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Tauopathies are neurodegenerative diseases caused by
pathologic misfolded tau protein aggregation in the nervous
system. Population studies implicate EIF2AK3 (eukaryotic
translation initiation factor 2 alpha kinase 3), better known as
PERK (protein kinase R-like endoplasmic reticulum kinase), as
a genetic risk factor in several tauopathies. PERK is a key
regulator of intracellular proteostatic mechanisms—unfolded
protein response and integrated stress response. Previous
studies found that tauopathy-associated PERK variants enco-
ded functional hypomorphs with reduced signaling in vitro.
But, it remained unclear how altered PERK activity led to
tauopathy. Here, we chemically or genetically modulated PERK
signaling in cell culture models of tau aggregation and found
that PERK pathway activation prevented tau aggregation,
whereas inhibition exacerbated tau aggregation. In primary
tauopathy patient brain tissues, we found that reduced PERK
signaling correlated with increased tau neuropathology. We
found that tauopathy-associated PERK variants targeted the
endoplasmic reticulum luminal domain; and two of these var-
iants damaged hydrogen bond formation. Our studies support
that PERK activity protects against tau aggregation and pa-
thology. This may explain why people carrying hypomorphic
PERK variants have increased risk for developing tauopathies.
Finally, our studies identify small-molecule augmentation of
PERK signaling as an attractive therapeutic strategy to treat
tauopathies by preventing tau pathology.

Tauopathies are age-related neurodegenerative diseases that
include Alzheimer’s disease (AD) and progressive supranuclear
palsy (PSP) (1–4). Different brain regions are affected in these
diseases that account for varying clinical presentations, but all
tauopathies lead to progressive and irreparable morbidity that
can quickly progress to mortality. In people, the microtubule-
associated protein tau (MAPT) gene encodes tau protein and is
abundantly transcribed throughout the brain (5–8). Alterna-
tive splicing of the MAPT transcript generates six tau protein
isoforms that carry varying numbers of carboxy-terminal
* For correspondence: Jonathan H. Lin, Jonathan.H.Lin@stanford.edu.
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repeat (R) domains (5, 9, 10). In healthy cells, tau stabilizes
and regulates microtubule assembly and is highly enriched in
axons and also found in dendrites, nuclei, and extracellular
space (5, 8, 11). By contrast, in tauopathies, tau adopts
abnormal conformations, becomes hyperphosphorylated, and
forms dense aggregates in neurons (2, 5, 7, 12). Environmental
and genetic risk factors have been identified that influence
tauopathy disease development and progression, but their
pathomechanisms are incompletely understood (4).

EIF2AK3 (eukaryotic translation initiation factor 2 alpha
kinase 3), more commonly known as PERK (protein kinase
R-like endoplasmic reticulum kinase), is a genetic risk factor
for tauopathies: PSP (13–15) and AD (16, 17). PERK is an
important regulator of the unfolded protein response (UPR)
and integrated stress response (ISR) (18–20). In response to
endoplasmic reticulum (ER) stress protein misfolding, PERK
slows cellular translation by phosphorylating eukaryotic initi-
ation factor 2 alpha (eIF2α) (18). PERK signaling also initiates a
characteristic transcriptional program through induction of
transcription factors including activating transcription factor
4, which upregulates growth arrest and DNA damage–
inducible protein 34 (GADD34) phosphatase, and CHOP
(21–23). The GADD34 converts phosphorylated eIF2α
(p-eIF2α) to eIF2α and thereby restores translation (24). PERK−/−

mice develop marked endocrine and exocrine pancreatic cell
death leading to diabetes mellitus (25), and this phenotype is
closely recapitulated in Wolcott–Rallison syndrome (WRS), an
autosomal recessive genetic disease caused by variants in hu-
man PERK (26, 27). Tauopathy symptoms are not features of
WRS. Conversely, diabetes and/or pancreatic insufficiency are
not primary features of tauopathies. It is unclear why PERK is
linked with such markedly different human diseases.

Previously, we found that tauopathy-risk PERK variants
showed reduced protein stability and signaling compared with
protective PERK variants in cell culture assays (28). We also
found that induced pluripotent stem cell–derived neurons
from tauopathy patients showed reduced phosphorylation of
eIF2α when challenged with ER stress–inducing chemicals
(28). Based on these findings, we proposed that tauopathy-
associated PERK variants are functional hypomorphs and
that changes in PERK signaling somehow influence the
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PERK dysfunction associated with tauopathy
development of these neurodegenerative diseases. Here, we
further evaluated the role of PERK in tauopathies, specifically
focusing on the influence of PERK on tau protein aggregation.
We performed structural modeling and bioinformatic analyses
to analyze how tauopathy-associated PERK variants impact
function. We evaluated how tau aggregation affected PERK
signaling in a cell culture model and tested how chemical
modulation of the PERK signaling pathway impacted tau ag-
gregation. Last, we analyzed the status of PERK signaling and
compared with tau neuropathology in AD brains. Our findings
support that the PERK pathway prevents tau protein aggre-
gation. Conversely, interfering with PERK pathway signaling
increases tau aggregation.
Results

Population distribution of disease-associated PERK variants

Genetic studies identify PERK as a disease gene in WRS
(26), PSP (13–15), and some forms of AD (16, 17). To gain
insights into the association of PERK with such diverse dis-
eases, we examined the distribution and molecular differences
of PERK disease variants in the human population. We iden-
tified 1294 variants of human EIF2AK3/PERK in gnomAD
database (gnomAD, version 2.1.1; Genome build: GRCh37/
hg19; Ensembl gene: IDENSG00000172071.7) that introduced
missense and nonsense changes in coding exons as well as
targeted many noncoding regions (Fig. 1A and Data S1).
Almost all variants (1270/1294) were ultrarare with allelic
frequencies below 0.1% (Fig. 1B and Data S1). Fourteen vari-
ants were rare with allelic frequencies between 0.1% and 1%
(Fig. 1B and Data S1). The remaining 10 PERK variants were
common with >1% frequency (Fig. 1B and Data S1). WRS-
associated PERK variants all arose at ultrarare frequencies
and introduced nonsense (25 variants) or missense (12 vari-
ants) changes exclusively (Fig. 1D and Data S1) (27). By
contrast, tauopathy-associated PERK variants included com-
mon, rare, and ultrarare variants that introduced missense
changes or affected noncoding regions but did not cause
nonsense changes (Fig. 1E and Data S1). Interestingly, the
most common PERK variant, haplotype B (14, 29), originally
identified as a tauopathy risk factor (13), showed striking dif-
ferences in frequency between racial/ethnic groups (Fig. 1C
and Data S2), ranging from 5% in African individuals to 49% in
East Asian individuals. Conversely, the protective haplotype A
PERK variant showed an inverse frequency in these pop-
ulations (Fig. 1C and Data S2).

Next, we focused on the PERK variants that introduced
missense changes in the protein. The human PERK protein is a
1116-amino acid type 1 integral membrane protein embedded
in the ER with a luminal ER stress–sensing domain, coupled to
a cytosolic kinase domain (18). The 12 missense variants
linked to WRS all targeted the kinase domain (Fig. 1D). By
contrast, the 10 tauopathy-associated missense variants tar-
geted the ER stress–sensing luminal domain and less
frequently affected cytosolic residues (Fig. 1E). No overlap was
found between WRS and tauopathy-associated PERK variants.
2 J. Biol. Chem. (2023) 299(2) 102821
These genetic observations suggest that disruption of PERK
function underlies the pathogenesis of WRS. By contrast, in
tauopathies, kinase function is preserved, but ER stress–
sensing domain of PERK is altered.
Tauopathy-associated PERK variants disrupt hydrogen bond
formation in the ER stress–sensing luminal domain

High-resolution mouse and human PERK luminal domain
crystal structures (30, 31) enable modeling of the impact of
tauopathy-risk PERK luminal domain variants on the ER
stress–sensing domain of PERK. We focused on two luminal
domain residues, S136 and R240, because they are well
conserved between mammalian PERK proteins (Fig. 2, A and
B). A S136C conversion was present in the haplotype B PERK
tauopathy risk variant (29), and an R240H conversion was
found independently as a risk variant in AD cohorts (17).
Neither of these amino acid substitutions are reported in other
mammalian PERK proteins (Fig. 2, A and B). When we
modeled the S136 and R240 residues onto the mammalian
PERK luminal domain structure (Protein Data Bank [PDB] ID:
4YZY) using PyMol, we observed a direct hydrogen bond
(H-bond) between S136 and R240 and six additional H-bond
interactions formed by surrounding residues, L111, S134,
V138, and Q242 (Fig. 2C). Structural modeling predicted that
the combination of the C136 risk variant with the R240 pro-
tective variant was still able to form one direct H-bond, but
only four H-bonds were formed by surrounding residues,
S134, G135, and Q242 (Fig. 2D). The combination of the S136
protective variant with the H240 risk variant lost direct
H-bond formation but retained four H-bonds between L111,
S136, V138, and Q242 (Fig. 2E). Last, structural modeling
predicted that the combination of a C136 risk variant and
H240 risk variant was unable to form direct H-bonds, and only
two H-bonds could form from surrounding residues, S134 and
Q242 (Fig. 2F). In sum, structural modeling of these two hu-
man variants on the mammalian PERK luminal domain
structure revealed a negative impact of disease-associated
tauopathy conversions at the 136 and 240 residues upon
H-bond formation. The protective variants generated seven
potential H-bonds, but introduction of disease variants
impaired H-bond formation between these two residues and
the local structural environment. H-bonds stabilize tertiary
PERK protein conformation (30). The functional conse-
quences of loss of H-bonds on PERK’s luminal domain ER
stress–sensing properties are unclear. However, bioinformatic
algorithms predict both conversions to be pathogenic
(Fig. 2G). PolyPhen-2 (Polymorphism Phenotyping v2), PRO-
VEAN (protein variation effect analyzer), MutationTaster,
SIFT (sorting intolerant from tolerant), and combined
annotation–dependent depletion (CADD) found R240H to be
pathogenic; and the S136C conversion was pathogenic when
analyzed by SIFT and CADD (Fig. 2G). Put together, these
analyses support that tauopathy-associated PERK variants
negatively impact the structure of the ER stress–sensing
luminal domain with predicted pathologic consequences.
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Figure 1. Molecular function and population distribution of PERK variants in human diseases. A, pie chart shows the molecular functional classifi-
cation of 1294 genetic human PERK variants reported in Genome Aggregation Database (gnomAD). B, pie chart shows the frequency of human PERK
variants reported in gnomAD. About 1270 PERK variants are ultrarare (<0.1% frequency). About 14 PERK variants are rare (0.1% to 1% frequency). About 10
variants are common (>1% frequency). C, prevalence of the two most common PERK variants, haplotype A and haplotype B, across seven racial/ethnic
groups found in gnomAD. The frequency of tauopathy-risk variant, haplotype B, ranges from �49% in East Asian populations to �5% in African population.
Conversely, the frequency of tauopathy-protective variant, haplotype A, ranges from 94% in African population to �50% in East Asian populations. D and E,
PERK protein cartoons show positions of missense variants linked to WRS (D) and tauopathies (E) as reported in gnomAD database and NCBI since 2000.
Functional domains of the 1116 amino acid human PERK protein include IRE1-like luminal ER stress–sensing domain, ER transmembrane domain, and amino
(N) and carboxyl (C) kinase lobes in the cytoplasmic domain. PERK missense variants linked to WRS are all ultrarare and target PERK’s N- and C- kinase lobes.
PERK missense variants linked to tauopathies include common (green), rare (red), and ultrarare (blue) variants. Tauopathy PERK missense variants frequently
map to PERK’s luminal domain; do not overlap with WRS variants; and do not target the kinase lobes. ER, endoplasmic reticulum; IRE1, inositol-requiring
enzyme 1; NCBI, National Center for Biotechnology Information; PERK, protein kinase R-like endoplasmic reticulum kinase; WRS, Wolcott–Rallison syndrome.
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PERK dysfunction associated with tauopathy
Tau aggregation does not induce ER stress or ER stress–
associated degradation and negatively impacts PERK- and
inositol-requiring enzyme 1–mediated gene expression
in vitro

Tau protein aggregation is a defining feature of tauopathies.
We next examined how tau protein aggregation affects PERK
4 J. Biol. Chem. (2023) 299(2) 102821
signaling and related ER stress–induced processes. We turned
to an in vitro human embryonic kidney 293 (HEK293) cell
model of tau aggregation, “Biosensor” cells that stably express
TauRD(P301S)-YFP at low levels diffusely in the cytosol
(32–34). When transfected with tauopathy brain protein
lysates, the TauRD(P301S)-YFP aggregates into distinct



PERK dysfunction associated with tauopathy
fluorescent puncta (32–34). We prepared brain protein lysates
from the PS19 tauopathy mouse model that expresses human
P301S tau protein throughout the nervous system (35) and
from wildtype mice (Fig. 3A). We confirmed abundant path-
ologic human tau protein in PS19 mice brain lysates that
induced fluorescent tau aggregates when transfected into
Biosensor cells (Fig. 3, A, C, and D), whereas wildtype mouse
brain lysates showed none of these properties (Fig. 3, A, C, and
D). We then examined the expression levels of a panel of 31
PERK-regulated genes during tau aggregation in this model
using RNA-Seq. These genes were previously shown to be
regulated by PERK (36, 37), and we also verified robust in-
duction of these genes in thapsigargin-treated Biosensor cells
(Fig. S1, A and B; Datas S3 and S4). When we examined PS19
brain lysate–treated Biosensor cells, we saw no induction, but
instead, observed a small but significant reduction in expres-
sion of the PERK-regulated gene set (Fig. 3F, ****p ≤ 0.0001,
one-sample t test and two-tailed Wilcoxon signed rank test).
Examination of five individual PERK-regulated genes, ATF3,
RELB, ASNS, GADD34, and GADD45A, also showed reduction
in expression in PS19 brain–treated cells versus controls
(Fig. 3E, **p ≤ 0.01, two-tailed Student’s t test). Expression of
the PERK gene itself was not changed in PS19 versus wildtype
brain-treated cells (Fig. 3E). Next, we examined the status of
inositol-requiring enzyme 1 (IRE1) and activating transcription
factor 6 (ATF6) signaling in Biosensor cells during tau ag-
gregation in our RNA-Seq datasets. For IRE1 signaling, we
examined 32 genes previously demonstrated to be regulated by
IRE1 (36, 38). We verified their robust induction in
thapsigargin-treated Biosensor cells (Suppl. Fig. 1, C and D;
Datas S3 and S4). When we examined PS19 brain lysate–
treated cells, we also saw a significant reduction in expres-
sion of the IRE1-regulated gene set (Fig. 3H, ****p ≤ 0.0001,
one-sample t test and two-tailed Wilcoxon signed rank test).
Examination of selected individual IRE1-target genes, ERdj4,
SLC3A2, VEGFA, UFM1, confirmed significant reduction in
gene expression (Fig. 3G, **p ≤ 0.01, two-tailed Student’s
t test). IRE1 gene expression itself was not changed (Fig. 3G).
For ATF6 signaling, we examined expression of 74 genes
previously reported to be induced by ATF6 (36, 39, 40) and
also robustly upregulated in Biosensor cells after thapsigargin
treatment (Fig. S1, E and F; Datas S3 and S4). By contrast to
the PERK- and IRE1-gene panels, the ATF6-regulated genes
showed no significant changes with PS19 brain treatment
(Fig. 3, I and J). Last, we analyzed a 74 gene ER stress–
associated degradation (ERAD) panel present in the Gene
Ontology (GO) database ERAD term (GO:0036503) (http://
amigo.geneontology.org/amigo/term/GO:0036503). As ex-
pected, we found significant induction of the ERAD gene set in
Biosensor cells after thapsigargin treatment (Fig. S1G). By
contrast, ERAD gene expression was not altered with PS19
brain treatment (Fig. 3, K and L). Bioinformatic pathway
analysis on the entire RNA-Seq dataset using GO and gene set
enrichment analysis (GSEA) further confirmed significant in-
duction of ER stress and ERAD in thapsigargin-treated
Biosensor cells (Figs. S1H and S2); whereas PS19 brain treat-
ment did not induce ERAD, and ER stress was not changed by
GSEA and showed significant downregulation by GO analysis
(Figs. 3L and S2). Consistent with these transcriptomic find-
ings, we found pronounced increase in p-eIF2α levels in
thapsigargin-treated Biosensor cells that was not seen in PS19
brain–treated lysates (Fig. S1I). In sum, these results demon-
strate that tau aggregation does not trigger ER stress or ERAD
in the Biosensor cell culture model. Instead, tau aggregation is
associated with a small but significant downregulation of
PERK-mediated gene expression.
Genetic and chemical inhibition of PERK pathway promotes
tau aggregation

Our genetic RNA-Seq experiments in Biosensor cells iden-
tified a correlation between tau aggregation and reduced PERK
signaling. To test for causality between PERK pathway
signaling and tau aggregation, we added small molecules that
target PERK, GADD34, or eIF2B to Biosensor cells undergoing
tau aggregation. We used PERK inhibitors, GSK2656157,
GSK2606414, or ISRIB, which locks eIF2B in an active state
(41–43). To increase p-eIF2α levels, we added GADD34 in-
hibitor, salubrinal (44), to PS19 brain–transfected cell media.
We found significant increase in tau fluorescent puncta with
addition of GSK2656157, GSK2606414, or ISRIB, whereas
salubrinal treatment significantly reduced the formation of
fluorescent puncta (Fig. 4, A and B). Furthermore, we found
that addition of salubrinal to PERK inhibitor GSK2606414-
treated cells could antagonize the formation of the fluores-
cent tau aggregates (Fig. 4, C and D). These studies show that
inhibition of PERK or locking eIF2B in an active state directly
promotes tau aggregation, whereas increased eIF2α phos-
phorylation prevents tau aggregation in Biosensor cells.

To further test the relationship between PERK signaling and
tau aggregation, we transduced TauRD(P301S)-YFP into
PERK+/+ and PERK−/− mouse embryonic fibroblasts (MEFs)
(45). In PERK+/+ MEFs, the fluorescence signal from the
TauRD(P301S)-YFP construct was diffusely found in cell
soma, whereas in PERK−/− MEFs, the fluorescent signal was
found in intense puncta (Fig. 4E). When we examined protein
lysates from these transduced PERK MEFs, we saw that
TauRD(P301S)-YFP protein redistributed from the soluble
fraction in PERK+/+ MEFs to insoluble fraction in PERK−/−

MEFs (Fig. 4F). Next, we transduced TauRD(P301S)-YFP into
eIF2αS/S (wildtype) and eIF2αA/A (ablation of phosphorylation
on 51 amino acid) MEFs (46). Similar to results seen in PERK+/+

and PERK−/− MEFs, TauRD(P301S)-YFP fluorescence intensity
was dramatically increased in eIF2αA/A MEFs as compared
with eIF2αS/S MEFs (Fig. 4G) although puncta were less visible.
Protein lysates from transduced eIF2αS/S and eIF2αA/A cells
showed that TauRD(P301S)-YFP protein was increased in both
soluble and insoluble fractions (Fig. 4H). Immunoblot analysis
of eIF2α phosphorylation and PERK confirmed the absence of
both proteins in PERK−/− and the absence of p-eIF2α in
eIF2αA/A MEFs (Fig. 4, F and H). Taken together, these results
support that increased eIF2 phosphorylation prevents tau ag-
gregation in vitro, and that impaired PERK activity or loss of
eIF2 phosphorylation increases tau aggregation.
J. Biol. Chem. (2023) 299(2) 102821 5
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fluorescent microscopy. The white box outlines magnified image of Biosensor cells with puncta. The scale bar represents 50 μm. D, fluorescent puncta were
quantified after wildtype or PS19 mouse brain lysate transfection, and the puncta number was normalized to cell number (**p ≤ 0.01, one-tailed Student’s t
test, n = 6 independent transfections, mean ± SD). E–I, the mRNA levels of PERK-, IRE1-, ATF6-, and ERAD-regulated genes were examined by RNA-Seq of
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Last, we tested how chemical modulation of other UPR
pathways influenced tau aggregation. When we treated PS19-
transfected Biosensor cells with IRE1 inhibitor, 4u8c (47), or
ATF6 inhibitor, Ceapin-A7 (48), we saw significant increase in
fluorescent tau puncta compared with controls (Fig. 5, A and
B). By contrast, addition of an ATF6 pathway activator, AA147
(49) did not significantly alter the number of fluorescent tau
puncta in PS19 brain lysate–transfected cells (Fig. 5, A and B).
Together, these findings support that inhibition of IRE1 and
ATF6, like inhibition of PERK signaling, also increases tau
aggregation in vitro.

PERK signaling is reduced in AD patient hippocampi

Our in vitro studies support that reduced PERK signaling
leads to increased tau aggregation. To investigate if this rela-
tionship between PERK activity and tau aggregation was found
in vivo, we biochemically analyzed PERK signaling status in
frozen hippocampi banked from postmortem brain donors
with Braak-staged tau neuropathology (50, 51). We obtained
five hippocampi samples from patients with clinical history of
AD and Braak VI tau neuropathology (Table 1) and compared
with five Braak I control hippocampi (patients with no de-
mentia and no tau neuropathology) (Table 1) We prepared
soluble and insoluble protein fractions (52) and confirmed
increased pathologic tau protein in Braak VI compared with
A
TauRD(P301S)-YFP biosensor

Ceapin-A
PS19 brain lysate

No Drug

TauRD(P301S)-YFP biosensor

AA147
PS19 brain lysate

4u8c

Figure 5. IRE1 and ATF6 pathway inhibitors cause Tau-YFP aggregation i
coincubated with ATF6 inhibitor Ceapin-A7 (10 μM), IRE1 inhibitor, 4u8c (10 μM
puncta were imaged by fluorescent microscopy. The scale bar represents 30
number. p Value was calculated by two-way ANOVA Tukey’s multiple comparis
replicates). ATF6, activating transcription factor 6; IRE1, inositol-requiring enzy
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Braak I samples (Fig. 6, A and B). We further confirmed that
Braak VI, but not Braak I, brain lysates induced fluorescent
puncta formation (tau aggregation) in Biosensor cells (Fig. 6C)
consistent with prior studies (32–34, 53, 54). Next, we exam-
ined PERK protein expression in these Braak I and VI samples.
In the soluble fractions, we found statistically significant
reduction of phospho-PERK levels in Braak VI compared with
Braak I samples, whereas total PERK levels did not differ
(Fig. 6, D, E, and F). PERK phosphorylation is a marker of
PERK activation (18), and this finding in Braak I and Braak VI
brains provides in vivo evidence that reduced PERK pathway
activity correlates with increased tau aggregation.

To further investigate if PERK signaling was reduced in AD
patient brains, we analyzed mRNA levels of the PERK-
regulated gene set in RNA-Seq datasets collected from AD
hippocampi and normal hippocampi (Fig. 6, G–J). We were
not able to perform RNA-Seq on the same brain cases used for
immunoblotting because the protein preparation methods
were not compatible with the preservation of high-quality
RNA. Instead, we examined hippocampal RNA-Seq datasets
independently generated from two AD patient cohorts in
Japan and the United States (55, 56). The first RNA-Seq
dataset contained eight clinically and neuropathologically
Braak-staged Alzheimer’s brain hippocampi matched with
eight control hippocampi collected from Japanese patients
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Table 1
Clinicopathologic brain tissue information (age, gender, and Braak staging) of UCSD-ADRC (ADRC brains; brains in Ref. (56) [GSE#173955];
and brains in Ref. (55) [GSE#159699])

UCSD-ADRC brains

Non-AD brain AD brain

Sample ID Braak stage Sex Age Sample ID Braak stage Sex Age

5515 1 F 73 5543 6 M 92
5327 1 M 94 5581 6 F 64
5459 1 M 68 5559 6 F 86
5510 1 M 92 5555 6 M 56
5422 1 M 90 5566 6 F 84

Brains (GSE#173955) (56)

19 3 F 87 3 5 F 88
20 1 F 80 4 6 F 95
23 Non-AD M 77 7 6 F 95
24 1 M 55 13 6 F 100
25 1 F 72 14 5 M 99
28 1 F 78 15 6 M 83
30 2 M 80 16 5 M 90
37 Non-AD M 74 New sample 4 F 84

Brains (GSE#159699) (55)

10 1/2 M 73 20 5/6 M 64
11 0 M 63 21 5/6 M 63
12 0 M 62 22 5/6 M 71
13 1/2 M 68 23 5/6 M 74
14 1/2 M 70 24 5/6 M 78
15 1/2 M 77 25 5/6 M 61
16 0 M 61 26 5/6 M 65
17 0 M 68 27 5/6 F 70
18 0 M 72 28 5/6 M 79
19 1/2 F 68 29 5/6 M 64

30 5/6 M 64
31 5/6 M 67

Abbreviations: F, female; M, male.
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((56) and Table 1). The second RNA-Seq dataset contained 12
clinically and neuropathologically Braak-staged Alzheimer’s
brain hippocampi and 10 normal control hippocampi collected
from an American cohort ((55) and Table 1). When we
examined the expression levels of the PERK-regulated gene set
in these two hippocampal RNA-Seq datasets, we found
significantly reduced levels of the PERK-regulated gene set as
well as individual PERK-regulated genes in AD brains
compared with controls in both Japanese (Fig. 6, G and H,
Suppl. Data 5) and American cohorts (Fig. 6, I and J and Data
S5). Together, our biochemical studies and analyses of pub-
lished RNA-Seq datasets from Alzheimer’s hippocampi pro-
vide in vivo support that PERK pathway activity inversely
correlates with tau pathology.
Discussion

PERK is a key effector of the UPR and ISR and controls
translational and transcriptional programs that impact vital
cellular processes, including amino acid metabolism, anti-
oxidative response, ER protein folding, autophagy, and
apoptosis. In people, ultrarare PERK variants that ablate PERK
function are causally linked to the autosomal recessive disease
WRS. Another distinct group of more common and
nonoverlapping PERK variants increases risk for tauopathies.
Previously, we found that tauopathy-associated PERK variants
diminished PERK signaling in vitro (28), but the consequences
of changes in PERK pathway activity on tauopathy pathogen-
esis remained unclear. Here, we found that impaired PERK
pathway activity increased tau aggregation, whereas increasing
p-eIF2α reduced tau aggregation in tauopathy cell culture
models. We found that impaired PERK pathway activity
correlated with increased tau neuropathology in brain tissues
from three different tauopathy patient cohorts. We found that
tauopathy-associated PERK variants did not target kinase ac-
tivity, but instead, at least two variants negatively impacted the
tertiary structure of the ER stress–sensing luminal domain.
Based on these findings, we propose that tauopathy-associated
PERK variants increase disease risk, in part, by facilitating tau
protein aggregation and downstream neuropathology.

Our findings showing causality between PERK signaling and
tau aggregation were based on experiments performed in
MEFs ablated for PERK or eIF2α phosphorylation or in
HEK293 cells expressing fluorescent protein–tagged
TauRD(P301S). These are robust and reproducible systems
to study tau protein aggregation (32–34, 53, 54), but the small
TauRD(P301S) fragment likely does not recapitulate all aspects
of aggregation by native full-length tau protein isomers. A
related limitation of our study is that the MEF and
HEK293 cell models do not recapitulate the neuronal and glial
environments where tau causes neuropathology. It will be
important to evaluate how tauopathy-associated PERK vari-
ants impact tau pathology in native neural cell types. Despite
the limitations of our abbreviated tau construct and cell cul-
ture models, our analyses of PERK signaling in primary patient
brain tissues support that reduced PERK pathway activity
correlates with increased tau protein aggregation and pathol-
ogy. Given the absence of therapies for tauopathies and the
J. Biol. Chem. (2023) 299(2) 102821 9
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Figure 6. PERK pathway activity is reduced in Alzheimer’s disease (AD) patient brains. A and B, protein lysates were prepared from 1 mg of five Braak I
(normal) and five Braak VI (AD) patient hippocampi. Soluble (A) and insoluble (B) protein lysate fractions were immunoblotted for total human Tau (HT7),
phospho-Tau (AT8), and GAPDH (loading control). Individual brain identification numbers are listed above the blots, and associated clinicopathology in-
formation are provided in Table 1. C, Biosensor cells were transfected with normal (Braak I) or AD (Braak VI) soluble brain lysate. After 24 h, Tau-YFP
aggregates (fluorescent puncta) were imaged by fluorescent microscopy. The scale bar represents 50 μm. D–F, soluble brain lysates from (A) were
immunoblotted for phospho-PERK and total PERK; protein levels were quantified by densitometry and normalized by loading controls, PERK (D) and GAPDH
(A). PERK was not detected in insoluble fraction (Fig. S3). **p ≤ 0.01, not significant (ns), two-tailed Student’s t test. Mean ± SD. G and H, gene expression
levels of PERK-regulated genes in hippocampi of AD brains (n = 8) relative to non-AD brains (n = 10) from GSE173955 (56) are shown as log2 fold change.
The graph (G) shows levels of the five PERK-regulated genes most significantly reduced between AD brains and non-AD brains and expression levels of PERK
gene itself. The violin plot (H) shows levels of the entire PERK-regulated gene set. Detailed clinicopathology information are available from Ref. (56) and
summarized in Table 1. I and J, gene expression levels of PERK-regulated genes from hippocampi of AD brains (n = 12) relative to non-AD brains (n = 10)
from Ref. (55) (GSE159699) are shown as log2 fold change. The graph (I) shows levels of the five PERK-regulated genes most significantly reduced between
AD and non-AD brains and PERK gene expression levels itself. The violin plot (J) shows levels of the entire PERK-regulated gene set. Detailed clin-
icopathology information of these AD and non-AD brains are available from Ref. (55) and summarized in Table 1. Error bars in G and I represent mean ± SD.
Black circles and squares represent individual AD or non-AD brains. (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, not significant [ns], two-tailed Student’s t test). The red
horizontal line in figures H and J marks the median level of gene expression, and the thin horizontal blue lines delimit upper and lower gene expression
quartiles in the violin plots. (**p ≤ 0.01, one-sample t test and two-tailed Wilcoxon signed rank test). PERK, protein kinase R-like endoplasmic reticulum
kinase.
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potential of small-molecule PERK and ISR pathway agents to
influence tau aggregation, the role of PERK signaling warrants
further investigation in the pathogenesis and treatment of
tauopathies.

An unexpected finding in our analysis of human PERK
variants was the unequal distribution of the tauopathy-risk
haplotype B allele between racial/ethnic groups ranging from
a low of �5% in African populations up to 49% in East Asian
populations (Fig. 1C). Prior studies found increased prevalence
of PSP in a Japanese cohort (17.90 per 100,000 people) (57),
compared with 6 per 100,000 in a European cohort (58, 59);
and 2.95 per 100,000 in the US population. We speculate that
the increased prevalence of PSP in the Japanese populace
could reflect the higher prevalence of the tauopathy disease
allele, haplotype B, in this East Asian population. PSP preva-
lence has not been examined in African groups, but we predict
that PSP prevalence should be significantly lower because of
the relative rarity of the haplotype B in this population
(Fig. 1C). Additional molecular epidemiologic studies across
different ethnic/racial groups can shed light upon the link
between haplotype B prevalence and distribution of disease.

We observed that many tauopathy-associated PERK variants
target the ER stress–sensing luminal domain (Fig. 1E), and
modeling of amino acid substitutions at residues 136 and 240
on the mammalian crystal structure of the PERK luminal
domain revealed disruption of H-bonds between these two
residues when converted to disease variants (Fig. 2). How do
these changes in the luminal domain impact PERK signaling?
The local sequences bearing residues 136 and 240 are
important for PERK tetramerization/oligomerization in
response to ER stress (30, 31), and therefore, we speculate that
the S136C and R240H conversions may alter the tetrameri-
zation/oligomerization ability of PERK. The luminal domain of
PERK also binds to chaperones, and luminal domain PERK
variants may also alter interactions with PERK regulatory co-
factors like Grp78/BiP (30, 60). PERK dimerization after ER
stress is less likely to be directly affected by changes at S136
and R240 because these residues are not located near the
PERK dimerization interface (30). Based on these modeling
observations, we propose that tauopathy variants in the PERK
luminal domain interfere with the ability of PERK to accurately
sense and respond to ER stress; dysregulation of kinase acti-
vation and downstream signaling arises as a secondary
consequence.

The status of PERK signaling and ER stress in tauopathy
pathogenesis is mixed. Biochemical analysis of tauopathy
mouse brains at many ages prior to and during disease
revealed no increase of PERK signaling or induction of ER
stress in these models (61, 62). By contrast, increased PERK
signaling was reported in some diseased neurons through
immunostaining of primary AD and PSP patient brain sections
(63, 64). In our studies, we saw no activation of PERK signaling
in the cell culture tau aggregation model or in primary tau-
opathy patient hippocampi (Figs. 3 and 6). Our PERK signaling
analysis was performed by Western blots or RNA-Seq of bulk
lysates from in vitro cultured cells or human brain tissues. This
approach may mask increased PERK signaling in individual or
small populations of cells. Single-cell approaches can provide
better resolution of PERK signaling dysregulation during tau
aggregation in distinct neural cell types.

In our studies, we not only saw no activation of PERK
signaling but instead, we saw reduced PERK signaling in the
HEK293 cell culture model and in tauopathy patient brain
samples by gene expression measurements (Figs. 3 and 6). To
our knowledge, reduced PERK signaling in tauopathy has not
been reported previously. We do not know how or why PERK
signaling as determined by transcriptional output is sup-
pressed in the cell culture model of tau aggregation or in
advanced tauopathy patient brains. However, impaired PERK
function worsens ER homeostasis, increases oxidative stress,
and increases protein misfolding (45). In the brain, increased
tau aggregation could be a specific deleterious consequence of
PERK dysfunction.

Our findings support prior studies that pharmacologic
PERK activation or PERK overexpression attenuate tau pa-
thology in vitro and in vivo (65). Augmented PERK signaling,
and more broadly UPR/ISR signaling, may provide tools to
ensure tau protein homeostasis and prevent the emergence of
pathologic tau aggregates. A PERK augmentation strategy
would be especially applicable for carriers of tauopathy-
associated PERK hypomorph alleles.
Experimental procedures

Genome data collection and interpretation of PERK variants

About 1294 PERK variants were examined in three publicly
available databases (accessed date: January 5, 2022): the
Genome Aggregation Database (gnomAD, version 2.1.1),
ClinVar (National Center for Biotechnology Information
[NCBI]), and European Bioinformatics Institute (EMBL-EBI)
Database. The 1294 variants included 479 missense variants,
447 intron variants, 226 silent variants, 51 splicing variants, 37
UTR variants, 19 frameshift variants, 19 start and stop variants,
and 16 in-frame variants. 12 WRS and 18 tauopathy missense
mutations were identified in the genome databases and in
various publications (https://uswest.ensembl.org/Homo_
sapiens/Gene/Phenotype?db=core;g=ENSG00000172071;r=2:
88556741-88627464; https://www.ncbi.nlm.nih.gov/CBBresearch/
Lu/Demo/LitVar/index.html#!?query=EIF2AK3; https://gnomad.
broadinstitute.org/gene/ENSG00000172071?dataset=gnomad_
r2_1) (Fig. 1). PERK haplotype race/ethnic frequency was
calculated by population allele count divided by allele number
from the gnomAD database. Tauopathy-related mutations
were grouped as common ≥1%, 0.1% ≤ rare <1%, and ultrarare
<0.1% based on the population allele frequencies identified
from gnomAD. Pathogenicity of PERK variants was assessed
by publicly accessible Web server–based prediction tools
(PolyPhen-2: http://genetics.bwh.harvard.edu/pph2/; PRO-
VEAN: http://provean.jcvi.org/index.php; MutationTaster:
https://www.mutationtaster.org/; SIFT: https://sift.bii.a-star.
edu.sg/www/SIFT_seq_submit2.html; and https://cadd.gs.
washington.edu/. All last accessed June 2021). PolyPhen-2
(Polymorphism Phenotyping v2) uses sequence alignments,
phylogenetics, and structural data to characterize amino acid
J. Biol. Chem. (2023) 299(2) 102821 11
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substitutions and calculates a score for the variant, classifying
it as “benign,” “possibly damaging,” or “probably damaging.”
Scores range from 0.0 (benign) to 1.0 (probably damaging).
SIFT predicts the impact of an amino acid change on protein
function by comparing amino acid alignments from related
sequences to calculate a “SIFT score”: 0 to 0.05 will be clas-
sified as “damaging,” 0.05 to 1 as “tolerated.” Prediction of
pathological mutations on proteins uses sequence information
for its neural network and predicts the effect of amino acid
changes on protein function, by calculating a reliability index
ranging from 0 to 10 (most unreliable to most reliable pre-
diction) and a prediction of either “neutral” or “pathological.”
Mutation prediction is based on SIFT and structural and
functional properties of proteins. Mutation prediction was
created using disease-associated mutations from HGMD and
neutral amino acid substitutions from Swiss-Prot. The output
contains a general score, (g) where g > 0.5 (p < 0.05) is
actionable, g > 0.75 (p < 0.05) is confident, and g > 0.75 (p <
0.01) is very confident that an amino acid substitution is likely
to have a phenotypic effect. All data collection, pathogenicity
assessments, and database annotation were performed by sci-
entists trained with standardized training modules and annual
proficiency testing.

PERK luminal domain structural modeling analysis

Protein sequence alignment was evaluated using the EMBL-
EBI EMBOSS Needle program (https://www.ebi.ac.uk/Tools/
psa/emboss_needle/) and visualized using JalView (version
2.11.1.4; www.jalview.org). The visualization of the recon-
structed model structure and H-bond prediction of the PERK
protein was prepared using PyMol molecular graphics system
(http://www.pymol.org). The crystal structure of mammalian
PERK luminal domain (PDB ID: 4YZY) was used for the
structure modeling analysis. When superimposed 4YZY with
the mutation models, all H-bonds of residues R240/H240 and
S136/C136 were highlighted and shown in dashed lines.

Antibodies and chemicals

Antibodies including HT-7 (catalog no.: MN1000; Invi-
trogen), AT8 (catalog no.: MN1020; Invitrogen), YFP (catalog
no.: ab6556; Abcam), HSP90 (catalog no.: ab13492; Abcam),
lamin A/C (catalog no.: 2032; Cell Signaling Technology),
GAPDH (catalog no.: ab8245; Abcam), T-PERK (catalog no.:
3192; Cell Signaling Technology), phosphorylated PERK (cat-
alog no.: 3179; Cell Signaling Technology), eIF2α (catalog no.:
5324; Cell Signaling Technology), p-eIF2α (catalog no.: 5324;
Cell Signaling Technology) were pretested to detect the tar-
geted proteins. Small molecules included GSK2656157 (cata-
log no.: 9466-5; BioVision), GSK2606414 (catalog no.: S7307;
Selleckchem), salubrinal (catalog no.: S2923; Selleckchem),
ISRIB (catalog no.: S7400; Selleckchem); Ceapin-A7 (catalog
no.: SML2330; Sigma–Aldrich), 4u8C (catalog no.: CAS14003-
96-4; Calbiochem), and AA147 (product no.: 6538059;
ChemBridge) were prepared in dimethyl sulfoxide following
the manufacturer’s instruction and stored at −80 �C as stock
solution. ER stress–inducing chemical, thapsigargin, was
12 J. Biol. Chem. (2023) 299(2) 102821
dissolved in dimethyl sulfoxide and added to the cell culture
media at a concentration of 300 nM. The working solutions
were freshly prepared with −80 �C stock solution.

Mouse and human brain protein lysate preparation

Mouse brain extraction

P301S tau transgenic (PS19) mice (B6; C3-Tg(Prnp-
MAPT*P301S)PS19Vle/J; stock number: 008169; Jackson
Laboratory) harboring T34 isoform of MAPT with one
N-terminal insert and four microtubule-binding repeats
(1N4R) encoding the human P301S mutation were obtained
from Jackson Laboratory and maintained in a C57Bl/6j genetic
background in standard vivarium environment (12 h light:12 h
dark cycle). Approved laboratory personnel checked mice
during the light phase of the light:dark cycle to determine
birthdates and weaned the new pups in 3 weeks. At 6 months,
PS19 and WT male littermates were anesthetized with keta-
mine/xylazine (1 mg/kg) followed by intracardiac perfusion
with saline. Then, mice were euthanized by carbon dioxide and
cervical dislocation, and brains were subsequently removed
following institutional guidelines and with Institutional Ani-
mal Care and Use Committee approval. Fresh brains were then
homogenized with Dounce homogenizer in ice-cold 1× radi-
oimmunoprecipitation assay (RIPA) buffer with protease in-
hibitor (catalog no.: S8820; Sigma–Aldrich). Following
centrifugation (13,000 rpm) at 4 �C for 20 min, the soluble
fraction was analyzed for protein concentration and frozen.
The supernatants were aliquoted and stored at −80�C until
further use. The insoluble fraction was vigorously resuspended
by vortex and boiled with 4× SDS sample buffer for 10 min.
About 10 μg of total protein was run on an 1 to 15% Bis–Tris
gel and transferred to nitrocellulose for Western blotting.

Human brain extraction

Frozen human brain tissues were obtained from UC San
Diego Alzheimer Disease Research Center (UCSD-ADRC).
The diagnoses and demographics in Table 1 were obtained
from patients neurologically and psychometrically studied at
the UCSD-ADRC with institutional institutional review board
approval. Patients gave informed consent for postmortem
brain sample collection for research purposes. Upon autopsy,
patient brains were collected by the UCSD-ADRC Neuropa-
thology Core and sagittally divided; the left hemibrain was
fixed in 10% buffered formalin for neuropathological analysis
for Braak tau staging; and the right hemibrain sections were
frozen at −70 �C for subsequent protein isolation. For this
study, frozen hippocampal tissues were obtained. Human brain
protein lysate extraction followed the previous literature (52).
In brief, 0.3 g of brain tissue was homogenized on ice with 5.3×
volume (w/v) Goedert buffer composed of 10 mM Tris–HCl,
pH = 7.4, 0.8 M NaCl, 1 mM EGTA, and 10% sucrose
including protease inhibitor, cOmplete mini (catalog no.:
11836153001; Roche), per 10 ml and the remaining solution
volume with pure PMSF. The homogenate mixture was then
spun at 20,000g for 20 min. The supernatants were retained
afterward and rehomogenized in 2.65× volume (w/v) of
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Goedert buffer. The homogenates were spun at 20,000g for
20 min. The previous supernatant was then combined with
newly retained supernatant, and 20 μl supernatant was saved
for protein concentration. Afterward, 1% of N-lauroylsarcosine
(catalog no.: L7414; Sigma–Aldrich) was added to the com-
bined supernatant and rocked the mixture for 1 h at room
temperature. After 1 h, the mixture was spun for another hour
at 100,000g. The supernatant was saved as a soluble extract.
The dark red brown pellet was then resuspended in 50 mM
Tris–HCl, pH = 7.5, at 0.2 ml of mixture per gram of pellet,
then stored at 4 �C for further biochemical experiments.
Biosensor analysis

Cell culture

“Biosensor” HEK293 cells stably expressing TauRD(P301S)-
YFP were generated as previously described (32, 34). Biosensor
cells were maintained in a humidified 37 �C, 5% CO2 incubator
in Dulbecco’s modified Eagle’s medium (Gibco) and supple-
mented with 10% fetal bovine serum with 1% penicillin/
streptomycin (Gibco).
Brain lysate transfection

Tau brain lysate transfection was performed as previously
described (32, 34). In brief, Biosensor cells were plated at a
density of 0.5 × 103 cells per well in a 12-well plate (catalog no.:
07-200-82; Corning). Twenty-four hours later, at �20�25%
confluency, cells were transduced with PS19 or control brain
lysate. Transduction complexes were composed of 50 μl Opti-
MEM (catalog no.: 31985070; Thermo Fisher), 3 μl LT-1
transfection reagent (catalog no.: MIR2020; Mirus Bio LLC),
and 1 μl brain lysate (1 μg/μl stock determined by bicincho-
ninic acid [catalog no.: 5000001; Bio-Rad Protein Assay Kit I]).
After 24 h, cells were fixed with 4% paraformaldehyde/3%
sucrose fixation solution in PBS and imaged using ZEISS 710
confocal microscope.
Pharmacochemical modulation of tau aggregation

After 24 h, culture media were replaced with fresh media
with either PERK pathway inhibitors (GSK2656157,
GSK2606414, or ISRIB) or modulators (salubrinal or Selphin-
1) for another 24 h or more. Live cell imaging was performed
using ZEISS 710 confocal microscope at 37 �C, 5% CO2.
Tau aggregation in MEFs

PERK+/+ or PERK−/−, and eIF2αS/S or eIF2αA/A MEF cells
were transiently transduced with TauRD(P301S)-YFP plasmid
using TransIT LT-1 Transfection reagent (catalog no.:
MIR2020; Mirus Bio LLC) and virally transduced by lab-
prepared lentiviral infection following the manufacturer’s in-
struction and incubated for 2 days. The cells were lysed with
RIPA buffer, centrifuged at 14,000g for 10 min at 4 �C; the
supernatants were saved for the Western blot analysis. Cell
imaging analysis was performed using ZEISS 710 confocal
microscope.
Preparation of lentivirus

Lentivirus expressing TauRD(P301S)-YFP was prepared
following Addgene lentivirus culture protocol. In brief, 293T
packaging cells at 3 × 106 cells per plate in DMEM complete
media was plated in 10 cm cell culture dish. The
TauRD(P301S)-YFP plasmid DNA with virus packing pDNAs
(psPAX2; pMD2.G; Addgene) was transfected into 293T cells
by 1 mg/ml polyethyleneimine transfection reagent and incu-
bated for 36 h. The resultant media were centrifuged at
150,000g for 90 min at 4 �C. The concentrated virus was
collected and stored at −80 �C until further infection.

Immunoblotting analysis

PERK+/+ and PERK−/−; eIF2αS/S and eIF2αA/A MEFs trans-
duced with TauRD-YFP and Biosensor cell transfected with
wildtype and PS19 brain lysates were lysed with SDS lysis
buffer (2% SDS in PBS containing protease and phosphatase
inhibitors [catalog no.: 11836153001; Roche]) or RIPA buffer.
Protein concentrations of the cell lysates were determined by
bicinchoninic acid protein assay (Pierce). Equal amounts of
protein were loaded onto 4 to 15% Mini-PROTEAN TGX
precasted gels (Bio-Rad) and immunoblotted. The following
antibodies and dilutions were used: anti-HT-7 at 1:1000 dilu-
tion, AT8 at 1:1000 dilution, YFP at 1:1000 dilution, HSP90 at
1:2000 dilution, lamin A/C at 1:3000 dilution, GAPDH at
1:3000 dilution, T-PERK at 1:1000 dilution, phosphorylated
PERK at 1:1000 dilution, eIF2α at 1:1000 dilution, and p-eIF2α
at 1:1000 dilution. After overnight incubation with primary
antibody, membranes were washed in Tris-buffered saline with
0.1% Tween-20, followed by incubation of a horseradish
peroxidase–coupled secondary antibody (Cell Signaling).
Immunoreactivity was detected using the SuperSignal West
chemiluminescent substrate (Pierce) and BIO-RAD Universal
Gel Molecular Imager.

RNA-Seq analysis

RNA-Seq analysis was performed as previously described
(36). In brief, frozen cells were collected, and RNA extraction,
RNA quality control, and RNA-Seq were performed by BGI
DNBSEQ Eukaryotic Strand-specific Transcriptome Rese-
quencing (BGI); DNBSEQ stranded mRNA library, providing
paired-end 100 bp reads at 30 million reads per sample. The
sequencing data were filtered with SOAPnuke (version 1.5.2)
(66) and clean reads were mapped using HISAT2 (version
2.0.4) to the reference genome (Homo_sapiens_GCF_
000001405.38_GRCh38.p12 reference assembly) (67, 68). The
expression levels of the genes were calculated by RSEM
(version 1.2.12) (69). Differential expression analysis and sta-
tistical significance calculations between condition and
experiment groups were assessed using R-based software,
DESeq2 (version: 1.4.5) (70). The false discovery rate q value
for the DESeq analysis is 0.1 (70). ER stress gene sets were
collected from the results of the DESeq2 analysis and visual-
ized using GraphPad Prism (GraphPad Software, Inc) software.
Violin plots comparing PS19 brain lysate transfection group
and wildtype brain lysate transfection group were generated
J. Biol. Chem. (2023) 299(2) 102821 13
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with the Log2 fold change data of the differential expression
analysis.
Human AD brain RNA-Seq analysis

Human AD brain RNA-Seq datasets were collected from the
NCBI Gene Expression Omnibus database: GSE173955 (56)
and GSE159699 (55). Individual ER stress gene set of AD
brains was extracted and normalized by non-AD control brain
in each dataset and visualized using GraphPad Prism software.
Violin plots comparing non-AD brain group and AD brain
group were generated with the Log2 fold change data of the
differential expression analysis.
GSEA and GO analysis

gProfiler, a web-based application (https://biit.cs.ut.ee/
gprofiler/), was used for GO pathway enrichment analysis.
The gene sets from the bulk RNA-Seq analysis (Biosensor cell
and human AD brain analysis: GSE173955 (56) and
GSE159699 (55)) were entered, and GO terms based on sig-
nificant association were collected (p < 0.05). GSEA software
was downloaded (https://www.broadinstitute.org/gsea/) and
also used to analyze the gene sets. Preranked lists were entered
with the same gene sets and ranked based on expression values
relative to wildtype controls. Weighted analysis with the GO
reference database was performed, and GSEA enrichment
plots were presented.
Statistical analysis

For RNA-Seq gene expression data, differential gene
expression analysis (DESeq) and the statistical significance
(p value) of differences between control and experimental
groups (n = 5 independent replicates) were assessed using
R-based software, DESeq2 (version: 1.4.5) (70). The false dis-
covery rate q value for the DESeq analysis is 0.1 (70); For
the IRE1-, PERK-, ATF6-, and ERAD-regulated gene groups,
the one-sample t test and Wilcoxon signed rank test were
used to calculate statistical significance of differences in
the gene groups between control and experimental conditions.
For individual genes, two-tailed Student’s t test was used to
calculate statistical significance of differences in gene expression
between control and experimental conditions. For protein
levels, two-tailed Student’s t test was used to calculate the sta-
tistical significance of differences in protein levels between
control and experimental conditions from immunoblot images
captured by ImageJ (the National Institutes of Health and the
Laboratory for Optical and Computational Instrumentation
(LOCI, University of Wisconsin)) and normalized to loading
control images. For Biosensor cell aggregate puncta analysis, we
used ImageJ to count cells and puncta visualized by confocal
fluorescence microscopy and performed Student’s t test and
ANOVA test followed by Tukey’s multiple comparisons test.
The results were used with averages of all experiments ± SD. A
probability of less than 0.05 was considered statistically signifi-
cant and was annotated as *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and
14 J. Biol. Chem. (2023) 299(2) 102821
****p ≤ 0.0001. All statistics were calculated using GraphPad
Prism 9 software.
Data availability

The RNA-Seq raw data and differential gene expression
analyses from Biosensor cells are available under Gene
Expression Omnibus accession number GSE217525.
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information.
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