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Normal human tissue is organized into cell lineages, in which the highly differentiated
mature cells that perform tissue functions are the end product of an orderly tissue-specific
sequence of divisions that start with stem cells or progenitor cells. Tissue homeostasis
and effective regeneration after injuries requires tight regulation of these cell lineages and
feedback loops play a fundamental role in this regard. In particular, signals secreted from
differentiated cells that inhibit stem cell division and stem cell self-renewal are important
in establishing control. In this article we study in detail the cell dynamics that arise from
this control mechanism. These dynamics are fundamental to our understanding of cancer,
given that tumor initiation requires an escape from tissue regulation. Knowledge on the
processes of cellular control can provide insights into the pathways that lead to deregulation
and consequently cancer development.
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INTRODUCTION
There is growing evidence that a subset of cancer cells possesses
characteristics typically associated with stem cells (Reya et al.,
2001; Wang et al., 2010). These so called cancer stem cells share
with normal stem cells the capability to give rise to all cell types
of a given lineage (Bonnet and Dick, 1997; Passegué et al., 2003).
Like normal stem cells, they also have a large proliferative poten-
tial being the only cancer cells capable of repopulating a tumor
and initiating metastasis (Al-Hajj et al., 2003; Clevers, 2011). In
light of these findings it is crucial to understand how stem cells are
regulated as part of a cell lineage in normal tissue.

In normal tissues, cell lineages are highly regulated to promote
the rapid regeneration after an injury and to maintain tissue home-
ostasis under normal conditions. In particular when it comes to
the regulation of stem cells two types of feedbacks have been pro-
posed: long-range and short-range (Arino and Kimmel, 1986).
The long-range feedbacks should respond to the loss of mature
cells during an injury, while the short-range feedbacks would act
in an autocrine fashion in stem cells (Andersen and Mackey, 2001;
Bernard et al., 2003). In this article we focus on long-range feed-
back acting through signals emitted by differentiated cells that
inhibit stem cell division and self-replication. This type of regula-
tion has been biologically observed in numerous tissues including
muscle, liver, bone, and the nervous and hematopoietic systems
(McPherron et al., 1997; Daluiski et al., 2001; Yamasaki et al.,
2003; Elgjo and Reichelt, 2004; Tzeng et al., 2011), and has lead to
the development of a significant number of mathematical models
(see e.g., Ganguly and Puri, 2006; Lander et al., 2009; Marciniak-
Czochra et al., 2009; Chou et al., 2010; Bocharov et al., 2011; Zhang
et al., 2012).

Tumor initiation requires an escape from the control mecha-
nisms just described and indeed, there is significant experimental
evidence to support this assertion (Lim et al., 2000; Massagué,

2000; Woodford-Richens et al., 2001; Piccirillo et al., 2006; Lee
et al., 2008). This underscores the importance of tissue regula-
tion for cancer biology. In the next sections we will analyze the
cell dynamics resulting from this regulatory mechanism, first in
the context of general feedback functions and then using Hill
equations in spatial and non-spatial settings.

Our work adds to a growing body of modeling literature that
studies cell lineage dynamics and regulation. Conceptual issues
for the study of stem cells are identified in Loeffler and Roeder
(2002). Discrete and continuous models relevant to carcinogene-
sis, and particularly colon cancer, include (Tomlinson and Bodmer,
1995; Yatabe et al., 2001; Agur et al., 2002; Hardy and Stark, 2002;
d’Onofrio and Tomlinson,2007; Johnston et al., 2007; Boman et al.,
2008). There are also numerous stem cell models in the context
of the hematopoietic system (see e.g., Colijn and Mackey, 2005;
Michor et al., 2005; Adimy et al., 2006; Glauche et al., 2007; Ashke-
nazi et al., 2008). In this paper we combine elements of stochastic
and deterministic modeling and consider both mass action and
spatial systems. The models identify parameters important for
tissue stability and growth and offer a useful tool to study both
healthy and cancerous hierarchical populations.

The stability and dynamics of multistage cell lineage models is
an active topic of research. In Nakata et al. (2012), the authors sys-
tematically analyze the stability of a two and three compartment
model where the regulation of proliferation rates is modeled using
Hill functions equation (9). A similar model where feedback reg-
ulation acts instead on the probability of self-renewal is studied in
Lo et al. (2009); here the stability analysis is performed first using a
general feedback function for a two compartment model, and then
using the feedback function equation (9) for a three compartment
model. In Stiehl and Marciniak-Czochra (2011) the authors char-
acterize the structure of stationary solutions of a n-compartment
model with feedback on the self-renewal probability of cells. The
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characterization is performed for a general form of the regulation
function and for the special case that uses the functional form in
equation (9).

In this article we study the cell dynamics of a two compartment
model, which includes feedback regulation in both the division
rate and the self-renewal probability of cells. According to the
model feedback on the self-renewal probability of stem cells is by
itself sufficient to establish control. However if feedback on the
division rate is not present, the recovery after an injury may lead
to significant damped oscillations in the path back to equilibrium,
which can result in the stochastic extinction of the cell population.
Moreover, this oscillatory behavior is more pronounced when the
stem cell load represents only a small fraction of the entire cell
population. If this is the case, oscillations may still be avoided, but
it comes at the price of slowing down the speed at which the sys-
tem is able to recover after an injury. Spatial interactions and the
addition of feedback inhibition on the cell division rate reduce the
amplitude of oscillations and contributes to the robustness of the
system. Feedback inhibition on the division rate also increases the
speed of tissue regeneration promoting altogether faster and more
stable recoveries from perturbed states.

RESULTS
CELLULAR CONTROL
We consider a model that takes into account two cell populations:
stem cells, S, which have unlimited reproductive potential, and
differentiated cells D, that eventually die out (this includes all cell
populations with limited reproductive potential, such as transit
cells). Stem cells divide at a rate v ; this results in either two daugh-
ter stem cells with probability p or two differentiated cells with
probability 1− p. Differentiated cells die at rate d. The system
is controlled through two negative feedback loops. Differentiated
cells secrete factors that: (1) inhibit stem cell division, and (2) sup-
press self-renewal in stem cells (Figure 1). Hence, the self-renewal
probability and division rate (p(D) and v(D)) are strictly decreas-
ing functions of the number of differentiated cells D. The ordinary
differential equation (ode) model is given by:

Ṡ =
(
2p (D)− 1

)
υ (D) S

Ḋ = 2
(
1− p (D)

)
v (D) S − dD

(1)

FIGURE 1 | Model of tissue regulation with feedback loops.
S represents the stem cell population and D the differentiated cell
population. Stem cells divide at a rate v ; this results in either two daughter
stem cells with probability p; or two differentiated cells with probability
1−p. Differentiated cells die at rate d. The rate of cell division and the
probability of self-renewal are decreasing functions of the number of
differentiated cells [equation (1)].

In addition to the symmetric stem cell divisions explicitly mod-
eled in equation (1) asymmetric division in stem cells is also
well documented (Clevers, 2005; Simons and Clevers, 2011). The
extent to which these types of divisions occur in different tis-
sues has important biological consequences and is the subject
of considerable research efforts (Wu et al., 2007; Neumüller and
Knoblich, 2009). However with regards to model (1), it is shown in
Rodriguez-Brenes et al. (2011) (Supplementary Information) that
the explicit introduction of asymmetric stem cell divisions leads
to an equivalent mathematical formulation and does not alter any
of the results.

From the expression for Ṡ, we note that p(0)> 0.5 is a nec-
essary condition to avoid the system from always going to the
trivial steady solution (S, D)= (0, 0). Also only feedback on the
self-renewal probability p – unlike the feedback on v – is able to
change the signs of Ṡ or Ḋ, which suggests that by itself feedback
inhibition on p is sufficient to maintain control. We are interested
in finding out how this negative regulation affects the cell popula-
tion at homeostasis and during recovery after an injury. We begin
by looking at the steady states Ŝ and D̂ and D̂ which are defined
by the following equations:

p
(

D̂
)
= 1/2 & Ŝ = d/v

(
D̂
)

D̂ (2)

Hence, we find that the equilibrium number of differentiated
cells D̂ depends only on the self-renewal probability p(D). The
equilibrium fraction of stem cells Ŝ/(Ŝ + D̂) depends only on the
ratio d/v(D̂). In order to understand better the recovery of the sys-
tem after a perturbation we look at the eigenvalues of the Jacobian
matrix evaluated at (Ŝ, D̂):

J =

 0 2dp′
(

D̂
)

D̂

v
(

D̂
)
−d

(
2p′

(
D̂
)

D̂ + 1
) (3)

Let us write b = (2p′(D̂)D̂ + 1) and v̂ = v(D̂). Then the
eigenvalues are given by:

λ1, λ2 =
−db ±

√
d2b2 + 4d (b − 1) v̂

2
(4)

The model described by equation (1) is an autonomous sys-
tem of ordinary differential equations; therefore in a vicinity of
the steady state point (Ŝ, D̂) the behavior of the system can be
inferred by looking at the eigenvalues of the Jacobian. If we want
the equilibrium values to be asymptotically stable, then the real
part of the eigenvalues must be negative, which occurs if and only
if b> 0. Conversely if b< 0, the equilibrium is unstable. If b= 0
(purely imaginary eigenvalues), the behavior of the system can
not be inferred from equation (1) for general functions v(D) and
p(D). In this case a Hopf bifurcation might be possible. However
the bifurcation analysis would depend on the specific choice of the
regulation functions.

The sign of the discriminant in equation (4) gives us further
information into how the trajectories approach the steady state
value. If the discriminant is negative then oscillations are expected
as the cell population approaches equilibrium. Let us see how this
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observation relates to the equilibrium fraction of stem cells in the
population. As we noted earlier this fraction is entirely determined
by the ratio ε ≡ d/v̂ . If we want to avoid oscillations then divid-
ing the discriminant by dv̂ we find that the following inequality
must hold:

εb2
+ 4b − 4 ≥ 0 (5)

Since b = 1 + 2p′(D̂)D̂ we have b< 1 and if a stable steady
exists we then have 0< b< 1. Hence the inequality in equation (5)
implies that:

b ≥
−2+ 2

√
1+ ε

ε
(6)

Stem cells typically represent a small fraction of the entire cell
population which in terms of the ratio ε equals ε/(1+ ε). As ε
approaches zero we find:

lim
ε→0

−2+ 2
√

1+ ε

ε
= 1 (7)

Given the inequality found in equation (6) and the fact that
b< 1 we find that as the equilibrium fraction of stem cells
approaches zero, b approaches one. For the eigenvalues we then
have:

lim
b→1−

−db ±
√

d2b2 + 4d(b − 1)v̂

2
= −d , 0 (8)

However, if the absolute value of one of the eigenvalues is very
small, then the overall dynamics of the system is characterized
by rapid approach to a slow manifold, followed by a very slow
approach toward equilibrium. Hence, we find a trade-off between
requiring a small equilibrium fraction of stem cells while avoiding
oscillations and the speed at which the system is able to recover
from a perturbation.

The study of oscillations is an important part of feedback
regulation. Damped oscillations have been observed in healthy
hematopoiesis (Marciniak-Czochra and Stiehl, 2012). Amongst
pathologies periodic oscillations are a characteristic feature of
cyclical neutropenia (Bernard et al., 2003). Oscillatory behavior
has also been identified in chronic and acute myeloid leukemia
(Andersen and Mackey, 2001; Colijn and Mackey, 2005; Adimy
et al., 2006). Moreover it was shown in Nakata et al. (2012) that
in a three compartment model with feedback on the cell division
rate, the destabilization of the positive equilibrium can lead to
oscillations with a constant amplitude.

Going back to the requirements (b> 0) that guarantee the exis-
tence of a stable non-trivial steady state we note that they are
independent of feedback inhibition on the division rate. Moreover
for a fixed equilibrium division rate v̂ the steady state population
sizes are independent on the actual function v(D). The role of feed-
back on the division rate in the system lies instead in increasing
the speed at which the system recovers from a perturbation and
reducing the amplitude of oscillations if they happen to occur.
This result is consistent with numerical simulations performed in

Marciniak-Czochra et al. (2009), where it was observed that for
short-time dynamics the coexistence of both regulatory mech-
anisms improves the efficiency of hematopoietic regeneration.
Intuitively, oscillations occur when the number of differentiated
cells is at equilibrium but the number of stem cell is not. If for
example S > Ŝ and D = D̂, then while the number of stem cells
decreases toward its equilibrium value, the number of differenti-
ated cells would grow. However, if there is feedback on the division
rate, the difference between the rate of differentiated cell produc-
tion and depletion 2(1− p(D))v(D)S− dD would be smaller than
in the absence of feedback (2(1−p(D))v̂S−dD) and thus the max-
imum number of differentiated cells reached before the growth is
reversed will not be as high. In the next sections we will present
some numerical examples.

FEEDBACK INHIBITION USING HILL EQUATIONS
In this section we use Hill functions to model feedback inhibition
equation (9):

p (D) = p0/
(
1+ g Dm) , v (D) = v0/

(
1+ hDn) (9)

Hill functions are widely used to describe ligand-receptor inter-
actions (Alon, 2007), which makes them natural choices to model
the actions of secreted feedback factors. Moreover they have been
previously used to model the specific phenomena of cellular
control for cell lineages in various tissues (Lander et al., 2009;
Marciniak-Czochra et al., 2009; Chou et al., 2010; Bocharov et al.,
2011; Zhang et al., 2012).

From expression equation (9) first note that the maximum
self-renewal probability p0 must satisfy 0.5< p0≤ 1. The value of
b (defined in the previous section) in this case equals 1/(2p0).
Hence the condition b> 0, which is necessary and sufficient to
guarantee the existence of a stable steady state, is always satisfied.

Let us look now at the issue of oscillations near the steady state
in relation to the equilibrium fraction of stem cells. In this case
the discriminant of the eigenvalues equals:

1 =

(
d

2p0

)2

−4v0d

(
1−

1

2p0

)
(10)

If we once again call ε ≡ d/v̂ , then the condition1≥ 0 can be
rewritten as:

ε > 8p0
(
2p0 − 1

)
(11)

If we require for example that the equilibrium fraction of stem
cells is less than 10%, then (< 0.111. Substituting this value into
the previous equation we find that −0.0134< p0< 0.5134 and
given that p0> 0.5 we have:

0.5 < p0 < 0.5134 (12)

Hence, in a vicinity of the steady state, non-oscillatory trajecto-
ries that result in less than 10% of stem cells at homeostasis require
that p0 lies within the small interval [0.5, 0.5134] (see Figure 2B).
These findings suggest that the maximum self-renewal probability
is very close to 0.5.
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FIGURE 2 | (A,B) Cell population with one feedback loop. (A) The
trajectories oscillate toward steady state values (dotted line).
Parameters, p0=0.6, d=0.1, g=0.001, S(0)=1, D(0)=0. (B) If there is
only one feedback loop the maximum self-renewal probability must be
very close to 0.5 to ensure that the trajectories approach the steady
states monotonically. In this subfigure d and g are the same as in (A) but
p0 =0.513. (C,D) cell population with two feedback loops. (C) The steady
state number of differentiated cells depends only p0 and g and is

independent of feedback on the division rates. The steady state number
of stem cells increases when the number of feedback loops increase
from one to two. The addition of feedback in the division rate dampens or
altogether eliminates the oscillations. (D) Fitting fixed steady state
values of stem cells and differentiated cells values with different levels of
feedback inhibition in the division rate. The stronger the feedback signal
in the division rate the smoother the transition the equilibrium transition
to equilibrium.

Interestingly a small value of p0 may have advantageous effects
in the protection against cancer. Indeed the absence of feedback
on differentiation leads to uncontrolled cell growth (Rodriguez-
Brenes et al., 2011). Thus, having a small maximum self-renewal
probability would result in a slower tumor growth rate in the
event that feedback inhibition is lost. However, as we mentioned
earlier this comes at the cost of reducing the speed of regenera-
tion. In Figures 2A,B we track the trajectory of a cell population
that has feedback on stem cell differentiation only (i.e., constant
v(D)). In Figure 2B the fraction of stem cells is less than 10% and

the maximum self-renewal probability is kept small (p0= 0.513).
Note how the system is able to recover from a severe perturbation
(D(0)= 0) without presenting oscillations.

In Figures 2C,D we show results with feedback inhibition in
both the self-renewal probability and the division rate of stem cells.
As we discussed in the previous section, the addition of feedback
on the division rate provides for smoother recoveries after a per-
turbation. Let us call β(D)= 1+ hDm, then v(D)= v0/β(D) and
β(D) controls the strength of the inhibition signal. Clearly we can
get a specific target division rate at equilibrium v̂ with different
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combinations of the pair (v0, β(D)); the larger the magnitude of
these quantities, the stronger the feedback in the division rate will
be. In Figure 2D we plot different trajectories for the same tar-
get number of cells with different combinations of the pair (β,
v0). Adding feedback inhibition on the division rate significantly
dampens the magnitude of the oscillations and increases the speed
at which the trajectories reach the steady states. The stronger the
feedback signal the stronger the effect. Thus, even if feedback on
the division rate is unnecessary to establish control, it promotes a
faster and more stable recoveries in the system.

ROBUSTNESS
One of the negative consequences of oscillations may be the loss of
the stem cell population which would result in the eventual extinc-
tion of the tissue. In this section we explore sufficient conditions
that guarantee the survival of a population that starts at a critical
level. In the ode model when a stable equilibrium exists it is easy to
prove that zero is a repellent fix point. Hence the zero state cannot
be reached from positive initial conditions. In practice this means
that the stem cell population cannot hit zero as a result of a pertur-
bation. Therefore to study extinction in the deterministic system
we decide that extinction occurs when the number of stem cells
falls below one (in the next section we present a stochastic formu-
lation where complete extinction occurs). More precisely, we want
to answer the following question: given a set value D̂ and the initial
critical conditions S(0)= 1 and D(0)= 0, can we find a parameter
region that guarantees the survival of the population? From the
eigenvalue analysis we found that in a vicinity of the steady state,
the magnitude of the oscillations is determined by the discrimi-
nant in equation (10) and everything being equal, a greater value
of p0 produces stronger oscillations. With this idea in mind we
assume that given a choice of parameters v0, d, β that guarantee
survival for a large upper bound self-renewal probability p0= 0.9
and g = (2p0− 1)/D̂, then the same set of parameters guarantees
survival for any other pair p0, g, that satisfies (2p0 − 1)/g = D̂
and p0< 0.9. Furthermore, the addition of the feedback on the
replication rate increases the value of Ŝ and appears to dampen
oscillations. Hence, we assume that any set of parameters that
guarantee survival of the population with only one feedback loop
should also guarantee survival when the two feedback loops are
in place.

The previous considerations reduce our search to pairs (d, v0)
that guarantee survival, given the initial conditions (p0 = 0.9, g =
0.8/D̂, β = 1). Finally we note that the amplitude of the oscilla-
tions depends on the ratio d/v0 and not on the actual magnitude
of d and v0 so we only need to test different values for this ratio.
Since this ratio is closely related to the percentage of stem cells by
the equality Ŝ = d/v0D̂, then the results can be presented in terms
of the steady state percentage of stem cells (Figure 3D).

The analysis performed here indicates that in the ode model
there are ample parameter regimes that guarantee the survival
of the population while maintaining a small stem cell load. In
general the greater D̂ is the smaller the equilibrium fraction
of stem cells may be to guarantee survival. Moreover in this
analysis the system was required to rebound from very extreme
initial conditions (S(0)= 1). In practice most injuries that are
able to heal would rarely include populations that are reduced

to a single cell. Furthermore, as we found earlier the addition
of feedback in the division rate and the reduction of the maxi-
mum self-renewal probability p0 further increase the stability of
the system.

STOCHASTIC MODEL
We are also interested in studying the effects of stochastic fluctua-
tions in the model. With this aim in we implement the following
algorithm using Gillespie’s Method (Gillespie, 1977).

Algorithm:
Assume that at time t, the system is described by the pair
(S(t ), D(t )), and r1, r2, and r3 are random numbers uniformly
distributed in [0, 1].

1. Set p(t )= p0/(1+ gD) and v(t )= v0/(1+ hD).
2. Compute a= v(t )S(t )+ dD(t ).
3. Set the new time t ′= t− 1/a · log(r1).
4. If a · r2< dD(t ), the next event is cell death of a differentiated

cell, hence make D(t ′)=D(t )− 1.
5. If a · r2> dD(t ), the next event is stem cell division. If r3< p(t )

the cell divides into two stem cells, hence make S(t ′)= S(t )+ 1.
If r3> p(t ) the cell divided into two differentiated cells, hence
make S(t ′)= S(t )− 1 and D(t ′)=D(t )+ 2.

In Figures 3A,B we plot two stochastic simulations with only
one feedback loop together with the corresponding ode formu-
lations. Note that in Figure 3B the simulation ends with the
extinction of the cell population, even though the ode model
does not go extinct. In general the extinction of the cell popu-
lation is a more likely event when the steady state number of stem
cells is small, given that random deviations from the mean can
bring the number of stem cells to zero. The addition of a sec-
ond feedback loop (Figure 3C) increases the stability and reduces
the variance in the number of cells. A realization of the algo-
rithm is a random walk that represents the distribution of the
master equation, and which captures the stochastic fluctuations
typically observed in systems with a small number of agents.
As the number of cells increases, the fluctuations in the number
of cells decrease and the thus the stochastic realizations increas-
ingly resemble the corresponding trajectories produced by the ode
(Gillespie, 1977).

There are two more things worthy of being noted. First the
occurrence of random fluctuations makes the stochastic model
even more sensitive to oscillations. Second in a stochastic setting
an injury that severely depletes the number of cells is not guaran-
teed to be able to rebound and there may be a significant chance
of extinction. These observations suggest that the control mecha-
nism considered so far is not well suited for systems that rely on
a critically small number of stem cells, such as the colon lining
which may rely on as little as four stem cells per crypt (Marshman
et al., 2002). Instead it is better suited to deal with systems with a
large number of cells such as blood (Shizuru et al., 2005). More-
over the use of mass action equations assumes a well mixed system,
which is a reasonable assumption for non-solid tissues. In the next
section we will discuss the effects of adding spatial interactions to
the model.
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FIGURE 3 | (A,B) Cell population with one feedback loop. The stochastic
simulation is shown in red for differentiated cells and green for stem
cells. The ode is shown in blue for differentiated cells and black for stem
cells. Parameters in (A) p0 =0.6, d=0.1, g=0.0001, h=0, S(0)=10,
D(0)=0. Parameters in (B) p0=0.52, d=0.2, g=0.0001, h=0,
S(0)=40, D(0)= 0. (C) Cell population with two feedback loops.
Feedback in the division rate dampens oscillations. Parameters are the
same as in (A) with the exception h=0.001. (D) Sufficient conditions for

the survival of the population in the ode model. Let us call the curve in
the graph y(Ď). Then for any set of parameters that satisfy (2p0

− 1)/g =
Ď, p0

∈ (0.5, 0.9) and the steady state fraction of stem cells f = y(Ď), the
initial conditions S(0)=1, D(0)=0 guarantee the survival of the
population. For example, for all Ď = 103 if p0 50.9 and the steady state
fraction of stem cells f = 0.064 survival is guaranteed for any level of
feedback on the division rate. (These conditions are sufficient but not
necessary.)

SPATIAL MODEL
The spatial effects
In this section we consider cell dynamics in three dimensions.
We assume that cells are restricted to a three-dimensional rec-
tangular lattice of nI× nJ× nK points. A lattice point can host
at most one cell at any time. The position of each cell can be
determined by its coordinates in the lattice (i, j, k), i= 1, . . ., nI,
j= 1, . . ., nJ, and k= 1, . . ., nK. Following the rules of the pre-
vious sections, stem cells divide either into two stem cells or two
differentiated cells. For a cell to divide, there must be a free lattice

point adjacent to it. If the cell divides, then one offspring remains
in the position occupied by the parent cell and the other occu-
pies a position adjacent to the cell. There are cases in which a
cell that is able to divide has more than one free adjacent lat-
tice point that may be occupied by one of its two offspring. In
this case we choose the site randomly, with each adjacent free
lattice point having the same probability of hosting one of the
two daughter cells. The events are chosen using the stochastic
simulation algorithm (described above) modified to take into
account the spatial rules. A graphical representation of the spatial
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arrangement of the three-dimensional cell population is given in
Figure 4A.

We found that adding space to the system results in smoother
transitions from perturbed to equilibrium configurations. Com-
pared to the non-spatial system, if oscillations are observed, the
amplitudes are significantly reduced, which in turn results in much
fewer instances that end with the stochastic extinction of the cell
population. This behavior is exemplified by Figures 4B,C. Here we
picked parameter regime (p0= 0.7, v0= 0.2, g = 2× 10−5, β = 1,
d= 0.0025) that produces oscillations in the non-spatial model.
The initial conditions are (S(0), D(0)) = 0.1(Ŝ, D̂), where (Ŝ, D̂)

are the steady state values from the ode model. With this initial
conditions the number of stem cells in the ode model falls below
one, which in practice means that the population goes extinct.
Furthermore we performed 100 independent simulations using
the stochastic non-spatial model and every one of them resulted
in the extinction of the cell population. In contrast not one of 30
simulations using the spatial model resulted in extinction.

In the non-spatial model the steady state fraction of stem cells is:

Ŝ

Ŝ + D̂
=

dβ
/

v0

dβ
/

v0 + 1
(13)

FIGURE 4 | (A) Example of the spatial arrangement of the cell population
in three dimensions. Differentiated cells are shown in blue and stem
cells in red. (B) Cell count of differentiated cells vs. time. The blue line
was computed using the ode model, the red line is the expected cell
count in the spatial model. (C) Cell count of stem cells. Results form the

ode (black) and expected cell count in spatial-dimensional model (green).
The expected number of cells is in the spatial model is shown in blue. (D)
Expected fraction of stem cells that are free in the three-dimensional
model. Parameters in all figures are: p0=0.7, v 0 =0.2, g =2×105, β =1,
and d=0.0025.
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In the spatial model this quantity gives the steady state percent-
age of free stem cells – cells that have free space in an adjacent
position in the grid and are thus able to divide. This means that
for a given set of parameters, the equilibrium number of stem
cells in the spatial model is greater than the equilibrium number
in the non-spatial model. For example in Figure 4C the steady
state fraction of stem cells in the ode model was approximately
0.0123 (as predicted by the formulas). In the three-dimensional
model the expected steady state fraction of cells was approximately
0.0165, an increase of about 32% from the deterministic model’s
prediction.

The mechanism by which the spatial model is able to achieve
a greater stability can be inferred by looking at Figures 4C,D. At
the start of the simulation the number of differentiated cells is
only 10% of the steady state value. Therefore the probability of
differentiation is small and stem cells have a high probability of
dividing into two stem cells. Once the number of differentiated
cells is above D̂, differentiation becomes the more likely event
and in the ode model one sees a steep reduction in the number
of stem cells that leads to extinction. In the spatial model how-
ever, the rapid growth phase of stem cells means the fraction of
free cells is reduced as most stem cells are trapped by other stem
cells. Only these free stem cells are able to divide, slowing down
the speed at which stem cells are depleted. It is important to note
that the spatial effects in this model act locally by reducing the
space available for cell division, their strength thus depends on
the degree of the graph. As the graph degree increases the spatial
effects become weaker until eventually the mass action dynamics
are fully recovered.

In a spatial setting the stem cell niche concept (Morrison et al.,
1997; Simons and Clevers, 2011) might also play a role in promot-
ing stability. If the amount of space in the niche were limited, this
would place a cap in the maximum number of stem cells, which
could in turn decrease the overshooting of the stem cell number
observed during oscillations. Exactly how the explicit modeling
of these microenvironments might affect the performance of the
regulatory mechanisms investigated here should be the subject of
future research.

DISCUSSION
In this article we studied the cell dynamics that arise from feed-
back inhibition in the self-renewal probability of stem cells and
their division rate. We found that by itself feedback on the proba-
bility of self-renewal is sufficient to establish control and uniquely
determines the equilibrium number of differentiated cells. The
equilibrium fraction of stem cells on the other hand depends solely
on the ratio of the death rate and the rate of stem cell division.

In the process of recovering after an injury this control mech-
anism may produce oscillations in the number of cells, a behavior
that may be dangerous and of no obvious biological value. Near
equilibrium oscillations are more likely to occur when the steady
state fraction of stem cells is small. If this is the case, avoiding
oscillations is still always possible, but it comes at the price of
reducing the speed at which the cell populations recover from a
perturbation. If feedback inhibition follows a Hill equation, avoid-
ing oscillations while maintaining a small stem cell load requires
that the maximum self-renewal probability be only slightly larger

than one-half. Feedback inhibition on the stem cell division rate
does not affect the steady state values of either stem cells or differ-
entiated cells, but it reduces the amplitude of oscillations if they
happen to occur. Furthermore it can increase the speed of recov-
ery after an injury, altogether promoting faster and more stable
recoveries of the cell population.

On occasions, extreme oscillations may result in the extinction
of the entire population. However, we find that there are ample
parameter regimes in which this doesn’t occur, even while the sys-
tem is recovering from severe initial conditions. We found that the
larger the equilibrium number of differentiated cells, the smaller
the equilibrium fraction of stem cells may be while still avoiding
extinction. Due to fluctuations, in a stochastic setting the danger
of extinction through oscillations is greater. This suggests that the
mass action model is only well suited as a quantitative tool for
tissues where the steady state number of stem cells is not critically
small.

We also explored how spatial interactions affect the cell dynam-
ics in a stochastic setting. We found that spatial effects greatly
reduce oscillations and the chances of random extinction, provid-
ing smoother transitions from a perturbed state to equilibrium.
This increase in stability is achieved by reducing the number of
stem cells that are capable of division at a given time. When
recovering from an injury the rapid expansion of the stem cell
population traps some of the stem cells, making them incapable
of cell division. Hence, when the steady state number of differen-
tiated cells is reached, a significant fraction of stem cells cannot
divide. This reduces any possible further increase in the number
of differentiated cells causing the magnitude of any oscillation to
decrease as well.

The models of hierarchical cell populations studied here are rel-
evant to both healthy and cancerous tissues. In Rodriguez-Brenes
et al. (2011) we showed how cancer could develop from healthy
hierarchical tissues by a unique sequence of phenotypic transi-
tions, which gradually lead to a complete escape from regulation
in stem-cell-driven tumors. Moreover, we compared the resulting
tumor growth patterns with existing tumor growth data and saw
that in many instances, the regulatory mechanisms of healthy tis-
sues continue to operate to a degree in tumors. This underlines the
importance to cancer biology of studying the principles of tissue
regulation. Another example of the relation between tissue reg-
ulation and the process of carcinogenesis is found in Stiehl and
Marciniak-Czochra (2012).

One important result for the cancerous transformation found
in Rodriguez-Brenes et al. (2011) is that the negative feedback
loops controlling the differentiation decisions must be the first to
be inactivated. The breakage of the division control loops must
happen at a later stage of carcinogenesis. Here we reevaluate
this finding from a different perspective. In order to achieve the
deregulation of divisions and rapid growth, cancerous cells must
first acquire a mutation deactivating the differentiation control.
Otherwise, the tissue may become unstable and enter stochas-
tic fluctuations preventing steady growth. Therefore, a one-step
transformation from healthy tissue to a tissue with no division
control mechanism is highly unlikely. This can be viewed asa
protection mechanism that organs put in the way of cancerous
transformations, making the transition to cancer more difficult
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and statistically delaying the onset of cancer (for related ideas, see
also (Komarova and Cheng, 2006)).

The optimization task for healthy hierarchical tissues is to pro-
vide stable maintenance and a quick and reliable recovery from
injuries. Over time, tissues have evolved (at least partially) to
reach these objectives. In contrast, therapeutic approaches often
pursue the opposite tasks: the destabilization of cancerous tissue,

increasing the chance of stochastic extinction (say, after a course
of chemotherapy or surgery) and the slowing down of tumor
growth. Our models show what parameters (and to what degree)
are responsible for stability and growth. Understanding how vari-
ous parameters contribute to cell population growth and stability
can lead to novel ideas for cancer treatments, where one could
target factors leading to growth retardation or destabilization.
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