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Abstract: Disorders of sex development (DSD) and reproduction are not uncommon among
horses, though knowledge about their molecular causes is sparse. Here we characterized a ~200 kb
homozygous deletion in chromosome 29 at 29.7–29.9 Mb. The region contains AKR1C genes which
function as ketosteroid reductases in steroid hormone biosynthesis, including androgens and
estrogens. Mutations in AKR1C genes are associated with human DSDs. Deletion boundaries,
sequence properties and gene content were studied by PCR and whole genome sequencing of select
deletion homozygotes and control animals. Deletion analysis by PCR in 940 horses, including 622
with DSDs and reproductive problems and 318 phenotypically normal controls, detected 67 deletion
homozygotes of which 79% were developmentally or reproductively abnormal. Altogether, 8–9%
of all abnormal horses were homozygous for the deletion, with the highest incidence (9.4%) among
cryptorchids. The deletion was found in ~4% of our phenotypically normal cohort, ~1% of global
warmblood horses and ponies, and ~7% of draught breeds of general horse population as retrieved
from published data. Based on the abnormal phenotype of the carriers, the functionally relevant gene
content, and the low incidence in general population, we consider the deletion in chromosome 29 as
a risk factor for equine DSDs and reproductive disorders.

Keywords: horse; disorders of sex development; cryptorchidism; reproduction; CNV; ECA29;
steroid hormone; AKR1C

1. Introduction

Mammalian disorders of sex development (DSDs) encompass a broad range of complex congenital
conditions that affect sex determination, sexual differentiation, and the development and function of
gonads [1–6]. The majority of DSDs are characterized by an atypical combination of chromosomal,
gonadal and phenotypic sex and are broadly classified as XX and XY DSDs [5,7]. Though, in some
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forms of XY DSDs, such as cryptorchidism and hypospadias, the genetic and gonadal/phenotypic sex
are in concordance [8]. The prevalence of DSDs in humans is approximately 1.7% of all live births [7,9],
whereas the frequency of non-syndromic cryptorchidism alone can be as high as 8% among full-term
male births depending on the geographical area [8,10].

Sex development is a complex multi-step process controlled by many genes acting in
networks [4,5,11], which complicates the search for the molecular causes of DSDs. Only a handful
of human and mouse DSDs can be attributed to point mutations or copy number variants (CNVs)
in a single gene, others are thought to be oligogenic with the involvement of additional modifier
genes, while molecular causes of many conditions are not known. Furthermore, variations in the same
gene can result in different DSD phenotypes and similar DSD phenotypes may have different genetic
causes [4,11].

Multiple forms of XX and XY DSDs have also been described in horses [12–15] and all forms affect
equine health and reproduction, as well as the economy of breeders and owners. Among equine XY
DSDs, the most common is cryptorchidism with a prevalence of 2–8% among male births [16], followed
by a spectrum of XY and XX DSDs, all characterized by various degrees of discrepancy between genetic,
gonadal and phenotypic sex and ambiguous external sex phenotypes [12–14,17].

Knowledge about the molecular causes of equine DSDs is sparse. For example, no genes or
mutations are known for any of the XX DSDs with intersex, hermaphrodite, pseudohermaphrodite or
ambiguous sex phenotypes [12–14]. Among XY DSDs, the SRY-negative forms are associated with
various Y chromosome deletions [18], while genetic causes of SRY-positive XY DSDs are known only for
a few cases and are heterogeneous. In three families of different breeds, SRY-positive XY DSDs have been
associated with different mutations in the androgen receptor gene resulting in androgen insensitivity
syndrome [19–21]. Earlier studies identified a large deletion in horse (Equus caballus, ECA) chromosome
29 (ECA29) that was found in two related Standardbred horses with SRY-positive XY DSDs and male
pseudohermaphrodite phenotypes [22]. The deletion involves steroid hormone biosynthesis genes
belonging to the aldo-keto reductase family 1 C (AKR1C), of which mutations have been associated
with XY DSDs, such as cryptorchidism, undervirilized external genitalia, dihydrotestosterone (DHT)
deficiency and sex reversal conditions in humans [1,3,4].

In this study, we will further investigate the molecular landscape of the deletion in horse
chromosome 29 by PCR, fluorescence in situ hybridization (FISH) and whole genome sequencing
(WGS). We characterize the deletion breakpoints, develop a simple PCR test for the detection of deletion
homozygotes, and determine their frequency in general equine populations, as well as among horses
with various DSDs and reproductive disorders.

2. Materials and Methods

2.1. Ethics Statement

Procurement of blood and hair samples for DNA isolation followed the United States Government
Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research and Training.
These protocols were approved as AUPs #2012-0250 and #2018-0342 CA at Texas A&M University.
Owners of the Swedish samples gave permission for their animals to be used in the study and the
study was approved by the Ethics Committee for Animal Experiments in Uppsala, Sweden (#C 121/14
and #5.8.18–15453/2017).

2.2. Horses and Phenotypes

Samples of 940 horses of over 45 diverse breeds and breed mixes were used for experiments
in this study (Supplementary Table S1). These included 364 horses with various DSDs of which
159 were cryptorchids; 258 phenotypically normal but reproductively or hormonally abnormal
male and female horses, and 318 control horses with normal male or female phenotypes, but with
limited information about fertility. Control horses included Thoroughbred mare Twilight, the DNA
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donor for horse reference genome assemblies EquCab2 [23] and EquCab3 [24], and her half-sibling
Thoroughbred stallion Bravo, the DNA donor of bacterial artificial chromosome (BAC) library CHORI
241 (https://bacpacresources.org/). Both horses are normal with proven fertility. The majority of
samples available from the depository of Texas A&M Molecular Cytogenetics laboratory also had
karyotype data.

In addition, whole genome sequence (WGS) and/or high density 670K SNP genotyping data from
publications [25–27] were used for population analysis. Horses from these cohorts were not specifically
phenotyped for sex development or fertility.

2.3. Genomic and BAC DNA Isolation and Quality Control

Genomic DNA was isolated from hair or peripheral blood using Gentra Puregene Blood Kit
(Qiagen) following the manufacturer’s protocol. The DNA was checked for quality and quantity with
Nanodrop 2000 spectrophotometer (Thermo Scientific).

The IDs and sequence coordinates of 4 partially overlapping genomic clones spanning the
deletion in ECA29 and a control clone outside the deletion (Table 1) were retrieved from NCBI
(https://www.ncbi.nlm.nih.gov/genome/?term=horse). The clones were picked from the CHORI 241
BAC library (https://bacpacresources.org/). High molecular weight BAC DNA was isolated with
High Pure Plasmid Isolation Kit (Roche Diagnostics) per manufacturer instructions and checked for
molecular weight, quality and quantity with Agilent 2100 TapeStation system.

Table 1. Information about ECA29 bacterial artificial chromosome (BAC) clones used for sequencing
and fluorescence in situ hybridization (FISH) analysis.

CHORI-241 BAC Insert Size, bp Location in EquCab3 Use in This Study

076H13 185,817 4,148,266-4,334,082 FISH, control

067D20 136,746 29,675,975-29,812,720 PacBio

177J11 151,587 29,723,325-29,874,911 PacBio

023N13 159,470 29,745,215-29,904,684 PacBio and FISH

161K5 223,786 29,771,429-29,995,214 PacBio

2.4. Primers and PCR Analysis

The ECA29 deletion was analyzed by qualitative and quantitative PCR. Primers for sequence tagged
sites (STSs) around putative deletion breakpoints and for genes inside the deletion (Supplementary
Table S2) were designed using horse reference genome EquCab3 [24] (NCBI: https://www.ncbi.nlm.nih.
gov/genome/?term=horse) and Primer3 software [28]. Each primer was validated by in silico PCR in
UCSC (http://genome.ucsc.edu/) to produce a single product unique for ECA29.

Qualitative PCR was performed with JumpStart Taq DNA polymerase (Sigma) and the results
were analyzed by agarose gel electrophoresis. Qualitative PCR with DELin1 primers to detect horses
with homozygous deletion were carried out in duplicate reactions and duplicate experiments.

Quantitative PCR (qPCR) experiments were performed with LightCycler®480 (Roche Diagnostics)
in triplicate assays and triplicate 20 µL reactions, each containing 50 ng of template DNA, 10 µM
primers, and the Hot FirePol®EvaGreen®qPCR Mix Plus (Solis BioDyne). Relative copy numbers
were determined in comparison to the reference sample (Thoroughbred Bravo) and normalized to
an autosomal reference gene GAPDH. Copy numbers were quantified by the comparative CT method
(2∆∆Ct) [29,30] with p < 0.05 as a cut-off threshold for statistical significance.

2.5. Fluorescence In Situ Hybridization (FISH)

The DNA (1 µg) of BACs 23N13 spanning the deletion and a control BAC 76H13 outside the
deletion (Table 1) were labeled with biotin-16-dUTP or digoxigenin-11-dUTP using Biotin- or DIG-Nick
Translation Mix (Roche Diagnostics). Labeled probes were hybridized to metaphase chromosomes

https://bacpacresources.org/
https://www.ncbi.nlm.nih.gov/genome/?term=horse
https://bacpacresources.org/
https://www.ncbi.nlm.nih.gov/genome/?term=horse
https://www.ncbi.nlm.nih.gov/genome/?term=horse
http://genome.ucsc.edu/
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of horses where analysis by PCR suggested homozygous or heterozygous deletion, and to control
horses without deletion. FISH was done following standard protocols [31]. Images for a minimum of
20 metaphase cells were captured for each experiment and analyzed with a Zeiss Axioplan2 fluorescent
microscope equipped with Isis v5.2 (MetaSystems GmbH) software.

2.6. Sequencing and Bioinformatics Analysis

Whole genomes of two horses with homozygous deletion in ECA29 and XY DSD phenotypes
(H369, a male pseudohermaphrodite and H354, a bilateral cryptorchid; Supplementary Table S1) were
sequenced using 1x100 bp libraries prepared with TruSeq DNA PCR-Free Sample Preparation Kit
(Illumina), and an Illumina HiSeq2500 platform producing approximately 6-10X average coverage per
animal. All data were aligned to EquCab3 using bwa [32], sorted with samtools 1.9 [33], and duplicates
marked with sambamba [34]. Publicly available control data from Jagannathan et al. 2019 (QH070 and
HN001 for visualization) were mapped in the same fashion.

The 4 BAC clones (Table 1) spanning the deletion were sequenced by Pacific Biosciences (PacBio)
single molecule real time (SMRT) technology. Sequencing libraries with a molecule size range of 20 kb
were generated using the RS DNA Template Preparation Kit (Pacific Biosciences), loaded on a SMRT
cell and sequenced for long-reads with C2 chemistry on the PacBio RS [35], with an estimated yield of
approximately 5 Gb data per SMRT cell. Resulting filtered subreads were assembled using canu 1.8 [36]
for each individual BAC, as well as a separate assembly for all data. For reference based alignment,
PacBio subreads were aligned to EquCab3 using minimap2.1 [37]. Furthermore, mapping of individual
contigs generated by canu were aligned using minimap for visualization.

The content and functions of genes affected by the deletion were retrieved from NCBI
(http://genome.ucsc.edu/), UCSC (http://genome.ucsc.edu/) and Ensembl (http://www.ensembl.org/

index.html) Genome Browsers, and GeneCards (http://www.genecards.org/).
Protein sequences for horse, human and mouse AKR1C genes were retrieved from NCBI

(http://genome.ucsc.edu/) and aligned with the Clustal Omega multiple sequence alignment tool
(https://www.ebi.ac.uk/Tools/msa/clustalo/).

3. Results

3.1. Identification of Additional Deletion Carriers

The initial discovery of the deletion in ECA29 was by array comparative genomic hybridization
(aCGH), which identified a ~200 kb homozygous deletion in two related horses (H348 and H369;
Supplementary Table S1) with XY DSDs [22]. To determine, whether or not the deletion is an isolated
event we used the published [22] deletion-specific primers (DelIn1, Supplementary Table S2) to screen
a small selection of horses with XY DSDs by regular PCR. As a result, additional animals that were
homozygous for the deleted sequence were identified (Figure 1), indicating that the deletion is not
limited to the two discovery horses and requires more detailed analysis.
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Figure 1. Discovery of homozygous deletion in horses with XY DSDs using PCR and DelIn1 primers;
horses H348 and H369 denoted with an asterisk are the two related male pseudohermaphrodites where
the deletion was initially discovered by aCGH; horses H311, H354 and H364 are cryptorchids; H977,
H650 and Bravo are normal controls; M—100 bp ladder (NEB).
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3.2. Demarcation Deletion Breakpoints

In order to demarcate deletion breakpoints, a set of primers were designed for PCR walking
around the putative deletion start (primers S1-S11) and end sites (primers E1–E9) (Supplementary
Table S2, Figure 2), which were determined based on aCGH data [22]. Walking by PCR using DNA
from horses with known homozygous deletion (D/D) and controls without deletion suggested that
the deletion starts in a 1019 bp region at chr29: 29,740,911-29,741,930 between primers S7 and S8,
and ends in a 95 bp region at chr29:29,944,184-29,944,279 between primers E8 and E9 (Supplementary
Table S2, Figure 2). However, demarcation of the end of the deletion by PCR remained dubious because
sequences corresponding to the amplicons of primers E10–E12 showed multiple hits in EquCab3.
Furthermore, primers E4 did not amplify from D/D or controls (Supplementary Table S2), suggesting
that the region is complex and the reference assembly has gaps and/or errors in this region.
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Figure 2. Demarcation of deletion breakpoints by PCR walking. Black horizontal bar at the top denotes
the span of PCR walking in ECA29 between 29.73 and 29.94 Mb. Rectangles S1–S11 and E1–E12 denote
sequence tagged sites (STSs) around the deletion start and end, respectively. STSs shown with black
rectangles were located outside the deletion and STSs with red rectangles were inside the deletion.
Red arrows indicate the deletion start and end sites. Representative agarose gel images with PCR results
using STS primers outside and inside the deletion and gDNA from horses with homozygous deletion
(H348, H369, H354) and 4 control horses are shown below the two deletion breakpoints. Details about
PCR walking primers are in Supplementary Table S2.

To determine the deletion boundaries more accurately, we generated WGS for two D/D horses:
H354 and H369 (Figure 1, Supplementary Table S1). Sequence alignment with EquCab3 and published
WGSs of 2 normal horses [27] showed that the deletion in ECA29 starts at position 29,741,143 bp in H354
and at 29,741,147 bp in H369, near a documented repetitive region in EquCab3, and consistent with
the region determined by PCR (Figure 3). In horse H354, the putative end was around 29,944,505 bp
and in horse H369, at 29,952,177 bp, thus over 7.6 kb more distal. Both putative deletion end sites
determined by WGS (Figure 3) extended further compared to the one determined by PCR (Figure 2).
Based on WGS data, we estimated the approximate size of the deletion to be 200–210 kb. However, due
to multi-mapping short read alignment from 29,944,163 to 29,952,267 roughly 20–30X average depth,
the precise end breakpoint was not precisely determined. This ~8,100 bp region indicates a putative
tandem duplication or complex rearrangement at the end of the deletion, potentially inducing the
structural change. No duplication is evident in 88 control horses from the WGS data obtained from
Jagannathan et al. 2019, thus genotypically normal horses do not possess the putative additional
structural variant(s) associated with the deletion. Resolution is unattainable with short-read data,
and should be explored using newer PacBio or Oxford Nanopore long-read data.

In an attempt to improve sequence assembly in this region, we de novo assembled long-read
PacBio sequence data of 4 partially overlapping BACs spanning the deletion (Table 1, Figure 3).
Previously, we have shown that Thoroughbreds Bravo and Twilight, the DNA donors of the BAC
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library and genome assembly, respectively, differ by just 3 CNVs across the genome with no CNVs in
ECA29 [22]. Thus, the BAC sequences should closely resemble the reference genome and can be used
to improve the assembly in this region. Independent assembly of all four BACs produced one long
contig with high read coverage (>3000) each. Assembly of all data together produced one 338,300 bp
contig spanning the deletion. This confirmed that there is no evidence for duplication in the region,
other than in D/D individuals (Figure 3).
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Figure 3. Schematic overview of the deleted region in ECA29: 29,741,143–29,952,177 (the approximate
maximum span of the deletion based on whole genome sequence (WGS)). (A) Position of the deletion
in ECA29 sequence map; (B) STSs in the region that were used for breakpoint analysis, detection of
deletion homozygotes and to confirm homozygous deletion of specific genes; (C) Gene map of the
region according to NCBI and Ensembl; (D) Relative read coverage plots for WGS of two cases and
two control horses delineating the deleted region. Boxed in grey are known repetitive regions in
EquCab3. Boxed in red is the structural variant present only with the documented deletion in cases,
and (E) All de novo contigs assembled from BACs spanning the region of the deletion; (F) Relative
PacBio read coverage plots when aligned to EquCab3. In all sequence coverage plots, green color
indicates plus-strand and blue color minus-strand alignment.

Taken together, both PCR analysis and WGS confirmed the presence of a large, approximately
200 kb deletion in some horses with XY DSDs. While precise demarcation of deletion boundaries
remained tentative due to sequence complexity in the region, the most proximal and most distal points
of the deletion by WGS were chr29:29,741,143–29,952,177 spanning 211,034 bp.
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3.3. Gene Content of the Deleted Region

The deleted region chr29:29,741,143–29,952,177 contains 2 predicted protein-coding genes and
one RNA gene by Ensembl (Figure 3). However, the Ensembl gene prediction ENSECAG00000021292
corresponds to 5 non-overlapping fragments of the same gene in NCBI (Table 2), suggesting that the
region contains members of a gene family which have not yet been accurately identified and annotated.
Despite this, all predicted coding genes in the deleted region belong to aldo-keto reductase family 1,
known to play essential roles in the metabolism of all steroid hormones [38], including the production
of extra-testicular androgens [39]. Deletion of all genes in this region in select XY DSD horses with
homozygous deletion was confirmed by PCR with gene-specific primers E661, E668, E458, E332 and
ED2 (Figure 3; Supplementary Table S2).

3.4. Detection of Deletion Heterozygotes by Quantitative PCR and FISH

Once approximate deletion start and end sites had been determined (Figures 2 and 3), conventional
qualitative PCR with primers designed inside the deletion (Supplementary Table S2) was a fast
and efficient approach for the detection of horses homozygous for the deletion (Figures 1 and 2).
However, because of the large size (~200 kb) of the deleted region and ambiguity in defining deletion
boundaries, we were not able to detect heterozygous carriers by qualitative PCR. Therefore, we designed
gene-specific primers G_2879 (Figure 3, Supplementary Table S2) for quantitative PCR (qPCR) and
analyzed selected 12 horses with DSDs (including 8 cryptorchids) and 11 normal control horses
for possible heterozygotes (Figure 4). As expected, previously known D/D horses had zero copies.
Other horses, both with DSDs and normal controls, showed considerable CNV in a range from 20 to
120 relative copies, which is consistent with previous CNV studies in the region [22].
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Table 2. Predicted genes in the deleted region by Ensembl and their counterparts by NCBI annotation.

Ensembl Gene
Symbol Gene Name Ensembl

Transcripts Ensembl Coordinates NCBI NCBI Transcripts NCBI Coordinates

ENSECAG
00000021292

AKR1C3
Prostaglandin F synthase
1; Aldo-Keto Reductase

Family 1 Member C3
10 29,762,757–29,916,689

LOC
100070491

1; partial mRNA; low
quality protein 29,763,330–29,777,989

LOC
100070501 3 29,783,899–29,797,702

LOC
100070509 3 29,821,260–29,834,688

LOC
100070516 1 29,840,106–29,854,539

LOC
100057212 2 29,890,576–29,916,671

ENSECAG
00000031302 AKR1C23L

Aldo-keto reductase
family 1 member
C23-like protein

7 29,928,015–30,063,271 LOC
100070528 6 29,928,409–29,944,738

ENSECAG
00000029817 U6 U6 splicesomal RNA gene 1 29,911,416–29,911,522 LOC

111771275 1 29,911,416–29,911,522
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The broad range of variation in qPCR results made calling deletion heterozygotes ambiguous and
we further validated the results by FISH. We selected two horses with relative copy numbers below 50
(Bravo—normal fertile male and H657—an XX intersex), one horse with > 50 copies (H395), and one with
homozygous deletion and zero copies (H369) as a negative control. FISH was done with BAC 23N13,
which spans the deletion (Figure 3) and a control BAC 76H13, which maps to the proximal part of ECA29
(Table 1). The results showed that H395 (>50 copies) and Bravo (<50 copies) did not have the deletion,
horse H657 (<50 copies) with similar copy numbers by qPCR as Bravo was heterozygous, and horse
H369, as expected, homozygous for the deletion (Figure 5). These results indicate that FISH analysis
can clearly discriminate between horses with no deletion, deletion heterozygotes and horses with
homozygous deletion. However, FISH is a method of too low throughput for routine screening of large
number of horses. On the other hand, relative copy number estimation by qPCR to discriminate between
horses with no deletion and those with heterozygous deletion remained ambiguous. Furthermore, a
broad range in copy numbers as detected by qPCR analysis (Figure 4) suggests that this CNV may be
multi-allelic like several common complex CNVs described in human diseases [40]. This also implies
that qPCR-based analysis can confidently detect zero copies in homozygous deletion, maybe also 1
copy in simple heterozygotes, but will provide no information about the distribution of >2 copies on
homologous chromosomes.Genes 2020, 11, 251 9 of 15 
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Figure 5. Deletion analysis by FISH with deletion-specific BAC 23N13 (green; arrows) and a control
BAC 76H13 (red). (A) Normal male control Bravo with <50 copies by qPCR and no deletion by FISH;
(B) Normal male H395 with >50 copies by qPCR and no deletion by FISH; (C) XX DSD horse H657 with
<50 copies by qPCR and heterozygous deletion by FISH; and (D) XY DSD horse H369 with homozygous
deletion by qPCR and FISH.

3.5. Frequency of the Deletion Among Horses with Reproductive Problems and DSDs, and in General
Population

Because the first identified homozygotes for ECA29 deletion were horses with DSDs [22] (Figure 1),
and because the deletion involved genes necessary for steroid hormone biosynthesis (Table 2) and sex
development [38], we further investigated by PCR the frequency of deletion homozygotes among 622
developmentally or reproductively abnormal horses. These included horses with various XX and XY
DSDs and other congenital disorders, horses with normal male or female sex development but with
unexplained infertility or subfertility, and horses producing offspring with DSDs. We also tested 318
phenotypically normal male and female horses, though with limited information about their fertility
(63 with proven fertility; 255 with no information on fertility). Details about all 940 individual horses
are presented in Supplementary Table S1.

Altogether, we identified 67 horses with homozygous deletion of which 53 horses (79%) were
diagnosed with DSDs or fertility problems. The frequency of homozygous deletion was almost
two times higher in the developmentally and reproductively abnormal cohort (8.1%) compared to
controls (4.7%), with the highest incidence found in cryptorchid horses (9.4%) (Table 3). We did not
observe any bias of the deletion between bi- or unilateral cryptorchids. There was also no difference
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between the occurrence of the deletion across different breeds and D/D individuals were present in
17 different breeds and breed mixes out of 45 breeds involved.

Table 3. Frequency of deletion homozygotes among horses with DSDs and/or fertility problems.

Phenotype No. of Horses Homozygotes, DD Percent

DSD (non-cryptorchid) 205 17 8.3

Cryptorchid 159 15 9.4

Normal but subfertile/infertile 258 21 8.1

All DSDs, subfertile, infertile 622 53 8.1

Normal controls 318 14 4.7

In order to estimate the frequency of the homozygous deletion in the general equine
population, we analyzed publicly available WGS and 670K SNP array data for the region chr29:
29,741,143—29,952,177 (Table 4). The frequency of homozygous deletion carriers varies considerably
between the studies being 0–1% among global warmblood and pony breeds [26,27], but reaching over
7% in a recent study, which is strongly biased towards draught horses [25]. Collectively, the frequency
of homozygous deletion in general equine population is lower (5.6%) than that among horses with
DSDs and fertility problems (8.1%). Because the sequence assembly of the region has ambiguities
(Figure 3), and the region likely represents a complex multi-allelic CNV, no efforts were made to
estimate the number of putative deletion heterozygotes.

Table 4. Occurrence of ECA29 deletion in general equine population.

No. of Horses Method No. of Breeds Breeds D/D D/D, % Reference

280 670K 1 Exmoor pony 0 0 [26]

88 WGS 25

Akhal-Teke, American Paint, American
Standardbred, Arabian, Polish Warmblood,

Badenwürttemberg Warmblood, Bayer
Warmblood, German Riding Pony; Holsteiner,
Morgan, Franches-Montagnes, Hannoverian,

Haflinger, Icelandic, Dutch Warmblood, Noriker,
Oldenburger, American Quarter Horse, Swiss
Warmblood, Shetland Pony, Thoroughbred,

Trakehner, UK Warmblood, Westfale, Welsh Pony

1 1.1 [27]

1755 670K 8
Ardenner, Belgian Draught, German Draught,

Exmoor Pony, Vlaams Paard, Belgian Warmblood,
Swedish Warmblood, Friesian

135 7.6 [25]

TOTAL: 2403 32 136 5.6

4. Discussion

Here we characterized a ~200 kb CNV region (CNVR) in horse chromosome 29 at 29.7–29.9 Mb,
which contains genes essential for steroid hormone biosynthesis and was deleted from both homologs
in 8–9% of horses with reproductive problems and DSDs. On the other hand, 79% (53/67) of the horses
carrying the homozygous deletion were developmentally or reproductively abnormal.

The deleted region in ECA29 is embedded in a larger common CNVR that has been found in
the general equine population of diverse origins by several previous studies [22,25,41,42]. The most
extensive recent genome-wide analysis of 939 CNVRs in 1755 horses of 8 European breeds, detected the
larger 714 kb common deletion-duplication CNVR (CNVR915) in 1204 (68.6%) horses [25]. As a notable
contrast, the homozygous deletion of the smaller 200 kb region is rare and was found only in about 4.7%
of phenotypically normal horses used in this study, and in 0% to 7.6% of general equine population
from other studies (Tables 3 and 4). Based on published data, the frequency of the homozygous deletion
is extremely low (0% to 1%) among 26 global warmblood and pony breeds [26,27]. For example, the
larger CNVR is present in 84% (216/256) of Exmoor ponies studied for CNVs [25], but none of these
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carry the homozygous deletion of the smaller region [26] (Table 4). At the same time, the frequency
of D/D individuals seems to be considerably higher (7.6%) among European draught breeds [25]
and it would be of future interest to compare the genotyping data with reproductive phenotypes in
these breeds.

Given that 79% of the carriers of the homozygous deletion in ECA29, as determined in this
study, were developmentally or reproductively abnormal, the content of genes in the region is of
particular interest. According to gene predictions, both deleted protein-coding genes belong to the
aldo-keto reductase gene family 1C (AKR1C) (Figure 3, Table 2) members of which carry out various
functions in steroid hormone metabolism. More specifically, AKR1C enzymes (AKR1C1–AKR1C4)
function in vivo as 3-keto-, 17-keto- and 20-ketosteroid reductases and metabolize a broad spectrum
of natural and synthetic therapeutic steroids [6]. They are involved both in androgen and estrogen
metabolism by controlling concentrations of active androgens and estrogens, and regulating occupancy
and trans-activation of androgen and estrogen receptors [38]. All pathways to the potent androgens
testosterone and dihydrotestosterone (DHT) proceed through family members AKR1C2-AKR1C4 [38],
while AKR1C2 and AKR1C4 also participate in ‘the backdoor pathway’ that leads to DHT synthesis
without testosterone intermediate [43–45].

Altered expression of individual AKR1C genes is related to the development of prostate and
breast cancer, and endometriosis in humans due to changes in progesterone, estrogen and androgen
metabolism [38,46]. Mutations in AKR1C genes are associated with human XY DSDs, including
cryptorchidism, sex reversal and defective androgen synthesis phenotypes [3,4,38,44,47].

Mouse models are less informative because there are no one-to-one mouse orthologs for human or
horse AKR1C genes (Ensembl: http://www.ensembl.org/index.html). While amino acid sequence identity
between human AKR1C1-AKR1C4 paralogs is 82–99% (Supplementary Table S3) [38], their one-to-one
orthologs have been found only in primates, while orthologs in other mammals, including mouse,
are many-to-many type (Ensembl: http://www.ensembl.org/index.html). On the one hand, this suggests
rapid evolutionary divergence of AKR1C orthologs across species, and on the other hand, difficulties
to annotate paralogs within a species. The closest murine homolog for human AKR1C1-AKR1C4 genes
is Akr1c18 (MGI: http://www.informatics.jax.org/marker) sharing only 65–68% amino acid sequence
identity with human and 51–65% with equine orthologs (Supplementary Table S3). Nevertheless,
it is noteworthy that Akr1c18 (-/-) live knockouts are exclusively female with reduced fetal viability, low
adult pregnancy rates and increased embryonic loss, whereas male knockouts are likely not viable [48,49].

The human and mouse data strongly suggest that AKR1C genes are necessary for normal sex
development and reproduction and their mutations have consequences. Furthermore, in the CNV
map of the human genome, the AKR1C genes are not among the ~100 “expendable” CNV genes which
can be homozygously deleted with no deleterious effect [50]. This is consistent with the findings of
the present study where the majority (79%) of horses with the homozygous deletion were abnormal
regarding sex development and/or reproduction. Though, there is no single clear explanation for the
remaining 21% of horses also carrying the homozygous deletion, in part because the available fertility
data for the “normal” population were sparse (Supplementary Table S1). Furthermore, the assembly
of the region in ECA29 is incomplete even in the recently improved reference genome EquCab3 [24],
and annotation of individual AKR1C family members is ambiguous (Table 2). The region is structurally
complex, containing CNVs, segmental duplications and AKR1C paralogs that share over 86% sequence
identity with each other [6,51]. These features complicated accurate demarcation of deletion boundaries.
For example, by combining PCR and WGS data, we confined the deletion between 29.7–29.9 Mb
(Figures 2 and 3). In EquCab3 in UCSC Genome Browser (https://genome.ucsc.edu/), the cluster of
AKR1C paralogs is located at chr29: 29.7–30.3 Mb, thus some members of the gene family may escape
the deletion and compensate the loss of others. It is also possible that the size of the deletion differs
between individual horses, but was not captured by PCR analysis of a short target region. However,
perhaps the most plausible explanation for why not all animals with the deletion showed abnormal
phenotypes, as well as why those with the deletion had a broad spectrum of abnormal phenotypes,

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
http://www.informatics.jax.org/marker
https://genome.ucsc.edu/
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stays in the very nature of the genetic regulation of steroid metabolism. It is well documented that
among all CNV genes in humans and animals, the most abundant are G-protein coupled receptors,
and immunity and steroid metabolism genes [22,50,52,53]. This implies that the gene networks and
biochemical pathways governed by these genes are so critically important for the development, viability
and adaptive plasticity that they are duplicated and backed up by alternatives in the genome [54].
We therefore hypothesize that phenotypic consequences of the deletion in ECA29 varies from case to
case depending on the overall genetic background of each individual.

Further, in the large cohort of 622 developmentally and reproductively abnormal horses, only
8%-9% carried the homozygous deletion and phenotypes of the carriers were diverse. Phenotypically,
the most uniform group were cryptorchids of which 9.4% were homozygous for the deletion (Table 3),
though cryptorchid phenotype too varied in a broad range. Therefore, it was not possible to statistically
associate the deletion with any specific form of equine cryptorchidism or other DSD. Our observations
are consistent with those in humans where studies on DSDs and disorders of reproduction are more
advanced and abundant [1–4], but face similar challenges for uncovering the genetic causes. One is the
very nature of these conditions which prevents reproduction and transmission, making almost every
case a singleton. Another is the complex gene network underlying sex development and reproduction.
In addition, most of these conditions have a spectrum of phenotypes. Together these factors exclude
association studies based on large, well-phenotyped case-control cohorts, and require genetic studies
on a case-by-case basis.

Nevertheless, based on the size and gene content of the deletion, the abnormal phenotype of the
majority (79%) of deletion homozygotes, and the low frequency (~5%) of the homozygous deletion in
general equine population, we consider this deletion as a possible causative, but definitely a risk factor,
for some forms of equine DSDs, cryptorchidism, and reproductive disorders.

5. Conclusions and Future Approaches

We characterized a homozygous ~200 kb deletion in ECA29 as a risk factor for equine DSDs
and reproductive disorders. These conclusions were based on the following notions: i) the deletion
eliminates functionally relevant AKR1C genes, which have been associated with DSDs in humans;
ii) the frequency of the deletion was higher in abnormal horses (8–9%) compared to normal population
(1–5%), and iii) the majority (79%) of horses with the homozygous deletion were phenotypically
abnormal. Even though denoted as a risk factor because of difficulties to establish statistically sound
causative genotype–phenotype relationship, the findings add to the currently very short list of genomic
regions underlying equine disorders of sex development and reproduction (reviewed by [55]). A simple
PCR analysis to identify ECA29 deletion homozygotes can be easily included in clinical genetic testing
of problem horses, similarly to the routinely conducted test for the Y-linked SRY gene [18]. At the
same time, for any further progress in the study of this deletion, it is important to improve phenotype
descriptions for all new cases. For example, since the AKR1C genes are involved in steroid hormone
biosynthesis, it would be important to include data on serum hormone levels. Further, the fact that only
8–9% of the 622 reproductively and developmentally abnormal horses in this study carried the ECA29
deletion also implies the need of continuing efforts to decipher the molecular causes of equine DSDs
and reproductive disorders. High expectations are put on personalized genomics by generating WGS
data for large numbers of individual horses, as well as on the ongoing equine initiative of the Functional
Annotation of Animal Genomes (FAANG) project (reviewed by [55]) to identify important functional
elements in the horse genome, particularly those underlying complex traits such as development
and reproduction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/3/251/s1,
Supplementary Table S1: Information about the genetic sex (karyotype), external and gonadal phenotype, fertility
(where available) and breed of the horses that were used for PCR analysis. Supplementary Table S2: Detailed
information about the primers used to study the deletion in ECA29 including PCR product size, genomic location
of the PCR amplicon, presence or absence of the PCR amplicon (D/D—homozygous deletion; positive—no deletion
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or heterozygote), and reference. Supplementary Table S3: A matrix showing percent identity of protein sequences
of horse, human and mouse putative AKR1C gene orthologs.
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