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Abstract

Di↵usion MR Image Processing Tools for Reliable Fiber Tracking Analyses:

Neurosurgery and Radiation Oncology Applications

Kesshi M. Jordan

Neurosurgery and Disconnection Syndrome research have a symbiotic relationship. The

human brain is a staggeringly complex system, unique to each individual. Even at birth,

there is already incredible diversity to this network, upon which we add a lifetime of expe-

riences, influencing our brain structure and function by the way we use it. One of the best

ways to study such a variable and complex system is to see what happens when it is per-

turbed. Neurosurgical intervention presents a rare opportunity to interact with the human

brain in a controlled environment and see what happens when transient or permanent inter-

ference occurs. In return, the lessons learned about the relationship between brain structure

and function can guide surgical intervention to minimize the risk of surgical injury causing

permanent functional deficits. The risk a person is willing to take on to a functional system

is a very personal decision; to some people, motor or language function may be what makes

life worth living and others are willing to risk deficits to treat a pathology more aggressively.

Understanding what damage patterns result in deficits is key to empowering the patient to

make these decisions.

The brain’s white matter connections can be modeled with Di↵usion-Weighted Mag-

netic Resonance Imaging (DW-MRI) Fiber Tracking (also called tractography), a process by

which water di↵usion is used to deduce pathways of axon bundles. Neurosurgical applica-

tions present particular engineering challenges due to a variety of factors influenced by both

the pathology and intervention. This thesis details several tools developed to address these

challenges including methods to quality-control tractography streamline datasets, a process-

ing pipeline to model disconnections caused by surgical intervention, a method to translate

tractography information to a format tractable for integration with radiation therapy plan-

ning, and a pipeline relating electrode stimulation to white matter connectivity. All of the

code is open-source so that researchers can use these tools to conduct their own studies.
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Chapter 1

Introduction

Background

The relationship between injury to the brain and behavioral changes has been a keystone

of human neuroscience research for well over a century [25, 70, 12]. Studying the spatial

location of white matter injury, however, is often insu�cient to predict functional outcome

because disconnection of long myelinated pathways can have widespread e↵ects on systems

employing the disrupted circuit, manifesting in apparently inconsistent deficits [70, 71]. Prior

to the invention of Di↵usion Weighted Imaging (DWI) and, in particular, of Di↵usion Tensor

Imaging (DTI) in the 1990’s, white matter disconnection research in humans was limited to

template comparison and post-mortem studies because state-of-the-art imaging was inca-

pable of segmenting white matter fiber bundles for individual subjects in-vivo. DTI enabled

non-invasive in-vivo mapping of white matter by inferring the directionality of large, myeli-

nated fiber bundles from the primary direction of anisotropic water movement [11, 108,

133, 130]. DTI and the more complex models that followed [159, 154, 92, 8, 93, 161, 85]

have enabled researchers to investigate disconnection syndromes with improved specificity

to white matter structure in a variety of clinical applications [106, 105, 171, 42, 74, 118,

90] using fiber tracking, also called tractography, to infer connectivity. Tractography is the

process by which the di↵usion landscape of the brain, acquired using Di↵usion Weighted

MRI (DW-MRI), is used to generate a model of the underlying white matter fascicles by

tracing out streamlines or other connecting functions [125]. Tractography has been used to
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great e↵ect probing the clinical consequence of white matter disconnection by modeling the

white matter connectivity on a single-subject level and associating damage to white matter

structures with functional deficits [37, 55, 102].

To demonstrate how these models can be used to investigate what connections are threat-

ened by a surgery, an example of an Awake Craniotomy case from UCSF is shown in Figure

1.1. The white matter fascicles associated with language deficits that are thought to be

proximal to the tumor were modeled using fiber tracking (For details on the methodology,

see [37]). The Arcuate Fascicle (pink), the 2nd and 3rd components of the Superior Lon-

gitudinal Fascicle (SLF II&III, also called SLF-ip) (yellow), the Inferior Fronto-Occipital

Fascicle (IFOF) (blue), and the Temporal-Parietal component of the Superior Longitudinal

Fascicle (SLF-tp) (green) are shown, with a sagittal slice of the pre-surgical image showing

the tumor overlaid to the left. It is apparent from the composite view (Figure 1.1 left) that

the tumor is very close to several of these fascicle models associated with language function.

During the Awake Craniotomy procedure to remove the tumor, the surgeon elicited a word-

finding di�culty and semantic paraphasia (a language error in which the patient substitutes

a word for the one they intended to say, for example substituting the word “dog” for “cat”)

[30] when they applied direct electrical stimulation (DES) to the white matter during the

resection. This patient came out of surgery with a language deficit and was still non-fluent

after several months. However, the patient made a significant recovery somewhere between

4 and 5 months after their surgery.

The goal of this research is to design reliable methodologies for generating these pre-

surgical maps and establish how to use them to predict the deficit a surgery is likely to

cause on the single-subject level. Clinicians need better tools with which to predict deficits

before surgery so that they can counsel their patients and plan interventions to minimize

complications and maximize the extent of resection, which will impact patient quality and

quantity of life.

2



Figure 1.1: Pre-Surgical Rendering of Language-Associated Fascicle Models

The case shown here is the pre-surgical tractography rendering of a patient’s language-
associated white matter fascicle models (Right). The fascicle models are shown with the
B0 image overlaid to depict the tumor location (circular hyperintensity between the yellow
branches).

1.1 Motivation

The call to protect life - and not merely life but another’s identity; it is perhaps
not too much to say another’s soul was obvious in its sacredness. Before operating
on a patient’s brain, I realized, I must first understand his mind: his identity, his
values, what makes his life worth living, and what devastation makes it reasonable
to let that life end.

Dr. Paul Kalanithi, When Breath Becomes Air [100]

Brain cancer is one of the top three causes of cancer-related death in people under the age

of 40 and the second highest cause of child death in the United States [147]. Surgical resection

remains a key aspect of maximizing survival [2], so the importance of learning as much
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as possible about the human brain and translating that knowledge to guide neurosurgical

intervention on the single-subject level cannot be understated. Between the unique nature

of the human brain, the pathology, and the values of the patient, the complexity of this

challenge is considerable. The cortex has been mapped extensively, largely because the

defining features of the anatomy are readily apparent as soon as the skull is opened and can

be easily visualized using non-invasive imaging, like Magnetic Resonance Imaging (MRI).

The subcortical bundles running below the surface of the cortex connecting distant and

proximal processing components into a vast network, however, are more di�cult to visualize

and equally (if not more) essential to the preservation of the patient’s functional systems.

Di↵usion tractography remains the only method of mapping the white matter of the brain

non-invasively. As a result, this technology has been increasingly employed as a pre-surgical

mapping tool. Tractography methods are highly subject to implementation decisions such as

algorithm choice, stopping criteria, initialization parameters, and criteria for defining fascicle

volume (e.g. streamline density threshold). At present, pre-surgical methods to isolate

a particular fascicle model are highly dependent on a human operator, which introduces

additional potential for variability. At UCSF, we have implemented q-ball residual bootstrap

probabilistic tractography in pre-surgical planning for motor, optic, and language pathways

in brain tumor patients as part of an ongoing research project. The following several sections

describe characterization of the variability in our particular tractography implementation at

UCSF, described in this chapter. This study investigates inter- and intra- operator variability

of fascicle volume definition in a small cohort of control and tumor patient subjects.

1.2 Methods

High-Angular Resolution Di↵usion Imaging (HARDI) was performed on ten healthy control

subjects (3T General Electric Medical Systems Signa Excite) and ten patients with high-

grade gliomas both pre- and post-surgery (3T General Electric Medical Systems Discovery

MR750) with the following parameters: TR/TE =6425/80 ms, 50 axial slices, 2.2 x 2.2

x 2mm voxel (interpolated in-plane to 1.1 x 1.1 mm), b-value=2000 s/mm2, 55 di↵usion

gradients, 1 minimally di↵usion weighted image (B0). Several language fascicle models

4



were reconstructed using q-ball residual bootstrap probabilistic fiber-tracking [23] in the left

hemisphere by two independent operators, according to the methods reported in [37]. The

results were visualized using Trackvis [164]. Language fascicles investigated in all subjects

included: the arcuate (AF), the inferior fronto-occipital (IFOF), the superior longitudinal

(branches II&III: SLF-ip, and temporal-parietal components: SLF-tp), and the uncinate

(UF) fasciculi. The inferior longitudinal (ILF) and middle longitudinal (MdLF) fasciculi

were also reconstructed in tumor patients.

For each reconstructed fascicle model, the binary segmentation mask was defined using

a streamline density (# streamlines per voxel) threshold. The percent common voxel agree-

ment (PCVA) [116] (Also called Dice Similarity Coe�cient) of the binary mask results was

defined as the volume of overlap between binary masks divided by the sum of the two mask

volumes (scaled by 200) (Equation 1.1). The binary masks defining fascicle volume were

based on several thresholds of the original density map (>0, >1, >5, >10, >25, >50, >75

streamlines per voxel). These binary masks were registered to the Montreal Neurological

Institute (MNI) space to compare the spatial concordance of intra- and inter-operator fas-

cicle definition across subjects. The intra-rater reliability of the IFOF in controls was also

investigated both within a single tracking instance (an operator segmented a fascicle model

from the same streamline twice; no variability due to stochasticity of probabilistic method)

and between instances of tracking (an operator generated two streamline datasets and seg-

mented a fascicle model from each; variability due to stochasticity of probabilistic method

expected).

PCV A =
V (L1 \ L2)

V (L1) + V (L2)
⇥ 200 (1.1)

1.3 Results

Figures 1.2 and 1.3 show the reproducibility of a fascicle volume as a function of streamline

density threshold. These results indicate that this probabilistic tractography method tends to

have an optimal threshold for maximum PCVA around 5 streamlines/voxel between instances

of tracking. This pattern is more prominent in control subjects (Figure 1.2) than in tumor
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patients (Figure 1.3). The spatial concordance analysis, which shows the overlap of inter-

operator agreement in a cohort of 10 control patients in MNI space, is shown in Figure

1.4 as a function of streamline density threshold and in Figure 1.5 at a fixed streamline

density threshold across four di↵erent tracks. The blue voxels indicate disagreement between

operators, which occurs at the margin of the fascicle model volume. The core of the track has

the highest agreement (yellow), with the edges of the fascicle model and the terminations of

tracking near the cortex indicating less agreement between operators and/or overlap between

patients in MNI space.

Figure 1.2: Inter- and Intra-Operator PCVA in Healthy Control Cohort

The chart shows percent overlap between fascicle model volumes inter-operator with unique
instances of tracking (solid), intra-operator with unique instances of tracking (green dashed),
and intra-operator on a single instance of tracking (blue dashed).

1.4 Discussion

The core of the track generally indicates high agreement (yellow) because it is the trunk

of the white matter structure, which should be similar between subjects and consistently

6



Figure 1.3: Inter-Operator PCVA in Tumor Cohort

This chart shows percent overlap between fascicle model volumes defined by two di↵erent
operators with unique instances of tracking in tumor patient subjects pre- and post- surgery

modeled by tractography methods. The agreement decreases at the periphery of the track

due to stochasticity in the probabilistic tracking method, variability between patients, and

less consistency between operators. Even post-mortem dissection has limitations establish-

ing terminations of the IFOF in the frontal lobe, where it colocalizes with other bundles

like the Arcuate and SLF [121]. Modeling these terminations using lower-resolution water

di↵usion would not be able to separate uncertainty related to colocalization that challenges

dissection, so this performance is not surprising. A threshold of 5 streamlines/voxel largely

eliminates disagreement voxels introduced by sparse streamlines at the periphery. Thresh-

olds higher than this cut into the trunk of the fascicle volume, decreasing PCVA. Within a

tracking instance (an operator segmented a fascicle model from the same streamline twice;

no variability due to stochasticity of probabilistic method), the pure intra-rater reliability is

the highest (max 93%) with a threshold of 0, and decays after that (Figure 1.2, blue dashed

line) in a manner similar to the between-tracking instance case (an operator generated two

streamline datasets and segmented a fascicle model from each; variability due to stochasticity
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Figure 1.4: Spatial concordance of Inter-Operator Agreement in IFOF Tractography Model:
Streamline Density Threshold Dependence

Spatial concordance of the IFOF Tractography model as a function of streamline density
threshold show the expected components of the fascicle at thresholds of 0 and 1. After a
threshold of 5, some of the distal components of the IFOF are lost. Significant portions of
the IFOF model in the frontal lobe are missing at a threshold of 20 or above, with few cortical
voxels being included in the model. (Yellow = high agreement consistently across subjects;
Red = low agreement; Blue = disagreement).

of probabilistic method expected).

1.5 Conclusions

Inter- and Intra-Operator reliability shows a marked threshold dependence that varies by

fascicle model. These results apply specifically to the methodology presented above. Any

changes to the operators, the tractography algorithm, or the data would require this proce-

dure to be reproduced to establish reliability of the new methodology. Methods need to be

developed to characterize and minimize these factors for each methodology to ensure that

tractography tools are used in a meaningful and reproducible manner.
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Figure 1.5: Spatial concordance of Inter-Operator Agreement

Spatial concordance of operator agreement in reconstructions of the Uncinate (top left), Ar-
cuate (top right), IFOF (bottom left), and SLF 2&3 (bottom right) across control subjects
using a streamline density threshold of > 0 streamlines/voxel (Yellow = high agreement con-
sistently across subjects; Red = low agreement; Blue = disagreement)

1.6 Author Contributions

This work was conducted in collaboration with Eduardo Caverzasi, Valentina Panara, Anisha

Keshavan, and Roland Henry.

9



1.7 Funding

This work was supported by the National Institutes of Health [5R01NS066654-05]. KJ was

supported by the Department of Defense (DoD) through the National Defense Science &

Engineering Graduate Fellowship (NDSEG) Program.

10



Chapter 2

Cluster Confidence Index: A

Streamline-wise Pathway

Reproducibility Metric

2.1 Introduction

Until the invention of di↵usion-weighted MRI (DW-MRI) and tractography, the location of

white matter pathways could only be inferred using a combination of post-mortem tracing,

cortically-based template comparison, and functional imaging. Di↵usion tensor imaging

(DTI) models water di↵usion as a tensor and uses the orientation of the resulting ellipsoid

as a surrogate for orientation of the underlying white matter fiber population [11, 133].

The invention of DTI was the first time it was possible to non-invasively map white matter

pathways in-vivo, opening up a wealth of possibility for exploring the brain’s white matter.

Fiber tracking has been used extensively to study a range of fields [168, 43]. Clinically,

the use of tractography fascicle models is spreading rapidly in the field of neurosurgery for

the purposes of pre-surgical mapping, and as an adjunct to intraoperative mapping. The

preservation of white matter structure has been demonstrated as an important factor in

preventing permanent functional deficits in neurosurgical patients [57, 89], so tractography

techniques are rapidly being deployed in clinical systems.
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The di↵usion tensor model has well-known limitations, most notably that it is not ca-

pable of modeling crossing fiber bundles [97]. Other tractography methods based on more

complex models requiring High-Angular Resolution Di↵usion Imaging (HARDI) have been

developed (i.e. Constrained Spherical Deconvolution, Constant Solid Angle Q-ball) [1, 50,

153, 159, 15], along with complementary probabilistic tractography methods [16, 23, 17] to

address the need to adequately model more complex fiber architectures. So-called “higher-

order models” used in conjunction with probabilistic algorithms are able to model crossing

regions and correspond better with known anatomy [152, 29, 119, 51]. A drawback to upgrad-

ing tractography methods to employ probabilistic higher-order models is that they produce

noisier streamline outputs that depend more heavily on human intervention to isolate the

fascicle model. As the technology migrates from controlled research environments to clinics

with varying levels of technical expertise and experience with these methods, we can assume

reproducibility in practice will be lower. Translating methods with operator-dependence is

di�cult to implement uniformly, so developing tools that standardize these procedures as

much as possible is a technical prerequisite.

There are many “anatomically constrained tractography” (ACT) methods that outline

recipes for the creation of particular fascicle models [33, 37]. These methods typically consist

of three steps: a seeding step that places a region-of-interest (ROI) defining the distribution

of pathways to be explored, a tracking step to create a streamline dataset, and a targeting

step during which a set of inclusion/exclusion ROI’s are placed to isolate streamlines that

represent pathways characteristic of the fascicle. Exactly how these three steps are executed

can vary widely. The seeding strategy typically defines an anatomically-constrained ROI

placed on the di↵usion colormap (which shows contrast in the white matter) and suggests

a “seeding density” to set the number of times the tracking algorithm will be executed in

each voxel. The number of seeds placed can depend on a number of factors (the dimen-

sions of the white matter structure, for example). The number of streamlines that reach

anatomical targets in the second tracking step also depend on many other factors, such

as the pathway architecture, the particular algorithm and seeding strategy used to generate

streamlines, the criteria for stopping the tracking (fractional anisotropy threshold or anatom-

ical target, for example), and post-processing. All of these factors can drastically impact
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the fascicle model output. Each reconstruction method also introduces artifacts, in addition

to underlying imaging artifacts, which can vary with algorithm parameters and underlying

anatomy. After tracking, the streamline dataset is targeted using either computationally-

derived anatomical targets or those placed by a human operator. Human operators are often

used to eliminate low-confidence streamlines in addition to targeting streamlines based on

known anatomy, which limits the translation of methods across institutions and introduces

operator-dependence that has widely variable results in reproducibility studies [60, 48, 162].

Published ACT methods usually include a seeding and targeting strategy, but do not

address the low-frequency streamlines that must be excluded using hand-placed ROIs or the

potential variability in how many seeds are needed to fully represent the anatomy-of-interest

in a model. The addition of pathology complicates the fascicle model and poses a danger of

misrepresenting bundles-of-interest. Probabilistic tractography outputs contain a range of

the streamline pathway distribution that can vary considerably subject-to-subject (more-so

with pathology). The tractography operator makes many subjective decisions to generate a

model of a fascicle that they may tweak in order to create a “reasonable” model that matches

their understanding of the anatomy (inflating the seeding density of a sparse model tracking

through edema, for example). The operator “cleans” the tractography output by manually

placing regions-of-interest (ROIs) to target bundles of streamlines that should or should not

be included in the model of the bundle-of-interest. Sometimes these choices are based solely

on anatomy, but sparse streamlines are also eliminated because there is lower confidence in

the existence of a pathway that was only represented by “outliers”. Adding to the complexity,

the tractography operator may not know if they have adequately represented this distribution

given a unique patient with a unique pathology pattern. Methods like ProbTrackX [16]

generate a connectivity distribution with extensive repetition of tractography to address

these issues (the default is set at 5000 samples, a sampling density the documentation states

should result in convergence), but there is value in visualizing and evaluating the continuous

pathway of each individual streamline in the context of its neighbors and any pathology.

When using methods that generate a dataset of streamlines (as opposed to a voxel-wise

streamline density output, like ProbTrackX), these uncertainties are often addressed by

executing a recipe method of seeding/tracking/manual “cleaning” to produce a fascicle model
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that is anatomically reasonable (as judged by an expert) and applying a blanket streamline

density threshold to eliminate outliers. This can be e↵ective in eliminating outlier streamlines

that follow pathways completely alone, but as the streamline density increases the separation

between noise and small or di�cult-to-track pathways shrinks. There is a need for methods

to evaluate the reproducibility of a pathway, instead of a voxel, and to establish at what

point the probabilistic distribution of pathways has been adequately represented. Ideally,

these methods could be used in conjunction with any fascicle recipe method to objectively

generate methodology-specific stable pathway models.

We propose a versatile processing method to address the need for a customizable tool

to address outliers uniformly in DW-MRI tractography fascicle modeling. We estimate a

Cluster Confidence Index (CCI) using the degree to which streamlines co-localize in bun-

dles, as measured by the minimum average direct-flip (MDF) distance [67]. The idea is as

follows: pathways represented by many streamlines following roughly the same trajectory

have a higher confidence than those streamlines that follow pathways alone. The approach

essentially applies a streamline density threshold to pathways, instead of voxels. In this

paper, we demonstrate the results of filtering to remove streamlines representing pathways

with low confidence and extend the method to an iterative process in which the fascicle

model methodologically converges.

2.2 Methods

Streamline Confidence Metric

This method estimates how reproducible each pathway, represented by a streamline, is with

respect to a dataset of streamlines. The Cluster Confidence Index (CCI) is calculated using

the minimum average direct-flip distance (MDF) distance, which measures the Euclidean

distance between points on subsampled streamlines to quantify similarity between streamline

pathways [67]. The CCI for a given streamline is equal to the weighted sum of the MDF

metric calculated, pairwise, between the streamline and all of the other streamlines in the

dataset (1). The MDF distance implemented in Di↵usion Imaging in Python (Dipy) was

used [66].
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CCIi =
X

j

1

MDF (Si, Sj)K
8 MDF (Si, Sj) < ✓ (2.1)

The reciprocal of the MDF is raised to the power K, which is set by the user. High

values of K decrease the weights of streamlines with higher MDF distances, so they will

contribute less. Low values of K allow more equal contribution from all MDF levels in

the range of contributing streamlines, determined by ✓. The maximum MDF distance (✓)

that can contribute to the CCI is limited so that huge numbers of distant streamlines cannot

inflate the confidence index. Only very similar streamlines with small MDF distances support

confidence in the pathway, so we set the default to be 5mm. A simple example of the output

of this calculation on a streamline dataset generated from a small ROI in the corpus callosum

can be found in Figure 2.1A, with the histogram of CCI values shown in Figure 2.1B.

Figure 2.1: Demonstration of Cluster Confidence Index on a Corpus Callosum ROI

1a Coronal view of a section of corpus callosum streamlines. Streamlines with low support
from the surrounding streamlines are colored white. Streamlines with high confidence from
the rest of the dataset are colored red. 1b A histogram of the CCI distribution in the dataset.

In applications with sparser streamline datasets, features like fans dominating the path-

way, or very long pathways, ✓ could be increased to account for a wider distribution of

pathways in similar streamlines. In a cohort with a wide range of head sizes, ✓ may have to

be adjusted for head size. When using this CCI for a new application, it would be beneficial
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to try a range of these parameters to get a sense of what settings create the best separation

between the bundles-of-interest and outlier streamlines.

Implemention Details

This streamline-wise confidence estimation framework is agnostic to tractography method-

ology. For the purposes of this manuscript, the tractography methodologies detailed in this

section were employed for demonstration. The code used to generate the CCI and store it

in a .trk format that can be filtered interactively using Trackvis [164] [163] is freely available

and can be downloaded at [98]. Running the code requires installation of the open-source

package Di↵usion Imaging in Python (Dipy), along with its dependencies [66].

Data Acquisition

Two healthy control di↵usion datasets were used to demonstrate the method. The first

subject underwent an MRI protocol on a 3T General Electric Medical Systems scanner (Dis-

covery MR750) that included a HARDI acquisition with the following parameters: TR 6425

msec, TE 80 msec, axial slices 50, isotropic voxel 2.2 mm3, b value 2000 s/mm2, di↵usion

gradients 55, minimally di↵usion-weighted image 1. This subject was used for all figures,

except those pertaining to the iterative tracking demonstration. This study was carried

out in accordance with the recommendations of the Code of Ethics of the World Medical

Association (Declaration of Helsinki) and the standards established by our institution, with

written informed consent from all subjects. The protocol was approved by the Committee

on Human Research at the University of California, San Francisco.

A publicly available healthy control HARDI dataset was used as the second subject [138]

to demonstrate the iterative tracking procedure. This dataset has the following parameters:

axial slices 76, isotropic voxel 2mm3, b value 2000 s/mm2, di↵usion gradients 150, minimally

di↵usion-weighted images 10.

Fiber Tracking

Unless otherwise stated, Q-ball Residual Bootstrap Fiber Tracking was performed using

the open-source software package Di↵usion Imaging in Python (Dipy) [66, 22] to gener-
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ate streamlines for each demonstration (excepting the iterative tracking example). During

residual-bootstrap tractography [23], principal fiber orientation was estimated at each step

by computing a bootstrapped orientation distribution function (ODF) and identifying the

peaks. The constant solid angle variant of the ODF function described by Tristan-Vega et.

al. [157, 155] was used. ODFs were fit using even order spherical harmonic functions up to

order 4. ODF peaks less than 45deg from a larger peak and small peaks with values less

than one-fourth of the maximum of the ODF were excluded. The principal fiber orientations

from the bootstrap ODFs provided the distribution of fiber tracking directions. Tracking was

terminated upon meeting either of the following criteria: FA threshold of 0.15 or maximum

turning angle of 60deg [29]. Results were visualized using Trackvis [164].

Fascicle Modeling

Several “recipes” for fascicle modeling were used to demonstrate realistic applications of this

streamline-wise confidence metric. Fascicle models of the Arcuate Fasciculus (AF), the 2nd

and 3rd components of the Superior Longitudinal Fasciculus (SLF2&3), the temporo-parietal

component of the Superior Longitudinal Fasciculus (SLF-tp), the Inferior Fronto-Occipital

Fasciculus (IFOF), and the Uncinate Fasciculus (UF) were built by seeding ROI’s defined on

a fractional anisotropy (FA) colormap according to the methods described in [37] at a seeding

density of 73 seeds per voxel. In short: the streamline dataset from which the IFOF and UF

were segmented was created by seeding a cross-sectional ROI across the external/extreme

capsule on a single coronal slice at the level of the anterior commissure. The streamline

dataset from which the AF and SLF2&3 were segmented was created by seeding a cross-

sectional ROI across the SLF, on a single coronal slice at the level of the isthmus of the

corpus callosum. The streamline dataset from which the SLF-tp was segmented was created

by seeding the inferior parietal lobule on a transverse ROI covering the supramarginal and

angular gyri.

Iterative Tracking

For the demonstration of iteratively applying this framework to establish an appropriate

seeding density, a small 10x10x1 voxel square ROI of voxels with orientation distribution
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Figure 2.2: Flowchart to generate two equivalent probabilistic tractography datasets in par-
allel using the Cluster Confidence Index (CCI) to filter low-confidence streamlines

For each iteration (J), tracking is executed once with the established seeding/tracking scheme
and the streamlines added to the cumulative dataset (from iteration J-1). The CCI is then
calculated on this cumulative streamline dataset and the lowest X% discarded. This procedure
is performed twice in parallel and, after each iteration, the streamline datasets are compared
to evaluate the “methodological reproducibility” of that iteration.

functions (ODFs) indicating fiber crossings was selected on a transverse slice of the frontal

lobe to demonstrate convergence of tractography in a region with complex anatomy. A

flowchart of this procedure can be found in Figure 2.2. The tracking algorithm/parameters

were applied iteratively twice in parallel (Datasets A and B). For each iteration (J), a sin-

gle instance of tracking was performed with the seeding density=1x1x1 using the method

detailed in the Dipy software package CSA tutorial [4]. This output was added to the cu-

mulative dataset from iteration (J-1). The Cluster Confidence Index was calculated for this

new cumulative dataset (J) with the default parameters (theta=5, k=1), and the dataset
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was thresholded at the Xth percentile (60th in this demonstration); in other words, the X%

streamlines with the lowest confidence were discarded from the dataset. This procedure was

performed twice in parallel and, after each iteration, the streamline datasets are compared

to evaluate the “methodological reproducibility” of that iteration. Two comparison methods

were used: (1) the percent volume overlap (PCVA), as described in Equation (2) and [116];

and (2) the fopt optimization value for registration of the two streamline bundles using the

streamline-based linear registration method by [68].

PCV A =
V (L1 \ L2

V (L1) + V (L2)
⇥ 200 (2.2)

2.3 Results

Cluster Confidence Index

The Cluster Confidence Index (CCI) is demonstrated in Figure 2.1 on a sagittal ROI in

the corpus callosum, with a histogram of the CCI distribution for this streamline dataset.

Several outlier streamlines are apparent in this dataset; these outliers travel a pathway

alone, deviating from the expected route, so they have very low confidence (shown in white).

Most of the streamlines follow the characteristic pathway of the corpus callosum in coherent

bundles, forming the shape we expect from anatomical knowledge (shown in red). This

view can be used to evaluate the performance of the CCI. The parameters discussed in

Equation (1) (K and theta) can be adjusted to maximize the separation between desirable

and outlier streamlines, the seeding density can be inflated to better describe the distribution

of pathways passing through the seeding ROI, and the length filter adjusted to focus on a

specific scale of bundles. Figure 2.3 shows several tractography outputs used routinely at

UCSF to model fascicles for pre-surgical planning and an example of whole-brain seeding.

Each segmentation application has unique challenges in terms of distribution of pathways

that make up the bundle-of-interest and those that must be eliminated. The IFOF and

UF (Figure 2.3 A) are easy to separate; the UF hooks inferior/anteriorly into the anterior

temporal lobe (down and to the left on this sagittal view), and the IFOF continues posteriorly,

to the occipital lobe (to the right on this sagittal view). The Arcuate and SLF2&3 (Figure
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2.2 B) are more di�cult to separate and have many noise streamlines that overlap with

portions of both fascicle models. The CCI is an additional tool that can be used to separate

desirable streamlines from undesirable.

Figure 2.3: Fascicle Model Examples of Cluster-Confidence Index (CCI)

Streamlines datasets are viewed from the left side colored from low confidence (white) to high
confidence (red). A External/Extreme Capsule seed used to segment Inferior Fronto-Occipital
Fasciculus and Uncinate Fasciculus; B SLF seed used to segment Arcuate Fasciculus and SLF
II & III; C Inferior parietal Lobule seed used to segment temporal-parietal component of the
SLF; D Whole brain tractography.

CCI As an Interactive Tool

The code provided produces an alternative .trk file with the CCI embedded in the structure.

This file can be opened in Trackvis and filtered by CCI interactively, as shown in Figure 2.4.

Figure 2.4: Interactive Trackvis Implementation

Streamlines can be filtered based on the CCI interactively using Trackvis.
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The interactive CCI slider bar is helpful in the manual segmentation of fascicle models.

The initial tractography output can have many outlier streamlines obscuring the structure

of the underlying fascicles that need to be targeted, especially in cases with pathology like

a tumor. The user can temporarily filter out low-confidence streamlines to place targets,

and then proceed with segmenting the fascicle model. Also, the CCI can uniformly and

easily filter out all of the outlier streamlines when the model is finished so that the user does

not need to waste time targeting sparse unwanted streamlines, individually. This process

is demonstrated in Figure 2.3 with the tractography output used to segment the Arcuate

and SLF2&3 fascicle models. The initial tractography output (Figure 2.5 A) has many

streamlines obscuring the view of the fascicles we are trying to segment. As the CCI minimum

threshold is increased (Figure 2.5 B-D), the outlier streamlines disappear and it is easy to

see exactly where the targets need to be placed to isolate the Arcuate and SLF2&3 fascicle

models. A user should be careful when applying this tool as an outlier removal threshold

to any dataset with a wide range of streamline trajectories because there may be overlap

between desirable and undesirable pathways.

Figure 2.5: Superior Longitudinal Fascicle Complex Model Filtered by CCI

Interactive fascicle cleaning using the Cluster-Confidence Index on the fascicle output from
which the Arcuate and SLF2&3 fascicle models are segmented: A The original set of stream-
lines an operator is presented with when they seed a conservative cross-section of the left SLF
viewed sagittally through the patient’s left ear (top) and coronally looking at their face (bot-
tom); B-D The streamlines filtered at increasing levels of Cluster-Confidence Index (CCI)
from 0.01 B to 10 D.

Using the CCI interactively is useful for exploring a noisy tractography output to quickly
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get an impression of the dominant streamline bundle architecture in a dataset. For example,

in a whole-brain tractography dataset (Figure 2.6), increasing the CCI filter to 10 reveals

the underlying structure of the SLF/Arcuate complex, IFOF, and UF. This approach can be

used to explore the tractography around a noisy pathology, like a tumor, to get an impression

of how the pathology is a↵ecting the tractography algorithm. This knowledge can help to

interpret fascicle models built for the patient, suggesting how much confidence we have in

peri-tumoral streamlines, and facilitate e�cient manual targeting.

Figure 2.6: Whole Brain Dataset Filtered by CCI

The raw set of streamlines an operator is presented with when they seed all of the white
matter in the brain viewed sagittally through the patients left ear is noisy and di�cult to
work with (A). The streamlines are filtered at increasing levels of Cluster-Confidence Index
(CCI) from 5 (B) to 10 (C) to reveal the major bundle architecture of the dataset.

CCI As a Tool for Seeding Density Selection

Standardizing seeding density is not a guarantee for creating comparable fascicle models

across subjects, especially in pathological cases. Under-seeding risks an incomplete model

of the distribution of pathways present in the white matter. It is easier to identify this

problem in controls than it is in patients with pathology because confidence in the fascicle

model is based on known anatomy (established by dissection), which may not be true in the

presence of pathology. The iterative approach described in this manuscript (Figure 2.2) es-

timates the methodological reproducibility by conducting two instances of iterative tracking

in parallel and comparing the resulting bundles. In Figure 2.7 we see that the results of the

parallel processing streams look similar (top vs. bottom), but fill out as the number of iter-

ations increases (left to right). If we plot the two similarity metrics, percent volume overlap
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(PCVA) (Equation 2.2) and the optimization parameter from Streamline Linear Registration

(fopt) [68], as the iteration increases from 1 to 100 (Figure 2.8 top), both of them converge.

PCVA converges to just over 80% overlap, and the fopt streamline bundle di↵erence from the

Streamline Linear Registration optimization parameter (fopt) drops o↵ to around 5 within

the first 20 iterations, then continues to decrease slowly. Plotting the di↵erence in PCVA

and fopt between iterations (Figure 2.8 bottom), we can see that the metrics change mini-

mally after the initial 20 iterations and a tolerance could be set to terminate the procedure.

At the point where the di↵erence between these parallel processing streams converges, we

assume that the distribution of pathways present in the seeding ROI has been adequately

represented because it is reproducible and not changing with the addition of streamlines.

Removing the lowest confidence streamlines helps to smooth this convergence by eliminating

outlier streamlines. The choice of removing the lowest 60% of CCI streamlines emphasizes

the length bias (toward shorter streamlines) to model more local connectivity (Figure 2.9). A

tolerance and CCI threshold could be chosen to standardize seeding across patients (instead

of seeding density) based on this convergence to ensure that the distribution of pathways

has been explored equivalently. Figure 2.10 shows a comparison between the volume mea-

surement of the fascicle models at each step of iterative tracking generated using a density

map (# streamlines per voxel) and/or CCI threshold. The comparison was made using

both the PCVA (Figure 2.10 A) and the fascicle model volume (# voxels) (Figure 2.10 B).

The raw streamline output (dark blue) performs the worst, in terms of reproducibility; the

PCVA is very low and there is about a 5% di↵erence in volume between two outputs from

two identical tracking instances after 100 iterations. A high PCVA can be achieved using

voxelwise thresholds of 5-10 streamline/voxel (red and purple) or a CCI threshold of the

60th percentile, but the volume is more reproducible with the CCI approach (yellow and

light blue).
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Figure 2.7: Iterative Tracking with CCI Filter

Tracking is iterated in parallel to create two sets of streamlines. At each iteration, low-
confidence streamlines are removed and the streamlines generated from that tracking iteration
are added to the aggregate dataset. Since this is occurring twice in parallel, methodological
noise can be estimated by comparing the equivalent volumes produced by binarizing the two
streamline sets.

2.4 Discussion

Uniform Elimination of Outliers

The choice to uniformly eliminate outliers from a streamline dataset requires an investment

in methodology development, but has many advantages over manual selection and setting

a streamline density threshold. Manual selection of outliers cannot be reported rigorously

in a manuscript and is labor-intensive. Thresholding based on the CCI is intended to re-

place the use of density maps, which are commonly employed to increase confidence in the

volume segmented as a fascicle model. The use of CCI-based thresholds is advantageous

over streamline density-based thresholds because the CCI works in the space of pathways,

rather than voxel space. As an example: a density map will be artificially inflated in regions

of crossing fibers because the confidence metric “# streamlines per voxel” includes a count

from multiple fiber populations. The CCI assigns each individual streamline a confidence
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Figure 2.8: Iterative Tracking with CCI Filter Convergence

Both measurements of similarity between independent streamline datsets (PCVA = percent
volume overlap and fopt = bundle similarity [68]) change between tracking iterations less and
less as streamlines are added to the cumulative dataset, converging toward zero.

level based on agreement of local streamlines. It is not surprising that the volume generated

by thresholding based on pathway density (using the CCI) is more reproducible than that

generated based on voxelwise density (using a streamline density map), as is shown in Figure

2.10.

Other methods have been developed to uniformly eliminate outliers, but they tend to be

specific to the applications for which they were designed. Several approaches have employed

the Quickbundles algorithm [36, 44] (which uses the MDF distance to cluster streamlines) to

build methods for dealing with “messy” streamline datasets because it is very fast and a good

building-block with which to simplify complex streamline datasets. [44] developed a very
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Figure 2.9: Iterative Tracking with CCI Filter Streamline Output

Panels A and C show the raw streamline dataset after 80 iterations. Panels B and D show
the same dataset thresholded at the 60th percentile CCI to select for the highly confident local
connectivity of the tracking ROI (red). There is an obvious length bias to this high CCI thresh-
old, but the approach shows two anatomically-defined connections quite strongly and cleanly:
the Uncinate fascicle hooking down into the temporal lobe, and the Fronto-Orbitopolar Tract
[35]. To reconstruct the inferior fronto-occipital fascicle (IFOF), an occipital lobe target
would have to be integrated with tracking so that the length bias does not influence the final
result.

similar approach to the one presented here using the Quickbundles algorithm hierarchically

to identify outlier streamlines. The method presented in this article is a variation on the same

concept, but this implementation uses the MDF distance to evaluate each single streamline

for how much support it has from the surrounding streamlines in the dataset. This approach

is more general with several parameters that can be tuned for a specific application to

optimize performance that may vary with respect to scale of anatomy being studied, data

quality, seeding approach, pathology, or target use of the fascicle model.
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Figure 2.10: Iterative Tracking with CCI Filter Reproducibility

A: As the seeding density is increased, an 80% or greater percent overlap (PCVA) can be
achieved either with a density threshold of 5-10 or CCI threshold at the 60th percentile. B:
Thresholds based on the 60th pctl CCI maintain a consistent volume more so than those based
on density maps, indicating a robust track-retrack methodological reproducibility.

The method presented here is a helpful tool both in streamlining and standardizing

manual segmentation of tractography outputs to create fascicle models. Applying even a

very low threshold to eliminate the obvious outliers improves standardization and translation

of methods. Fascicle models shown in figures often involve some sort of outlier cleanup that

cannot be fully described in the methods (“outliers were removed manually”). Using a

low CCI threshold makes the figure presentable in a manuscript by eliminating the outliers

obscuring the result, but the action can be accounted for in the methods and reproduced.

The interactive filtering capability that can be used with the Trackvis viewer makes

manual streamline “cleaning” much less labor-intensive; it enables a user to quickly evaluate

the reproducible structure of a tractography output, and to eliminate outliers uniformly
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with a slider-bar, instead of targeting them manually. Calculating the CCI for a dataset

scales N * N * P (N being # streamlines and P being # points per streamline), so it is

advantageous to minimize the number of streamlines or points per streamline. The CCI can

be recalculated at multiple stages as the user refines the bundle, if needed, but large datasets

may need to be reduced to limit calculation time. This could be done by calculating CCI

with less datapoints or limiting the calculation to bundle centroids until the dataset has

been refined to the point that calculation time is acceptable to the user. The method works

on the streamlines, so the user is not restricted to any particular tractography method, and

parameters can be tuned to optimize use for a given application.

By applying these methods iteratively, as demonstrated in Figures 2.7-2.10, the user

can ensure that only methodologically reproducible streamlines are considered for inclusion

in a model. This also protects against the risk of under-seeding a structure; if all fascicle

models are tracked iteratively until convergence, as demonstrated in Figure 2.8, the user can

be confident that they have represented the distribution of pathways in the seeding region

equivalently across di↵ering anatomy or pathology.

Considerations

It should be noted that there is a length bias to the CCI; as the CCI minimum threshold is

increased, many very short streamlines are shown to have the highest confidence. We argue

that this is reasonable given the nature of tractography. Errors accumulate with distance so

we do, in fact, have more confidence in the pathway of short streamlines than we do in longer

streamlines that had the opportunity to accumulate more error as they traversed a further

distance. In Figure 2.9 A/C, the raw streamline output includes bundles from the Corpus

Callosum, the Inferior Fronto-Occipital (IFOF), the Uncinate (UF), and Frontal Orbitopolar

(FOP) [35] fascicle models. After a high CCI threshold is placed on the dataset, only the

UF and FOP remain (Figure 2.9 B/D). A length weight would have to be incorporated to

set up an iterative tracking procedure for longer fascicle models, like the IFOF, or the base

set of streamlines from which the CCI is calculated controlled. Incorporating an appropriate

minimum length filter is a good idea to avoid the inflation of high-confidence short stream-

lines and make the streamlines that are being considered for inclusion the focus of the CCI
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distribution to aid in separating the desirable from undesirable streamlines with a single

threshold (there is an option to do this in the provided code). When using the CCI as a

tool to aid in elimination of outliers from a particular fascicle model, it may be helpful to re-

calculate the CCI after targeting the fascicle model to isolate the bundle(s)-of-interest. The

CCI calculation could be integrated with a viewer to enable a user to periodically calculate

the CCI as they narrow down the selection of streamline bundles.

Parameter exploration/tuning should be explored when tracking a new structure or co-

hort. Theta sets a hard limit on how local streamlines must be to contribute to the CCI, at

all. The K parameter determines how steep the distance dropo↵ is of the weight each stream-

line “vote” gets toward the CCI. For example, if streamline A follows exactly the same path

as its neighbor, it suggests more support for that particular pathway than another stream-

line (streamline B) that diverged at the halfway point. The K parameter determines how

much more weight streamline A’s vote has than streamline B’s; Theta decides if streamline

B gets a vote, at all. It should be noted that setting these parameters across subjects poses a

potential problem; because of the length bias in confidence, equivalent streamlines for people

with larger head sizes will have lower confidence because their longer streamlines have more

distance over which to accumulate errors. Further work is needed to incorporate dynamic

weighting of distances based on some head-size-related metric.

Ideally, tractography should be performed to a convergent result in a standardized manner

to maximize reproducibility. The scale of the CCI depends heavily on seeding strategies and

the original set of streamlines. Further work is needed to optimize seeding strategy for

comparison across timepoints and patients. The iterative demonstration, shown above, is

one way to evaluate when the system has been tracked enough to represent the complexity

of the underlying structure, but further work is needed to develop standards to force the

convergence of this system. One potential method would be to predict the di↵usion signal

back filtered streamlines using an approach like the Linear Fascicle Evaluation [132] approach

to determine convergence.
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Why do we need these types of tools?

A study by [60], evaluated the anatomical accuracy of fornix tractography across many al-

gorithms using a subjective rating system (1:best to 4:worst) based on anatomical accuracy

and number of streamlines outside of anatomical boundaries. The accuracy scores ranged

from 1.1 to 3.6 and the incorrect fiber scores ranged from 1.6 to 3.5. The authors’ evalua-

tions of anatomical accuracy and fibers outside of anatomical boundaries can be considered

surrogates for sensitivity and specificity, thus subject to the stereotypical trade o↵ charac-

terized by an ROC curve. The most accurate approach (accuracy 1.1) su↵ered from false

positives (incorrect fibers 2.4) and the approach with the least fibers outside of anatomical

boundaries (incorrect fibers 1.6) did not perform well in accuracy (accuracy 2.1). Feigl et al.

stressed that the manual intervention commonly employed to “clean up” false positives with

placement of exclusion ROIs creates a danger for excluding displaced fibers that represent

genuinely displaced white matter bundles [60].

The CCI tool, presented here, does not eliminate the subjectivity problem that Feigl et

al. was describing, but it at least establishes a standard for uniformly eliminating them and

reporting exactly how that was done. Manual segmentations of fascicle models often require

some outlier cleanup that cannot be detailed in the methods because it has an element of

randomness to it. If the operator used a method like CCI thresholding to eliminate outliers,

the parameters of the tracking and CCI calculation/filtering should provide some grounds

from reproducibility. Sparse streamlines are sometimes random, but not always. Some sparse

streamlines follow small or di�cult-to-track structures that would have been more robustly

represented with a higher seeding density. Seeding density requirements can vary by patient;

sometimes a pathology siphons o↵ streamlines so that the underlying anatomy is not the

dominant pathway represented in the streamline dataset, or edema causes streamlines to

meet a stopping condition early at a higher frequency, so more seeds are needed to represent

the underlying pathway. Applying an iterative tracking procedure, like the one described

in this manuscript, ensures that the outliers removed are not a symptom of under-seeding.

The only manual interventions should be anatomically-defined ROIs for targeting the desired

bundle-of-interest and a discrete number of well-defined artifacts that can be described in

the methods. Minimizing the extent of manual intervention and standardizing the necessary
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components are crucial steps in moving forward with the ongoing clinical translation of

tractography methods.

Reconstruction of fascicles using a tensor model (DTI) is easier to execute because far

less false-positive pathways are represented. Methods that are sensitive enough to represent

crossing regions in the brain (Probabilistic Q-ball, Probabilistic Constrained Spherical De-

convolution, etc.) are also prone to outlier streamlines, thus have a tradeo↵ of low specificity

and require “clean up” of false positives by manual intervention. By limiting the number of

low-confidence pathways a tractography operator is presented with and minimizing the sub-

jective decisions made, with respect to outliers, transitioning to higher-order models becomes

less intimidating, in spite of their high level of false positives.

New tractography methods are being developed constantly, and the variety of implemen-

tations used across the field is already considerable. Beyond the question of DTI vs. HARDI

methods, the addition of multiple b-values (“shells”) opens up the possibilities to many more

models that can even better characterize underlying white matter structure [8, 94]. Versatile

tools to facilitate uniform quality control of tractography outputs are needed to support the

wide variety of methods used to build fascicle models.

2.5 Conclusion

The Cluster Confidence Index method presented in this manuscript objectively calculates the

confidence of a particular pathway in a dataset of streamlines by comparing it to the distribu-

tion of streamlines following similar pathways. This method can be used to uniformly remove

outlier streamlines by placing a low CCI minimum threshold on all streamline datasets, in-

teractively to expedite manual cleaning of fascicles, or iteratively to establish a reproducible

tractography methodology. This method provides a framework for reporting exactly how out-

liers were eliminated so that methods can be more accurately presented in manuscripts. The

approach is tractography algorithm-agnostic; it will work with an streamline-like dataset.

The implementation provided works on a standard .trk file and can be filtered interactively

by CCI in the Trackvis viewer. The code is free and can be downloaded from [98].
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Chapter 3

Cluster-viz: A Tractography QC Tool

3.1 Introduction

When tractography algorithms are used to create an anatomically constrained model of a

fascicle, the output of the processing can contain many streamlines that are not part of the

bundle-of-interest. Using methods that leverage High Angular Resolution Di↵usion Imaging

(HARDI) datasets by employing models like Constrained Spherical Deconvolution [153, 154]

or Q-ball [159, 160, 23] increases the sensitivity of the method (compared to the simpler

tensor model), but generates many more streamlines that must be excluded. Automatic

classification methods have been developed [172, 169], but pathologies (e.g. tumors) present

in patient populations can cause failures. Furthermore, clinical use still requires an expert

human quality control step for applications such as Neurosurgical planning [56] until the

methods have been su�ciently developed and validated. The typical way to select stream-

lines as part of the bundle-of-interest is to use a tractography output viewer, such as Trackvis

[163], to place regions-of-interest (ROIs) manually that select included or excluded stream-

lines. There are many reproducibility concerns [162, 60] with these methods, however. We

propose a cluster-based approach as an alternative to manual placement of ROIs to isolate

fascicle models from tractography output. This approach minimizes the variability in manual

execution of streamline selection by reducing the output to discrete clusters that require lim-

ited decisions for inclusion instead of relying on the placement of ROIs in continuous space.

This method also provides the framework for training a classifier that could be tailored to
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the data type and goals of a particular application. This is an important consideration, as

the tractography output can vary widely depending on a variety of parameters (stopping

condition, maximum turning angle, etc.) [39] and there may not be a consensus on what

sub-bundles should be included in tractography models for a given application.

3.2 Description

This viewer 3.1 enables the user to select streamlines on a cluster-level. The Quickbundles

algorithm [67], implemented in dipy (http://nipy.org/dipy/) [66], can be used to quickly

cluster a set of streamlines into sub-bundles. The main design requirement for this interactive

tool was to minimize the computing time spent reclustering between iterative steps of cluster

selection. Quickbundles does not take the computational time needed to optimally cluster

streamlines, but rather prioritizes speed to reduce the dimensionality of the classification

problem [67]. The user can select all of the sub-bundles that include parts of the target

bundle-of-interest 3.2. The user can alternate between selected and deselected streamline

bundles by clicking on the button “Toggle Choice” to study the rejected streamlines more

closely. The selected sub-bundles are re-clustered into finer sub-bundles when the user pushes

the “Finer” button, and the desired components of the bundle-of-interest can be further

refined by selecting a subset of the reclustered bundles 3.3.

3.3 Results

This Cluster-Based Streamline Tool (https://github.com/kesshijordan/Cluster-viz) was im-

plemented as a web-based viewer with a python backend using CherryPy (http://cherrypy.org/)

3.4. The code from the AFQ-Browser (https://github.com/yeatmanlab/AFQ-Browser) was

used as a interface skeleton and adapted for this project. The user can upload and download

tractography streamline data, select streamline bundles, and initiate finer clustering using

Quickbundles [67]. The viewer presents all of the streamlines to the user and allows them

to select a subset of the ten sub-bundles by either clicking on the streamlines, themselves,

or by clicking on the menu. This tool is a work-in-progress; in the future, the selected sub-
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Figure 3.1: Cluster-viz Demonstration

The connectivity of an ROI placed on the coronal plane over the external/extreme capsules at
the level of the anterior commissure is shown (tractography method: Caverzasi et al. 2015).
Each color is a cluster, as generated by the Quickbundles algorithm [67]

bundles will be clustered further upon user request. The transparent cortical surface is for

orientation only; it is not in the patient space. In-progress developments include patient-

specific anatomical reference in both slice and surface representation and iterative clustering

functionality.

3.4 Conclusions and Future Directions

This method is advantageous to the traditional ROI-based approach because binary decisions

made on discrete clusters is less variable than manually placing ROIs in continuous space.

In theory, this should facilitate reproducibility of human operators, as well as create a more

tractable training set for machine learning applications. Ideally, the Cluster-viz tool would

learn from the user as they interact with the viewer and provide suggestions for bundle

classification that the user could approve. Over time, the learning element could greatly
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Figure 3.2: Cluster-viz Demonstration Step 1: Select Bundles

The user selected two sub-bundles that contain streamlines representing a tractography model
of the Uncinate Fasciculus.

increase the e�ciency of the user and, perhaps, eventually replace the human.
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Figure 3.3: Cluster-viz Demonstration Step 2: Recluster

Sub-bundles that the user judged were part of an Uncinate Fasciculus tractography model are
re-clustered so that the user can further refine the model.

ganizers and mentors. This work was published as a project report in Research Ideas and

Outcomes (doi: 10.3897/rio.3.e12394).
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Figure 3.4: Flowchart of the Cluster-viz web application.
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Chapter 4

An Automatic Pipeline to Create

Longitudinal Disconnection

Tractograms

4.1 Introduction

Clinical Translations

Elucidating the functional impact of new focal or progressive injury to the brain’s intricate

communication network is relevant to a wide range of clinical disorders including focal le-

sions in brain tumors, multiple sclerosis, epilepsy, and stroke, as well as more widespread

injuries associated with Tramautic Brain Injury and neurodegenerative disorders (for ex-

ample Parkinson’s Disease and Alzheimer’s Disease). This relationship has typically been

investigated by either registering an estimate of the injurious region of interest to a tem-

plate of putative fiber bundles (volume-based method), or by modeling those fiber bundles

in each patient using tractography (connectivity-based method). Tractography reconstruc-

tion of white matter structures for pre-surgical planning and guidance of intra-operative

cortical and subcortical stimulation mapping has emerged as a major clinical translation of

di↵usion MRI applications. Tractography methods have shown great potential to improve

clinical outcome in neurosurgery when used in tandem with Intra-Operative Stimulation
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(IOS) [167, 109, 82, 112, 111, 21, 29, 119, 37, 20], but translation to the clinic requires

extensive validation [103, 56]. Tractography is an inexact science that is highly dependent

on implementation choices [39, 64, 45, 126]. Algorithms with su�cient complexity to model

crossing regions also produce many false-positive connections that must be quality-controlled

by a human operator, exacerbating well-documented reproducibility concerns [162, 20]. The

added complexity of pathology introduces additional errors, which can vary with tractogra-

phy algorithm choices and underlying anatomy [75, 39]. Establishing robust relationships

between deficits and damage patterns using reproducible, operator-independent methods is

essential to being able to guide neurosurgical intervention at the single-subject level.

Volume-Based Approaches

There are several ways to evaluate the impact of focal white matter damage on fiber pathways

that reflect di↵erent levels of e�ciency and accuracy. The challenges are (i) segmentation of

the focal injury and (ii) association of this focal injury with fiber pathways. The simplest

approach is to localize damage on an anatomical image and infer what structures were likely

to have been damaged either using a white matter atlas or judgment by an expert (ex: neuro-

radiologist). A widely used example of this approach is called Voxel-Based Lesion-Symptom

Mapping (VLSM), which has been used to great e↵ect in leveraging modern imaging to

conduct these lesion studies [12, 104, 31, 3].

Another volume-based method demonstrated by [89] approached the question of relating

functional deficit to tissue by examining the residual tumor spared during surgery that

was associated with transient functional deficits during direct electrical stimulation (DES).

These investigators created an atlas of “functional resectability” by overlaying post-surgical

residual tumor from a large cohort of WHO grade II glioma patients to indicate regions that

were more or less “resectable” using the gold standard of DES for identifying functional

boundaries. These authors chose to acquire post-operative images 3 months post-surgery to

minimize the post-surgical displacement of anatomical structures.

While volume-based methods can be an e�cient and straightforward approach using con-

ventional imaging, the brains subjected to pathological or neurosurgical damage often will

present unique distortions resulting in misregistration to the template. Current methods for
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addressing some of these concerns are to exclude the pathology during normalization using a

method called cost-function masking [28]. Excluding the pathology from alignment calcula-

tion enables registration of distorted brains to a template, but does not attempt to align the

distorted region, which may be relevant to the study. Unified segmentation (from the SPM

toolbox) has been shown to perform well in stroke patients [7], especially in combination

with cost-function masking [5]. However, these methods are highly dependent on a trained

neuroradiologist creating a precise lesion mask, which introduces issues in both subjectivity

and time e�ciency of the procedure. According to [5], this procedure takes about 8 hours

per stroke case for a “moderately large lesion”, but the combination of unified segmentation

and cost-function masking allowed a rougher lesion mask drawing (25-30 seconds per slice

instead of 6 minutes) [5]. This approach reduces the time investment considerably [5], but

is still a prohibitively labor-intensive endeavor for studies with sample sizes in the hundreds

or thousands and does not address the subjectivity/reproducibility issues inherent to man-

ual tracing of focal damage [63] or the need to exclude patients with excessive anatomical

distortion (abnormal ventricular size, pneumocephalus, hemorrhage, tumor-associated de-

formation, etc.). Many alternative methods are being developed to address these challenges

[165], but many of these approaches are designed for stroke applications and may not allow

wider applicability for cases with increased heterogeneity and complexity, like brain tumors.

Tumors are more di�cult to develop general methods for because they are infiltrative, mean-

ing that a distinct boundary does not exist at the periphery of the tumor, so abnormal tumor

is present within normal brain parenchyma. These inherent properties have varying amounts

of heterogeneity, density, and rate of growth, which will alter the mechanics of deformation

and appearance on imaging. The task of tumor segmentation is widely acknowledged as a

di�cult problem, both for consistent manual segmentation and automatic methods [76, 123,

141].

An additional challenge in relating damage to white matter disconnection, in particular,

is the lack of white matter contrast in anatomical scans; without di↵usion MRI (dMRI),

damage to a particular white matter structure cannot be directly assessed. An expert user

can infer displacement from anatomical images by estimating mechanical deformation based

on prior knowledge and observation of tissue deformation, but the white matter variability
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both between people and pathologies makes direct evaluation of the white matter struc-

ture advantageous. Tissue displacement can be mistaken for destruction and the highly

subjective nature of estimating tissue deformation adds uncertainty to the results. Some

approaches perform volume-based methods on anatomical images and extrapolate results

to white matter structure by applying fiber tracking in a healthy control cohort to probe

white matter connectivity of the resulting regions-of-interest [124] or by overlaying results

on a white matter atlas [89], but they are limited by the absence of white matter contrast

on the single-subject level. These constraints inherent to any method blind to white matter

structure risk biasing the study by misrepresenting or excluding the most extreme cases.

Connectivity-Based Approaches

A second approach to evaluate focal white matter damage is to reconstruct fascicles using

tractography and inferring damage to the structure using properties of the segmented volume

(e.g. stroke), or apparent displacement/destruction of the reconstructed model (e.g. tumor).

In the neurosurgical example, these studies can be conducted longitudinally because the state

of the brain’s white matter prior to the injury can be acquired. One way to execute this type

of study is to model the fascicle pre-operatively and infer damage using a segmentation of

the post-operative resection cavity. Without post-operative white matter contrast, however,

it is di�cult to determine if bundles-of-interest moved during surgery so adjacent structures

could be confounded, and it is impossible to conclusively evaluate white matter registration

accuracy. An alternative approach is to reconstruct the fascicle model using tractography

at two time points (pre- and post-surgery) and subjectively judge how the integrity of the

fascicle changed based on the track model [37]. This method is, arguably, the most direct

way to estimate fascicle damage using anatomical imaging, but it is highly subjective both

at the step of interactively targeting a collection of streamlines to form the track model and

at the rating of track model integrity. This method also requires a priori selection of fascicles

that could be involved, since each evaluated fascicle must be hand-segmented into a track

model. Hand-segmentation makes this method extremely time-consuming and introduces

significant reproducibility concerns, but is necessary because automatic algorithms are not

yet robust to many of the deformations characteristic of neurosurgical applications.
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Technical Challenges to Investigating Tumor Resection

Executing group imaging studies in the field of brain tumor surgery is particularly di�cult

[27]. The heterogeneity of brain tumor pathology, often presenting with solid, infiltrative

components and perilesional vasogenic edema, can change the di↵usion properties in tissues-

of-interest. Moreover, tumor growth can displace or disrupt pathways [62]. Tissue can shift

considerably during surgery [127], so spatial relationships between pre-, intra-, and post-

operative imaging may not be maintained. Imaging post-operatively to evaluate the e↵ect of

surgical intervention has unique challenges, as well. The presence of intracranial blood prod-

ucts, air, and metallic implants used on the surface of the skull in craniotomies can cause

imaging artifacts in some modalities. Taken together, these complications cause many of

the automatic computational tools used to extract salient features from large neuroimaging

datasets to fail, requiring significant human time investment and/or exclusion of cases. As a

result, the typical association study between tractography models and deficits is underpow-

ered and the results are often operator-dependent. There is a need for an automatic method

to objectively quantify focal white matter injury.

Proposed Method: Automatic Pipeline to Create Disconnection

Tractograms

In this manuscript, we present an automatic pipeline for comparing di↵usion MRI volumes

and identifying spatially coherent focal white matter disconnection. This pipeline was de-

veloped based on a tumor cohort undergoing surgical resection, but the method could be

extended to study longitudinal focal white matter changes in many other contexts.

The proposed method (ASAP-tractograms) has two essential components to address the

challenges outlined, above. The first component is an automatic segmentation of anisotropic

power changes (ASAP), which identifies tissue likely to be associated with damage to long-

range pathways based on di↵usion properties. This approach completely bypasses the chal-

lenges inherent to automatic segmentation and classification of various lesion components to

solely focus on focal white matter damage. The second component involves modeling dis-

connection using tractography on the single-subject level with HARDI-based tractograms.
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This approach enables a comparison between subjects that is based on individual charac-

terization of damage to long-range pathways, so comparisons between patients are made

based directly on white matter structures. The advantages of this approach stem from (1)

objective and automatic lesion segmentation and tractogram generation, (2) objective and

precise segmentation of a↵ected tissue likely to be associated with damage to long-range

white matter pathways (defined by anisotropic power), (3) good performance even in the

cases of anatomical distortions by use of di↵usion MRI based registration in the patient

space, which aligns images using white matter contrast.

We employ tensor-based registration [173] to ensure alignment of white-matter structures

between the pre- and post-operative images. We subtract the Anisotropic Power Maps [49]

of the aligned images to determine the regions of steep anisotropy drop, and boost the value

of spatially coherent areas [148, 166, 150, 91] to emphasize large regions of pre-surgical

anisotropic tissue that were not present in the post-surgical image. We can then delineate

a region-of-interest (ROI) that, presumably, represents resected pathological white matter

(ASAP ROI). We use residual bootstrap q-ball tractography [23] to infer the disconnection

that occurred during surgery by modeling the connectivity of this ASAP ROI pre-surgery.

To evaluate this approach against an established method, we apply this pipeline to a co-

hort of 35 tumor patients that underwent surgical resection to identify white matter fascicles

damaged by surgery and compare the results to a subjective analysis performed by neuro-

radiologists on the same cohort [37]. This study suggested that preservation of the Arcuate

and temporal-parietal components of the Superior Longitudinal Fasciculus/Arcuate complex

may be associated with positive outcome, but the study was not su�ciently powered to draw

high-confidence conclusions [37]. High-throughput approaches, like the one presented in this

paper, facilitate large studies that will empower clinicians to ask the question What is the

possible morbidity to this unique patient given the location, size, and extent of this infiltra-

tive tumor? so that they can better counsel their patients and plan interventions to minimize

complications and maximize the extent of resection, which will impact patient quality and

quantity of life. However, we can only truly answer this question with su�ciently powered

studies. The extent of variability due to genetics, learning over a lifetime, varying functional

states, pathological processes, the brain’s response to pathology [53], and uncertainty in
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models of structural/functional systems necessitates studies with considerably larger sam-

ple sizes and more specific characterization of disrupted white matter structures than are

the standard with current technologies. Our work lays the groundwork for high-resolution,

larger scale, su�ciently powered analyses by meeting the need for an automatic approach to

objectively quantify white matter disconnection.

4.2 Methods

Subjects

The new pipeline was evaluated on pre and post-surgical resection MRI data from thirty five

subjects with glioma brain tumors. Research was performed in compliance with the Code of

Ethics of the World Medical Association (Declaration of Helsinki) and the standards estab-

lished by our institution. The Committee on Human Research at the University of California,

San Francisco, approved the study protocol. Written informed consent was obtained from

all study participants. Each subject underwent a standard pre-surgical Magnetic Resonance

Imaging (MRI) scanning protocol including a High Angular Resolution Di↵usion Imaging

sequence [23]. This cohort is the same used in a previous publication; details can be found

in [37]. Of the 35 patients in this cohort, 6 were excluded for acquisition-related reasons (3

scan-rescan dates greater than a week apart, 2 sequence mismatches, 1 had a major artifact

obscuring a large portion of the frontal lobe), leaving 29 patients to be analyzed.

Di↵usion Preprocessing

Di↵usion preprocessing was applied to both pre- and post-surgery HARDI datasets in par-

allel, as shown in Figure 4.1. The datasets were first corrected for motion and eddy current

distortion using the FMRIB Software Library (FSL) [91] and the gradient table rotated, ac-

cordingly [110]. A tensor model was fit to the corrected HARDI data using the open-source

package Di↵usion Imaging in Python (Dipy) [66] and the resulting parameters used to cal-

culate fractional anisotropy (FA), mean di↵usivity (MD), radial di↵usivity (RD), and axial

di↵usivity (AD). An Anisotropic Power Map was calculated (APM) [49] using the Q-ball
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model [50] implemented in Dipy. The resulting map is similar to FA, but the measure of

anisotropy comes from the Q-ball model instead of the tensor model, so it should represent

white matter better, especially in crossing regions [49]. The B0 image was isolated from the

HARDI series and used to create a brain mask by skull stripping the image with FSL’s Brain

Extraction Tool (BET) [149]. This brain mask was applied to all images.

Figure 4.1: Di↵usion Preprocessing Flowchart

A flowchart of the preprocessing steps executed to produce post-surgery di↵usion metric im-
ages aligned to the pre-surgery images. (APM = Anisotropic Power Map, FA = Fractional
Anisotropy, MD = Mean Di↵usivity, B0 = T2 image with b-value of zero).

Tensor-Based Timepoint Alignment

Rigid and non-linear tensor registration was performed to align white matter structures

at the two timepoints using the Di↵usion Tensor Imaging ToolKit (DTI-TK) [173]. The

transformations were used to bring the post-surgical dMRI images (B0, FA, MD, RD, AD,

46



APM) into alignment with their pre-surgical counterparts. These images were subtracted

pre-surgery minus post-surgery to produce perisurgical di↵erence maps, shown in Figure

4.2. To segment the resection cavity, the flowchart shown in Figure 4.3 was applied. The

registered pre- and post-surgical Anisotropic Power Maps were subtracted and spatially

clustered using FSL’s Threshold-Free-Cluster-Enhancement (TFCE) [148, 166, 150, 91] to

boost the signal of spatially coherent drops in anisotropic power. This made it possible

to isolate the anisotropic resection ROI using simple thresholds. These TFCE maps were

thresholded at the 99th percentile, which was su�cient to isolate the anisotropic resection

ROI in most patients, but additional noise from tissue shifting necessitated the additional

requirements of a hard threshold TFCE-boosted intensity >500 and a cluster size of >5. This

result was quality-controlled using the Mindcontrol platform [101] for accurate representation

of post-surgical cavity.

Tractography

Any tractography method can be applied to produce a prediction of the white matter struc-

tures disrupted by the surgery. For the demonstration detailed by this manuscript, the

pre-surgical whole brain white matter was seeded (anisotropic power >4) and tracked using

residual bootstrap probabilistic q-ball tractography [23] with the parameters described in

[37]. Briefly, the preprocessed di↵usion signal was fit using spherical harmonics (even orders

up to 4) so that orientation distribution functions (ODFs) with constant solid angle factor

could be estimated from the data [157, 155, 156]. To perform residual-bootstrap tractogra-

phy [23], principal fiber orientation was estimated at each step by computing a bootstrapped

ODF and identifying the peaks (exclusion criteria for peaks: <45 from a larger peak or peak

value <25% of ODF maximum). The principal fiber orientations from the bootstrap ODFs

provided the distribution of fiber tracking directions. Tracking was terminated upon the

following criteria: FA threshold of 0.15 and maximum angle of 60 [29].

The whole-brain streamline dataset was targeted using the anisotropic resection ROI

to infer the connectivity of the resected anisotropic tissue. The resulting distribution of

streamlines represents likely pathways of major underlying white matter structures at risk of

being damaged by the surgical resection. The pathways with higher confidence have many
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Figure 4.2: Di↵usion Metric Di↵erence Map Example

Di↵erence maps were created by subtracting the aligned post-surgical di↵usion metric image
from the pre-surgical. The resection cavity is shown as positive in the anisotropic power
map (APM) because anisotropic tissue was resected, and negative in the mean di↵usivity
(MD) and B0 maps because tissue was replaced with CSF, which has higher di↵usivity and
T2-contrast intensity.

streamlines following roughly the same trajectory. This confidence can be estimated using

the Cluster Confidence Index (CCI) [99]. To eliminate low-confidence pathways that make

results noisy and di�cult-to-interpret, any streamline shorter than 40mm or with CCI <1

(calculated using default CCI parameters: k=1, theta=5, subsamp=8) was excluded from

figures and analysis. This procedure is depicted in Figure 4.4; the code to calculate the CCI

is open-source and can be downloaded from GitHub (https://github.com/kesshijordan).

48



Figure 4.3: Focal White Matter Damage Segmentation Flowchart

The pre- and the post-surgical Anisotropic Power Maps are subtracted to produce the Pre
- Post image. This image is spatially clustered using FSL’s threshold-free cluster enhance-
ment to boost the value of spatially coherent decreases in anisotropic power, resulting in the
Threshold-Free Cluster Enhanced (TFCE)[148] image. Several thresholds were applied (99th

percentile, TFCE-boosted intensity >500, cluster size >5) to isolate the anisotropic resection
ROI.

Figure 4.4: Cluster Confidence Index (CCI) Filtering of Streamlines

The streamline output was filtered objectively using the Cluster Confidence Index (CCI),
to exclude low-confidence streamlines (left panel). Any streamlines with CCI <1 or length
<40mm were excluded from analysis, resulting in the final disconnection tractogram (right
panel), shown with the anisotropic resection ROI.
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Software Implementation

This pipeline was built and run using the Nipype software package [77]. The resection ROI

output was quality-controlled using the Mindcontrol software package [101]. The code is

open-source and can be downloaded from GitHub (https://github.com/kesshijordan).

Comparison to Manual Analysis

The results of this pipeline were compared to those generated by [37]. In [37], the follow-

ing white matter bundles were segmented independently by two neuroradiologists: arcuate

fasciculus (AF), components 2 and 3 of the SLF (SLF II and SLF III), temporo-parietal

component of the SLF (SLF-tp), inferior fronto-occipital fasciculus (IFOF), uncinate fasci-

culus (UF), inferior longitudinal fasciculus (ILF), middle longitudinal fasciculus (Md-LF),

according to methods outlined in their cited paper [37, 34, 38, 117], along with the corti-

cospinal tract (CST) and optic radiation (OR) [29] [87]. The same two neuroradiologists

independently rated the degree to which each of these fascicles had been disrupted both pre-

and post-surgery as unchanged (0), displaced but otherwise normal appearing (1), partially

interrupted (2), or completely interrupted (3). These categories were reduced to a↵ected

(0 or 1) and not a↵ected (2 or 3). A pre- to post-surgical change from 1 to 2 or from

2 to 3 should be reflected in the results of the di↵erence pipeline because either of those

transformations indicate removal of tissue that caused a disconnection.

4.3 Results

Evaluation of Performance: Connectivity of Anisotropic Resection

ROI

The streamline output of the di↵erence pipeline clearly shows the white matter structures

hypothesized to have been disrupted by the surgery (Figure 4.5). These sub-bundles are rec-

ognizable by shape and their pathway through the brain. For the purposes of demonstrating

this using a two-dimensional figure, the streamline output for each case has been colored by

a researcher with experience in fascicle modeling to highlight the bundles associated with
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motor, optic, or language that are routinely modeled for pre-surgical planning research at

UCSF (Figure 4.6). These illustrative cases are compared to the subjective rating conducted

by [37]. This study manually segmented fascicle models of bundles pre- and post-surgery,

rating each subjectively on a scale from 0 to 3 (0=una↵ected, 1=infiltrated/displaced, 2=par-

tially destroyed, 3=completely destroyed). The di↵erence pipeline shows disconnections in

tractography models, so we would expect bundles output by the di↵erence pipeline to reflect

rating changes from 0/1!2 or 0/1/2!3. In theory, the rating scale could be unchanged be-

tween the pre- and post- surgery in the presence of resection-related disconnection because a

fascicle that was partially destroyed pre-surgery and further damaged by the resection would

receive an identical partial destruction rating (score of 2) for both time points. This rating

scale is not resolute enough to specify extent of damage beyond partial to full disconnection.

Changes 0!1 or 1!2 would not be reflected in the di↵erence pipeline results because they

do not indicate disconnections.

Figure 4.5 demonstrates the basic idea: the left panel shows the connectivity of the

di↵erence pipeline output anisotropic resection ASAP ROI (colored red), as modeled by

tractography. We can see a bundle that follows the path of the Uncinate Fasciculus (purple)

from the frontal lobe, hooking down and around into the anterior temporal lobe and another

bundle that follows the path of the Inferior Fronto-Occipital Fasciculus (green), from the

frontal lobe through the external/extreme capsule and continuing posteriorly to terminate

in the occipital lobe. The connectivity of the anisotropic resection ROI suggests that these

two bundles were disconnected by the surgery; specifically, the sub-bundles of the UF that

projected laterally into the frontal cortex and possibly some UF components that terminate

anteriorly in the frontal lobe. The right panel shows the pre- and post-surgery tractography

models from which the damage rating was assigned. From these manual reconstructions,

it appears that the lateral projections of both the UF and IFOF present in the pre-surgery

model are missing from the post-surgery model. In this case, the subjective damage rating of

the UF and IFOF increased from 1 (infiltrated/displaced) to 2 (partially destroyed), so the

approaches reached the same conclusion with respect to these two structures. The subjective

rating also scored the SLF II as increasing from a score of 2 to 3, but the resection did not

overlap with the missing streamlines from the SLF II (the underlying white matter appears
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Figure 4.5: Disconnection Tractograpm vs. Pre-Post Surgery Analysis

Comparing Di↵erence Pipeline to Pre-/Post-Surgery Anatomically Constrained Fascicle
Models LEFT: The Di↵erence Pipeline Results suggest that the resection ROI (red) discon-
nected segments of the Inferior Fronto-Occipital (green) and the Uncinate (purple) Fasciculi.
The RIGHT panel shows the manual/subjective comparison (Caverzasi 2016) study results
pre (LEFT) and post (RIGHT) surgery in the transverse plane. The orange circle indicates
the change pre- vs. post-surgery. The manual results indicated potential disruption of the
SLFII, but the underlying white matter is intact so it is likely due to post-surgical tracking
di�culty should not be included in the disconnection tractogram. Manual Results: IFOF
(1!2), Uncinate (1!2), SLFII (2!3), SLFIII (2!2), Arcuate (1!1)

intact). It is possible that this discrepancy is due to tracking di�culty in the post-surgical

dataset. The presence of edema has the potential to influence these tractography models

significantly because the stopping condition is based on fractional anisotropy, which drops

in the presence of edema. This case demonstrates an important advantage of the di↵erence-

pipeline approach: each anatomically-defined fascicle is made up of a variety of sub-bundles

that project to di↵erent gyri and may support di↵erent functions or have di↵erent levels

of redundancy. The di↵erence-pipeline approach indicates that the sub-bundles of the UF

and IFOF projecting laterally are likely to have been disrupted, which could be a relevant

distinction to make when investigating the relationship of white matter disconnection to

functional deficits in a patient. Also, the di↵erences in tractography conditions between the

pre- and post-surgical datasets is less problematic because the tracking is all performed in
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the pre-sugical dataset to create the disconnection tractogram.

Disconnection tractograms are shown for the entire cohort that passed quality-control

(26/29 subjects) in Figure 4.6. The left image for each patient shows the automatically-

generated connectivity of the anisotropic resection ASAP ROI (CCI >1), as described in

the methods, colored by standard orientation. In the standard orientation color-scheme,

each streamline is colored according to the dominant trajectory, as seen on the traditional

FA color map (red=right/left; blue=superior/inferior; green=anterior/posterior). The right

image shows any fascicles-of-interest colored according to the provided key. Of the 29 pa-

tients that met inclusion criteria, 3 did not pass quality control: one patient had a bad

registration between the pre- and post-surgical images and 2 had false-positive ASAP ROI’s

present. In the 3 cases investigated for anomalous large regions of Anisotropic Power in-

crease post-surgery, other imaging contrasts indicated postoperative blood products and/or

pneumocephalus colocalizing with the region.

Automatic Pipeline

One of the most obvious advantages to an automatic pipeline is labor-cost savings. This co-

hort was processed with minimal intervention by a human operator. All of the pre-processing,

image registration, di↵erence map calculation, clustering, and thresholding was handled en-

tirely by the pipeline code. Depending on how the tractography is implemented, that step

could be easily integrated, as well. The human requirements to generate a disconnection

tractogram are quality-control of the pipeline inputs and output, which involves quickly

looking at a pre-surgical di↵usion image, a post-surgical di↵usion image, and overlaying the

ROI. The streamline connectivity of the anisotropic resection ROI output could, in theory,

be generated completely automatically and be sent to a neuroradiologist for quality control

(QC) and reading of which white matter structures were at risk of being disrupted by the

surgical resection. To demonstrate: if we look at the disconnection tractograms from all of

the patients in this cohort that passed QC in Figure 4.6, it is straightforward to identify what

bundles were at risk of being damaged by the surgical resection, especially in cases U!Z,

which show no streamlines belonging to fascicles-of-interest. Using a manual approach would

require all of the surrounding fascicle models to be tracked and segmented to judge whether
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or not they had been damaged by the surgery. Using this disconnection tractogram gener-

ated from the di↵erence pipeline, we can easily see that no fascicles-of-interest were included

in the disconnection tractogram and conclude that none of the fascicles in our study were

likely to have been damaged by the resection.

Continuous Representation of White Matter Damage

One advantage of representing white matter damage continuously, as opposed to using a

rating scale, is that some damage patterns cannot be described discretely. Figure 4.7 demon-

strates this point. From the connectivity of the anisotropic resection ROI (Figure 4.7 left

panel), we can segment portions of the left Arcuate Fascicle (yellow) and left Inferior Fronto-

Occipital Fascicle (green). This agrees with the manual reconstructions of the pre- and

post-surgery Arcuate and IFOF (Figure 4.7 right panel). The IFOF appears to have lost

a large portion of its superior-frontal lobe connections as a result of the resection, which is

reflected in the damage rating increase (rating 1!2) and noted in the resected tissue missing

from the post-surgery IFOF model (orange arrow). The Arcuate, however, did not change

in subjective rating pre- vs. post-surgery (rating 2!2); the fascicle model was partially

destroyed pre-surgery and futher destroyed post-surgery, but the rating system was not reso-

lute enough to reflect that distinction. This case shows the advantage of having a continuous

representation of damage, as opposed to a discrete one; the Arcuate is subjectively codified

as unchanged, but the di↵erence pipeline connectivity shows the specific connection that was

threatened by the surgery.

Another case that demonstrates the advantage of evaluating white matter disconnection

on a continuous scale is shown in Figures 4.8 and 4.9. According to the disconnection

tractogram, the region immediately adjacent to the tumor is connected to the temporal

lobe, frontal lobe, and spinal cord. However, these streamlines do not meet the criteria for

inclusion in the any Anatomically-Constrained fascicle models because both ends do not

reach the cortex. These bundles follow trajectories characteristic of the Arcuate Fascicle

(yellow), the IFOF (green), and a bundle connected to the spinal cord (blue). The pre-

surgical model of the Arcuate does not include the component wrapped around the tumor

because it does not reach the cortex, so the pre- vs. post-surgical models were rated as
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unchanged.

Performance Despite Distortion and Artifacts

The di↵erence pipeline performs well, in spite of interference from artifacts or tissue distor-

tion. As we can see in Figure 4.10, the pipeline output suggests that the Arcuate (yellow),

Medial Longitudinal Fascicle (MdLF=orange), the Inferior Longitudinal Fascicle (ILF), and

a small bundle going to the spinal cord (blue) were at risk of being damaged by the surgical

resection. The artifact appears to be associated with blood products and pneumocephalus

(by comparison to T1 and CT), and was not considered in the ASAP ROI because the

anisotropic power increased, instead of decreased. These results reasonably agree with the

analysis by [37]. The Arcuate was rated as increasing 1!2 and the MdLF increased from

1!3. The cortico-spinal track was rated as unchanged (1!1), but the di↵erence pipeline

result was wrapped around the tumor and did not terminate in the motor cortex, so it would

not have been included as part of the pre-surgical CST model. The ILF numerical rating was

unchanged (2!2), but the rating scale was not sensitive to severity of partial disconnection,

so this does not disagree with our pipeline output results.

Another case that demonstrates the power of this approach in studying cohorts with tis-

sue distortion is shown in Figure4.11. This patient had a particularly septated heterogeneous

lesion with cystic, nodular and hemorrhagic components, which was further complicated by

post-surgical hemorrhage exerting pressure on the tissue. A mass e↵ect is apparent in the

pre- and post-surgical images (Figure 4.11), but the pipeline still resulted in a reasonable

output that did not disagree with the manual assessment by neuroradiologists. The output

showed a sub-bundle of the Arcuate (yellow) as the likely white matter disconnection occur-

ring as a result of the resection. The manual approach rated the only changes as Arcuate

Fascicle and SLF II increasing in damage from 1!2. One point to note, in a case like this,

performing tractography on the post-surgical dataset may be very di�cult because of chal-

lenges associated with performing tractography post-surgery (e.g. edema, blood products,

metallic implants, etc.). The cavity is not adjacent to the SLF II, so the damage rating to the

SLF II structure is questionable; it is possible that the manual reconstruction was missing

components due to post-surgery tracking di�culty, as opposed to the tissue being resected.

55



The di↵erence pipeline produces disconnection tractograms using pre-surgical data; the post-

surgical data is only used to identify cavity, so surgery-related edema or blood products has

less e↵ect on the results.

False Positive Resection ROIs

Several patients failed QC due to the presence of false-positive resection ROI’s. One example

of this is shown in Figure 4.12: this patient had a false-positive error in the automatic

segmentation of the anisotropic resection ROI due to excessive distortion of ventricles. Blood

products and pneumocephalus appear to compress the brain postoperatively and cause the

ventricles to shift, in relation to the preoperative image. The peri-ventricular white matter

is being mistaken for a resection ROI because parts of the highly anisotropic corpus callosum

overlay the shifted ventricle in the post-operative image. This caused two patients in the

cohort to fail quality control.

4.4 Discussion

In this manuscript, we present a pipeline that objectively evaluates focal white matter

damage to give researchers a tool for robustly and e�ciently advancing the translation of

tractography-based methods to the clinic. The need for technical development of tractogra-

phy methods is widely acknowledged [56]. A study by [60] evaluated the anatomical accuracy

of fornix tractography across many algorithms based on anatomical accuracy and number of

fibers outside of anatomical boundaries. Based on their findings, the authors stressed that

the manual intervention commonly employed to “clean up” false positives with placement

of exclusion ROI’s creates a danger for excluding displaced fibers that represent genuinely

displaced white matter bundles [60]. We found this concern to be justified in this study, as

well. As an example, the case presented in Figure 4.8 had subjective ratings of fascicle dam-

age that did not explain the permanent new language deficit that the patient experienced.

An analysis of the di↵erence pipeline results suggested that a fragment of the model of the

Arcuate Fascicle, a white matter structure associated with language deficits [24], wrapped

around the tumor and had potentially been disrupted by the surgery. While this wrapping
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phenomenon is not well-characterized, it is reasonable to assume that information can be

gleaned from structures engaged in wrapping merely because of their proximity to the tumor,

which puts them at risk of being damaged by the surgical resection. In the manual fascicle

modeling of this case, streamlines that wrapped around the tumor region were removed by

the manual operator because they did not match the anatomical constraints of the Arcuate

Fascicle, so the potential disruption was not reflected by the post-operative rating scale be-

cause the at-risk bundle was excluded from the pre-operative model 4.9. In the case shown

in Figure 4.8, a distorted fascicle model of a bundle indicating connectivity to the spinal cord

was wrapped around the tumor, but did not reach the cortex so the identity is inconclusive.

The patient had a short-term post-surgical motor deficit, so information about connectivity

to the spinal cord may be relevant to this case. It may be that the white matter directly

adjacent to the tumor region helps to explain the discrepancy between tissue damage and

functional deficits, but tractography models in that tissue are highly uncertain due to the

presence of disease processes. The field needs to conduct studies with hundreds (or even

thousands) of patients using objective, reproducible methods before the technology can be

explored as a tool to inform clinical decisions. Developing methods to minimize the extent

of manual intervention is a crucial step toward this goal.

Advantages

The di↵erence pipeline approach, presented here, is advantageous in several respects. The

objective and automatic aspects have vast implications on scalability of studies and transla-

tion across institutions, but the pipeline approach, itself, has unique advantages for studies

of any size. As demonstrated by Figure 4.7, sub-bundle resolution is important in executing

specific studies relating white matter connectivity to functional deficits; the classification of

a subcortical pathway may include a variety of connections and there may not be a consensus

on the exact components of an anatomically-defined fascicle model. The Arcuate, for exam-

ple, has terminations on entirely di↵erent gyri, each of which may serve distinct functions

[61]. The connectivity of the Uncinate Fasciculus is still controversial, but there is evidence

for terminations all the way down the orbito-frontal cortex, adjacent to the amygdala, and

connections that turn anteriorly into the anterior temporal lobe [79, 81]. Also, there is evi-
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dence that a bundle’s robustness to damage is not uniform [83]. The controversy surrounding

sub-bundle functionality evidences the need for tools that facilitate investigation of white

matter structures with sub-bundle resolution. In Figure 4.13, the bundles associated with

transient (Arcuate and ILF) and permanent (Arcuate, SLF-ip and SLF-tp) language deficits

in this cohort are readily apparent.

Another advantage of an automatic pipeline is minimizing the influence of human sub-

jectivity on results, which present challenges in translating results across studies and institu-

tions. In the [37] study, the raters were presented with ambiguous cases in which the part of

the fascicle model typically related to language function had been disconnected, but not the

entire anatomically-constrained fascicle model. They had to choose whether to rate the track

as “completely destroyed” in the spirit of the study’s intended purpose of relating track model

damage to functional deficits, or “partially destroyed” using strictly anatomical definitions of

fascicle models. There is not yet consensus on the functioanl role of each sub-bundle in most

fascicle models, or even what sub-bundles should be included in an anatomically-constrained

model (not to mention variability in what these models look like, depending on tractography

choices such as tensor vs. Q-Ball model). Subtleties such as these speak to both the need

for continuous representation of bundles to distinguish between di↵erent sub-components,

and the importance of eliminating human intervention to enhance reproducibility and make

translation of results and methods across institutions more realistic.

This pipeline approach is also very simple, in terms of imaging. The entire procedure was

performed using solely HARDI images (T2, AP, MD, L1, RD are all derived from HARDI

data), so there are no inter-modal registration issues. Approaches using T1 anatomy to

study di↵usion imaging run the risk of mismatch between sequences. Also, the approach only

attempts to precisely register images longitudinally; there is no registration to MNI, as is the

case in voxel-lesion symptom mapping (VLSM). Cases, such as Figure 4.12, may be excluded

from VLSM studies due to the extreme level of tissue distortion. In a study by Herbet and

colleagues, “patients with abnormailities on MRI (e.g. tumour-related deformation, hyroma,

abnormal ventricle size, etc.) were also excluded... to avoid normalization problems” [83].

These abnormalities are not a problem for this di↵erence pipeline approach, provided that

they are consistent. The distortion between pre- and post-surgery are similar enough that
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the patient was successfully analyzed by the di↵erence pipeline. The resulting tractography

model generated on the single-subject level can be compared in a cohort study without ever

registering the distorted tissue, itself, to a common space. Conclusions made using VLSM

must be qualified by statements such as “a large proportion of the significant voxels identified

in the VLSM analysis... seemed to overlap with the spatial location of the IFOF” [3]. This

pipeline models the connectivity of the resection tissue in the patient-specific space, which

confers confidence in the identify of the white matter structure threatened by the surgery.

Additionally, compared to the [37] approach of using post-surgical tractography models

to depict white matter damage, this method is less sensitive to immediate post-operative

challenges to tracking, like edema or blood, because all of the tracking is performed in the

pre-operative condition. Only regions with the highest, most spatially coherent, drop in

Anisotropic Power are included in the analysis.

Considerations

While this pipeline confers many advantages, several considerations should be taken into

account. Some studies have shown that it is important to consider the location of damage

along the length of the track. In [83], their results showed varying levels of “neuroplastic

potential” in di↵erent segments of tracks (for example anterior vs posterior ILF). It is possible

that these di↵erences can be attributed to sub-tracks not distinguished by tractography, but

it may also be that the characteristics of a track genuinely vary along its length. If the

former, then higher-resolution tractography may help address this concern; if the latter,

however, it will be important to account for specific location along the length of the track,

perhaps using some sort of streamline template-matching.

An element of post-surgical track damage that is not accounted for by this pipeline

is ischemic injury. It may be possible to optimize this pipeline for ischemic injury using

the di↵erence maps; known changes in MD could be leveraged in a similar manner to how

anisotropic power was used in this study by identifying spatially coherent regions of MD

decrease between pre- and post-surgical images.

Another consideration when deciding on an experimental approach is when and how to

collect the HARDI datasets. There is a tradeo↵ between some of the challenges present im-
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mediately postop, and the risk of tissue reorganization or further disease processes occurring

at a later time-point, after immediate post-operative challenges have resolved. Analyzing

immediate post-operative images has its challenges, but this approach isolates the focal white

matter damage due to surgery. It is possible that serial HARDI scans would be beneficial

to address the challenges associated with both time points. There are ways to improve data

quality to address some of these post-surgical challenges, however. One of the aspects of

post-surgical images that makes registration to pre-surgical images di�cult in this partic-

ular cohort is the susceptibility artifacts caused by blood, air, and implants being imaged

using an Echo-Planar sequence. The HARDI datasets from this study were not collected

with any components necessary for susceptibility correction at the time of acquisition. Sus-

ceptibility correction can be trivial, provided either a field-map [95] or two B0 images with

opposite phase-encoding gradients are collected at the time of acquisition [6]. Applying this

pipeline to susceptibility-corrected images should improve performance, as that removes one

element of mismatch pre vs. post-surgery. The authors strongly recommend that, if possible,

susceptibility correction is included in sequence planning.

Anisotropic Power Di↵erence Map Artifacts

In several cases, the pattern of anisotropic power decreasing and mean di↵usivity increasing

pre- to post- surgery was reversed in some regions around the surgical site. Anisotropic

power is extremely hyperintense in these regions post-surgery (greater than the intensity of

the corpus-callosum, which should have some of the highest anisotropic power in the whole

brain)(Example: Figure 4.11). Based on comparison by a neuroradiologist to CT images,

there were two explanations for this phenomenon: pneumocephalus and blood products.

When air is present inside the skull (pneumocephalus), MD decreases because CSF/tissue

is displaced by air, so the anisotropic power presents as artifactually hyperintense post-

surgery resulting in a net increase in the AP di↵erence parameter. This parameter reversal

was apparent in several cases, as can be seen in Figure 4.10. AP is increasing and MD

is decreasing, because anisotropic power appears to be artifactually hyperintense in the

presence of blood. The decrease in mean di↵usivity (MD) is logical because blood is very

viscous, restricting di↵usion. Anisotropic power (AP) is a relatively new measurement, so it
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has yet to be characterized. This artifact in AP hyperintensity may be due to the dephasing

of signal in the B0 image due to inhomogeneity of fields characteristic of (blood because of its

high paramagnetic properties and air/tissue interface creates a susceptibility artifact). The

di↵usion weighted signal (S=Sdwi/Sb0) is equal to the di↵usion weighted image divided by

the B0 image, so if the B0 image has signal dropout, noise in the di↵usion-weighted image

is divided by zero and results in an artifactually high AP.

Tractography Limitations

In one case, the di↵erence pipeline missed some bundles because they were not represented

in the pre-surgery streamline dataset used for targeting the resection ROI. This is due to

insu�cient seeding density; these streamlines were represented in the [37] because the seeding

density was much higher. The seeding scheme could be inflated using a method like the

iterative Cluster Confidence Index approach [99] or a method like Linear Fascicle Evaluation

[132] could be used to identify cases in which the tractography model does not represent

the underlying di↵usion signal adequately in the pre-surgical tracking. In cases with a high

level of edema, the stopping condition should be changed from FA <0.15 to an approach

more favorable to tracking through edematous tissue would help to ensure that pre-operative

bundles are more faithfully represented.

Challenges Analyzing Resections

Resection studies are very di�cult, from an engineering standpoint, because the mechanics of

tissues are di�cult to predict [52, 158], especially when a heterogeneous pathology is involved

[65]. There is a significant concern for how well the tissues can be matched from pre- vs. post-

surgery imaging and at what point correcting for the tissue shifts that come with focal lesion

resections (the previous tumor growth exerting local pressure that subsequently relaxes back

into the resection cavity after removal, which eventually disappears), gravity causing tissue

to “cave in to larger resections, blood causing both imaging artifacts and, in some cases,

exerting pressure on the brain, implants causing imaging artifacts, air causing both tissue

displacement and imaging artifacts, pressure/CSF changes, swelling of tissue, to name a few.

Setting parameters for longitudinal registration between perisurgical timepoints involves a
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tradeo↵: the nonlinear registration algorithm must reflect genuine tissue shift associated with

the surgery, but it it cannot be allowed so much flexibility that it “corrects” the surgical

cavity. For example, in some cases there are ventricular distortions that are of the same

magnitude as resection ROI’s so they are manifesting as false-positives (Figure 4.12).

Many concerns about using this ASAP pipeline approach can be addressed by rigorous

implementation standards: a pilot study should always be performed with the results from

a variety of extreme patient conditions evaluated by neuroradiologists, and a strict QC

protocol employed. Several features of di↵usion parameters lend themselves to serving as

indicators for QC. Pneumocephalus and blood products are easy to flag for QC because

inverse parameter changes are straightforward to identify automatically. The presence of

blood products could cause tissue damage by a mechanism di↵erent from that of resected

tissue. By flagging inverted parameter changes, blood products can be treated as a separate

group or an expert can decide on a case-by-case basis whether or not to include the voxels

in the ASAP ROI as damaged white matter based on other factors (e.g. other imaging or

knowledge of surgery). One of the weaknesses of the ASAP pipeline applied to a neurosurgical

cohort is a tendency to report false-positive ROI’s around the ventricles when large shifts

in the brain occur. Many QC approaches could be implemented to address these problems:

screening for multiple ROI’s a minimum distance apart, using other di↵usion parameters that

identify the cavity location, or even explicitly screening for periventricular resection ROI’s

using a rough atlas are all viable options. Pneumocepahalus exerts pressure on the brain,

and might indicate more severe post-operative tissue distortion (compared to pre-surgery)

and will also cause susceptibility artifacts due to the air-tissue interface that may be useful

to flag. Several artifacts appear to manifest as anisotropic power hyperintensity, so cases

that may not have been processed as expected can be flagged easily using this metric.

Potential

In this demonstration, the output of the fascicle model was classified by an expert based

on the trajectory of the pathway. Automatic classification algorithms are being advanced

all the time ; some have even been demonstrated as robust to pathology [169, 128]. Given

the uncertainty associated with reconstruction of fascicle models in the face of extreme
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anatomy distortion, it is unlikely that automatic algorithms will be able to replace expert

input, entirely. However, it is possible that automatic classification of extreme deformation

pathologies is on the horizon, at least for research purposes. This would be a great tool

in facilitating large-N fully-automatic studies and (after rigorous testing and engineering

development to advance reliability and establish fail-safe protections) be a candidate for

translation to the clinic as a resource for informing clinical decisions. With studies leveraging

resolution of white matter damage on a continuous scale, maps that show the risk of a

particular deficit could be developed with the confidence that comes from very large studies.

The next steps in this work are to 1) optimize this di↵erence pipeline to identify ischemic

injury automatically, 2) isolate the pre-surgical damage by comparing the pre-surgical time-

point to a healthy template, and 3) leverage streamline classifiers and fascicle templates

to automatically quantify what percentage of a fascicle model any given bundle represents.

With these advancements, we would have a tool that automatically quantifies the fascicle

damage exerted by each stage of pathology/intervention. This would provide a more com-

plete picture of each patient’s disease/intervention course and enable studies accounting for

more sources of white matter disconnection. For example, a patient that presented with

a tumor, underwent a resection, experienced a recurrence, and underwent a second resec-

tion could have a complete story of white matter damage if they receive HARDI scans in

conjunction with typical check-up scans. The ASAP-tractogram pipeline could be applied

between adjacent timepoints to create a damage trajectory that could then be associated

with quality-of-life changes.

The HARDI sequence only adds an additional 6-8 minutes (or less with Multiband ca-

pability) to the MRI scan time and has the potential to provide a wealth of information on

what white matter damage patterns can be recovered from and what constitutes a perma-

nent functional deficit. After large, reproducible studies are conducted that relate damage

patterns to deficits with tight confidence intervals, it may be possible to use these tools

to help the patient to make decisions about how much risk they are willing to take on to

functional systems and use this information to help plan a surgery that the patient is most

comfortable with.

This pipeline could also be applied to other types of longitudinal white matter damage.
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Neurosurgical intervention in pathologies involving less tissue distortion should work at least

as well as this tumor demonstration (the pre-surgical brains in non-tumor epilepsy patients

should be more similar to controls than, for example, a grade IV tumor). Pathologies like

stroke and Multiple Sclerosis may require tuning of parameters but, in theory, should be a

good application for this pipeline because the deformations between timepoints are much

smaller than those associated with tumor resection.

4.5 Conclusion

A shift in the framework of thinking about the brain has been progressing from a topo-

graphical approach to one more focused on pathways (“hodotopical”) [32]. This is reflected

in e↵orts by the field of neurosurgery to move beyond preservation of discrete “eloquent re-

gions” toward a holistic approach integrating information from many anatomical/functional

systems [54]. Tractography methods are being pushed into the neurosurgical clinic because

they provide invaluable in-vivo information about patient-specific white matter structures,

essential to understanding this new paradigm. There is growing evidence that the potential

of functional compensation for white matter damage is limited (LGG [89] stroke [80] TBI [69]

[46]) and that, for post-surgical plasticity to be possible, long-range white matter connections

must be spared by surgery [57]. There is evidence that tissue loss can be compensated for

by adjacent regions [18] and that long-range connections may help cortical reorganization

[131]. All of these questions are essential to answer as the field considers using di↵usion

imaging to guide treatment, but the studies required to develop confidence in the answers

cannot be done with today’s technology. To further advance studies relating focal white

matter damage to deficits, we need methods that are objective, automatic, and compatible

with brains distorted by pathology.

The ASAP-tractogram approach proposed in this manuscript may provide advantages

over current methods for both accuracy and e�ciency when confronted with pathology that

significantly distorts the normal anatomy (as is often the case for brain tumors). Further-

more, automatic and objective features of the pipeline for both lesion segmentation and trac-

togram generation may o↵er advantages even for cases accessible to other approaches. The
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proposed method has two essential components, (i) automatic segmentation from anisotropic

power (ASAP) di↵erences, and (ii) modeling disconnection using tractography on the single-

subject level, which specifically identifies the disconnections associated with focal white mat-

ter damage. The advantages of this approach stem from (1) objective and automatic lesion

segmentation and tractogram generation, (2) objective and precise segmentation of a↵ected

tissue likely to be associated with damage to long-range white matter pathways (defined by

anisotropic power), (3) good performance even in the cases of anatomical distortions by use

of DW-MRI tensor-based registration in the patient space, which aligns images using white

matter contrast.

4.6 Author Contributions

This work was conducted in collaboration with Anisha Keshavan, Eduardo Caverzasi, Joseph

Osorio, Nico Pappinutto, Bagrat Amirbekian, Mitchel Berger, and Roland Henry.

4.7 Funding

This work was supported by the National Institutes of Health [5R01NS066654-05]. KJ was

supported by the Department of Defense (DoD) through the National Defense Science &

Engineering Graduate Fellowship (NDSEG) Program.

4.8 Acknowledgments

Thank you to the Neuroimaging in Python (NIPY) development community, all of our

research subjects, Ariel Rokem, Francesco Sanvito, Simone Sacco, Antonella Castellano,

Valentina Panara, Robert Knight, Shawn Hervey-Jumper, and Vanitha Sankaranarayanan

65



Figure 4.6: Cohort Disconnection Tractogram Output

Shows the Disconnection Tractograms and identified tracts in this cohort that passed qual-
ity control. The left image shows the resection ROI (red) with the raw tractography output,
colored by standard direction. The right image shows the tractography output segmented by
a human operator to reflect fascicle membership. [CST=cortico-spinal track (dark blue);
SLF-tp=superior longitudinal fascicle temporal-parietal component (medium blue); SLF-
IP=superior longitudinal fascicle infra-parietal component (light blue); Arcuate=arcuate fas-
cicle (yellow); Uncinate=uncinate fascicle (purple); IFOF=inferior fronto-occipital fascicle
(green); ILF=inferior longitudinal fascicle (pink); MdLF=Medial longitudinal fascicle (or-
ange)]
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Figure 4.7: Advantage: Continuous Representation of Damage

From the connectivity of the anisotropic resection ROI (red), portions of the left Arcuate
Fascicle (yellow) and left Inferior Fronto-Occipital Fascicle (green) models were segmented.
This agrees with the manual reconstructions of the pre- and post-surgery Arcuate and IFOF
(RIGHT) models. The IFOF appears to have lost a big chunk to the resection (damage rating
1!2). The Arcuate, however, did not change in subjective rating pre- vs. post-surgery
(rating 2!2); the fascicle model was partially destroyed pre-surgery and futher destroyed
post-surgery, but the rating system was not resolute enough to reflect that distinction. Manual
Results: IFOF (1!2), Uncinate (0!2), SLFIII (2!3, Arcuate (2!2), SLFII (1!1)
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Figure 4.8: Wrapping Around the Tumor: Artifact or Important?

The region immediately adjacent to the tumor contains tracks that do not meet the criteria for
inclusion in the any Anatomically-Constrained fascicle models because both ends do not reach
the cortex. However, the bundles follow trajectories characteristic of the Arcuate Fascicle
(yellow), the IFOF (green), and a bundle connected to the spinal cord (blue). The pre-surgical
model of the Arcuate does not include the component wrapped around the tumor because it
does not reach the cortex, so the pre- vs. post-surgical models were rated as unchanged.
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Figure 4.9: Disconnection Tractogram vs. ACT Presurgical Model of Arcuate Fascicle in
Patients with Postsurgical Language Deficits

The presurgical model of the Arcuate Fascicle (Blue) in Patient M (LEFT) is almost entirely
distinct from the disconnection tractogram (yellow), which shows a fragment of an Arcuate
Fascicle model wrapped around the tumor region. The presurgical model of the Arcuate
Fascicle (Blue) in Patient N (RIGHT) largely overlaps with the presurgical model, evidenced
by the interdigitation of the blue and yellow streamlines.
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Figure 4.10: Pipeline Performance with Blood Products and Pneumocephalus

This patient had pneumocephalus and blood products which appears to manifest as inverted
contrast on the anisotropic power map (APM) and mean di↵usivity (MD). A) Blood and
pneumocephalus are apparently associated with hyperintense AP, resulting in an artifactual
increase in AP post-surgery. B) Mean di↵usivity decreases due to viscous blood, air, and
ischemia. C) The di↵erence pipeline still succeeds in isolating the tissue that decreased in
AP. This di↵erence map suggsts that the Arcuate (yellow), Medial Longitudinal Fascicle
(MdLF=orange), the Inferior Longitudinal Fascicle (ILF), and a bundle connected to the
spinal cord (blue) were at risk of being damaged by the surgical resection. Manual Results:
Arcuate (1!2), MdLF (1!3), ILF (2!2), SLFII (2!2), SLFIII (3!3), IFOF (3!3),
Uncinate (3!3), CST face/hand (1!1)
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Figure 4.11: Pipeline Performance with Severe Tissue Distortion

In this case, severe mass e↵ect was observed due to the aggressive growth of the tumor and
pressure from hemorrhaging. This pipeline was still able to estimate an anisotropic resection
ASAP ROI and produce a prediction that the Arcuate Fascicle was disconnected. The manual
rating also cited the SLFII as being damaged, but the underlying white matter is intact so this
discrepancy could be explained by post-surgical tracking di�culty. Manual Results: Arcuate
(1!2), SLFII (1!2), SLFIII (2!2), SLF-tp (3!3), ILF (3!3), MdLF (3!3), IFOF
(3!3), Uncinate (3!3), CST face/hand/foot (1!1)
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Figure 4.12: Pipeline Performance: False Positive

In this case, a false-positive error in the ASAP ROI was observed due to excessive distor-
tion of ventricles. Blood products and pneumocephalus appear to have compressed the brain
postoperatively and caused the ventricles to shift, in relation to the preoperative image. The
peri-ventricular white matter was misclassified as ASAP ROI because parts of the highly
anisotropic corpus callosum overlay the shifted ventricle in the post-operative image. This
false positive presented in 2 out of 29 patients in the cohort and was addressed easily by QC.
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Figure 4.13: Language Deficit Disconnection Tractograms

Shows the Disconnection Tractograms and identified tracts in this cohort that experi-
enced transient (left) and permanent (right) language deficits, colored by fascicle member-
ship. [CST=cortico-spinal track (dark blue); SLF-tp=superior longitudinal fascicle temporal-
parietal component (medium blue); SLF-IP=superior longitudinal fascicle infra-parietal com-
ponent (light blue); Arcuate=arcuate fascicle (yellow); IFOF=inferior fronto-occipital fasci-
cle (green); ILF=inferior longitudinal fascicle (pink)]
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Chapter 5

Tractography-Based Treatment

Volume Modification for Radiation

Therapy Planning: Pilot Study

5.1 Introduction

Glioblastoma multiforme (GBM) is an aggressive and common form of malignant primary

brain tumor. The treatment for GBM typically consists of surgery, radiation therapy, and

chemotherapy, but the prognosis for patients is still quite poor with a median survival of

about 15 months [2]

The standard treatment starts with a maximal safe neurosurgical resection [107]. After

surgery, the patient typically receives concurrent radiation therapy (RT) and chemotherapy

[151]. Postmortem investigation has suggested that most recurrences (90%) occur within

2cm of the primary tumor site [86], so the RT treatment volume (clinical target volume =

CTV) is often defined by a 2cm isotropic expansion around the tumor bed and any residual

tumor (Gross Tumor Volume = GTV). It should be noted that there is not a consensus on

the optimal way to define the CTV. Several studies have tested the accuracy of di↵erent RT

volume definitions. Defining the CTV by a 2cm expansion had a success rate of 86% [84].

Another study compared this 2cm expansion CTV to an approach including peritumoral
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edema and found that the including edema did not change the failure rate, but did increase

the radiated volume [40]. There is evidence that tumor cells migrate preferentially along

large white matter bundles [73, 72], so an anisotropic expansion that takes large white matter

bundle configuration into account may maximize the chances of radiating migrating cancer

cells and minimize the amount of brain tissue radiated. As discussed at length in previous

chapters, di↵usion-weighted MRI (DW-MRI) can be used in combination with fiber tracking

algorithms to model the trajectory of large white matter pathways using the direction and

magnitude of water movement in tissue [11, 108, 133, 130, 159, 154, 92, 8, 93, 161, 85]. The

method presented here is a tool for translating a di↵usion MRI fiber tracking dataset into

a pathlength map that assigns each voxel a nearest distance along a streamline back to a

provided region of interest.

5.2 Methods

Patients

Twenty-six patients with newly diagnosed Glioblastoma (GBM) who underwent primary

adjuvant radiotherapy were selected for this pilot study. Inclusion criteria were: radiograph-

ically confirmed recurrence and meeting the standard HARDI scan parameters. Nine patients

were excluded because they did not have a radiographically confirmed recurrence and three

patients were excluded because their HARDI scans were inconsistent with the cohort. All

included subjects underwent a High Angular Resolution Di↵usion Imaging scan (HARDI)

with the following parameters: 55 directions, b=1000 s/mm2, 1 B0 image, 1.09x1.09mm

in-plane resolution, 2mm slice thickness. Research was performed in compliance with the

Code of Ethics of the World Medical Association (Declaration of Helsinki) and the standards

established by our institution. The Committee on Human Research at the University of Cal-

ifornia, San Francisco, approved the study protocol. Written informed consent was obtained

from all study participants.
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Approach

Given the knowledge that tumor cells preferentially migrate along large white matter bundles,

the use of tractography information to model the trajectory of these pathways should increase

the chance that a Radiation Therapy (RT) treatment volume includes the site of future

recurrence. To incorporate the di↵usion tractography information into the RT treatment

planning software, a path length map was generated to represent the modeled white matter

pathway distance. Each voxel was assigned the value of the minimum distance along a

streamline connecting it to the Gross Tumor Volume (GTV), defined as the union of the

resection cavity and any residual tumor. A Radiation Therapist hand-drew the GTV to

include the resection cavity and any residual disease, using the FLAIR image.

Open-Source Code

The path length function, implemented in the Di↵usion Imaging in Python (DIPY) open-

source package [66] (PR 1114) computes the shortest path, along any streamline, between a

given region-of-interest (ROI) and each voxel in the provided volume.

Other supporting functions included in this Pull Request (PR 1114: flexi tvis a�ne, get

flexi tvis a�ne) are used in the path length function to reconcile a�ne transformations to

map between grid and streamline spaces with di↵erent voxel orders. These functions are

useful in other applications, like targeting streamlines with an ROI and creating renderings

with VTK renderings. Otherwise, the user must search through headers and figure out how

to get all elements in the same space for image processing or display purposes.

Radiation Therapy Planning

5.3 Results

5.4 Discussion

The demonstrated evaluation of a di↵usion approach is a good method to quickly evaluate

whether or not an anisotropic expansion confers added benefit to standard-of-care isotropic
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Figure 5.1: Example Patient 1 Fiber Tracking Model of GTV White Matter Connectivity

The streamline connectivity of the GTV (red volume) is shown with the recurrence ROI
(yellow volume)

Figure 5.2: Example Patient 1 Recurrence Follows Arcuate Fascicle (DWI15)

Isolating the Arcuate Fascicle from the streamline connectivity of the GTV (red volume),it
is apparent that the recurrence (yellow volume) follows the path of the bundle modeled using
tractography

expansion. If the anisotropic expansion provided by the underlying streamline maps adds

value to the prediction of recurrence, the volume of the anisotropic expansion should be

less than that of the isotropic recurrence when both are expanded to the recurrence site

in a cohort of patients. After added-value has been established, then a much larger study
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Figure 5.3: Example Patient 1 Pathmap Image from GTV

The pathmap was generated based on the streamline dataset from the GTV 5.1. The pathmap
shows the distance along streamlines from the GTV from low (dark blue) to high (light blue)
distance. The GTV is shown in red.

should be conducted to set expansion parameters so that the methodology can be tested

prospectively in a clinical trial.

The flexibility of this approach enables any number of studies to be conducted to inves-

tigate the best way to incorporate di↵usion information into Radiation Therapy planning.

The provided code works on a set of streamlines, so many types of tractography could be

investigated, in addition to methods that incorporate human-operator quality-control steps.

The target ROI can also be varied to investigate integrating pathway distance from residual

tumor, the primary tumor site, or edematous tissue. The timepoint at which the DW-

MRI data is collected could also be varied. This pilot was performed using post-surgical

pre-radiation therapy HARDI datasets, but pre-surgical HARDI datasets might be more

e↵ective to study because the fascicles underlying the tractography have not yet been dis-

turbed by surgical intervention. Many theories of how to use pathway information can be

tested with this methodology: for example, large bundles that were cut by the surgery could
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Figure 5.4: Example Patient 2 Fiber Tracking Model of GTV White Matter Connectivity

The streamline connectivity of the GTV (red volume) is shown with the recurrence ROI
(yellow volume), which appears to follow the path of the cingulum bundle

be isolated to see if neuronal degeneration creates a tumorigenic environment, increasing the

chance that the tumor will recur along that pathway. If a set of streamlines can be created to

reflect a hypothesis, this framework easily translates the dataset into an added-value analysis

to evaluate whether or not that streamline dataset improved prediction of recurrence over

isotropic expansion.

These pathmaps can be loaded into a RT planning software to anisotropically modify

the treatment volume. A pilot case is shown in Figure 5.6. The pathlength map (orange)

was thresholded at a fixed distance (yellow) from the GTV (red) and that volume used to

modify the typical isotropic treatment volume (pink).
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Figure 5.5: Example Patient 2 Pathmap Image from GTV

The pathmap was generated based on the streamline dataset from the GTV. The pathmap
shows the distance along streamlines from the GTV from low (dark blue) to high (light blue)
distance. The GTV is shown in red.

5.5 Conclusions

This proof-of-concept demonstrated a tool for integrating di↵usion information with ex-

isting protocols for Radiation Therapy Planning. The pathlength maps presented in this

manuscript can be used to conduct studies predicting tumor recurrence using di↵usion data

to model large fiber pathways. The code to generate the pathlength maps is open-source

and freely available on Github as part of the Di↵usion Imaging in Python package [66].

(https://github.com/nipy/dipy/blob/master/dipy/tracking/utils.py)
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Figure 5.6: Example Patient 2 Raystation Anisotropic CTV Based on Pathlength Map

This is an example of a pathlength map generated based on the streamline dataset from the
GTV and imported into Raystation (orange). The GTV (red) is expanded anisotropically
using the pathlength map (yellow), which follows the path of the recurrence better than the
typical isotropic expansion treatment volume (pink) Image credit: Olivier Morin
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Chapter 6

White Matter Connectivity of

Cortical Stimulation-Induced Mood

Improvement: Pilot Study

6.1 Introduction

Direct electrical stimulation of targeted brain regions has been highly successful in the treat-

ment of movement disorders, like Parkinsons Disease [129, 120]. To treat a patient with

Deep Brain Stimulation (DBS), a surgeon implants electrodes in specific brain regions so

that electrical current can be delivered as a treatment to alter the function of brain circuitry.

In addition to certain movement disorders, DBS has been approved by the Food and Drug

Administration (FDA) to treat obsessive-compulsive disorder and epilepsy [59, 140]. Many

DBS implantation sites have been tested to address treatment-resistant depression [114, 26,

19, 142, 96, 144], but a series of clinical trial failures [143] suggest that the mechanisms

behind the anti-depressive therapeutic e↵ect of DBS needs to be better understood. DBS of

the subcallosal cingulate has been studied extensively [136, 47] as a therapy for treatment-

resistant depression. This approach has evolved from anatomical targeting of a region asso-

ciated with positron emission tomography (PET) changes in successful treatment response

to a tractography-based approach that targets the intersection of four white matter bundles:
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the forceps minor, uncinate fasciculus, cingulum, and fronto-striatal connections. This DBS

site has been tested in a cohort of 77 patients implanted at eight di↵erent institutions with

highly variable success rates (between 33 and 87.5%) [115, 137, 135, 47, 136]. The potential

for tractography-assisted planning of DBS treatment of psychiatric disorders is promising,

but limitations of tractography methodology (discussed at length preceding sections of this

dissertation) are equally true in this field and must be taken into consideration [122].

A study conducted at the University of California, San Francisco [146] examined a cohort

of twelve patients undergoing intracranial monitoring for planning of their epilepsy treat-

ment. These patients volunteered to undergo a stimulation study in which their intracranial

electrodes were used to deliver current to the brain while measurements of their mood were

taken, under the supervision of an Epileptologist. This gave researchers the opportunity to

test di↵erent sites for e�cacy in improving mood. The results suggested that the lateral

Orbito-Frontal Cortex (OFC) is a promising target as a therapy for mood disorders [146].

Prefrontal regions, including the lateral OFC, are thought to mediate mood through a top

down mediation of reward pathways [139]. Surgical lesions of the OFC and Cingulate Cortex

have been associated with emotional changes, measured subjectively [88]. This chapter an-

alyzes the white matter connectivity of the electrical stimulation sites that elicited a mood

improvement in order to generate hypotheses of the brain circuitry that is being disrupted

by lateral OFC stimulation in this cohort.

6.2 Methods

Subjects

A cohort of twelve patients that were undergoing inpatient intracranial monitoring for seizure

localization as part of their intractable epilepsy clinical evaluation at the University of Cali-

fornia, San Francisco volunteered to participate in this study. Patients were implanted with

a combination of subdural (high-density grid: AdTech 256 channels, 4mm center-to-center

spacing and 1.17mm diameter; strip: 1cm spacing) and depth electrodes (5mm spacing) as

part of their clinical evaluation. If su�cient data was collected from the intracranial elec-

trodes prior to the scheduled surgery, the patients underwent a stimulation protocol under
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the supervision of an Epileptologist as part of this study. Research was performed in com-

pliance with the Code of Ethics of the World Medical Association (Declaration of Helsinki)

and the standards established by our institution. The Committee on Human Research at

the University of California, San Francisco, approved the study protocol. Written informed

consent was obtained from all study participants.

Stimulation Protocol

Bipolar stimulation (100 Hz, 100 usec pulse width, 1-6 mA intensity) was applied to electrode

pairs with durations of 1 second to continuous for 2-3 minutes. Patients were monitored

during both treatment and sham conditions to quantify their mood using two self-reported

metrics: Immediate Mood Scaler (IMS) and word valence. During the IMS task, the patient

answered questions about their mood on a touch pad. For the word valence task, the patient

engaged in conversation with an examiner. An audio recording of the conversation was

evaluated for positive or negative word content. These scores were normalized to a 100 point

scale and averaged to produce a composite mood score. One patient was not able to complete

the IMS task because they were not fluent in English, so their score is entirely composed of

word valence. Response was calculated as a percentage increase in composite mood score

in the stimulation condition over baseline (the sham condition). The six patients with

the highest composite score “response all increased over 30% to baseline, so these patients

were analyzed separately to explore white matter connectivity common to stimulation sites

eliciting a treatment-like e↵ect of mood improvement.

Imaging

Patients underwent Magnetic Resonance Imaging (MRI) prior to implantation surgery on

a 3T General Electric Medical Systems scanner (Discovery MR750). Datasets acquired

included: a High Angular Resolution Di↵usion Imaging sequence (TR/TE =6425/80 ms,

50 axial slices, 2.2 mm2 in-plane resolution (interpolated to 1.1 mm2), 2mm slice thickness,

b-value 2000 s/mm2, 55 di↵usion gradients, 1 minimally di↵usion weighted image) and a

3D high-resolution T1-weighted IRSPGR (TR/TE/TI =7/2/400 ms, 180 axial slices 1 mm
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thickness, 0.94 x 0.94 mm2 in plane resolution). Post-implantation of intracranial electrodes,

patients underwent a Computed Tomography (CT) scan to localize electrodes.

Image Processing

Electrode Localization to T1 Space

The electrode localization was performed using the semi-automated anatomical labeling and

inter-subject warping pipeline developed in-house by the Chang Lab at UCSF, published as

an open-source python package [78]. Briefly: electrode locations were selected manually on

the CT scan and transformed to the T1 space by a rigid registration, followed by a projection

onto a hull of the pial surface to correct for brain compression caused by grid placement.

Di↵usion Preprocessing

The datasets were first corrected for motion and eddy current distortion using the FMRIB

Software Library (FSL) [91] and the gradient table rotated [110]. A tensor model was fit

to the corrected HARDI data using the open-source package Di↵usion Imaging in Python

(Dipy) [66] and the resulting parameters used to calculate tensor metrics. An Anisotropic

Power Map was calculated (APM) [49] using the Q-ball model [50] implemented in Dipy.

This di↵usion-derived image can be used to perform a better registration to the T1 space

than FA, and has been proposed as a solution to susceptibility correction in datasets that

have not acquired a fieldmap or “blip-up-blip-down” B0 image [41]. The B0 image was

isolated from the HARDI series and used to create a brain mask by skull stripping the image

with FSL’s Brain Extraction Tool (BET) [149]. This brain mask was applied to all images.

Tractography Modeling of White Matter Connectivity

Whole-brain residual bootstrap probabilistic q-ball tractography [23] was performed with

the parameters described in [37]. Briefly, the preprocessed di↵usion signal was fit using

spherical harmonics (even orders up to 4) so that orientation distribution functions (ODFs)

with constant solid angle factor could be estimated from the data [157, 155, 156]. To perform

residual-bootstrap tractography [23], principal fiber orientation was estimated at each step by
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computing a bootstrapped ODF and identifying the peaks. The principal fiber orientations

from the bootstrap ODFs provided the distribution of fiber tracking directions. Tracking

was seeded uniformly at a density of 33 seeds per voxel and terminated by the following

criteria: APM threshold of 4 [49] and maximum angle of 60 [29].

Electrode Targeting

For each patient, a di↵eomorphic registration was performed to align the anisotropic power

map (APM) and the T1 image to transfer the electrodes from the T1 image to di↵usion

space using the Advanced Normalization Tools (ANTs) symmetric di↵eomorphic registration

[10, 9], implemented in DIPY [66]. The dataset did not include images for appropriate

susceptibility correction, so the registrations and the point transformation to di↵usion space

was manually quality-controlled by comparison to cortical anatomy. Trackvis was used

to visualize results [163] and target the whole-brain tractography. Using python software

written in-house, the white matter voxel nearest to the centroid between the positive and

negative bipolar electrodes was identified. Using Trackvis, a human operator expanded a

sphere centered on this centroid white matter voxel until the first streamline was targeted.

This point in space was selected as the centroid of a uniform 5mm sphere used to target

the whole-brain tractography datasets in each patient. This procedure ensured that the

geometry of the tissue did not penalize cortical electrodes; tractography representing the

white matter connectivity of each electrode was targeted 5mm deep into “trackable” white

matter so that the most likely white matter connections serving the cortical regions was

represented in each patient. Any streamlines less than 40mm in length were excluded.

MNI Heat-map Generation

To generate the group results on an MNI template, a di↵eomorphic registration was per-

formed between the anisotropic power map (APM) and MNI template using the Advanced

Normalization Tools (ANTs) symmetric di↵eomorphic registration [10, 9], implemented in

DIPY [66]. The streamline dataset representing the connectivity of each patient was bina-

rized such that each voxel containing at least one streamline was included in the binary mask.

The di↵eomorphic di↵usion-to-MNI transformation was applied to the binarized masks so
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that they could be summed in the common MNI space to produce heat maps that represent

the spatial overlap between white matter connectivity in multiple patients. This analysis was

performed to show the connectivity of the entire cohort with the right (orange-yellow) and

left (blue-green) hemispheric electrodes summed independently in Figure 6.1, and to show

the white matter connectivity common to electrodes that elicited a treatment-like response

(Figure 6.2)

6.3 Results

Figure 6.1: Tractography Connectivity Model from Lateral OFC Stimulation in All Patients

This is a heatmap of the white matter connectivity of the lateral OFC stimulation electrodes
across all twelve patients in the cohort. Eight patients were stimulated in the right hemisphere
(orange-yellow) and four patients were stimulated in the left hemisphere (blue-green)

6.4 Discussion

The white matter connectivity common to patients exhibiting mood responses of greater than

30% from baseline appears to follow the trajectory of the Frontal Orbito-Polar Track (FOP),

a white matter bundle that connects the posterior and anterior orbitofrontal gyri (pOFC and

aOFC) to the inferior polar cortex [35]. Tractography representations of the FOP have been

published by [35] with validation through blunt dissection, supported by similar connections
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Figure 6.2: Tractography Connectivity Model from Mood Improving Lateral OFC Stimula-
tion

This is the streamline connectivity of the six most responsive patients. Each patient iden-
tification is specified by EC and the percentage improvement in composite mood score over
baseline is noted for each case.

found in monkey brains [134, 170, 145]. In a macaque tracer study of the ventral prefrontal

cortex (vPFC) conducted by [113], the authors defined connections of the Uncinate Fasciculus

(UF) to include three components: vPFC to temporal cortex connections, vPFC to vPFC

connections, and bundles that provide a “conduit” joining vPFC neurons to other tracks.

Fractional anisotropy and volume of uncinate fascicle models were associated with social

anxiety disorder in a study by [13] and trait anxiety predicted the fractional anisotropy in

pathways between the amygdala and the ventromedial PFC and OFC in a study by [58].

In a study by [14], functional connectivity between the anterior insula and the basolateral
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Figure 6.3: Tractography Connectivity Model from Successful Lateral OFC Stimulation:
Heatmap

This is a heatmap of the white matter connectivity of the lateral OFC stimulation electrodes
across the six most responsive patients. Five of the highest responding patients were stimu-
lated in the right hemisphere and one was stimulated in the left hemisphere. The “responding”
Direct Electrical Stimulation Sites tended to be connected to the frontal pole, according to the
tractography analysis.

amygdala were associated with state anxiety (explained 40% between-subject variance) and

axial di↵usivity was associated with trait anxiety in the pathway modeled using tractography

between the same two regions. While implementing the methods detailed by [35] to model

the FOP, the authors noted extensive colocalization of streamlines in the anterior-posterior

frontal lobe projections of the FOP and UF that made the FOP di�cult to segment in some

patients. Given this colocalization, it is possible that results reflecting changes to the FOP

could be attributed to the UF in studies that do not account for the bundles individually.

Further study is needed to tease apart the contributions of these pathways to predicting

mood disorder metrics.

Examining these results in the context of a series of studies from the Mayburg group

[115, 122, 137, 135, 47, 137, 136] presents an opportunity to compare the results from

two very di↵erent approaches that elicited positive treatment-like e↵ects. These sequential

studies from the Mayburg group compared the white matter connectivity, modeled using

tractography, in patients that had a treatment response and those that did not. The target

brain region of the Mayburg studies is the subcallosal cingulate white matter (SCC), which
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they define using tractography to identify the intersection between four white matter bundles:

forceps minor, uncinate fasciculus, cingulum and fronto-striatal connections.

The results from our current study described in this manuscript elicited a treatment-

like response by stimulating cortically in the lateral orbitofrontal cortex. The white matter

connectivity common to these studies is the frontal pole; the Mayburg target reaches the

frontal pole through the forceps minor and the uncinate, and the study presented in this

manuscript connects to the frontal pole via the FOP. In the study by [135], the patients

that never responded to stimulation treatment during the two year study were strikingly

missing connectivity to the fontal pole. Additional support for the importance of frontal pole

stimulation in this study comes from the six patients that converted from nonresponders to

responders between the six month and two year timepoints: the tractography connectivity

maps changed to include more medial frontal pathways going to the frontal pole [135].

Several limitations of this pilot study must be kept in mind. The cohort is small, and

the electrodes are split between two hemispheres (8 Right; 4 Left). Only patients with a

stimulation-related mood improvement of 30% over baseline were included in the treatment-

e↵ect hypothesis generation analysis (Figures 2 and 3), which e↵ectively halves the sample

size to six, five of which are in the right hemisphere. There are also limitations associated

with the mood quantification tasks (self-reported IMS and Word Valence), which are variable

and challenging to interpret. The lack of a field map or “blip-up-blip-down” B0 images to

correct for susceptibility is another major limitation of this study. The authors strongly

recommend acquiring one of these images to enable susceptibility correction using a tool like

those provided in the FMRIB Software Library (FSL) [6, 150]. All results presented in this

manuscript must be considered with the caveat that susceptibility distortions were acting on

the di↵usion data, which is particularly severe in the OFC due to the air-tissue interface with

the sinus. To address these concerns, a registration was performed between an anisotropic

power map derived from the HARDI data [49] and the T1 image, as described in [41].
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Figure 6.4: Anatomically Constrained Tractography of Frontal Orbito-Polar, Uncinate, and
Forceps Bundles

Tractography models of the Frontal Orbito-Polar, Uncinate, and Forceps bundles are shown
in subject EC125

6.5 Conclusions

This pilot project lays the groundwork for hypothesis-driven study of the white matter

underlying mood improvement e↵ects elicited by direct electrical stimulation of the lateral

Orbitofrontal Cortex. The demonstrated pipeline addresses the challenges associated with

tractography in the ventral frontal lobe to the highest degree possible with the available data,

but the limitations must be kept in mind because modern susceptibility correction could not

be executed. The results of this study generate the hypothesis that the successful mood

improvement associated with lateral OFC stimulation may be acting through a connection

to the frontal pole. Future studies examining the anatomical as well as functional connections

of the lateral OFC to the frontal pole via the Frontal Orbito-Polar Track white matter bundle

are necessary to further substantiate this hypothesis. Stimulation of the lateral OFC and

engagement of the Frontal Orbito-Polar Track may be novel targets in alleviation of mood
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disorder symptoms.
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