magnitudes of AULCSF improvements in the
untrained and trained eyes, we found that the eye-
transfer index was comparable across reward condi-
tions (0.45 6 0.24, 0.51 6 0.21, 0.73 6 0.42, 0.49 6

0.18, and 0.71 6 0.18; all ps . 0.1).

Retention

Retention of perceptual learning (Zhou et al., 2006)
was assessed on seven of the eight observers in the high-
reward group at least 5 months after training. The
observers retained their AULCSF improvements by
68.2% and 77.4% in the trained and untrained eyes,
respectively (see Figure 1E and Supplementary Figure
S3).

Discussion

The type and magnitude of reward in the five
compound reward manipulations (no, block, low,
subliminal, and high reward) were effective in substan-
tially modulating the rate of perceptual learning of
contrast detection. There was some learning in all the
reward conditions although the rate of learning was
much faster in the high-reward group (power function
rates of 0.09 6 0.01 and 0.74 6 0.01 in the no- and high-
reward groups, respectively). The high-reward group,
which received trial-by-trial reward signals as well as the
block and session signals seen by the block-reward
group, clearly generated the fastest learning, achieving
the highest magnitude of improvement by the end of
training. These reward-induced differences in the rate of
learning occurred even though response accuracy feed-
back, and so information, was equated in all reward
conditions.

Generalization of training was assessed by compar-
ing pretraining and posttraining assessments of the
CSF, summarized by the AULCSF in the trained and
untrained eyes. The perceptual learning induced by
training at the cutoff frequency to some degree
generalized both across spatial frequencies with the
bandwidth of the pretraining to posttraining change of
the AULCSF in the trained eye being higher in the
high-reward condition. And, although observers were
unaware of its existence, the subliminal trial-by-trial
reward led to a faster learning and a larger improve-
ment of AULCSF in the trained eye than block reward
even though the two conditions appeared the same to
observers. As assessed by the eye-transfer index,
transfer to the untrained eye occurred (proportionally)
for all the reward conditions.

Several pairings of reward conditions offer controlled
comparisons. For example, the difference between the
high-reward condition, which yields rapid learning, and
the low-reward condition, which yields much slower
learning, is the combination of base pay and conversion
rate for performance-based rewards: learning is much
faster when compensation depends on performing well
and slower when compensation is largely determined by
base pay. Learning is significantly faster when the trial-
by-trial reward messages are easily visible than when
they are subliminal although trial-by-trial subliminal
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reward is surprisingly effective. On the other hand, block
reward, in which observers see only both block- and
session-level reward messages, is far less effective when
compared with high trial-by-trial reward and, at the
same time, exceeding that of no reward.

Reward has been hypothesized to operate on percep-
tual learning via direct modulation or through elevation
of attention and/or arousal (Della Libera & Chelazzi,
2006; Peck, Jangraw, Suzuki, Efem, & Gottlieb, 2009).
Although this design cannot definitively disentangle the
direct effects of rewards from possible indirect influences
of reward via attention or arousal mechanisms, some of
the comparisons strongly suggest that the role of rewards
likely involves more than modulations of attention or
arousal. For example, trial-by-trial and block conditions
yield substantially the same reward and total compen-
sation because both include block and session rewards
and use the same conversion rule, yet the high-reward
condition is more effective. To the degree that attention
and arousal are related to overall compensation, the
degree of arousal should be about comparable in these
two conditions. These results suggest that the enhanced
perceptual learning induced by trial-by-trial high mon-
etary reward is unlikely to be simply explained by
elevated arousal or attention.

In summary, Experiment 1 demonstrated that
monetary reward, and especially high monetary re-
ward, can enhance visual perceptual learning and
transfer in contrast detection—even when trial-by-trial
feedback on response accuracy equates the information
provided to the observer.

Experiment 2: High reward boosts
perceptual learning through
enhanced internal noise reduction

Experiment 2 used the external-noise method and
observer-model approach (Dosher & Lu, 1998, 1999;
Lu & Dosher, 2008) to analyze the mechanisms of
perceptual learning in high- and no-reward conditions
in the contrast-detection task. The perceptual template
model (PTM; Figure 2A) was used to assess changes of
observer inefficiency, including internal noise, template
gain, and system nonlinearity (Dosher & Lu, 1998,
1999; Lu & Dosher, 2008). The PTM uses manipula-
tions of external noise in the stimulus to determine how
the observer changes due to perceptual learning
(Dosher & Lu, 1998). This experiment trains in zero
external noise in either the high-reward or no-reward
conditions of Experiment 1 and evaluates changes
between pretesting and posttesting in the CSF mea-
sured in either zero or high external noise in the
nondominant eye.

Methods

Observers

Eleven observers (23.55 6 0.67 years) with normal
or corrected-to-normal vision and informed written
consent participated in this experiment. None were
aware of the purpose of the study. The work was
carried out in accordance with the Declaration of
Helsinki.

Design

Observers participated in pretraining and posttrain-
ing assessments and training in either the high- (n ¼ 6)
or the no- (n ¼ 5) reward conditions. All visual tasks
were performed with the nondominant eye. Unless
specified, the procedures were the same as in Experi-
ment 1. Before training, the monocular CSF was
measured in the zero and high external-noise conditions
(one session with two blocks of 100 trials in each
external-noise condition) using the qCSF method (Hou
et al., 2010; Lesmes, Lu, Baek, & Albright, 2010) in
which test stimuli of different spatial frequencies had a
fixed number of cycles (see below).

In the training task, observers were trained in a sine-
wave grating detection task (eight sessions, each with
seven blocks of 80 trials) at their individual cutoff
spatial frequency, estimated from the pretraining CSF
in the zero external-noise condition only. Monocular
CSFs in the two external-noise conditions were
reassessed after training. Vertical sine-wave gratings at
10 spatial frequencies (0.5, 0.67, 1, 1.3, 2, 2.67, 4, 5.3, 8,
and 16 c/8) and three full cycles were used to measure
the CSF. The size of the gratings was inversely
proportional to their spatial frequencies and subtended
68, 4.58, 38, 2.258, 1.58, 1.1258, 0.758, 0.56258, 0.3758, and
0.18758 at a viewing distance of 138 cm. External noise
images were constructed from Gaussian distributed
pixel contrasts with l¼ 0 and r¼ 0 and 0.24 in the zero
and high external-noise conditions, respectively. The
size of the external-noise elements was scaled with that
of the signal grating to maintain 15 noise elements per
grating to maintain a constant signal and external-noise
spectral relationship across different spatial frequency
conditions. The signal and external-noise images were
combined through temporal integration with a se-
quence of five 35.3-ms frames: two external-noise
frames, one signal or blank frame, and two additional
external-noise frames. All external-noise frames con-
sisted of independently sampled contrasts.

Data analysis

Motivated by principles in signal processing and
neurophysiology, Lu and Dosher (1999, 2008) devel-
oped the PTM that characterizes human performance
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in perceptual tasks in terms of perceptual template(s),
transducer nonlinearity, internal additive noise, and
internal multiplicative noise (Figure 2A). The perfor-
mance of an observer, d0, is expressed as

d0 ¼ bcð Þcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2c

ext þN2
mul bcð Þ2c þN2c

ext

� �
þN2

add

r ; ð3Þ

where c is signal contrast, b is the gain on a signal
valued stimulus processed through the template, c
characterizes the system’s nonlinearity, Nadd is the
standard deviation of the internal additive noise, Next is
the standard deviation of external noise, and Nmul is the
proportional constant of multiplicative noise.

In the PTM framework, perceptual learning im-
proves performance in one or more of three different
mechanisms: (a) stimulus enhancement that amplifies
both the signal and external noise. This is mathemat-
ically equivalent to reducing internal additive noise by a
factor of Aa (0 , Aa � 1), (b) template retuning that
reduces external noise by a factor of Af (0 , Af � 1),
and (c) multiplicative noise reduction that reduces the

constant for multiplicative noise by a factor of Am (0 ,
Am � 1). Equation 3 can be rewritten to incorporate the
learning parameters as follows:

d0 ¼ bcð Þcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AfNext

� �2c þ A2
mN

2
mul bcð Þ2c þ AfNext

� �2c� �
þ AaNaddð Þ2

r : ð4Þ

In the PTM framework, slope constancy of the
psychometric functions in all external noise conditions
before and after training indicates that the multiplica-
tive noise and nonlinearity remained constant before
and after training (Lu & Dosher, 1999, 2008). Given
this slope constancy before and after training (see Slope
check in Supplementary Information), we only con-
sidered a model with learning parameters Aa and Af.

Results

Sensitivity to reward and punishment

The SRPQ revealed no significant difference in
reward seeking between the two groups (11.50 6 1.18

Figure 2. (A) The PTM. The PTM contains five main components: (a) a perceptual template, (b) nonlinear transducer, (c) a

multiplicative internal noise source, (d) an additive internal noise source, and (e) a decision process. (B) Learning curves—contrast

threshold as a function of training session—were fit by a power function, C(t)¼C0t
�q, where C0 is the initial threshold, t is the training

session, and q is the learning rate. The high- and no-reward learning curves differed only in their learning rates. Red and gray symbols

and lines represent data and model fits in the high- and no-reward conditions, respectively. (C) Improved AULCSF in the zero and high

external noise conditions. Red and gray bars denote high- and no-reward conditions. (D) Aa and Af in high (red bar) and no (gray bar)

reward conditions fitted by the perceptual template model (1 ¼ no improvement). Error bars indicate standard error.
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vs. 13.67 6 1.29), t(9)¼�1.204, p¼ 0.259, but slightly
higher punishment avoidance for the no-reward group
(8.50 6 1.43 vs. 14.60 6 1.17), t(9)¼�3.209, p¼ 0.011.
In this case, lower punishment avoidance in the high-
reward group than that in the no-reward group would
weaken, not amplify, any difference found between the
two groups.

Pretraining CSF comparison

The observers in the high- and no-reward groups had
comparable performance before training in the CSF
measures, which were submitted to a 232310 analysis
of variance with reward condition as a between-subjects
factor and external-noise level (0 and 0.24) and spatial
frequency (0.5, 0.67, 1, 1.3, 2, 2.67, 4, 5.3, 8, and 16 c/8)
as within-subject factors (Supplementary Figure S2B).
No significant main effect of reward condition was
found, F(1, 9) ¼ 0.932, p ¼ 0.360, indicating that the
initial performance of the two groups was comparable.
In addition, the cutoff frequencies used in the training
phase showed no significant difference between the two
groups (10.30 6 0.52 vs. 10.65 6 0.54 c/8), t(9)¼
�0.460, p¼ 0.656).

Learning curves

The learning curves for the high- and no-reward
conditions, shown in Figure 2B, were analyzed using a
procedure similar to that in Experiment 1. Consistent
with Experiment 1, training of contrast detection in
zero external noise with high reward led to a faster
learning rate than that with no reward (0.34 6 0.03 vs.
0.06 6 0.02). Training also led to greater improvements
of AULCSF in the zero external-noise condition (1.13
6 0.14 vs. 0.40 6 0.12), t(9)¼ 3.764, p¼ 0.004, but not
in the high external-noise condition (0.37 6 0.15 vs.
0.24 6 0.17), t(9)¼ 0.579, p ¼ 0.577.

Mechanisms of the enhanced learning

PTM analysis of the CSFs in both the zero and high
external-noise conditions (Chen et al., 2014; Yan et al.,
2015) identified a mixture of an internal noise-reduction
mechanism (to 46.89% 6 3.49% and 64.87% 6 4.37%
of the pretraining levels in the high- and no-reward
conditions, respectively, averaged across spatial fre-
quencies; Aa in Figure 2D) and an external noise-
exclusion mechanism (to 83.45% 6 4.78% and 83.35%
6 3.86% of the pretraining levels in the high- and no-
reward conditions, respectively, averaged across spatial
frequencies; Af in Figure 2D; see PTM fitting in
Supplementary Information for details). High reward
enhanced internal noise reduction, t(9) ¼�3.253, p ¼
0.010, but the magnitudes of external-noise exclusion

were comparable in the two reward groups, t(9)¼
0.015, p ¼ 0.988.

Discussion

This experiment examined the mechanisms of visual
perceptual learning in the contrast-detection task using
an external noise manipulation and the framework of
the PTM (Dosher & Lu, 1998, 1999; Lu & Dosher, 1999,
2008). The results suggest that training with high reward
boosted the rate and magnitude of perceptual learning
through enhanced internal noise reduction relative to
training with no reward, and training with either high or
no reward led to smaller and approximately equivalent
improvements in external-noise exclusion.

Experiment 3: Effects of compound
monetary reward on Vernier offset
judgments

Experiment 3 examined whether the titration of
learning by reward extended to training a quite
different task: Vernier offset hyperacuity (Fahle &
Edelman, 1993; Herzog & Fahle, 1997; McKee &
Westheimer, 1978; Saarinen & Levi, 1995; Xiao et al.,
2008) or judging the horizontal offsets (in arcs of visual
angle) between two vertically stacked Gabor sine-wave
patches. Vernier offset judgment tasks, like contrast-
detection tasks, are thought to involve representations
in early visual areas. Learning in Vernier offset
judgments, almost always using feedback without
explicit rewards, is generally specific to the spatial/
retinal location of training (Fahle, 1997; Fahle &
Morgan, 1996).

In this experiment, Vernier offsets were measured in
upper left (Loc1) and lower right (Loc2) peripheral
locations in pretests and posttests. Training was
performed in the upper left quadrant. Observers
identified letters briefly presented at fovea to guarantee
fixation. Generalization was assessed in the untrained
compared to the trained location. The high- and no-
reward conditions were identical to those of Experi-
ments 1 and 2 except that criteria for absolute
performance rewards were modified for Vernier per-
formance.

Methods

Observers

Sixteen observers (23.37 6 0.74 years) with normal
or corrected-to-normal vision and informed written
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consent participated in this study. None were aware of
the purpose of the study. The work was carried out in
accordance with the Declaration of Helsinki.

Design

Observers participated in pretraining and posttrain-
ing assessments and training in the high-reward (n¼ 8)
and no-reward (n ¼ 8) conditions. Before training,
threshold Vernier offsets were measured in two
locations (Loc1: upper left vs. Loc2: lower right) in one
session (two blocks of 100 trials) before training. Then
observers were trained in Vernier offset judgments in
Loc1 for five sessions (each with seven blocks of 80
trials). Threshold offsets in two conditions (Loc1 vs.
Loc2) were reassessed after training.

Procedure

Observers were asked to make two judgments after
each trial: first to report the foveal letter (H or N) for
fixation control and then to report the offset direction
of the Vernier stimulus. Vernier stimulus was pre-
sented at either the upper left (Loc1) or lower right
(Loc2) visual quadrant (Figure 3A). Observers judged
whether the lower Gabor was to the left or right of the
upper Gabor. Only the performance in the Vernier
task was related to reward points in the high-reward
condition. As in Experiment 1, observers in the high-
reward conditions gained reward points when their
performance improved between trials, blocks, and
sessions during the training phase (see Experiment 1,
Methods). The only change was that the additional
10,000, 20,000, and 30,000 points were awarded if the
observer’s Vernier threshold was reduced by 40%,
50%, and 60% compared to the pretest values. No
reward or feedback is provided during pretesting and

posttesting. Additionally, observers filled out the
SRPQ.

Procedure

A fixation point (0.28) preceded each trial by 400
ms. Then, the Vernier stimulus (contrast¼0.45, SF¼3
c/8, and r ¼ 0.298) was presented at 58 retinal
eccentricity (positional jitter ¼ 0.258) for 200 ms,
during which time a sequence consisted of nine small
black letters appeared at fixation, and observers
identified a target letter. The purpose of the foveal
letter report was to guarantee fixation. Observers
viewed the display monocularly at a viewing distance
of 1.38 m. The offset threshold was assessed by a
three-down/one-up staircase with a step size of 10%
(of the current offset) that converges to 79.4% correct.
Auditory feedback was given on correct responses
during training, not during pretest or posttest assess-
ment of threshold.

Data analysis

Improvements in Vernier threshold across two test
and five training sessions were fit with an elaborated
power function:

CðtÞ ¼ C0t
�q þ a; ð5Þ

where C(t) is the Vernier threshold in the tth session, C0

is the initial Vernier threshold, q is the learning rate,
and a is the intercept or lower asymptote. For the two
groups of observers receiving no or high reward, the
complete model has six parameters (2C0, 2q, 2a). The
model that postulates no effects of reward (1C0, 1q, 1a)
assumes that C0, q, and a are the same for the two
groups. Between the fully saturated model and the no-
change model, a lattice of models with different
numbers of parameters was explored.

Figure 3. (A) Stimulus configuration in a Vernier discrimination task (Experiment 3). The stimulus was presented in either the upper

left (Loc1) or lower right (Loc2) visual quadrant. Training was carried out at the upper left quadrant with vertical orientation (Loc1).

(B) Learning curves in the high-reward (red) and no-reward (gray) conditions. Vernier thresholds over sessions were fitted with power

functions. (C) Mean Percentage Improvement (MPI) of Vernier thresholds in trained and untrained locations.
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The mean percentage improvement (MPI), which
compares performance in the posttraining assessment
to the pretraining baseline, was calculated by the
following function:

MPI ¼ threshold in pretest� threshold in posttestð Þ
threshold in pretest

: ð6Þ

This measure can be applied to both the trained
location and the untrained location, where it is a
measure of transfer.

Results

Sensitivity to reward and punishment

There was no significant difference between the two
groups of observers in the high- and no-reward
conditions in reward sensitivity, t(14) ¼ 0.703, p ¼
0.494, or punishment sensitivity, t(14)¼ 0.514, p ¼
0.615.

Learning

Figure 3B shows the learning curves, threshold
offset for the Vernier judgment as a function of
training (in seconds of arc), for the two reward
conditions. Similar to Experiments 1 and 2, the
reduced model that assumed different learning rates
but the same initial threshold and intercept (1C0, 2q,
1a) fit the data best. With four parameters, the fit of
this reduced model was statistically equivalent to the
full model (r2¼ 94.29% vs. 95.58%), F(2, 8)¼1.168, p¼
0.358, and significantly superior to the most reduced
model (94.29% vs. 40.10%), F(1, 10) ¼ 25.341, p ,
0.001. The parameters of the best model are C0¼ 1.22,
a¼ 1.88, and q¼ 0.44 (60.06), and 2.73 (60.87) in the
no- and high-reward conditions, respectively. The
presence of high reward significantly increased the
learning rate (Figure 3B).

The high-reward condition yielded somewhat, but
not significantly, higher MPI in the trained location
(comparing pretraining to posttraining; MPI, see
Equation 6; high vs. no: 41% 6 9% vs. 32% 6 12%),
t(14) ¼ 0.631, p ¼ 0.538 (Figure 3C).

Generalization

The MPI of the high-reward group was significantly
larger than that of the no-reward group in the
untrained location (Loc2; high vs. no: 24% 6 6% vs.
3% 6 7%), t(14)¼ 2.200, p¼ 0.045. At the same time,
the transfer index for retinal location (the MPI at the
untrained location divided by the MPI at the trained
location) was not significantly different in the high-
versus no-reward conditions (high vs. no: 0.48 6 0.15
vs. 0.27 6 0.05, p ¼ 0.191), reflecting equivalent

transfer as a proportion of learning. These results
indicated that high monetary reward speeded up the
learning rate of Vernier offset judgment and improved
transfer to an untrained location without changing the
interlocation transfer index.

Central letter identification

The performance in the central letter identification
task was comparable between the two groups before
(high vs. no: 96.9% vs. 95.3%), t(14)¼ 1.290, p¼ 0.218,
and after training (high vs. no: 97.1% vs. 97.7%), t(14)¼
�0.549, p¼ 0.592. Letter identification received only
auditory feedback during the course of training. The
task achieved a high level of accuracy even in pretesting
and was unaffected by training on the Vernier task.

Discussion

This experiment examined the effectiveness and
generalizability of learning in a Vernier offset task
with composite monetary rewards compared with no
reward in the presence of informational feedback. As
in the previous experiments, high monetary reward
speeded up the rate of learning. It also improved
transfer to an untrained location without changing the
interlocation transfer index. The MPI in the untrained
location was near zero, replicating the frequent finding
of little location transfer in tasks trained with
feedback only; in contrast, the MPI in the untrained
location was significant when training used composite
reward.

Experiment 4: Effect of monetary
reward on global motion direction
discrimination

The contrast-detection and Vernier offset judgment
tasks are thought to involve representations in early
visual areas (Duncan & Boynton, 2003; Ress, Backus,
& Heeger, 2000). In this experiment, we investigated
whether high-compound monetary reward also influ-
ences learning and transfer in a midlevel visual task,
e.g., global motion-direction discrimination (Koyama
et al., 2005; Vaina, Belliveau, Des Roziers, & Zeffiro,
1998). In previous studies, perceptual learning im-
proved motion-direction discrimination along a trained
cardinal direction, and the learning failed to transfer to
an untrained direction (Ball & Sekuler, 1982). The
previous studies either used feedback in the absence of
explicit reward or small rewards equivalent to the low-
reward condition in the current paper.
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Methods

Observers

Fifteen observers (23.38 6 0.76 years) with normal
or corrected-to-normal vision and informed written
consent participated in this study. None were aware of
the purpose of the study. The work was carried out in
accordance with the Declaration of Helsinki.

Design

Observers participated in pretraining and posttrain-
ing assessments and training in the high-reward (n¼ 7)
and no-reward (n¼8) conditions. The task was to judge
whether global motion directions in two intervals were
the same or different (by a small angle). The dependent
measure was d0 in performing this same–different
judgment. Accuracy of the judgments was assessed for
two reference motion directions (08 and 1808) in one
session (four blocks of 64 trials) before and after
training. During training, observers were trained in one
reference direction (08) for five sessions; each contained
seven blocks of 80 trials. Similar to Experiment 1,
observers in the high-reward conditions gained reward
points when their performance improved between
trials, blocks, and sessions during the training phase.
Here, the criteria for additional reward points for
absolute performance were set at 80%, 85%, 90%, and
95% correct. Additionally, observers completed the
SRPQ.

Procedure

Four hundred dots (0.188 3 0.188) moved along a
single direction within a circular aperture of 88 in
diameter with a speed of 108/s. In each trial, the
reference (08 or 1808) and test (08 6 2.58 or 1808 6 2.58)

were separately presented in two 500-ms stimulus
intervals in a random order separated by a 200-ms
interstimulus interval. A small dark fixation point
(0.158) was always present in the center of the display
(Figure 4A). Observers viewed the display binocularly
with a distance of 0.6 m. The observers judged whether
dots in the two intervals moved in the same direction or
not. Auditory feedback was given on correct responses
during training in both reward conditions. The delivery
of rewards was identical to that of Experiment 1 except
for adjusting the absolute reward criteria as described
above.

Data analysis

Discrimination scores in the global motion direc-
tion–discrimination task across two test and five
training sessions were fit with a linear function (Dosher
& Lu, 2005):

d 0 tð Þ ¼ qtþ a; ð7Þ
where d0(t) is the discriminability score in the tth
session, a is the intercept, and q is the learning rate. The
d0 was calculated as the difference of z score between hit
and false alarm rates. The improvements from pre-
training to posttraining assessments in the global
motion task were assessed by the difference in d0

performance or Dd0.

Results

Sensitivity to reward and punishment

Sensitivity to reward, t(13) ¼�1.610, p¼ 0.131, and
punishment avoidance, t(13)¼�0.224, p¼ 0.826, were
comparable in the two groups.

Figure 4. (A) Stimulus configuration in a global motion direction–discrimination task (Experiment 4). The circular fixation remained

stationary while the dots moved in a single direction (08 or 1808). A two-interval, forced-choice paradigm was used. Observers were

asked to judge whether the motion directions of the two stimuli were the same or different. (B) Learning curves in the high-reward

(red) and no-reward (gray) conditions. Discrimination sensitivity (d0) over sessions was fitted with linear functions. (C) Improvements

of d’ in trained (08) and untrained (1808) directions. Error bars indicate standard error.
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Learning

Figure 4B shows the learning curves with high
reward and no reward in the global motion task,
measured as improvements in discriminability d’. As in
the previous experiments, a model with different
learning rates for the two reward conditions provided a
significantly better fit than a model assuming the same
learning rate, r2¼ 94.82% vs. 23.82%, F(1, 11)¼
150.916, p , 0.001. The parameters of the best-fitting
model with different learning rates for the high reward
and no reward conditions are a¼ 1.06, q¼ 0.06 (60.01)
and 0.31 (60.01) in the no- and high-reward condi-
tions, respectively. High composite reward increased
the linear learning rate in global motion-direction
discrimination relative to no reward.

Generalization

Figure 4C shows the increase in d0 in posttraining
relative to pretraining assessments of global motion-
direction discrimination. The magnitude of learning in
the high-reward condition exceeded that of the no-
reward condition in the trained direction, high vs. no:
1.54 6 0.41 vs. 0.31 6 0.29 improvement in d0, t(13)¼
2.512, p ¼ 0.026. This result also extended to
improvements in the untrained global motion direction,
high vs. no: 0.90 6 0.31 vs.�0.07 6 0.27 improvements
in d0, t(13)¼ 2.345, p¼ 0.036. Again, the transfer index
(d0 improvement in the untrained direction divided by
the d0 improvement in the trained direction) between
the two reward conditions was comparable (high vs.
no: 0.69 6 0.17 vs. 0.49 6 0.38, p ¼ 0.632).

Discussion

Global motion direction discrimination, thought to
be a midlevel visual task (Duncan & Boynton, 2003;
Ress et al., 2000), showed the same improvements in
both learning and generalization with high composite
monetary reward compared to no reward. The no-
reward group shows little generalization to the
untrained global motion direction, similar to results in
other studies in the literature using feedback but no
explicit reward. Training with high composite mone-
tary rewards demonstrates significant generalization in
the untrained direction, and the proportional transfer
index of untrained to trained directions is equivalent.

General discussion

In a series of experiments, we systematically inves-
tigated the effects and mechanisms of compound
monetary reward on the magnitude, rate, and transfer

of perceptual learning using a reward structure that
consisted of trial-by-trial, between-block, and between-
session rewards. All reward conditions included feed-
back on response accuracy, separating the role of
information in learning from the effects of reward. The
effects of no, low, block, subliminal, and high reward
on perceptual learning and transfer were fully assessed
in a monocular contrast-detection task. The compound
reward manipulations created reward incentive struc-
tures that ranged from base pay that is independent of
performance rewards in the no-reward condition to a
situation in which the large majority of monetary
rewards depend upon performance. Together, this
study has, for the first time, provided a form of dose–
response assessment of the effects of reward on the
behavioral improvements in perceptual learning.

The rates of learning for trained spatial frequency in
the five reward conditions of Experiment 1—no, low,
block, subliminal, and high reward—were 0.09 6 0.01,
0.15 6 0.01, 0.31 6 0.01, 0.45 6 0.02, and 0.74 6 0.01,
respectively. The highest learning rate occurred in the
high trial-by-trial reward condition, second was the
subliminal trial-by-trial reward condition, and then the
block reward condition. Perceptual learning in the high
trial-by-trial reward condition also improved contrast
sensitivity over a broad range of spatial frequencies for
both the trained and untrained eyes. Effectively, the
more that is learned in the primary trained task, the
more learning there is to transfer, leading to a
comparable transfer ratio. Furthermore, the effects of
learning were long lasting. In Experiment 2, an external
noise manipulation and analysis by the PTM showed
that training with high reward compared with no
reward improved the rate and magnitude of perceptual
learning primarily through enhanced internal noise
reduction although both high- and no-reward groups
showed a common slight improvement in external noise
exclusion. Experiments 3 and 4 in Vernier offset and
global motion discrimination showed that the effects of
high reward also extended to a range of perceptual
learning tasks.

Together, these results suggest that high monetary
reward, especially with trial-by-trial rewards as well as
block and session rewards, can play a significant role in
enhancing the magnitude and transfer of perceptual
learning without changing interocular, interlocation,
and interdirection transfer ratios. These results may
have important implications for our understanding of
the nature of visual plasticity as well as practical
applications of perceptual learning (Goldstone, 1998).

It is not surprising that no and low reward—given
equivalent response accuracy feedback—led to the least
amount of relative performance improvements (Huang
et al., 2008). In the no-reward condition of Experiment
1, significant learning was found in six out of 11
subjects, and the average contrast sensitivity improve-
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ment at the trained frequency was 6.48 dB. In an earlier
study that employed similar experimental setups and
targeted the difference in learning characteristics in
normal and amblyopic groups (Huang et al., 2008), we
found significant learning effects of contrast detection
in the no-reward condition in nine out of 14 subjects
and an average improvement of 5.8 dB at the trained
frequency, comparable to the results in the current
study.

Reward, attention, and arousal have highly over-
lapping brain circuitries (Maunsell, 2004; Schultz,
2006). In these studies, high reward might have
improved perceptual performance and perceptual
learning either through direct reward circuits or
through associated changes in arousal and/or top-down
attention (Della Libera & Chelazzi, 2006; Peck et al.,
2009). Indeed, some other researchers have also
suggested that perceptual learning may improve
performance through improved attention and/or
arousal (Ahissar & Hochstein, 1997; Gilbert, Sigman,
& Crist, 2001; Xiao et al., 2008). The high-reward
condition consisted of trial-by-trial rewards that may
provide a trial-by-trial differential signal between
predicted and received reward on the scale of seconds
(Nomoto, Schultz, Watanabe, & Sakagami, 2010;
Schultz, 1998), and between-block and between-session
rewards may generate elevated arousal or top-down
attention on the scale of minutes or hours (Roesch &
Olson, 2007). If perceptual learning in the high-reward
condition was driven only by improved top-down
attention or arousal, one might expect the same
amount of performance improvement in the trained
and untrained eyes because top-down attention and
arousal operate binocularly (Karni & Sagi, 1991;
Schwartz, Maquet, & Frith, 2002). This was not the
case. In fact, we found that the magnitude of the
improvements in the AULCSF in the trained eye was
significantly greater than that in the untrained eye in
the high-reward condition in Experiment 1. The result
suggests that perceptual learning in the high-reward
condition was not driven solely by improved top-down
attention or arousal. In the block-reward condition, no
trial-by-trial reward was available, but observers
improved their performance more than in the no- and
low-reward conditions. The partial but lower efficacy of
block reward parallels the results with block compared
to trial-by-trial feedback (Herzog & Fahle, 1997; Liu et
al., 2014; Shibata, Yamagishi, Ishii, & Kawato, 2009).
We speculate that block reward may influence learning
through self-assessed aspects of performance (Liu et al.,
2014) or through changes in arousal or effort. Trial-by-
trial subliminal reward enhanced perceptual learning
only slightly less than the high-reward condition,
consistent with other findings that unconscious reward
could improve perceptual learning (Xue et al., 2015).
Finally, explicit trial-by-trial high reward generated the

greatest amount of perceptual learning, suggesting that
conscious awareness of reward may amplify its effects
slightly and further enhance perceptual learning (Ze-
delius, Veling, & Aarts, 2012). Taken together, these
results suggest the structure of reward itself is the
largest determinant of perceptual learning and transfer.

In Experiments 3 and 4, we examined the general-
izability of the effects of high reward structure in
Vernier offset judgment and global motion-direction
discrimination, two tasks that usually exhibit high
degrees of location and/or direction specificity (Ball &
Sekuler, 1982; Poggio, Fahle, & Edelman, 1992).
Interestingly, high monetary reward facilitated the
learning rate and improved location transfer in Vernier
offset judgment and also increased the rate and
magnitude of learning and direction transfer in global
motion-direction discrimination. In addition, the
transfer index, which measures how much of what is
learned is transferred, was comparable among high-
and no-reward groups both in Vernier offset judgment
and global motion discrimination. Because contrast
detection, Vernier offset judgment, and global motion
discrimination may involve a wide range of visual
cortical areas (Furmanski & Engel, 2000; Ress et al.,
2000; Vaina et al., 1998), our results suggest that high
monetary reward could impact neural plasticity in
different stages of visual processing, and the effects of
high reward may extend to a wide range of perceptual
learning tasks.

The relative transfer to the untrained eye, motion
direction, and retinal location was largely determined
by how much was learned in the training task. The
compound reward structure greatly enhanced the rate
and magnitude of learning in the trained condition and
improved absolute performance in these tasks in the
untrained eye, motion direction, and retinal locations.
This reward paradigm may be practical and attractive.

The finding that training with high reward improved
perceptual learning differentially through enhanced
internal noise reduction sheds light on the mechanism
through which reward enhances perceptual learning.
The reward circuits interact with brain regions associ-
ated with cognition and motor control (Haber &
Knutson, 2010). Traditionally, reward has been shown
to affect the late stages of visual processing, including
visual-motor transformation (Schultz, Tremblay, &
Hollerman, 2000), decision making (Hampton &
O’Doherty, 2007), and overt behavior (Behrens,
Woolrich, Walton, & Rushworth, 2007). It has also
been shown that stimuli associated with high reward
often induced better performance, larger event-related
potential amplitude, and stronger fMRI signals in the
reward system (Krawczyk, Gazzaley, & D’Esposito,
2007; Pessiglione et al., 2007). More recently, a number
of studies have also showed that reward could affect
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early sensory processing (Seitz et al., 2009; Serences,
2008).

In this study, we found significant generalization of
learning to other untrained spatial frequencies and the
untrained eye (Experiment 1), to untrained retinal
locations (Experiment 3), and to untrained global
motion directions (Experiment 4) in the high-reward
conditions even while the no-reward conditions often
showed more specificity. Some theories of perceptual
learning have argued that the degree of generalization
negatively relates to the hierarchy level of learning
(Ahissar & Hochstein, 2004; Shibata, Sagi, & Wata-
nabe, 2014). In the integrated reweighting theory
(Dosher et al., 2013), learning at the level of invariant
representations leads to generalization. One possibility,
then, is that reward-induced noise reduction may occur
at a relatively late stage, at least after binocular
combination and at the level of largely spatial
frequency–invariant representations (Duncan & Boy-
nton, 2003; H.-H. Li, Rankin, Rinzel, Carrasco, &
Heeger, 2017; Ress et al., 2000).

One idea is that reward processing involves the
dopamine pathways and a convergence of several
corticostriatal projections (Arias-Carrion & Poppel,
2007). Animal studies on primates found that the rise in
the dopamine concentration of the basal ganglia
reaches its peak about 1 s after the onset of the reward-
related stimulus, starts to decline after 2 s, and drops
down to the baseline level after about 4 s. The trial-by-
trial high monetary reward in our study may induce the
firing of dopamine neurons to promote reward-seeking
behaviors and, therefore, change the characteristics of
learning (Ariansen et al., 2012; Schluter, Mitz, Cheer, &
Averbeck, 2014; Yoshimi et al., 2011). Additionally or
alternatively, reward may act within the span of a single
trial to improve the signal-to-noise ratio of sensory
representations in task-relevant channels in early
sensory areas through direct projections from the basal
forebrain to/on primary visual cortex or through
indirect modulations of activities in early visual cortical
areas (Baldassi & Simoncini, 2011; Bhattacharyya,
Veit, Kretz, Bondar, & Rainer, 2013). A recent study
found that the primary reward (water) given during
training reactivated the reward system and its interac-
tion with perceptual processing during subsequent
REM sleep (Berard, Barnes-Diana, Nanez, Sasaki, &
Watanabe, 2015). The reactivation of the reward
circuitry during REM sleep may strengthen and
consolidate visual perceptual learning (Karni, Tanne,
Rubenstein, Askenasy, & Sagi, 1994; Sasaki et al.,
2010).

From a modeling point of view, reward could
enhance perceptual learning in two possible ways. One
direct way that reward may affect perceptual learning is
through reward prediction error, i.e., the difference
between the expected and actual reward in a given trial,

which is a major component in reinforcement learning
algorithms (Dayan & Balleine, 2002). The other, indirect
way that reward could enhance perceptual learning is
through improved sensory encoding or decision making.
For example, in augmented Hebbian learning, the rate
of learning is determined by the product of sensory
signal and decision (Petrov et al., 2005). Improving
either component could improve perceptual learning.
Both reinforcement and Hebbian rules as well as some
forms of hybrid rules have been proposed for perceptual
learning (Law & Gold, 2009; Petrov et al., 2005). In this
study, we found that, although reward has a primary
role in learning, attention and arousal could also
contribute to enhanced perceptual learning. Our results
are consistent with a hybrid learning rule with both
reinforcement and Hebbian components in which
prediction error and improved sensory and decision
processes can all contribute to enhanced perceptual
learning (Petrov et al., 2005).

We used a type of secondary reward, i.e., monetary
compensation, in the current study. It should be noted
that other forms of reward, including endogenous
rewards associated with the primary task (Xue et al.,
2015), primary rewards, such as water (Seitz et al.,
2009) and juice (Imai, Kim, Sasaki, & Watanabe,
2014), and social reward (Hayward, Pereira, Otto, &
Ristic, 2018), have also been found to be effective in
initiating and/or improving perceptual learning.
Whether there is a single mechanism for the different
forms of reward or there are multiple reinforcement
processes that differentially modulate visual perceptual
learning remains to be elucidated.

In summary, we found that trial-by-trial high
monetary reward boosted the rate, magnitude, and
generalizability of perceptual learning; that high
monetary reward differentially enhanced internal noise-
reduction mechanisms of perceptual learning; and the
effect was universal in a range of tasks. This suggests
that high reward may be an important component in
applications of perceptual learning. Theoretically,
feedback, arousal/attention, and reward could all
contribute to the enhancement of perceptual learning in
a hybrid-learning rule that incorporates effects of
reward, attention, and feedback and both Hebbian and
reinforcement learning components.

Keywords: perceptual learning, reward, transfer,
perceptual template model
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