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Abstract 
 

 

Identification of genetic and epigenetic factors in autoimmune disease 

etiology and treatment response 

 

 

by 

 

 

Cameron Jeffrey Adams 

 

Doctor of Philosophy in Epidemiology 

 

Designated Emphasis in Computational and Genomic Biology 

 

University of California, Berkeley 

 

Professor Lisa F. Barcellos, Chair 

 

Multiple sclerosis and rheumatoid arthritis are complex autoimmune disease of unknown 

etiology. Each are result of exposure to a combination of genetic and environmental risk factors. 

Effective treatments that reduce the rate that normal tissues are attacked by the immune system 

have been developed; however, the mechanisms underlying disease pathogenesis and treatment 

response are not completely understood. In this dissertation, I used a combination of 

epidemiologic, bioinformatic, and computational methods to study the role of gene and 

environmental interactions, the vitamin D pathway, and DNA methylation in multiple sclerosis 

and rheumatoid arthritis. Chapter one introduces the genetic, environmental, and epigenetic 

factors in multiple sclerosis and rheumatoid arthritis. Chapter two describes results from an 

investigation into gene and environment interaction between genetic risk factors and pregnancy 

for multiple sclerosis susceptibility finding no evidence for effect modification between genetic 

susceptibility and pregnancy. Chapter three uses mendelian randomization methods to identify 

evidence that variation in vitamin D receptor binding is associated with MS susceptibility. 

Chapter four shows that changes cell-specific DNA methylation are associated with response to 

treatment with methotrexate among treatment naïve rheumatoid arthritis patients.  
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Chapter 1 - Introduction 

Multiple sclerosis (MS) and rheumatoid arthritis (RA) are autoimmune diseases with adult onset 

that primarily affect women.1,2 MS is a demyelinating disease of the central nervous system 

(CNS) with a worldwide prevalence of approximately 0.1% and is a leading cause of 

neurological disability in young to middle-aged adults.2,3 RA is the most common systemic 

autoimmune disease, with a worldwide prevalence approaching 1%.1 It exhibits substantial 

clinical heterogeneity with the potential to cause substantial disability, primarily as a result of the 

erosive and deforming process in joints.4,5   

Both MS and RA susceptibility have a substantial genetic component that includes genes within 

the major histocompatibility complex (MHC) region.6,7 The contribution of genetics to MS and 

RA is estimated to comprise approximately 48% and 50%-60% of disease risk, respectively.6,7 

HLA-DRB1*15:01, located in MHC class II region, is the largest individual genetic risk factor 

for MS and 200 non-MHC risk variants have also been identified.6 In RA, shared epitope (SE) 

alleles are the strongest genetic risk factors for developing RA and more than 60 non-MHC risk 

variants have been identified in GWAS.7,8  

In addition to the substantial genetic contribution to disease susceptibility, several environmental 

risk factors have been identified for both MS and RA. Common risk factors include tobacco 

smoke, obesity, and low-vitamin D.9–13 There is evidence of interaction between environmental 

risk factors and HLA gene alleles in MS susceptibility including tobacco smoking, Epstein-Barr 

Virus infection, and adolescent obesity.14 The effect of pregnancy on MS susceptibility is 

unknown with studies yielding mixed results,15 but among women with MS, pregnancy often 

results in temporary remission or improvement of symptoms but is followed by relapse or 

worsening of symptoms 3-6 months after childbirth.16 Vitamin D insufficiency has been found to 

be implicated in risk of several autoimmune diseases, including MS.17   

Epigenetic modifications are regulatory mechanisms that influence gene expression that are not 

the result of changes in the DNA sequence.18 These modifications have been found to be of 

particular importance in the pathogenesis of RA.19 Differences in DNA methylation (DNAm) at 

the global and CpG associated with RA cases status and disease severity has been identified in T 

lymphocytes, B cells, and peripheral blood.20–25 Emerging evidence has found a role for DNAm 

as a mediator in response to methotrexate (MTX), the recommended first line of treatment in 

RA.26–29 However, recent studies investigating DNAm in blood and response to MTX have 

yielded no genome-wide significant findings.30,31 Peripheral blood contains several different cell 

types, each of which have different methylation profiles. DNAm measurements from blood are a 

combination of DNAm in the constituent cell-types and adjustment for global cell-proportions is 

critical when performing epigenome wide association studies.32,33 Cell-specific differential 

DNAm may be obscured if, for example, the differential DNAm at a CpG for a given phenotype 

is present in only one cell-type or if the direction of differential DNAm is in opposing directions 

between certain cell-types. Recently, methods have been developed to estimate cell-specific 

differential DNAm from blood at the CpG level.34 

In the second chapter, we investigated interaction between pregnancy before disease onset and 

MS genetic risk factors for MS. Previous studies had found mixed results for evidence of an 

association between pregnancy and MS.15,16 In MS, pregnancy appears to have short term 
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beneficial effects on existing MS, but there is no agreement about the effect of pregnancy on MS 

risk.35–37 We used a case-only ! × # study design to estimate interaction between pregnancy and 

MS genetic risk factors including a polygenic risk score comprised of non-MHC risk variants, 

and the two largest individual risk factors (presence of HLA-DRB1*15:01 alleles and absence of 

HLA-A*02:01 alleles). Data on female MS cases with complete genetic and reproductive history 

from four MS studies was used for analyses: Kaiser Permanente Northern California MS Study, 

Kaiser Permanente Southern California MS Sunshine Study, two Swedish population-based 

case-control studies, and the Oslo MS Registry. 

 

Previous research has found evidence that high levels of serum 25-hydroxyvitamin D 

(25(OH)D)38,  sunlight exposure39,40, vitamin D supplements and diets rich in vitamin D17 are 

associated with a decreased risk of MS susceptibility. Studies using mendelian randomization 

(MR) methods have identified a causal link between lower serum 25(OH)D and MS 

suscepbility.13,41 It is well established that 25(OH)D signals through the nuclear vitamin D 

receptor (VDR), a ligand-regulated transcription factor which mediates all genomic actions of 

25(OH)D. The contribution of genetic instruments suggests that more of the human genome is 

involved in explaining variation in serum 25(OH)D levels, and that different aspects of the 

vitamin D pathway, specifically transcription and expression mediated by VDR DNA binding 

are involved in the relationship between vitamin D and MS. In the third chapter, we investigated 

effect of vitamin D receptor binding at a locus on MS susceptibility. Previous research identified 

single nucleotide polymorphisms (SNPs) associated with variation in vitamin D receptor (VDR) 

DNA binding (VDR-BV).42 We used these VDR-BVs as genetic instruments to conduct a MR 

study to estimate the association between VDR binding at a locus.  

 

In the final chapter, we used DNAm measurements from before and after treatment with 

methotrexate (MTX) to identify signatures of DNAm associated with response to MTX in RA 

patients. We also used new computational methods to estimate cell-specific signatures of DNAm 

associated with MTX response at the CpG level.34 MTX is a disease-modifying antirheumatic 

drug that is the recommended first treatment for RA.43 Response to the first treatment regime is 

an important indicator of long-term prognosis44–47, however, only 30-40% of patients continue 

with MTX treatment after two years.27,48 Previous research suggests that medications, including 

MTX, alter patterns DNAm.49–52 This is of interest for several reasons, including the fact that 

treatment-associated changes in the epigenome may explain, at least in part, the mechanism by 

which MTX exert its effects. Further, DNAm patterns prior to treatment and changes in DNAm 

associated with treatment may serve as predictors of treatment response.  
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Chapter 2 - Pregnancy does not modify risk of multiple sclerosis in genetically susceptible 
women 

Abstract 

 

Objective: To utilize the case-only gene-environment (G×E) interaction study design to estimate 

interaction between pregnancy before onset of multiple sclerosis (MS) symptoms and established 

genetic risk factors for MS among white adult females. 

Methods: We studied 2,497 female MS cases from four cohorts in the United States, Sweden, 

and Norway with clinical, reproductive, and genetic data. Pregnancy exposure was defined in 

two ways: 1) ≥ 1	live-birth pregnancy before onset of MS symptoms, and 2) Parity before onset 

of MS symptoms. We estimated interaction between pregnancy exposure and established genetic 

risk variants, including a weighted genetic risk score (wGRS) and both HLA and non-HLA 

variants, using logistic regression and proportional odds regression within each cohort. Within-

cohort associations were combined using inverse variance meta-analyses with random effects. 

The case-only G×E independence assumption was tested in 7,067 individuals without MS. 

Results: Evidence for interaction between pregnancy exposure and established genetic risk 

variants, including the strongly associated HLA-DRB1*15:01 allele and a weighted genetic risk 

score, was not observed. Results from sensitivity analyses were consistent with observed results.  

Conclusion: Our findings indicate that pregnancy before symptom onset does not modify risk of 

MS in genetically susceptible white females.  
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Introduction 

Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system 

with both environmental and genetic risk factors.3 This progressive disease results in significant 

disability and decreased quality of life.4 MS is more prevalent among females than males, and 

symptoms typically emerge during child-bearing ages, often soon after pregnancy.4,5 This has led 

many to hypothesize that female-specific exposures, such as those related to reproduction, 

pregnancy, and lactation, have a role in MS. Pregnancy appears to have short term beneficial 

effects on existing MS symptoms,6 but there is no agreement in the scientific literature about the 

effect of pregnancy on MS risk in general, or among women with genetic susceptibility to MS.3,7  

Gene-environment (G×E) interactions, for which the effect of an environmental exposure is 

modified by specific genotype(s), are believed to contribute substantially to complex disease risk 

and discovery of these interactions can identify subgroups with higher risk of disease.8 Studies of 

pregnancy and MS risk have yielded conflicting results; however, no studies to date, have 

investigated interaction between pregnancy and genetic susceptibility for risk of MS.9–18 

We used case-only G×E methods to evaluate interaction between pregnancy before symptom 

onset and known genetic risk factors for MS, including HLA-DRB1*15:01. Study participants 

included 2,497 white individuals from four established MS cohorts based in California, Sweden, 

and Norway. Analyses were conducted separately within each cohort and then combined with 

meta-analytic methods. A separate cohort of females without MS was used to test the case-only 

G×E independence assumption.  

Methods 

Study Participants 

Participants were selected from the Kaiser Permanente Northern California (KPNC) MS 

Research Program, the Kaiser Permanente Southern California MS Sunshine Study, the 

Norwegian MS Registry and Biobank (NOR), and two Swedish MS studies, the Epidemiological 

Investigation of Multiple Sclerosis (EIMS) and the Genes and Environment in Multiple Sclerosis 

(GEMS) study.19–22 MS diagnoses were confirmed by independent neurologists according to the 

2005 revised (KPNC, NOR, EIMS/GEMS) or the 2010 revised McDonald diagnostic criteria 

(MS Sunshine).23,24 Additional non-MS female members of KPNC were also studied; these 

individuals were derived from the Genetic Epidemiology Research on Adult Health and Aging 

(GERA) study.25 KPNC and KPSC are integrated health services systems and are the largest 

healthcare providers in California. Their membership is largely representative of their catchment 

area populations; however, persons of lower socioeconomic status are underrepresented.26,27  

Standard protocol approvals, registrations, and patient consents  

All study participants provided written informed consent and the Institutional Review Boards of 

KPNC, KPSC, regional ethical review boards in Norway and Sweden, and the University of 

California, Berkeley approved the study protocols. 
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KPNC Participants  

Study recruitment is described in detail elsewhere.19 Briefly, study participants were recruited 

from KPNC membership between 2006-2014. Prevalent MS cases were the focus of recruitment. 

Participants were aged between 18-69 years and were KPNC members at initial contact.  

MS Sunshine Participants 

MS Sunshine is a multi-ethnic case-control study of incident MS and first demyelinating event.20 

Participants in this study were recruited from KPSC membership between 2011-2014. At the 

time of initial contact, participants were KPSC members, age≥18, and diagnosed with MS within 

1.5 years or had MS symptom onset within the three years prior to recruitment. 

NOR Participants 

NOR participants were recruited from the Oslo MS Registry and DNA biobank in 2011-2012.22 

The Oslo MS Registry and biobank was established in 1990 and includes clinical data and DNA 

samples from a population based MS cohort.  

EIMS/GEMS Participants 

EIMS and GEMS are Swedish population-based case-control studies.21 At enrollment, EIMS 

participants were age 18-70 years and had recently (within 2 years) confirmed MS. GEMS 

participants were identified from the Swedish National MS registry and recruited between 2009-

2011. All EIMS participants were distinct from GEMS study.  

GERA Participants (Non-cases) 

GERA participants are a subsample of the Research Program on Genes, Environment, and 

Health cohort.25 Participants were respondents to a mailed survey sent in 2007 to individuals 

who had been members of KPNC for at least two years and were age≥18. After providing 

informed consent, participants were asked to submit a saliva sample for DNA genotyping. 

Additional health data was obtained from KPNC electronic health records. Participants included 

in this study were confirmed to not have MS or other autoimmune disease. 

Ancestry Determination  

KPNC, MS Sunshine, and GERA participants with average European ancestry proportions 

greater than 80% estimated from ancestry informative markers who did not did not self-report 

Hispanic ethnicity were included.28 All NOR and EIMS/GEMS samples were self-reported 

White and population outliers were identified with principal components analysis (PCA) and 

excluded.29  

Genotype and Exposure Assessment 

All participants in this study completed an interview or self-report questionnaires related to MS 

disease events, reproductive history, and environmental exposures.19–22 Participants provided 
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blood or saliva samples for genotyping. Genome-wide single nucleotide polymorphism (SNP) 

genotyping was performed using the Illumina Infinium 660K BeadChip Array and Human Omni 

Express Array (KPNC, MS Sunshine), Illumina ImmunoArray BeadChip Array (NOR, 

EIMS/GEMS), and Affymetrix Axiom Array (GERA). Genome-wide SNP imputation was 

performed using SHAPEIT2 and IMPUTE2.30 HLA alleles were imputed using SNP2HLA.31 

Participants with missing genotypes that met QC thresholds (info score > 0.8, missingness per 

SNP < 0.05, missingness per cohort < 0.05, and minor allele frequency (MAF) > 0.05) were 

imputed using the average MAF within each cohort.  

Pregnancy exposure was evaluated as a dichotomous variable, having at least one live-birth 
pregnancy before reported age of first MS symptom onset, and as an ordinal variable, the 

number of live-birth pregnancies before reported age of first MS symptom onset (Table 1). Age 

of pregnancy was defined as mother’s age at birth and age of symptom onset for MS cases was 

determined through review of medical records and/or comprehensive clinical histories for each 

participant collected through interview or questionnaire. 

Candidate Genes and Weighted Genetic Risk Score 

To maximize power and to identify variants with functional relevance to MS, we conducted a 

two-tiered analysis. In the primary analysis, we assessed G×E interaction between pregnancy 

exposure and 1) a weighted genetic risk score (wGRS) comprised of recently established non-

HLA MS genome wide association study (GWAS) variants, 2) HLA-DRB1*15:01 alleles, and 3) 

HLA-A*02:01 alleles.1 We also evaluated evidence for effect modification of the interaction 

between HLA-A*02:01 and HLA-DRB1*15:01 for MS susceptibility by pregnancy exposure.32 

HLA variants were excluded from the wGRS because our objective was to use the wGRS to 

evaluate the combined contribution of non-HLA MS GWAS variants to the G×E interaction with 

pregnancy for MS susceptibility. In the secondary analysis, we individually tested established 

MS-associated variants (HLA: 2 variants, non-HLA: 144 variants) that passed QC criteria in all 

four cohorts. Individual genotypes were modeled assuming a linear effect of each additional risk 

allele (0, 1, or 2 alleles). 

The wGRS was derived by multiplying the log odds-ratio for each risk allele from recent GWAS 

by the number of risk alleles carried by each participant and summing across GWAS variants 

(Table e-1).1 Scores for each individual were calculated using non-HLA risk variants that passed 

genotype QC thresholds within each cohort (KPNC, MS Sunshine, and EIMS/GEMS: 182 non-

HLA variants, NOR: 144 non-HLA variants, GERA: 161 non-HLA variants). Within each cohort 

the wGRS was modeled as a continuous variable and with quartiles. 

Statistical Analysis 

Genome-wide SNP genotyping data were available for 990 KPNC, 409 MS Sunshine, 153 NOR, 

and 1,462 EIMS/GEMS female MS cases. Following exclusion of participants with European 

ancestry proportions <80% (KPNC, MS Sunshine) and population outliers identified from PCA 

analysis (NOR, EIMS/GEMS), 814 KPNC, 151 MS Sunshine, 119 NOR, and 1,413 

EIMS/GEMS participants had age of onset ≥18 years, complete pregnancy history data, and 

genome-wide genetic profiles. The final dataset for G×E analysis included 2,497 participants 

(Table 1, Figure e-1).  
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Case-only G×E models rely on the assumption that the genotype and environmental exposure are 

uncorrelated in the source population. If that assumption is valid, the association between 

genotype and exposure in a case-only model estimates the departure of the joint of effects on the 

odds-ratio scale from case-control regression. If the disease is rare and the above assumption is 

valid, the case-only model estimates the departure of joint effects on the risk-ratio scale.33  An 

OR>1 indicates an increase in the risk of MS above what is expected given exposure to both G 

and E factors and an OR<1 indicates a decrease in the risk of MS given exposure to both G and E 

factors.   

We used logistic regression to model having at least one live-birth pregnancy before symptom 

onset as a function of genotypes or wGRS: 

'()*+[-(# = 1|!)] = 3! + 3"#!. 

# is an indicator for having at least one live-birth pregnancy before symptom onset or not, G is 0, 

1, or 2 alleles for a risk variant or continuous wGRS,  and 678(3"#) is the estimate of the 

interaction parameter measuring the departure of the joint effects of E and G on the 

multiplicative scale.33  

Proportional odds regression was used to model parity before symptom onset,33 where the 

probability of an equal or less than number of pregnancies prior to symptom onset, # ≤ :, to the 

probability of more than that number of pregnancies, # > :, as a function of genotypes or 

wGRS:  

'() -
(# ≤ :|!)
-(# > :|!) = =$ −	="#!, for	:	in	0,1,2,3,4. 

# is the number of live-birth pregnancies before MS symptom onset, G is 0, 1, or 2 alleles for a 

risk variant or continuous wGRS, : is the threshold for live-birth pregnancies before symptom 

onset for each ordinal comparison, and 678(="#)	is the estimate of the interaction parameter 

measuring the departure of the joint effects of E and G on the multiplicative scale.33  

G×E interaction was estimated within each study and combined estimates of G×E interaction 

were obtained with random effects meta-analysis using restricted maximum likelihood 

estimation with weights proportional to the inverse of the variance for each cohort-specific 

association. H%% was used to assess heterogeneity between cohort-specific associations. All 

models were adjusted for age of MS onset and population stratification using components from 

PCA. wGRS quartiles were modeled using dummy variables with the first quartile as the 

reference category. Secondary discovery analysis p-values were adjusted for the false discovery 

rate using the Benjamini-Hochberg method and adjusted p-values<0.05 were considered 

significant.34  

Effect modification of the interaction between HLA-A*02:01 and HLA-DRB1*15:01 by 

pregnancy exposure was evaluated separately by stratifying case-only regression models for 

pregnancy exposure and HLA-DRB1*15:01 by the absence and presence of HLA-A*02:01 alleles 

adjusting for age of MS onset and population stratification. 
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We tested the assumption of G×E independence between genotype and pregnancy using healthy 

female GERA participants (N=7,067).8 Logistic and proportional odds regression models 

described above were used to test for associations between MS genetic risk factors, including 

wGRS and HLA-DRB1*15:01, and having ≥ 1 pregnancy or not and parity. All statistical 

analyses were conducted using Plink 1.9 and R 3.5.1.  

Sensitivity Analyses 

We estimated GxE association between live or non-live birth pregnancy before symptom onset 

(binary and ordinal models) and genetic variants among KPNC and MS Sunshine participants 

(data not available for NOR and EIMS/GEMS) to identify bias from exclusion of non-live birth 

pregnancies in primary analyses. To determine if there was a short-term effect of pregnancy on 

MS risk, we altered the definition of pregnancy exposure to only consider first pregnancies that 

occurred within 5-years prior to age of onset as “exposed”. Next, to rule out reverse-causality 

from MS disease latency or recall bias, we considered age of symptom onset at 5 years prior to 

reported age of onset. To check for bias from differing numbers of variants used in wGRSs 

between cohorts, GxE interactions for wGRSs derived from risk variants only found in NOR 

data (144 variants, Table e-1) were estimated for each cohort and combined with meta-analysis. 

Data availability statement 

Anonymized data from KPNC, MS Sunshine, NOR, and EIMS/GEMS used in this study will be 

shared on request from any qualified investigator pending Institutional Review Board approval at 

each site. GERA data is publicly availability on dbGaP (phs000674.v2.p2). 

Results 

Characteristics of MS cases are summarized in Table 1. Age of MS onset among the cohorts that 

recruited predominantly prevalent cases (KPNC, NOR, and EIMS/GEMS ) was similar (mean = 

33.1, 33.4 and 34.4 years, respectively), but occurred later among the cohort that recruited 

incident cases only (MS Sunshine, mean = 39.9 years). Year of symptom onset occurred earlier 

among KPNC and NOR (median = 1992), than EIMS/GEMS (median=2005) and MS Sunshine 

(median=2011). The average age of first pregnancy (live birth) ranged between 24.6 to 27.2 

years with KPNC and MS Sunshine participant pregnancies occurring earlier than NOR and 

EIMS/GEMS. More than half of participants were HLA-DRB1*15:01 carriers; NOR and 

EIMS/GEMS had a higher proportion of carriers (60% and 56%, respectively) than KPNC and 

MS Sunshine (54% and 47%, respectively). The median wGRS was similar across KPNC, MS 

Sunshine and EIMS/GEMS. NOR participants had lower scores than the others, which is likely 

because fewer SNPs were available to calculate the NOR wGRS. Approximately half (49.8%) of 

the participants had a live birth pregnancy before onset of MS symptoms. Parous participants 

were most likely to have two live-births before symptom onset. 

In this study, the odds-ratios from case-only regression models estimate the departure of the 

multiplicative joint effects of E and G on the risk-ratio scale for susceptibility to MS. We did not 

find evidence for G×E interaction between pregnancy exposure and primary genetic risk factors 

(wGRS, HLA-DRB1*15:01, and HLA-A*02:01) (Table 2, Figure e-2). Point estimates were close 
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to the null or had confidence intervals that contained the null. Estimates were similar for both 

pregnancy exposures. Significant evidence for effect modification of interaction between HLA-
DRB1*15:01 and pregnancy exposure by carriage of HLA-A*02:01 alleles was not observed 

although estimates indicate possible protective effects (absence HLA*02:01: OR: 0.89, 95% CI 

0.70, 1.13; presence HLA*02:01: OR: 1.09, 95% CI 0.71, 1.66). No variants tested in the 

secondary discovery analysis had multiple testing adjusted p-values<0.05 (Tables e-2 and e-3).  

Among GERA controls, the wGRS and HLA-DRB1*15:01 were not associated with having at 

least one pregnancy or with parity (Table 4) and none of the MS GWAS loci were significantly 

associated with pregnancy in GERA after correcting for multiple testing (Results not shown). 

Results from sensitivity analyses investigating live or non-birth pregnancy, pregnancy within 5 

years of MS onset, and bias from latent disease were consistent with observed results (Table 5). 

Estimates for interaction between pregnancy exposures and the wGRSs derived from variants 

present in NOR data were similar to observed results (Table e-2 and e-3). 

Discussion 

We hypothesized that pregnancy before MS symptom onset modifies the risk of MS in 

genetically susceptible females. Using data from four study populations, we did not find 

evidence to support G×E interaction between established genetic risk factors for MS and 

exposure to pregnancy before symptom onset. The HLA-A*02:01 +/- stratified point estimates 

suggest a protective effect of HLA-A*02:01 alleles in the relationship between HLA-
DRB1*15:01 and pregnancy exposure, but our study was not sufficiently powered to detect these 

associations. Evidence for interaction between pregnancy and non-HLA or HLA variants 

considered individually was also not observed.  

Although we considered pregnancy as a single environmental exposure, pregnancy is a complex 

and heterogeneous combination of physiologic changes that result in weight gain, increases in 

lipid levels, and changes in basal metabolic rate, among others.7 These physiologic changes are 

the product of pregnancy induced modifications in hormones, such as estriol, progesterone, 

prolactin, early pregnancy growth factor, alpha-fetoprotein, and leptin as well as elevated levels 

of other growth factors. There are increases in circulated regulatory T-cells and B-cells, 

increased Th2 responses, and decreased Th1-and Th-17 immune responses.7 These immune 

changes are important for fetal-tolerance, as the maternal immune system and endocrine 

pathways respond to fetal-antigens that circulate in the mother.35 Following pregnancy, hormone 

levels and immune adaptions quickly return to pre-pregnancy states.36 The reduction of MS 

relapse rate during pregnancy is attributed to the dynamic immune and endocrine alterations that 

result from maternal—fetal crosstalk during pregnancy.37 Little is known about how physiologic 

changes during pregnancy affect the risk of developing MS, but it is hypothesized that the 

pregnancy induced changes in endocrine pathways and immune system have protective effects.7 

Epidemiologic studies investigating the effect of pregnancy on MS risk have reported conflicting 

results.3 Five studies reported a protective association between parity and risk of MS; however, 

two of these studies attributed their protective associations to reverse causality from reduced 

fertility and increased likelihood of miscarriage among women with latent MS.9,10,12,13,17 Five 

additional studies reported no association between pregnancy and risk of MS.11,14–16,18 A recent 



 

15 

study investigating breastfeeding, ovulatory years, and risk of MS found evidence that 

cumulative duration of breastfeeding is associated with decreased risk of MS.38 The authors 

suggest that breastfeeding duration confounds the association between parity/pregnancy and risk 

of MS, and may explain previously reported conflicting findings.  

Genes within the HLA complex contribute substantially to MS, with the HLA-DRB1*15:01 

allele conferring the largest known genetic risk for disease.1 Interactions between this allele and 

environmental exposures such as tobacco smoking, Epstein-Barr Virus infection, and adolescent 

obesity have previously demonstrated large effect sizes.3 A recent GWAS identified 

approximately 200 non-HLA variants associated with MS risk.1  

Previous research reported that protective associations between pregnancy and MS onset were 

attributable to reverse causality and that pregnancy was more likely among women with less 

severe disease.9,10 However, a registry based study in Norway found that pregnancies among 

women with MS prior to symptom onset have birthweights and outcomes similar to those in non-

MS women.39 Furthermore, changes in counseling and availability of safer disease modifying 

therapies as well as new diagnostic criteria that allow for earlier MS diagnosis have likely 

contributed to a recent reported increase in the rate of pregnancy among women with MS.40,41 

Results from our sensitivity analyses did not demonstrate evidence for bias from latent disease or 

from pregnancy within 5-years before symptom onset. Including data on non-live births in the 

pregnancy exposure moved point estimates further from the null, but the confidence intervals 

still included the null. 

Case-only G×E methodologies were developed to address a primary challenge for studying 

interactions, statistical power.8 Since they were first introduced, advances in case-only G×E 

methodology have focused on combining the increased power from case-only methods with 

evidence for the G×E independence assumption from case-control data.8 Healthy controls with 

reproductive history matched on case symptom onset were not available for our large combined 

dataset of MS cases; however, we utilized non-MS female participants from GERA to formally 

test for evidence of independence between MS genetic risk factors and pregnancy. Results from 

this analysis support the validity of our findings. Our models were adjusted for age of MS onset 

and population stratification. While there may be additional variables that confound the 

relationship between both pregnancy and MS and genetic risk factors and MS, case-only G×E 

analyses only need to adjust for confounders of the G×E relationship. We cannot rule out that our 

findings may be due to confounding from unknown factors. 

This was the first study to investigate G×E interaction between pregnancy and established MS 

genetic risk variants in MS. A primary strength of the current study was the large sample size 

with complete genetic and reproductive history data. Additionally, cases in this study were 

largely representative of their respective populations, providing support for external validity, and 

identification of cases from integrated health services delivery systems and national registries 

reduced the probability of selection bias. Further, we found evidence to support the 

independence of G and E factors among the KPNC source population. Results from sensitivity 

analyses suggest that our findings are not attributable to reverse causality; however, given the 

uncertainty regarding disease latency and first MS symptoms we cannot conclusively rule out 

reverse causality. Our study was subject to some limitations. Due to the absence of suitable 
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controls, we were unable to evaluate the association between pregnancy and MS. Our G×E 

associations were consistent between studies; however, differences between the study 

populations may have biased our findings. With the exception of MS Sunshine, the other studies 

relied on older MS diagnostic criteria, which may have excluded milder MS cases. Due to the 

case-only study design, we were not able to assess interaction on the additive scale and our null 

findings on the multiplicative scale cannot rule out the presence of interaction on the additive 

scale. Additionally, we were not able to assess G and E independence in non-KPNC source 

populations. Future studies should investigate the effects of pregnancy on MS risk among non-

European populations. The current study was focused on white individuals to achieve the 

statistical power required for analyses. It is possible that interaction between MS genetic risk 

factors and pregnancy may differ by ethnic/ancestral group. If controls with reproductive data 

matched to case age of symptom onset are available, G×E interaction should be assessed among 

cases and controls with methods used to combine case-only and case-control interactions.  

Our findings suggest that genetic susceptibility to MS does not modify the association between 

pregnancy and MS. This information may be useful for counseling women who have genetic 

susceptibility to MS about decisions to pursue pregnancy, although further research is needed to 

determine the effect of pregnancy on MS susceptibility.  
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Tables  

Table 1. Characteristics of n=2,497 participants. 

  KPNC MS Sunshine NOR EIMS/GEMS 
n 814 151 119 1413 
Age Onset mean (SD) 33.1 (9.1) 39.9 (11.5) 33.4 (9.4) 34.4 (10.1) 
Year of Onset median 
[IQR] 

1991 [1983, 1997] 2011 [2009, 2013] 1992 [1986, 1997] 2005 [2001, 2008] 

Age 1st pregnanta 
mean (SD)     24.6 (5.3)    25.9 (5.8)     27.1 (6.0)     27.2 (5.1) 
≥1 pregnancya before  
symptom onset n (%)     428 (51.7)     95 (60.1)       69 ( 58.0)      668 (47.3)  
No. pregnanciesa 
before  
symptom onset n (%)                    
    0     400 (48.3)     63 (39.9)       50 ( 42.0)      745 (52.7)  
    1     146 (17.6)     26 (16.5)       25 ( 21.0)      180 (12.7)  
    2     198 (23.9)     41 (25.9)       30 ( 25.2)      350 (24.8)  
    3      67 ( 8.1)     21 (13.3)       14 ( 11.8)      106 ( 7.5)  
    ≥4      17 ( 2.1)      7 ( 4.4)        0 (  0.0)       32 ( 2.3)  
HLA-DRB1*15:01 
carrier n (%)     446 (53.9)     74 (46.8)       71 ( 59.7)      789 (55.8)  
wGRSb median [IQR] 23.3 [22.7, 23.9] 23.2 [22.7, 23.8] 18.0 [17.5, 18.6] 22.6 [22.0, 23.3] 
Abbreviations: EIMS, Environment in Multiple Sclerosis Study; GEMS, Genes Environment in Multiple Sclerosis; 
HLA, Human Leukocyte Antigen region; IQR, Interquartile range; KPNC, Kaiser Permanente Northern California; MS, 
Multiple Sclerosis; No., number; NOR, Norway; wGRS, weighted genetic risk score. 
a Pregnancy defined as pregnancy resulting in live-birth. 
b wGRS calculated from 182 MS risk loci for KPNC, MS Sunshine, EIMS/GEMS and 144 MS risk loci for NOR 
participants. 

 

  



 

22 

Table 2. Results from case-only meta-analyses estimating multiplicative interaction between 

HLA-DRB1*15:01, HLA-A*02:01, and weighted genetic risk scores with pregnancy before 

symptom onset. 

Variant 

Crude   Adjusted 

ORa 95% CI   ORa 95% CI 

≥1 live-birth before symptom Onsetb       
HLA-DRB1*15:01 0.93 0.82, 1.07 

 
0.98† 0.77, 1.25 

HLA-A*02:01 1.06 0.93, 1.21 
 

0.93 0.79, 1.09 

wGRSc 0.95 0.87, 1.04 
 

1.04† 0.89, 1.21 

wGRS Q1d ref 
  

ref 
 

wGRS Q2 1.07 0.86, 1.34 
 

1.15 0.88, 1.5 

wGRS Q3 1.07 0.85, 1.33 
 

1.25 0.95, 1.64 

wGRS Q4 0.90 0.72, 1.12 
 

1.11 0.84, 1.45 

Parity before symptom onsetc       
HLA-DRB1*15:01 0.96 0.85, 1.07 

 
1.01† 0.84, 1.2 

HLA-A*02:01 1.04 0.93, 1.18 
 

0.93 0.81, 1.06 

wGRSc 0.97 0.89, 1.05 
 

1.05 0.96, 1.15 

wGRS Q1d ref 
  

ref 
 

wGRS Q2 1.09 0.88, 1.34 
 

1.18 0.94, 1.48 

wGRS Q3 1.12 0.91, 1.37 
 

1.29 1.00, 1.66 

wGRS Q4 0.90 0.73, 1.11   1.06 0.84, 1.33 

Abbreviations: OR, Gene-environment interaction odds ratio; CI, confidence interval; 

HLA, Human Leukocyte Antigen; MS, Multiple Sclerosis; wGRS, weighted genetic risk 

score; †: 25% ≤ I2 < 50%, ††: 50% ≤ I2 < 75%, †††: I2 > 75%. 

a ORs estimate the departure of the multiplicative joint effects of pregnancy and risk 

variants on the risk-ratio scale for susceptibility to MS. Cohort specific associations were 

combined with inverse variance meta-analysis with random effects. 

b ≥ 1 pregnancy before symptom onset cohort specific ORs and 95% CIs estimated with 

logistic regression models. Parity before symptom onset cohort specific ORs and 95% 

CIs estimated with proportional odds regression models. Adjusted models included age 

of MS onset and principal components for genetic ancestry.  

c wGRS and modeled as a continuous variable. For KPNC, MS Sunshine, and 

EIMS/GEMS participants wGRS calculated from 182 non-HLA MS risk variants and for 

NOR wGRS calculated from 144 non-HLA risk variants. 

d wGRS modeled with categorical quartiles with the first quartile used as the reference 

category. 
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Table 3. Estimates of multiplicative interaction between HLA-DRB1*15:01 and pregnancy 

exposure stratified by presence and absence of HLA-A*02:01 alleles. 

  
Crude 

 
Adjusted 

  

HLA-A*02:01  
Alleles ORa 95% CI   ORa 95% CI 

≥1 live-birth before 
symptom Onsetb        

  HLA-DRB1*15:01 
- 1.08†† 0.78, 1.48 

 
1.09†† 0.71, 1.66 

+ 0.85 0.70, 1.03 
 

0.89 0.70, 1.13 

Parity before 
symptom onsetb        

  HLA-DRB1*15:01 
- 1.01† 0.83, 1.23 

 
1.04†† 0.77, 1.41 

+ 0.91 0.76, 1.09   0.97 0.80, 1.18 

 Abbreviations: OR, multiplicative interaction odds ratio; CI, 95% Confidence Interval; 

HLA, Human Leukocyte Antigen; MS, Multiple Sclerosis; †: 25% ≤ I2 < 50%, ††: 50% 

≤ I2 < 75%, †††: I2 > 75%. 

a ORs estimate the departure of the multiplicative joint effects of pregnancy exposure 

and HLA-DRB1*15:01 on the risk-ratio scale for susceptibility to MS stratified by 

absence and presence of HLA-A*02:01 alleles. Cohort specific associations were 

combined with inverse variance meta-analysis with random effects. 

b ≥ 1 pregnancy before symptom onset cohort specific ORs and 95% CIs estimated with 

logistic regression models. Parity before symptom onset cohort specific ORs and 95% 

CIs estimated with proportional odds regression models. Adjusted models included age 

of MS onset and principal components for genetic ancestry.  
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Table 4. Evidence for GxE independence among n=7,067 healthy Genetic Epidemiology 

Research on Aging participants. Results from crude and adjusted regression analyses for 

association between weighted genetic risk score and HLA-DRB1*15:01 and having at least one 

live-birth pregnancy or not and number of live-birth pregnancies. 

  Crude   Adjusted 

  ORa 95% CI p   ORa 95% CI p 
≥1 Live birth 
pregnancy  
or notb 

       
HLA-

DRB1*15:01 0.93 0.81, 1.11 0.37 
 

0.89 0.77, 1.04 0.15 
wGRSc 1.02 0.93, 1.11 0.71 

 
1.04 0.95, 1.13 0.41 

Number of live-
birth pregnanciesb 

       
HLA-

DRB1*15:01 0.95 0.86, 1.04 0.23 
 

0.92 0.84, 1.01 0.08 
wGRSc 0.95 0.90, 1.00 0.04   0.96 0.91, 1.01 0.14 

Abbreviations: OR, Gene-environment interaction odds ratio; CI, confidence interval; HLA, Human 
Leukocyte Antigen; MS, Multiple Sclerosis; wGRS, weighted genetic risk score. 
a ORs estimate the departure of the multiplicative joint effects of pregnancy exposure and wGRS / 
HLA-DRB1*15:01 on the risk-ratio scale for susceptibility to MS among healthy female controls 
from Genetic Epidemiology Research on Aging participants. 
b ≥ 1 pregnancy before symptom onset ORs and 95% CIs estimated with logistic regression models. 
Parity before symptom onset ORs and 95% CIs estimated with proportional odds regression models. 
Adjusted models included principal components for genetic ancestry. 
c wGRS calculated 161 non-HLA risk variants in GERA data after QC and modeled as a continuous 
variable. 
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Table 5. Sensitivity analysis results for pregnancy defined as live or non-live birth pregnancy, 

first pregnancy within 5 years prior to symptom onset, and latent MS onset models. 

    
≥1 live-birth before  
symptom Onset   

Parity before  
symptom onset 

Variant/Risk 
Score Model ORa 95% CI   ORa 95% CI 

  HLA-A*02:01 

Observedb 0.93 0.79, 1.09 
 

0.92 0.81, 1.05 

Live or non-livec 0.84† 0.53, 1.34 
 

0.93 0.76, 1.13 

Short-termd 0.96 0.76, 1.21 
 

0.84 0.69, 1.03 

Latente 0.96 0.81, 1.14 
 

0.98 0.85, 1.13 

  HLA-
DRB1*15:01 

Observedb 0.98† 0.77, 1.25 
 

1.01† 0.84, 1.21 

Live or non-livec 0.79 0.62, 1.00 
 

0.85 0.71, 1.03 

Short-termd 1.03† 0.73, 1.45 
 

0.97 0.78, 1.21 

Latente 0.97 0.82, 1.14 
 

1.00 0.87, 1.15 

  wGRSf 

Observedb 1.04† 0.89, 1.21 
 

1.05 0.96, 1.15 

Live or non-livec 0.94 0.79, 1.11 
 

1.06† 0.84, 1.33 

Short-termd 1.02 0.87, 1.19 
 

1.07 0.94, 1.21 

Latente 1.08†† 0.83, 1.41 
 

1.05 0.96, 1.16 
Abbreviations: OR, Gene-environment interaction odds ratio; CI, confidence interval; HLA, 
Human Leukocyte Antigen; MS, Multiple Sclerosis; wGRS, weighted genetic risk score; †: 
25% ≤ I2 < 50%, ††: 50% ≤ I2 < 75%, †††: I2 > 75%. 
a ORs estimate the departure of the multiplicative joint effects of pregnancy and risk variants on 
the risk-ratio scale for susceptibility to MS. Cohort specific associations were combined with 
inverse variance meta-analysis with random effects. ≥ 1 pregnancy before symptom onset 
cohort specific ORs and 95% CIs estimated with logistic regression models. Parity before 
symptom onset cohort specific ORs and 95% CI estimated with proportional odds regression 
models. Adjusted models included age of MS onset and principal components for genetic 
ancestry. 
b Estimates from observed data as presented in Table 2. 
c Estimate of multiplicative interaction between pregnancy exposure defined as have at least one 
live or non-live birth before MS symptom onset. Data on non-live births only available for 
Kaiser Permanente and MS Sunshine participants, n = 968. 
d Estimate of multiplicative interaction between pregnancy exposure defined as have at least one 
live pregnancy and parity within 5 years before MS symptom onset. 
e Estimate of multiplicative interaction between pregnancy exposure with MS age of onset 
adjusted by -5 years. 
f wGRS modeled as a continuous variable 
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Supplement 

Tables e-1, e-2, and e-3 are provided as excel documents.  

 

Figure e-1. Study flow chart for participants from the Kaiser Permanente Northern California 

(KPNC) MS Research Program, the Kaiser Permanente Southern California MS Sunshine Study, 

the Norwegian MS Registry and Biobank (NOR), the Epidemiological Investigation of Multiple 

Sclerosis and the Genes and Environment in Multiple Sclerosis (EIMS/GEMS) study, and the 

Genetic Epidemiology Research on Adult Health and Aging (GERA) study. 

 

 

 

 

Available participants:
KPNC: n=990
MS Sunshine: n=409
NOR: 153
EIMS/GEMS: 1,462
GERA: 7,391

Not included: Non-European ancestry, PCA 
outliers, self-report not White, self-report 
Hispanic ethnicity, age of MS onset<18 
(MS cases), missing reproductive, clinical,
or clinical data.

KPNC: n=176
MS Sunshine: n=258
NOR: 34
EIMS/GEMS: 49
GERA: 324

Included in study: 
KPNC: n=814
MS Sunshine: n=151
NOR: 119
EIMS/GEMS: 1,413
GERA: 7,067

Analyzed:
KPNC: n=814
MS Sunshine: n=151
NOR: 119
EIMS/GEMS: 1,413
GERA: 7,067
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Figure e-2. Case-only logistic regression meta-analysis results among each study cohort: A) 

HLA-DRB1*15:01, B) HLA-A*02:01, and C) continuous MS weighted genetic risk score. ORs 

estimate the departure of the multiplicative joint effects of pregnancy and risk variants on the 

risk-ratio scale for susceptibility to MS. 
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Chapter 3 - Evidence supports causal association between allele-specific vitamin D receptor 
binding and susceptibility to multiple sclerosis among Europeans 

 

Abstract 

Background and Objectives: There is evidence for a causal association between 25-hydroxy 

vitamin D (25(OH)D) serum levels and multiple sclerosis (MS) susceptibility among Europeans, 

but the underlying mechanisms are unknown. Previous studies have established that 25(OH)D 

signals through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor 

that modulates vitamin D regulated gene expression. Directly testing for associations between 

VDR binding and phenotypes in large-scale human studies poses many challenges. Using 

mendelian randomization methods, SNPs associated with VDR binding were used as 

instrumental variables (IVs) to test for an association between VDR binding affinity at a locus 

and MS susceptibility. 

Methods: Data for 13,598 MS cases and 38,887 healthy controls from the Kaiser Permanente 

Northern California MS Research Program, two Swedish MS case-control studies, and the UK 

Biobank were included in the analyses. All participants were of European ancestry. SNPs 

associated with allele-specific VDR binding affinity (VDR-BVs) were previously identified 

using ChIP-exo data from 16 calcitriol-stimulated Lymphoblastoid Cell-Lines followed by 

Allele-seq. 112 VDR-BVs were present in the data after QC. The polygenic risk score (PRS) for 

25(OH)D level was calculated using summary statistics from two recent GWAS. Within each 

study, logistic regression was used to estimate the independent association between each VDR-

BV IV and MS as well as interaction between each VDR-BV IV and the 25OHD PRS for MS 

risk. Analyses were adjusted for HLA-DRB1*15:01, sex, age, and genetic ancestry. Meta-

analysis with random effects was used to combine associations.  

Results: We found evidence for interaction between two VDR-BV (rs2881514 and rs2531804) 

and MS after correcting for (PFDR<0.05). There was also evidence of interaction between 

rs2881514 and a polygenic risk score for serum vitamin D, providing evidence of a causal 

association between rs2881514 and MS not biased on horizontal pleiotropy. 

Conclusions: This study is the first to demonstrate that genetic variation in VDR binding affinity 

at a single locus contributes to MS susceptibility and our results highlight the importance of the 

Vitamin D pathway in MS pathogenesis. 
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Introduction 

The geographic distribution of multiple sclerosis (MS), which is more prevalent among people 

residing in latitudes farther from the equator1 has led to the hypothesis that high vitamin D levels 

are associated with MS susceptibility.2 Several studies have shown that high levels of serum 25-

hydroxyvitamin D (25(OH)D)3, greater sunlight exposure4,5, and vitamin D supplements and 

diets rich in vitamin D6–8 are associated with a decreased risk of MS. However, reverse causation 

and unmeasured confounding factors remain hard to assess alternative explanations. Recent 

studies using Mendelian Randomization (MR) have demonstrated strong evidence for a causal 

relationship between low serum 25(OH)D levels and MS susceptibility in three large, adult-onset 

MS case-control datasets9,10 and one pediatric-onset MS study.11 The contribution of genetic 

instruments suggests that more of the human genome is involved in explaining variation in serum 

25(OH)D levels, and that different aspects of the vitamin D pathway, specifically transcription 

and expression mediated by vitamin D receptor DNA binding are involved in the relationship 

between vitamin D and MS.  

Vitamin D has immunomodulatory properties and participates in the regulation of calcium 

metabolism, cellular growth, proliferation and apoptosis, and other important immunologic 

functions such as modulation of inflammatory processes.12 It is well established that 25(OH)D 

signals through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor 

which mediates all genomic actions of 25(OH)D.13 Upon activation by vitamin D, the VDR 

forms a heterodimer and acts as a transcription factor that binds to specific vitamin D response 

elements (VDREs) located within regulatory regions of target genes. Strong experimental 

evidence has recently demonstrated alternative mechanisms of gene regulation by 25(OH)D 

stimulated VDRs, and many VDR binding sites identified through ChIP-seq experiments do not 

contain VDREs.14,15 Transcriptional regulation by the VDR, similar to other nuclear receptors, 

has been characterized by its capacity to recognize high affinity binding sites. Bound receptors 

recruit coregulatory proteins, leading to transactivation of adjacent target genes. Stimulation with 

vitamin D also shifts the protein interaction profile of DNA-bound VDR from co-repressor 

proteins to co-activator proteins to further regulate transcription.16 Gene expression profiling 

studies have revealed that 25(OH)D signaling through the VDR can lead to activation or 

repression of target gene transcription.  

Previous research has found that genetic variation of tagging Single Nucleotide Polymorphisms 

(SNPs) within these VDR binding sites (VDR binding variants, VDR-BVs), can alter binding 

affinity and evidence from 1000 Genomes samples has revealed that these VDR-BVs are 

enriched within several autoimmune disease GWAS regions, including MS.17 These findings 

indicate that genetic variation in VDR binding affinity may be one of the causal mechanisms that 

underlie MS GWAS findings. The effect of genetic variation in VDR binding on gene regulation 

and expression is partially dependent on upstream bioavailability of vitamin D. MR studies have 

shown that 25(OH)D genetic instrumental variables (GIVs), conceptualized as a measure of 

genetic variation in bioavailability of 25(OH)D, are causally associated with MS. Therefore, 

bioavailability of 25(OH)D should modulate the effect of genetic variation in VDR binding 

affinity on MS. No formal investigation of genetic variation of individual VDR-BVs near GWAS 

SNPs or across the genome in MS cases and controls has been reported, and genomic regions to 

which VDR bind are strong candidates to investigate for genetic variation relevant to MS.  
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The aim of this research was to identify VDR-BVs that have a causal effect on Multiple Sclerosis 

(MS) susceptibility via their effect on VDR DNA binding using two-sample Mendelian 

Randomization (MR). We used data on MS cases and healthy controls from three case-control 

studies and the UK Biobank. VDR-BVs were previously identified through ChIP-exo analysis.17 

Our hypothesis was that altered VDR binding disrupts downstream gene regulation by vitamin D 

and increases the risk of developing MS. Identification of VDR-BVs associated with MS 

susceptibility will improve understanding of the biological mechanisms through which vitamin D 

acts to affect MS and further elucidate the causes of MS. 

Methods 

MS case control studies 

Individual level data used in this research was from one US based case control study and two 

Swedish based MS case control studies. From the US, MS cases and controls were from the 

Kaiser Permanente Northern California (KPNC) MS Research Program.18 Additional KPNC 

controls were participants of the Genetic Epidemiology Research on Adult Health and Aging 

(GERA; dbGaP phs000674.v2. p2).19 From Sweden, MS cases and controls were from the 

Epidemiological Investigation of Multiple Sclerosis (EIMS) and the Genes and Environment in 

Multiple Sclerosis (GEMS) study.20,21 Methods for identification and confirmation of MS 

diagnosis in each study are provided within the corresponding publications. Briefly, MS cases 

from KPNC, EIMS, and GEMS had their disease status confirmed by an independent 

neurologist. All study participants provided written informed consent, and all studies obtained 

approval from Institutional Review Boards of KPNC, local Ethical Committees, and the 

University of California, Berkeley.  

UK Biobank 

The UK Biobank (UKB, http://www.ukbiobank.ac.uk) is a prospective cohort study of 

approximately 500,000 individuals from the United Kingdom.22 Recruitment took place between 

2006-2010 in 22 assessment centers located across the United Kingdom. Participants were aged 

40-69 at time of recruitment. MS cases were identified using the self-reported first date of MS 

symptoms. Non-MS cases were defined as those not reporting MS symptoms or other 

demyelinating disease at time of enrollment. Controls were frequency matched to cases by year 

of birth (±2 years) and sex at a ratio of 10 controls per MS case. Methods for identification of 

MS cases and controls are provided in the Supplement. Data were accessed under approval of 

UKB within project 69668. All participants gave prior written informed consent, and the study 

was conducted following the principles of the declaration of Helsinki.  

Genotype and exposure assessment 

All participants in the MS case-control studies completed an interview or self-reported 

questionnaire related to MS disease events, reproductive history, and environmental 

exposures.18–21 Participants provided blood or saliva samples for genotyping. Genome-wide 

single nucleotide polymorphism (SNP) genotyping was performed using the Illumina Infinium 

660K BeadChip Array and Human Omni Express Array (KPNC), Illumina Global Screening 

Array (GEMS), Human Omni Expression (EIMS), and Affymetrix Axiom Array (GERA). 
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Details on KPNC, GEMS, and EIMS genome-wide SNP imputation are provided in supplement. 

UKB genotyping and imputation is described previously.23 Participants with missing genotypes 

that met QC thresholds (info score>0.8, missingness per SNP<0.05, missingness per 

cohort<0.05, and minor allele frequency (MAF)>0.05) were imputed using the mean MAF 

within each study. 

Identifying valid genetic instruments for VDR binding 

The occupancy of VDR at a given genomic locus is the exposure of interest in this study. Single 

nucleotide polymorphisms (SNPs) associated with VDR binding affinity at a locus were 

previously identified by Gallone et al.24 Briefly, occupancy of VDR using ChIP-exo data was 

quantified from sixteen calcitriol-stimulated Lymphoblastoid Cell-Lines (LCLs). To satisfy the 

first assumption of MR, at least one variant associated with variation in VDR occupancy at a 

locus was needed. SNPs associated with VDR binding in cis were identified by observing 

differential occupancy over each allele of a given heterozygous SNP. Allele-specific VDR 

binding was identified using AlleleSeq.25 After applying correction for multiple testing using, 

305 SNPs were identified that were associated with allele-specific VDR binding affinity (VDR-

BVs). Of these, 112 VDR-BVs were present in each dataset for analysis. SNP-VDR binding 

effect sizes were estimated by regressing the read counts from ChIP-exo data at a VDR binding 

region described above against the corresponding VDR-BV alleles. For each VDR-BV the GIV 

was derived by multiplying the SNP-VDR binding effect size by the number alleles carried by 

each participant (hereafter, GIVVDR). 

Pleiotropy and Bioavailability of Vitamin D 

The causal effect estimates from MR analysis are unbiased in the absence of pleiotropic effects. 

A common approach to estimating the pleiotropic bias is based on over-dispersion across 

multiple instrumental SNPs for a given exposure. Given that there was only one instrumental 

SNP for each GIVVDR, sensitivity analyses for multi-SNP MR instruments were not applicable. 

However, given that VDR binding is dependent upon bioavailability of vitamin D, we used 

polygenic risk scores (PRSs) for serum 25(OH)D as instrumental variables for bioavailability of 

vitamin D to perform subgroup analyses. As the occupancy of VDR at a locus depends upon the 

bioavailability of 25(OH)D levels, the causal effect of VDR occupancy should be modulated by 

25(OH)D Serum levels. Interaction between a GIVVDR and bioavailability of 25(OH)D was 

evidence of an association between VDR binding and MS susceptibility not biased by horizontal 

pleiotropy.  

25(OH)D polygenic risk scores 

We used PRSs as GIVs for the bioavailability of 25(OH)D (hereafter GIV25OHD). SNPs and the 

estimated effect sizes from two recent GWAS on serum 25(OH)D were used to construct each 

GIV25OHD.26,27 GWAS summary statistics were extracted from MR-Base R platform.28 Clumping 

and thresholding methods were used to identify SNPs for the PRS. Linkage disequilibrium 

clumping and p-value thresholding was performed using extract_instruments() function in the 

TwoSampleMR R package. Independent SNPs with GWAS 8 < 1 × 10&' were identified within 

genomic windows of 10,000Kb (R2<0.001) using a European reference panel from 1000 

Genomes Phase 3. After identifying these SNPs, the PRS was calculated in plink.  
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Statistical methods 

Logistic regression was used to estimate the associations all GIVs (GIV25OHD and GIVVDR) and 

MS susceptibility within each study: 

'()*+L-(MN = 1)O~	3! + 3(!HQ%)*+,	 

'()*+L-(MN = 1)O~	3! + 3(!HQ-,.! 	 

Additionally, to estimate an association not biased by horizontal pleiotropy, we estimated 

interaction between each GIVVDR and GIV25OHD for MS susceptibility: 

'()*+L-(MN = 1)O~	3! + 3(!HQ-,.! +	3%!HQ%)*+, +	3/ R!HQ-,.! × !HQ%)*+,S,	 

where 3/ is the estimate of multiplicative interaction between VDR binding at a locus and the 

bioavailability of 25(OH)D. A non-zero value of 3/ indicates that pleiotropy does not explain all 

the observed association and therefore, the association between VDR-BV and MS is causal.  

All models were adjusted for sex (male or female), quintiles of year of birth, carriage of the 

HLA-DRB1*15:01 allele, and six genome-wide principal components. Random effect meta-

analysis was used to combine study-specific associations. All meta-analyses were performed 

using the metagen() function in the Meta R package.29 The DerSimonian-Laird estimator was 

used to estimate the between study variance. Between study heterogeneity was assessed using 

Cochran’s T statistic and Higgins & Thompson’s H% statistic. P-values from associations between 

each GIV25OHD and MS and the interaction parameter between each GIVVDR  and GIV25OHD were 

corrected for multiple tests using the Benjamini-Hochberg method.30 

Annotation of VDR-BVs to the nearest transcription start sites (TSS) and GO enrichment 

analysis was performed using rGREAT.31 Expression quantitative trait loci (eQTL) for tissue 

specific associations between VDR-BVs and gene expression are from the GTEx Project 

(https://gtexportal.org/). Linkage disequilibrium (LD) between VDR-BVs and MS GWAS risk 

variants was estimated using the ld_matrix() function from the ieugwasr R package using the 

European LD reference panel from 1000 Genomes Phase 3.32 

Results 

Characteristics of MS cases and controls 

Characteristics of MS cases and controls included in this study are presented in Table 1. The 

largest source of MS cases was the EIMS study, with 6,709 MS cases and 5,881 controls, 

followed by the GEMS study (3,718 MS cases, 1,180 controls), the UKB study (2,087 MS cases, 

20,870 controls), and KPNC (1,082 cases, 10,956 controls).  All studies were primary comprised 

of female participants with KPNC having the highest proportion of females (80.2%) and UKB 

having the lowest (72.4%). The average year of birth was earlier within KPNC and UKB studies 

(mid 1950s) compared to the GEMS and EIMS studies (1960-1970s). The proportion of MS 

cases with at least one HLA-DRB1*15:01 allele was similar across all studies (~49-57%) with 

UKB cases having the lowest carriage rate.  
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GIV25(OH)D associated with MS susceptibility 

The mean GIV25(OH)D for increased 25(OH)D serum levels was lower among cases than controls 

within each study (Table 2). The difference in the Jiang et al. and Revez et al. GIV25(OH)D 

GIVs25(OH)D between cases and controls was largest among GEMS participants. Differences in 

the mean was smallest across both GIVs25(OH)D among UKB cases and controls. Results from 

logistic regression and meta-analyses indicate that decreased 25(OH)D serum level is associated 

with an increased risk of MS susceptibility (Figure 1). The association was higher for the Jiang et 

al.  GIV25(OH)D (OR: 1.85, 95% CI: 1.30-2.63) compared to the Revez et al. GIV25(OH)D (OR: 

1.32, 95% CI: 1.07-1.61). Estimates for between study variance were low for the Jiang et al. 

GIV25(OH)D (I2=0%, PQ=0.56) indicating very consistent associations across all studies. There was 

some evidence for moderate heterogeneity for the Revez et al. GIV25(OH)D (I2=55%,  PQ=0.56), 

however, the direction of effect was consistent across all studies. Associations within the UKB 

participants were the closet to the null compared to the other studies 

VDR-BVs associated with MS susceptivity in meta-analyses 

Seven GIVVDR were associated with MS susceptibility at p<0.05 (Table 3). Following multiple 

testing correction, two GIVVDR were significant (PFDR<0.05).  Meta-analyses an association 

between reduced VDR binding affinity at rs2881514_A and increase in risk of MS susceptibility 

across all four studies (Meta OR: 1.10, 95% CI: 1.05-1.15, P=9.4 × 10&); Figure 2). 

rs2531804_A was associated with a decreased risk of MS susceptibility (Meta OR: 0.82, 95% 

CI: 0.73-0.92, P=6.4 × 10&0). There was evidence of interaction between 13 GIVsVDR and 

GIVs25OHD at P<0.05 (Table 4). No interactions were significant after multiple testing correction. 

There was evidence of interaction between the top GIVVDR from the independent models, 

rs2881514_A, and the Jiang et al. GIV25OHD (Meta OR: 2.17, 95% CI: 1.10-4.29; Table 4, Figure 

4). The association was consistent across three of the four studies, with the KPNC estimate being 

protective and the others being harmful. The direction of this interaction association was 

evidence of synergistic interaction between decreased VDR binding affinity at rs2881514 and 

decreased bioavailability of 25(OH)D for increased risk of MS.  

VDR-BV with evidence of association with MS are eQTLS 

Several of the GIVsVDR that were independently associated at p<0.05 with MS or had evidence 

of interaction with GIV25(OH)D are eQTLs for one or more human tissues in GTEx (Figure S-1). 

rs2881514_A is an eQTL for RFTN1 in esophageal tissue. The A allele, which is associated with 

decreased VDR binding affinity, is associated with decreased expression of RFTN1 in 

esophageal tissues. Other GIVVDR, including rs2531804, rs55811049, rs961320, rs871699, 

rs62200158, which had evidence of association with MS at p<0.05, are eQTLs in brain tissue  

and skin tissue, among others. 

LD between GIVVDR and MS GWAS risk variants 

Within the European reference from 1000 Genomes project, LD between VDR-BVs and MS 

GWAS variants was generally low. Of the 112 VDR-BVs included in this research, only 3 VDR-

BV had an R2 >0.5 with an MS GWAS variant (Table S-1). Two VDR-BVs with independent 

associations with MS (Table 3) were in moderate LD with MS GWAS variants (VDR-BV:  
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rs55792977, MS GWAS: rs13385171, R2=0.48; VDR-BV: rs13098781, MS GWAS: rs9863496, 

R2=0.34).  

Discussion 

In this study we observed evidence for an association between variation in VDR binding at a 

locus and MS susceptibility. Two VDR-BVs, rs2881514 and rs2531804, were independently 

associated with MS susceptibility after correcting for multiple tests in meta-analyses. Models 

evaluating interaction between VDR-BV and MS by 25(OH)D serum levels also found evidence 

of interaction between several VDR-BVs and 25(OH)D. Although none were significant after 

multiple testing correction, there was evidence for interaction for between rs2881514 and the 

Jiang PRS at p<0.05. Both PRSs for 25(OH)D serum levels were significantly associated with 

MS susceptibility, with lower 25(OH)D serum being associated with increased risk of MS in all 

four studies.  

The first study to report a causal association between vitamin D serum levels and MS using MR 

methods was by Mokry et al.10 Another study using data from KPNC, EIMS, and GEMS 

participants published similar findings soon after using three GWAS SNPs identified in 2010.9 

Our findings using PRSs constructed with summary statistics from two recent GWASs on 

25(OH)D serum levels further establish vitamin D insufficiency as a risk factor for MS. The 

direction of association between each GIV25(OH)D and MS was consistent across all four studies. 

Measures of heterogeneity between studies indicate little variation between studies for Jiang 

GIV25(OH)D, although there is some evidence of moderate heterogeneity for the Revez GIV25(OH)D 

(I2=55%, pQ=0.09). Associations were the closest to the NULL for both GIV25(OH)D in UKB 

participants. Unlike the other studies, MS cases from UKB did not have their MS status 

confirmed by a neurologist. MS cases status was inferred from electronic health records in 

approximately half MS cases in UKB Biobank or from self-report. A likely explanation for the 

smaller associations in UKB participants is due to misclassification of MS case status resulting in 

individuals without MS being included as MS cases. Evidence of this misclassification can also 

be seen from the frequency of carriage of HLA-DRB1*15:01 alleles, which was lower among 

UKB MS cases (49.7%) compared to cases in the other three studies (>53%). 

The top VDR-BV from meta-analyses was rs2881514. The A allele of this SNP was associated 

with decreased VDR binding affinity in LCLs. Evidence from results within each study and 

meta-analyses indicate a harmful effect of decreased binding affinity at that locus on MS risk. 

Further, interaction between rs2881514 and GIV25(OH)D indicate presence of synergist interaction 

between decreased VDR binding affinity at rs2881514 and decreased 25(OH)D serum levels for 

a substantial increase in the risk of MS susceptibility (Meta OR: 2.17, 95% CI: 1.10-4.29). This 

association was consistent among UKB, GEMS, and EIMS MS cases and control, but was 

slightly protective in KPNC, though with very wide confidence intervals (KPNC OR: 0.79, 95% 

CI: 0.14-4.47). This SNP is located on chromosome 3, 1533 bases upstream of the transcription 

start site of RFTN1. RFTN1 encodes Raftlin, a protein that enables double-stranded RNA 

binding. Raftlin is critical for the production of lipid rafts, which are membrane microdomains 

that play a critical role in B cell activation through B cell receptor signaling.33 Raftlin has also 

been found to be essential in Toll-Like Receptor 3 and 4 signaling pathways, which are 

implicated is MS pathogenesis and symptom modulation through their role in the myeloid 

differentiation 88-TLR pathway.34–36 RFTN1 has not been directly implicated in MS risk; 
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however; one study found increased expression of RFTN1 in chronic active brain lesions from 

MS cases compared to healthy brain tissue from controls.37  

Several of the VDR-BV with evidence for association with MS had evidence of SNP associated 

tissue specific expression in GTEx (Figure S-1). rs25318104, rs9621320, rs871699, rs689384, 

rs62200158, rs558110449, and rs2286576, show evidence of being an eQTL in one or more 

brain tissues and many of these appear to be eQTLs across wide range of tissue types. Of the set 

of VDR-BVs tested for association with MS, those with evidence of association with MS 

susceptibility showed evidence for enrichment in genes involved in immune related processes 

(leukocyte mediate immunity, immune effector process, myeloid leukocyte activation, and 

phospholipase activity, among others; Table S-1). Annotations to eQTL and enrichment results 

provide evidence supporting a mediating role of allele specific VDR binding in the expression of 

nearby genes and immune pathways in multiple sclerosis risk. 

This study had several strengths. This is the first study to investigate the association of VDR 

binding with MS among cases and controls. An investigation of variation in VDR binding among 

cases and controls would not be possible in large sample sizes without MR methodology. We 

used previously identified VDR-BVs to create GIVs for VDR binding a locus. Another strength 

was the large sample size and use of data from separate studies. There were some limitations in 

our work including the possibility of horizontal pleiotropy biasing associations between GIVVDR 

and MS. Each GIVVDR was constructed using one VDR-BV preventing the use of standard 

sensitivity analyses for assessing the validity of MR assumptions in our analyses. However, our 

use of a PRS for 25(OH)D serum level as a second GIV provided a method to estimate an 

association between GIVVDR and MS unbiased by horizontal pleiotropy. Another limitation that 

MS cases and controls in the study are of European ancestry, limiting the generalizability of our 

findings to non-European populations.  Further, the VDR-BVs were identified in LCLs which 

are EBV-transformed B-cell lines. Variations in VDR binding associated with MS likely occurs 

in other lymphocytes, including CD4+ and CD8+ T cells. And lastly, we were only able to assess 

variations in VDR binding at 112 loci, which represent only a small portion of the total regions 

where VDR binding occurs across the genome.  

This study is the first to demonstrate that genetic variation in VDR binding affinity at a single 

locus contributes to MS susceptibility and our results highlight the importance of the Vitamin D 

pathway in MS pathogenesis. Future studies of VDR binding and MS should identify VDR-BVs 

in lymphocytes not captured by LCLs, including CD4+ and CD8+ T cells.   
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Figures 

 

 

 

Figure 1. Results from meta-analysis of association between 25(OH)D polygenic risk scores 

(PRS) and multiple sclerosis susceptibility. A) 25(OH)D calculated using summary statistics 

from Jiang et al. 2019; B) 25(OH)D calculated using summary statistics from Revez et al. 2020.  
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Figure 2. Meta-analysis results for association between VDR-BV rs2881514_A and multiple 

sclerosis stratified by sex.  

 

 

 

 

Figure 3. Evidence of interaction between rs2881514_A and Jiang et a. 25(OH)D polygenic risk 

score.  
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Tables 

Table 1. Characteristics of MS cases and healthy controls. 

  KPNC UKB GEMS EIMS 
  Case Control Case Control Case Control Case Control 
n    1084  10956   2087  20870 3718 1180 6709 5881 
Sex, n (%)         
 Male    215 

(19.8)  
  2165 
(19.8)  

   576 
(27.6)  

  5760 
(27.6)  

1031 
(27.7)  

342 
(29.0)  

1808 
(26.9)  

1455 
(24.7)  

 Female    869 
(80.2)  

  8791 
(80.2)  

  1511 
(72.4)  

 15110 
(72.4)  

2687 
(72.3)  

838 
(71.0)  

4901 
(73.1)  

4426 
(75.3)  

Birth year, 
mean (SD) 

1957.
6 
(8.9) 

1957.1 
(8.6) 

1952.7 
(7.6) 

1952.7 
(7.6) 

1973.1 
(12.4) 

1968.9 
(13.7) 

1961.
0 
(13.7) 

1960.5 
(13.3) 

DRB1*15:01 
carrier, n (%) 

        

 0 
alleles 

   506 
(46.7)  

  8280 
(75.6)  

  1050 
(50.3)  

 15271 
(73.2)  

1621 
(43.6)  

843 
(71.4)  

2913 
(43.4)  

4052 
(68.9)  

 1 or 2 
alleles 

   578 
(53.3)  

  2676 
(24.4)  

  1037 
(49.7)  

  5599 
(26.8)  

2097 
(56.4)  

336 
(28.5)  

3796 
(56.6)  

1829 
(31.1)  

Abbreviations: EIMS, Epidemiological Investigation of Multiple Sclerosis; GEMS, Genes 
Environment and MS study KPNC, Kaiser Permanente Northern California MS case control 
study; UKB, UK Biobank 
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Table 2. Summary of vitamin D polygenic risk scores used within each study. 

 KPNC UKB GEMS EIMS 
 Case Control Case Control Case Control Case Control 
n  1084 10956  2087 20870 3718 1180 6709 5881 
25(OH)D PRS, 
Jiang et al.a  (mean 
(SD)) 

0.285 
(0.072) 

0.288 
(0.069) 

0.292 
(0.069) 

0.293 
(0.069) 

   0.289 
(0.070) 

   0.293 
(0.066) 

   0.286 
(0.069) 

   0.290 
(0.069) 

25(OH)D PRS, 
Revez et al.a  (mean 
(SD)) 

2.150 
(0.194) 

2.163 
(0.186) 

2.184 
(0.189) 

2.187 
(0.188) 

   2.057 
(0.186) 

   2.074 
(0.182) 

   2.066 
(0.187) 

   2.070 
(0.189) 

Abbreviations: EIMS, Epidemiological Investigation of Multiple Sclerosis  GEMS, Genes Environment and 
MS study; KPNC, Kaiser Permanente Northern California MS case control study; PRS, polygenic risk score; 
UKB, UK Biobank 
a PRSs calculated from independent GWAS variants (Linkage disequilibrium R2<0.001) with p<5x10-8. 
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Table 3. Vitamin D Receptor binding variants (VDR-BVs) instrumental variable (IV) associated 

with and multiple sclerosis susceptibility at p<0.05. 

VDR-BVa chr:bp 
GREAT 
annotationb ORc 95% CI P PFDRc 

rs2881514_A chr3:16553679 
RFTN1 (+1533); 
OXNAD1 (+246974) 1.10 (1.05-1.15) 9.4E-05 0.011 

rs2531804_A chr6:28411302 ZSCAN23 (-59) 0.82 (0.73-0.92) 6.4E-04 0.036 
rs12048389_T chr1:107538722 PRMT6 (-60578) 0.92 (0.87-0.99) 1.8E-02 0.660 

rs55792977_T chr2:65650863 
SPRED2 (+8447); 
ACTR2 (+195893) 1.05 (1.00-1.09) 3.2E-02 0.660 

rs7309003_C chr12:97751789 NEDD1 (+450546) 0.95 (0.91-1.00) 3.2E-02 0.660 

rs10995246_C chr10:64391845 
ADO (-172670); 
ZNF365 (+257895) 1.06 (1.00-1.13) 3.5E-02 0.660 

rs10232857_C chr7:55601335 
VOPP1 (+38882); 
LANCL2 (+168195) 0.93 (0.87-1.00) 4.9E-02 0.780 

Abbreviations: bp, base pair; chr; chromosome; CI, Confidence Interval; FDR, false discovery rate; GREAT, 
Genomic Regions Enrichment of Annotations Tool; OR, Odds Ratio; VDR-BV, Vitamin D Receptor Binding 
Variant 
a VDR-BV using as instrumental variable for allelic specific binding. Allele including is the allele associated 
with decreased binding affinity.  
b PRS calculated using summary statistics from Jiang et al 2019 and Revez et al 2020 GWAS. 
c Distance from VDR-BV to TSS of nearest upstream and downstream gene from rGREAT.  
d Odds ratios are from random effect meta-analyses combining estimates from the four studies. ORs are the 
multiplicative interaction coefficient for interaction between 25(OH)D PRS and VDR-BV.  
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Table 4. Vitamin D Receptor binding variants (VDR-BVs) with evidence of interaction with 

25(OH)D vitamin D polygenic risk score.  

VDR-BVa 
25(OH)D 
PRSb chr:bp 

GREAT 
annotationb ORc 95% CI P PFDRc 

rs11733032_G Jiang et al. chr4:79560226 

BMP2K (-
137305);  
ANXA3 
(+87554) 2.91 (1.50-5.66) 0.002 0.24 

rs2286576_T Jiang et al. chr12:4714007 

DYRK4 
(+14764); 
AKAP3 
(+44205) 2.47 (1.31-4.65) 0.005 0.45 

rs961320_C Jiang et al. chr12:49297863 CCDC65 (-68) 3.20 (1.35-7.62) 0.008 0.46 
rs55811049_A Revez et al. chr5:118324297 DTWD2 (-58) 1.53 (1.11-2.12) 0.009 0.46 
rs11729497_G Revez et al. chr4:126551382 FAT4 (+313829) 0.72 (0.56-0.93) 0.01 0.46 

rs62200158_C Jiang et al. chr20:61557905 

TCFL5 (-
64791); DIDO1 
(+11368) 0.22 (0.07-0.72) 0.011 0.47 

rs55811049_A Jiang et al. chr5:118324297 DTWD2 (-58) 2.76 (1.15-6.64) 0.024 0.53 

rs4440604_G Jiang et al. chr8:105290834 

DCSTAMP (-
61219); RIMS2 
(+777720) 0.50 (0.28-0.92) 0.024 0.53 

rs2881514_A Jiang et al. chr3:16553679 

RFTN1 (+1533); 
OXNAD1 
(+246974) 2.17 (1.10-4.29) 0.025 0.53 

rs12144635_T Jiang et al. chr1:173246261 

PRDX6 (-
200143); 
TNFSF4 (-
69810) 0.26 (0.08-0.85) 0.026 0.53 

rs11733032_G Revez et al. chr4:79560226 

BMP2K (-
137305); 
ANXA3 
(+87554) 1.32 (1.03-1.69) 0.026 0.53 

rs3825776_T Jiang et al. chr15:58746829 

LIPC (+44062); 
ADAM10 
(+295347) 0.38 (0.16-0.91) 0.030 0.56 

rs871699_T Jiang et al. chr11:18127678 SAAL1 (-41) 0.31 (0.10-0.94) 0.039 0.60 
rs689384_C Jiang et al. chr18:54318453 WDR7 (-162) 2.62 (1.02-6.75) 0.047 0.63 

Abbreviations: bp, base pair; chr; chromosome; CI, Confidence Interval; FDR, false discovery rate; 
GREAT, Genomic Regions Enrichment of Annotations Tool; OR, Odds Ratio; VDR-BV, Vitamin D 
Receptor Binding Variant 

a VDR-BV using as instrumental variable for allelic specific binding. Allele including is the allele associated 
with decreased binding affinity. 
b PRS calculated using summary statistics from Jiang et al 2019 and Revez et al 2020 GWAS. 
c Distance from VDR-BV to TSS of nearest upstream and downstream gene from rGREAT.  
d Odds ratios are from random effect meta-analyses combining estimates from the four studies. ORs are the 
multiplicative interaction coefficient for interaction between 25(OH)D PRS and VDR-BV.  
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Supplement 

 

 

Figure S-1. Evidence of SNP associated tissue expression among VDR-BVs presented in Tables 

3 and 4. Expression data from GTEx (https://gtexportal.org/). Blue indicates evidence of 

association between decreased VDR binding affinity and increased expression, red indicates 

evidence of association between decreased VDR binding affinity and decreased expression. 
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Figure S-2. Multi-tissue eQTL Comparison for rs2881514_A. The effect allele for normalized 

expression is G.  
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Table S-1. Results from GREAT enrichment analyses of VDR-BVs associated with MS 

susceptibility. 

Ontology ID Description 
GREATa 
Enrichment 
P-value 

VDR-BV 

BP GO:0002443 leukocyte mediated 
immunity 0.0044 rs12144635; rs2881514; 

rs11733032; rs3825776 

BP GO:0002252 immune effector 
process 0.0074 rs12144635; rs2881514; 

rs11733032; rs3825776 

BP GO:0002274 myeloid leukocyte 
activation 0.0074 rs12144635; rs11733032; 

rs4440604; rs3825776 

BP GO:0006887 exocytosis 0.0074 rs12144635; rs11733032; 
rs4440604; rs3825776 

BP GO:0032940 secretion by cell 0.0074 rs12144635; rs11733032; 
rs4440604; rs3825776 

BP GO:0045055 regulated exocytosis 0.0074 rs12144635; rs11733032; 
rs4440604; rs3825776 

BP GO:0046903 secretion 0.0074 rs12144635; rs11733032; 
rs4440604; rs3825776 

CC GO:0099503 secretory vesicle 0.0048 rs12144635; rs11733032; 
rs2286576; rs3825776; rs689384 

CC GO:0031410 cytoplasmic vesicle 0.0060 
rs12144635; rs2881514; 
rs11733032; rs4440604; 
rs2286576; rs3825776; rs689384 

CC GO:0097708 intracellular vesicle 0.0060 
rs12144635; rs2881514; 
rs11733032; rs4440604; 
rs2286576; rs3825776; rs689384 

CC GO:0042581 specific granule 0.0110 rs11733032; rs3825776 

CC GO:0030141 secretory granule 0.0120 rs12144635; rs11733032; 
rs2286576; rs3825776 

MF GO:0004620 phospholipase activity 0.0300 rs12144635; rs3825776 
Abbreviations: BP, Biological Process; CC, Cellular Component; MF, Molecular Function; GREAT, 
Genomic Regions Enrichment of Annotations Tool; VDR-BV, Vitamin D Receptor Binding Variant. 
a Enrichment analyses performed using rGREAT. Background regions were locations of all 112 VDR-BV 
used in regression analyses, test regions were the 12 VDR-BVs with nominal associations with MS 
presented in Tables 3 and 4. 
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S1. Study descriptions 

KPNC participants 

Study recruitment is described in detail elsewhere.18 Briefly, study participants were recruited 

from KPNC membership between 2006 and 2014. Prevalent MS cases were the focus of 

recruitment. Participants were aged between 18 and 69 years and were KPNC members at initial 

contact.  

GEMS and EIMS participants 

EIMS and GEMS are Swedish population-based case-control studies.20 At enrollment, EIMS 

participants were aged 18–70 years and had recently (within 2 years) confirmed MS. GEMS 

participants were identified from the Swedish National MS registry and recruited between 2009 

and 2011. All EIMS participants were distinct from the GEMS study.  

S2. Genotype and imputation Data description and quality control protocols 

KPNC participants 

Genome-wide SNP imputation was performed using SHAPEIT2 and IMPUTE2. Participants 

with missing genotypes that met QC thresholds (info score > 0.8, missingness per SNP < 0.05, 

missingness per cohort < 0.05, and minor allele frequency (MAF) > 0.05) were imputed using 

the average MAF within each cohort. 

GEMS and EIMS participants 

Phasing was performed using Eagle2. Samples were merged with the Haplotype Reference 

Consortium. The output VCF files were then used for imputation using Minimac4 and the same 

reference panel using 500 Kb windows. A small fraction of chunks had to be imputed on 

Minimac3 (18/2,702 or 0.7%). The chunks were then merged into single chromosome VCF files. 

After imputation variants with MAF<1% and imputation score <0.3 were excluded. 
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Chapter 4 - Identification of cell-specific DNA methylation changes associated with 
methotrexate treatment response in rheumatoid arthritis 

Abstract 

Background: MTX is the recommended first treatment for rheumatoid arthritis (RA); however, 

only ~40% respond adequately to MTX. Significant joint damage can occur in the early phase of 

RA, and response to the first treatment is an indicator of long-term prognosis. Changes in DNA 

methylation (DNAm) associated with response to these treatments are potential biomarkers for 

prediction of treatment response. 

Methods: We estimated changes in cell-specific DNAm associated with MTX response from 

whole-blood samples collected from RA patients before and after initiation of MTX treatment. 

Patients included in this study were from the Rheumatoid Arthritis Medication Study (RAMS; 

n=66) and University of California San Francisco Rheumatoid Arthritis study (UCSF-RA; 

n=11). All patients met the American College of Rheumatology RA criteria. Blood samples were 

collected at baseline and after treatment (UCSF-RA: 3-6 months, RAMS: 4 weeks). DAS28-CRP 

was collected at baseline and after 3-6 months of treatment. Genome-wide methylation profiles 

were generated with Illumina 450K (RAMS) and EPIC BeadChips (UCSF-RA) from whole 

blood. Functional normalization and background subtraction with dye-bias normalization and 

other QC procedures were performed using minfi. Differences between 450k and EPIC platforms 

were adjusted using Harman. MTX response was defined using the EULAR criteria for DAS28-

CRP (Responder: good/moderate response, Non-responder: no response). Differentially 

methylated positions (DMPs) were identified using limma and tensor composition analysis 

(TCA). TCA is a method for identifying cell-specific differential DNAm at the CpG level from 

bulk tissue. B cells, CD4 and CD8 T cells, monocytes, neutrophils, and Natural Killer (NK) cells 

were included in cell-specific analyses. Linear models evaluated differential DNAm between 

MTX response groups over time and within each time point. Sex, age, smoking history, 

estimated global cell-proportions, and batch were included as covariates. Differentially 

Methylated Regions (DMRs) were identified using Comb-p. 

Results: We found evidence for differential global methylation between response groups after 

treatment. Further, we found patterns of cell-specific differential global methylation associated 

with MTX response. One DMP was associated at genome wide significance with differential 

DNAm between responders and non-responders at baseline in CD4T, CD8T, and NK cells. 

Additionally, we identified 39 cell-specific DMRs associated with MTX response. There were no 

significant findings in blood analyses. 

Conclusion: We identified cell-specific changes in DNAm associated with MTX response in RA 

patients. Future studies into DNAm and MTX response should include measurements of DNAm 

from sorted cells in bulk tissues. 
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Introduction 

Rheumatoid arthritis (RA) is the most common systemic autoimmune disease and affects up to 

1% of the global population.1 Methotrexate (MTX) is a disease-modifying antirheumatic drug 

(DMARD) that is the recommended first treatment for RA.2 Approximately 30-40% of patients 

continue with MTX treatment after two years.3,4 Reasons for discontinuation of treatment include 

inefficacy and adverse events. Significant joint damage can occur in the early phase of RA, and 

response to the first treatment regime is an important indicator of long-term prognosis. 5–8 

MTX is a synthetic folate that has greatly increased binding affinity for DHFR than folic acid.9 

The specific mechanisms of the anti-inflammatory effects of MTX in RA are not fully explained, 

but are believed to include the accumulation of adenosine as a result of a reduction in purine 

metabolism, decreased proliferation and increased apoptosis of  immune cells, and inhibition of 

cytokine production.10 Previous research suggests that medications, including MTX, alter 

patterns of DNA methylation (DNAm).9,11–13 This is of interest for several reasons, including that 

treatment-associated changes in the epigenome may explain, at least in part, the mechanisms of 

MTX in RA. Further, DNAm patterns prior to treatment and changes in DNAm associated with 

treatment may serve as predictors of treatment response.14 

The most common tissue for epigenome wide studies (EWAS) using DNAm is blood or PBMCs 

extracted from blood.15 Peripheral blood contains several different cell types, each of which have 

different methylation profiles. DNAm measurements from blood are a combination of DNAm in 

the constituent cell-types and adjustment for global cell-proportions is critical when performing 

epigenome wide association studies.16,17 However, adjustment global cell-proportions can limit 

researchers ability to detect differential DNAm and cell-specific differential DNAm may be 

obscured if, for example, the differential DNAm at a CpG for a given phenotype is present in 

only one cell-type or if the direction of differential DNAm is in opposing directions between 

certain cell-types. Previous research has identified patterns of global methylation associated with 

MTX response and two CpGs associated with MTX response using DNAm from T-lymphocytes 

measured before treatment initation.18,19 Two previous studies investigating the association 

between DNAm and MTX treatment response using DNAm from whole blood and isolated 

PBMCs found limited evidence of DNAm associated with MTX response.20,21 No studies have 

investigated DNAm from sorted cells and MTX response.  

In this study we estimated changes in cell-specific DNAm associated with treatment response 

from whole-blood samples collected from RA patients before and after initiation of MTX 

treatment. Patients included this study were from the Rheumatoid Arthritis Medication Study 

(RAMS) and University of California San Francisco Rheumatoid Arthritis treatment study 

(UCSF-RA).  

Patients and Methods  
Patient data 

A flow chart of study procedures and analyses is displayed in Figure 1. Participants included this 

is research were from two studies: University of California, San Francisco RA Treatment 

response study (UCSF-RA) and the Rheumatoid Arthritis Medication Study (RAMS). UCSF-RA 
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participants were recruited from rheumatology clinics in San Francisco County between 2016 

and 2020. The methods of the RAMS study have been described previously.20 Briefly, RAMS is 

a one-year United Kingdom based multicenter study of RA patients that observed RA patients 

who began first treatment with MTX. Both UCSF-RA and RAMS participants were naïve to 

MTX at baseline. For RAMS participants, blood samples were collected at baseline and four 

weeks after treatment initiation. DASs were measured at baseline before treatment initiation and 

at 6 months after treatment initiation. For UCSF-RA participants, blood samples were collected 

at baseline and at the next follow-up visit, approximately 3-6 months after treatment initiation. 

Genome-wide DNAm profiles were generated from the Illumina Infinium EPIC (UCSF-RA) and 

450K BeadChips (RAMS) using peripheral blood. 

Disease Activity Scores and Treatment Response Criteria 

For this study, the Disease Activity Score based on 28 joints with C-reactive protein (hereafter, 

DAS28) was used as the primary measure of disease activity.22 Component measurements of the 

DAS28 were measured at the pre-treatment baseline visit and at the follow-up visit (RAMS: 6 

months after baseline; UCSF-RA: 3-6 months after baseline). CRP levels were measured from 

sera collected from whole blood collected at each visit. Missing DAS28 scores were imputed 

using Clinical Disease Activity Index scores.23 Response to MTX was defined with the European 

Alliance of Associations for Rheumatology (EULAR) criteria: Good response = DAS28	≤ 3.2 

after treatment and DAS28 improvement >1.2 or Moderate response = 3.2 < DAS28 after 

treatment ≤ 5.1 and 0.6 < DAS28 improvement ≤ 1.2; and No response = DAS28 after 

treatment > 5.1 and DAS28 improvement ≤ 0.6 24.  

Methylation Data Quality Control 

DNAm data for each participant was measured using the Illumina 450K (RAMS) and EPIC 

(UCSF-RA) platforms from DNA extracted from whole blood samples. To prevent inducing 

batch effects associated with pre- and post-treatment visits stratified random sampling was used 

to balance out the number of pre- and post-treatment samples on each DNAm array (RAMS) or 

each participant’s pre- and post-treatment samples was processed on the same array (UCSF-RA). 

DNA methylation data processing 

DNAm data was processed using the minfi R package.25 Raw DNAm data from 450K and EPIC  

and chips were combined including only overlapping CpG sites (452,567 sites). Normalization 

and QC steps were performed on the combined DNAm data. We excluded samples with ≥5% 

detection p<0.01 (0 samples) and CpGs with ≥5% detection p<0.01 (834 sites excluded). CpG 

sites with annotated SNPs in the single base extension or CpG were excluded (16,130 sites 

excluded). Previously identified cross-reactive probes were also excluded (26,854 sites 

excluded).26 And lastly, we excluded CpG sites on sex chromosomes, leaving 399,716 CpG sites 

for analyses. Background subtraction and dye-bias correction was performed using 

preprocessNoob and between-array normalization was performed using preprocessFunnorm.   

Global cell proportion estimation 
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Global cell type proportions for B cells, CD8+ and CD4+ T-cells, monocytes, natural killer (NK) 

cells, and neutrophils, were estimated separately within each platform (450K and EPIC) using 

estimateCellCounts2() with IDOL Optimized CpGs.27  

Correction for platform 

There is substantial overlap in CpG coverage between EPIC and 450K platforms; however, 

previous studies have found global DNAm differences between two platforms.28 We used 

Harman, a method to correct DNAm measurements for batch effects constrained by the 

probability of overcorrection, to remove  the effect of platform (EPIC vs. 450K) on global 

DNAm.29  A matrix of normalized and QC’ed M-values were used as input with a confidence 

limit of 95% corresponding to a 95% probability that only batch variation is being removed 

(Figure S-1).   

Differential Position Analyses 

Blood methylation 

EWAS on association between differential DNAm in blood and treatment response was 

performed with limma.30 EULAR treatment response was collapsed into a binary variable, TR 

(TR=1: Good or moderate EULAR response, TR=0: No EULAR response). The primary 

parameter of interest in this study was the difference in the change in DNAm between follow-up 

(time=1) and baseline (time=0) between treatment response groups. A time interaction model 

was used to estimate this parameter: 

W8!1 	~	3! +	3(XY2 +	3%X*Z62 +	3/(XY2 × X*Z62) 

3/ = (33.4(3( −	33.4(3! ) −	(33.4!3( −	33.4!3! ) 

where 3/is the estimate of the difference in DNAm at W8!1 between treatment responders 

(TR=1) and non-responders (TR=0) between baseline and follow-up visits. Additionally, we also 

implemented the following models: (1) change in DNAm from baseline to follow-up among all 

participants, (2) change in DNAm from baseline to follow-up separately among treatment 

responders and non-responders, (3) change in DNAm at baseline between treatment responders 

and non-responders, and (4) change in DNAm at follow-up between treatment responders and 

non-responders. Covariates in all models included age, sex, tobacco smoking history (ever or 

never smoked), array slide, and estimated global cell proportions. 

Cell specific analyses 

Tensor Composition Analysis (TCA) was used to estimate differential DNAm between treatment 

response and cell-specific DNAm. TCA is a method for estimating cell type-specific associations 

between DNAm and disease phenotypes using bulk DNAm data. The linear models defined 

above were also implemented in TCA. Estimated global cell proportions were included as input. 

We implemented a two-step pipeline to estimate differential DNAm in TCA: (1) a joint model 

(JM) that tests for evidence of differential DNAm within any cell-type at a CpG; and (2) a 
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marginal conditional model (MCM), which tests for evidence of differential DNAm within a 

particular cell type adjusted for the other cell-types at a CpG. The JM can be thought of as an 

ANOVA test and did not provide evidence for differential DNAm in a specific cell type. All 

CpGs with - < 1 × 10&5 in the joint model were tested for cell specific differential DNAm with 

the MCM. P-values were adjusted for the false discovery rate using the Benjamini-Hochberg 

method, and adjusted MCM P-values <0.05 were considered significant.31  

Differential Region Analyses 

Exploratory Differentially Methylated Region (DMR) analyses were performed using the Comb-
P method implemented in the ENmix R package.32,33 Comb-P is a moving-averages method that 

uses autocorrelation between adjacent P-values within a genomic window to identify regions of 

differential DNAm. The method is agnostic to the statistical test used to generate the CpG level 

P-values. We identified DMRs using P-values estimated in limma and the MCM test in TCA. To 

generate genome-wide p-values for cell-specific DMR analyses, MCMs were applied to all CpGs 

in TCA. Parameter settings used were: bin.size=310, seed=0.001, dist.cutoff=750bp. Benjamini-

Hochberg and Dunn–Šidák methods were used to correct for multiple tests31. DMRs with less 

than two CpGs were excluded from results. 

Whole blood global methylation estimates 

Global DNAm in whole blood was estimated by taking the mean methylation value across all 

CpGs sites that passed QC in each sample. Differences in global DNAm between response 

groups at baseline and follow-up were estimated using t-tests.  

Annotation of DMPs and DMRs 

DMPs and DMRs were annotated to genic features and CpG island location using Illumina and 

UCSF gene annotation. Additionally, the distance to the nearest upstream and downstream 

transcription start sites for CpGs was annotated using rGREAT.34 

Pathway analysis 

Analyses for enrichment of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways was performed using gometh() from the missMethyl R package separately for 

the top 1000 nominally significant CpGs identified in limma (- < 0.05) and TCA (-676 <
0.05) analyses.  

All statistical analyses were conducted using R 4.0.235.  

Results 
Study participant characteristics 

Baseline characteristics of participants included in this research are reported in Table 1. Thirty-

six of RAMS participants and four UCSF-RA participants were identified as treatment 
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responders. Age at baseline was similar between response groups among RAMS participants, 

however, UCSF-RA responders were approximately 6 years older than non-responders. All 

RAMS participants self-reported as White. Approximately half of UCSF-RA participants were 

White, with three participants identifying as African American, one participant identifying as 

Asian, and one participant identifying as Other. Baseline DAS28 was similar among the 

responders in both datasets. Non-responders in RAMS (mean=4.75, SD=1.19) had a higher 

baseline DAS28 than UCSF-RA (mean 3.44, SD=0.98) counterparts.  

Global methylation is different between responders and non-responders 

The distribution of differential DNAm estimates from limma and TCA analyses are presented in 

Figure 2. Among all participants, following treatment approximately half of CpGs were hypo- 

vs. hypomethylated (Figure 2A). The direction of global DNAm was different between EULAR 

responders and non-responders. Treatment responders had more hypomethylation following 

treatment compared to non-responders. Within time-point analyses comparing responder found 

reduced methylated among responders compared to non-responders at the follow-up visit.  

Global methylation changes are cell-specific 

The proportion of CpGs that were hypomethylated following treatment with MTX were different 

between cell-types (Figure 2B). The direction of DNAm change following MTX treatment was 

different between treatment response groups. For example, in neutrophils non-responders were 

more likely to be hypomethylated compared to responders. This contrasted with DNAm changes 

in monocytes, where there was more hypermethylation in non-responders than in responders. 

These cell-specific differences were also seen between treatment response groups within each 

visit.  

DMP results 

Five CpGs had - < 1 × 10&5 in limma DMP analyses (Table 2). Two CpGs (cg06336912 and 

cg15936718) were associated with decreased DNAm in responders compared to non-responders 

at the follow-up visit. The other three CpGs were from the model comparing change in DNAm 

over time between responders and non-responders (cg16868591), change in DNAm over time 

among responders (cg19506849), and change in DNAm among non-responders (cg18224793).  

One CpGs reached genome-wide significance in the TCA JM (Table 3). cg13249593 was 

associated with cell-specific differential DNAm between responders and non-responders at 

baseline in CD4+ T-cells, CD8+ T-cell, and NK cells. cg06336912 is located approximately 

21Kb upstream of KRT19 and 23Kb and KRT9. 

DMR results 

No DMRs were identified from limma analyses. Using p-values from TCA MCMs, 39 cell-

specific DMRs were identified in models comparing: change in DNAm over time among non-

responders (3 DMRs), change in DNAm over time among responders (3 DMRs), and change in 

DNAm between responders and non-responders at baseline (16 DMRs) and at follow-up (17 
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DMRs). The top ten DMRs ranked by p-value are presented in Table 3. Top DMRs were located 

close to transcription start sites and CpG Islands.  

Pathway analyses 

No GO pathways reached significance after correction for multiple testing; however, several GO 

ontologies that reached nominal significance in cell-specific differential CpGs from TCA 

analyses are related to immune function and methotrexate response (Figure 3). At baseline, CpGs 

associated with differential DNAm between treatment non-responders were enriched for 

pathways related to regulation of immune system, adaptive immune response, and lymphocyte 

differentiation, among others. After treatment, CpGs associated with differential DNAm between 

treatment response groups were enriched for pathways possibly related to MTX response 

(antiporter activity and regulation of purine nucleotide metabolic process), and lymphocyte 

differentiation and proliferation. 

In the KEGG pathway analyses Wnt signaling pathway (hsa043103, P: 8.9 × 10&), PFDR: 0.03) 

was significant after correction for multiple testing in limma analyses estimating differential 

DNAm over time among all participants.  

Comparison of DNAm estimates with previous studies 

We compared our global DNAm estimates from DNAm estimates with CpGs identified by 

Glossop et al.18 Glossop et al identified two CpGs (cg03018489 and cg14345882) associated 

with DAS28 treatment response before treatment in T lymphocytes. In limma analyses, 

cg14345882 was associated with hypermethylation in responders compared to non-responders at 

baseline at nominal significance (Δ Beta: 6.1%, 8: 3.1 × 10&/). In TCA analyses, the estimated 

direction of DNAm change was the same in CD4+ T-cells and CD8+ T-cells as in Glossop et al 

and limma analyses, but results did not reach nominal significance. cg03018489 was excluded 

during QC. Gosselt et al found evidence of differences in global DNAm in leukocytes between 

treatment response groups, with higher DNAm associated with non-response. 36 In our DNAm 

data from whole blood, we found evidence of differences in global DNAm between responders 

and non-responders after treatment (3: -0.24%, P=0.03), but not at baseline (3: -0.03%, 

P=0.79). Estimated cell-specific differential DNAm between responders and non-responders 

from TCA models indicates increased DNAm among non-responders at baseline in CD8+ T cells 

and monocytes, and increased DNAm among responders at baseline in CD4+ T cells and 

neutrophils (Figure 2B). 

Discussion 
In this study we investigated differential DNAm associated with EULAR treatment response to 

MTX among MTX native RA patients. We are the first to report results for cell-specific 

differential DNAm. Similar to recent studies investigating differential DNAm and response to 

MTX treatment, no significant DMPs or DMRs associated with treatment response were 

identified after applying multiple testing correction in bulk tissue analyses.20,21 One DMP and 39 

DMRs from cell-specific analyses were identified after multiple testing correction. cg13249593 

was associated with differential DNAm in responders compared to responders in CD4+ (hyper) 

and CD8+ (hypo) T-cells and NK (hypo) cells. It is located approximately 20Kb upstream and 
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23Kb downstream of the transcription starts sites of KRT9 and KRT19, respectively. KRT19 

produces the protein Keratin 19, which has been found in the synovial fluid of RA patients. 

Keratin 19 has been found to be an autoantigen in anti-CCP positive RA patients.37 Evidence for 

differential DNAm at cg13249593 was found in the limma analyses as well (Δ Beta: -0.37, 

-: 1.5 × 10&/) but did not reach genome-wide significance. Estimated coefficients from models 

indicate that treatment with MTX altered DNAm at cg13249593 in non-responders and had little 

effect among non-responders at baseline (Figure S-2).  The top DMR analyses identified several 

cell-specific DMRs. Of note, a DMR located 53 bases from the TSS of ALOX12 was associated 

with differential DNAm between responders and non-responders at follow-up in monocytes and 

NK cells. Previous research has found that increased expression of ALOX12 in monocytes is 

associated with juvenile rheumatoid arthritis and that MTX decreases the expression of ALOX12. 
38,39 Estimated coefficients from TCA indicate that DNAm was higher among treatment 

responders than non-responders, suggesting decreased expression among responders.  

There was evidence of differential DNAm in the top 20 genes associated with methotrexate from 

the Comparative Toxicogenomics Database (http://ctdbase.org/) in limma and TCA analyses at 

nominal significance (P<0.05; Figure S-4). These genes include SLC19A1, the gene most 

associated with MTX response, as well as DHFR, and BLC2. SLC19A is a folate transporter and 

is integral to the methotrexate pathway. Inhibition of DHFR through increased binding affinity of 

MTX, a synthetic folate, to DHFR compared to folate is the primary mechanism of methotrexate 

in cancer.9 BCL2 is an apoptosis regulator and inhibition of B-cell apoptosis has been associated 

with increased expression of BCL2 in RA patients.40 

Our results compared favorably to results from previous study by Glossop et al which identified 

two CpGs predictive of MTX response before treatment in T-lymphocytes.18 While our results 

were not genome wide significant, the direction of DNAm differences at the one CpG that passed 

QC, both in blood and in CD4+ and CD8+ T-cells were the same as reported by Glossop et al, 

with higher baseline DNAm among MTX responders than non-responders (Figure S-3). We were 

not able to replicate findings of differences in global DNAm between response groups at baseline 

from Gosselt et al; however, we did find evidence of differential global DNAm after treatment in 

whole blood. We did not have cell-specific measurements of DNAm and therefore could not 

estimate global cell-specific DNAm differences directly. However, the distribution of hyper- vs. 

hypomethylated CpGs sites between response groups at baseline and follow-up from TCA 

analyses indicates suggestive evidence of differences at baseline DNAm between response 

groups, specifically in CD4+ and CD8+ T cell, monocytes, and neutrophils.  

The lack significant DMPs and DMRs in DNAm from whole blood in this study is similar to 

results from two previous studies investigating response to DNA methylation which did not find 

evidence of differential DNAm associated with MTX treatment response. Recent studies with 

evidence of association between differential DNAm and MTX response used DNAm derived 

from T-lymphocytes.18 This, along with our evidence of differences in the patterns of global cell-

specific DNA methylation between response groups and the identification of a cell-specific DMP 

and several cell-specific DMRs suggest that associations with DNAm and MTX response are 

cell-specific.  
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Strengths of this research include the prospective study design used for each dataset. Patients in 

both RAMS and UCSF-RA studies were naïve to MTX at baseline and blood samples and 

disease activity scores were collected both before and after treatment initiation. Further, all 

participants included in this research received MTX monotherapy rather than combination 

therapy during the observation period. This was the first study to report on cell-specific DNAm 

associated with MTX using methods to estimate cell-specific DNAm from whole-blood. Patients 

in the RAMS study reported treatment compliance >80%.20 We were unable to evaluate MTX 

treatment compliance in UCSF-RA participants. 

Limitations include residual confounding from combining DNAm data from the 450K and EPIC 

platforms; however, PCA plots and results from analyses comparing associations between 

genome-wide DNAm principal components and platform indicate that we were able to remove 

platform effects with Harman (Figure S-1). Another limitation is the composition and number of 

participants in this research. Participants were recruited from rheumatology clinics in the UK and 

San Francisco Bay Area and nearly all participants self-identified as White, limiting 

generalizability of findings. Further, the sample size was relatively small preventing the 

identification of small changes in DNAm. Other limitations include differences in the study 

protocols between RAMS and UCSF-RA. In RAMS, blood samples for DNAm were collected at 

baseline and after 4 weeks of treatment, while UCSF-RA participants DNAm blood samples 

were collected at the baseline and follow-up visit. TCA has some limitations. The first is that the 

estimates of differential DNAm from TCA were not replicated in actual cell-specific DNAm 

measurements in our participants. Another limitation is that there is more power to detect 

differential DNAm in more abundant cell types compared to less abundant cell types. And lastly, 

the two time-point models used in the limma and TCA were slightly different. The limma models 

included a random effect for each participant. The TCA software cannot perform paired analyses 

using random effects or by including participant IDs as a covariate. Including IDs as a covariate 

would create an unidentifiable model (No. cell-types × No. parameters in model).  

In, conclusion, we estimated changes in DNAm associated with response to MTX in RA patients 

using methods that deconvolute cell-specific DNAm at the CpG level. We identified evidence of 

cell-specific differential DNAm between responders and non-responders at baseline in one DMP 

at genome-wide significance. We also identified 39 cell-specific DMRs. No DMPs or DMRs 

were identified in whole blood analyses. Our findings of cell-specific differential DNAm 

associated with MTX response and the paucity of evidence of differential DNAm in this present 

research and similar studies using DNAm from whole blood and PBMCs indicate that future 

studies into DNAm and MTX response either need larger sample sizes to identify the modest 

effects of MTX on the methylome or DNAm from sorted cells. 
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Figures 

 

Figure 1. Flow chart of quality control procedures and differential DNA methylation analyses. 
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Figure 2. Global DNAm estimated in A) limma models and B) TCA models. Abbreviations: R, 

EULAR treatment responders; NR, EULAR treatment non-responders; T0, baseline visit DNAm; 

T1 follow-up visit DNAm.  
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Figure 3. GO pathway analysis results for ontologies related to immune function and MTX 

response from top 1000 DMPs (P<0.05) for each cell-type. Abbreviations: R0-NR0, model for 

difference in DNAm between EULAR responders and non-responders at baseline; R1-NR1, 

model for difference in DNAm between EULAR responders and non-responders at follow-up; 

(R1- R0)- (NR1- NR0), Difference in change in DNAm over time between treatment responders 

and non-responders.  
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Tables 
Table 1. Baseline characteristics of participants. 

 RAMS (n=66) UCSF-RA (n=11) 
 Responsea No Responseb Responsea No Responseb 
n    36    30     4     7 
Female, n (%)    25 ( 69.4)     24 ( 80.0)      4 (100.0)      6 (85.7)  
Age at baseline, mean 
(SD), years 60.13 (14.02) 59.17 (15.24) 61.85 (10.48) 54.95 (12.05) 

Self-reported race, n 
(%)                   

   Asian     0 (  0.0)      0 (  0.0)      0 (  0.0)      1 (14.3)  
   African American     0 (  0.0)      0 (  0.0)      1 ( 25.0)      2 (28.6)  
   Other     0 (  0.0)      0 (  0.0)      0 (  0.0)      2 (28.6)  
   White    36 (100.0)     30 (100.0)      3 ( 75.0)      2 (28.6)  

Baseline DAS28, mean 
(SD)  4.96 (1.02)  4.10 (1.30)  3.83 (0.70)  3.15 (1.04) 

Ever smoke=Yes, n (%)    20 ( 55.6)     16 ( 53.3)      1 ( 25.0)      5 (71.4)  
Abbreviations: DAS28, Disease Activity Score 28 point with C-reactive protein; RAMS, Rheumatoid 
Arthritis Medication Study; SD, standard deviation UCSF-RA, University of California, San Francisco 
Rheumatoid Arthritis Study 
a EULAR treatment response is “Good” or “Moderate”. 
b EULAR treatment response is “None”.  
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Table 2. limma DMP results with - < 1 × 10&5. 

  Annotation    
CpG chr:bp (hg19) GREATa UCSC Modelb % !Beta P 
cg06336912 chr16:90173019 PRDM7  

(-30681) 
 T1: R-NR -0.17 6.5e-6 

cg15936718 chr16:90088801 GAS8 (-207) GAS8 T1: R-NR -0.28 8.9e-6 
cg16868591 chr19:12803493 DHPS 

 (-10777); FBXW9 
(+3964) 

FBXW9 (R1-R0)- 
(NR1-NR0) 

-0.30 3.0e-6 

cg19506849 chr10:114767609 HABP2  
(-545176); TCF7L2 
(+57600) 

TCF7L2 R1-R0 0.92 9.4e-6 

cg18224793 chr7:100222124 MOSPD3 
(+11991); TFR2 
(+18220) 

TFR2 NR1-NR0 1.50 4.7e-6 

Abbreviations: bp, base pair; chr; chromosome; CI, Confidence Interval; FDR, false discovery rate; GREAT, 
Genomic Regions Enrichment of Annotations Tool; NR, treatment non-responder; R, treatment responder; T0, 
baseline visit. 
a Distance from CpG to transcription start site of nearest upstream and downstream gene from rGREAT. 
 

 

Table 3. Top TCA DMP results 

CpG chr:bp (hg19) 
GREAT 
annotation 

Mode
l 

Cell 
type 

! 
Meth. 

Joint model 
 

Margina
l 
conditio
nal 
model 
P 

cg13249593 
chr17: 
39705234 

KRT19 (-20674); 
KRT9 (+23076) 

T0: R-
NR 

CD4T 
CD8T 
NK 

0.226 
-0.310 
-0.489 

P: 2.4E-8 
PFDR: 9.5E-3 

4.6E-6 
1.8E-5 
2.3E-6 

Abbreviations: bp, base pair; chr; chromosome; CI, Confidence Interval; FDR, false discovery rate; GREAT, 
Genomic Regions Enrichment of Annotations Tool; NR, treatment non-responder; R, treatment responder; 
T0, baseline visit. 
a Distance from CpG to transcription start site of nearest upstream and downstream gene from rGREAT. 
b Model comparing difference in DNA methylation baseline before MTX treatment between those were 
identified as treatment responders compared to non-responders. 
c Joint model from tensor composition analysis tests for evidence of differential methylation within any cell-
type at each CpG. All CpGs with evidence of cell-specific methylation in the joint model at p<1 × 10"# were 
tested for differential methylation within each cell-type using the marginal conditional model. 
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Table 4. Top 10 TCA DMRs. 

Region  
chr:bp Model 

Cell 
type 

No. 
CpG !Meth. P 

GREAT 
annotationa Illumina annotation 
Gene  
(Dist. to TSS) Gene Feature 

1:161008461-
61008826 T0: R-NR CD8T 8 hyper 9.5e-18 

TSTD1 
(+136) TSTD1 TS200 

12:9217389-
9217907 T0: R-NR Bcell 10 hyper 5.8e-15  

LOC144
571 TS200 

1:202310823-
202311278 T1: R-NR Neu 7 hyper 3.1e-14 UBE2T (+57) UBE2T TS200 
17:6899084-
6899577 T1: R-NR Mono 11 hyper 2.0e-13 ALOX12 (-53) ALOX12 TS200 
13:36871753-
36872346 R: T1-T0 NK 9 hypo 8.6e-13  

C13orf3
8 TS200 

1:161008461-
161008826 T0: R-NR CD4T 8 hypo 1.8e-12 

TSTD1 
(+136) TSTD1 TS200 

17:6899084-
6899577 T1: R-NR NK 11 hypo 4.9e-12 ALOX12 (-53) ALOX12 TS200 
10:77542301-
77542585 T0: R-NR CD4T 9 hyper 1.5e-11 

C10orf11 (-
76) 

C10orf1
1 TS200 

6:32063725-
32064258 T1: R-NR NK 16 hypo 5.9e-11 

TNXB (-
50087) TNXB Body 

6:31148331-
31148748 T0: R-NR CD8T 15 hyper 1.2e-10    
Abbreviations: bp, base pair; chr; chromosome; CI, Confidence Interval; FDR, false discovery rate; GREAT, 
Genomic Regions Enrichment of Annotations Tool; Hyper, Hypermethylation; Hypo, Hypomethylation; NR, 
treatment non-responder; R, treatment responder; T0, baseline visit. 
a Distance from CpG to transcription start site of nearest upstream and downstream gene from rGREAT. 
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