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TRA‘NSIENT: DIFFUSION IN A COMPOSITE SLAB»<
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and
D. R. Olander
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_@lostr'act

The transient response of two slabs of finite thickness in. contact
at a plane interface and initially containing nonequilibrium amounts of a
transferrable solute (or, the response of the analogous heat conduction

problem) is found in terms of an eigenfunction series. The approach to .

equilibrium is depicted graphically for a few values of the parameters,

and, with the aid of tables that have been prepared, the solution‘may be

calculated for a larger range of values covering the region of practical"

interest.
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Formulation '

Theb trénsient résporise of two slabs of finite thickness‘in contact o
at a plane interface and initially containing noﬁequilibrium amounts of a
transferrable solute is of some pra.;tical importance. Such a situation
may occur iﬁ the analysis of porous media in oil fields and in the approach
to equilibriu?n .of a solute distributing between two immiscible liquid
layers.

For the problem considered here, movement of the solute occurs

by molecular diffusion in the two regions, which, in general, have dif-

ferent diffusion coefficients. The slabs are of finite thickness in the
direction perpendicular to the interface but are of infinite extent laterally.
No transfer OCCUrs across the outer boundaries of the slabs. The con-

centrations on the two sides of the interface are related by a constant of

proportionality m. .The fluxes at the interface are the same in both slabs.

The quantity of interest is the ratio of the average concentrations in the
two media as a function of time. This ratio approaches m as time ,
approaches infinity.

The diffusion equations for the two media are

aci. 82c1 _
-5;{—-=D1 8‘2 , for ~a<x <0, t>0,
x
and v , . >
9c2 ‘ 0 <, :
T:DZ axz , for 0<x<b., t>0.

The outer boundary conditions are

BC,l 8c2 - :
—5-;{— (t,—a) = —8;-{-— (t,b) = O‘,A

and the interface conditions are
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me, (,07) = ¢,(t,07)

and :
dc, dc :
' 1 - 2 +, .
Prax 0 =D ¢ 07
The solution is given here for the general initial condition specifying ._ Yo

ci(O, x) and 'CZ(O,x),f but attention is focused explicitly on the case of
special interest,

ci (O,x)-:c for -a £x <0,

_ “10’
cZ(O,x):O , for 0 <x<b. (1)

A material balance on the solute in the two regions yields
- _ b —
Ci(t) - Cio g Cz(t) s

where —C.i (t) and EZ(t) are the average concentrations in regions 1 and‘vZ, .

respectively,and 40 is defined by

0 b

[" ci(O,x)dx-Fj c,(0,x) dx| .
L/-a 0

The approach to equilibrium is measured by the ratio

€407

VRS

| _ S/ T/m
f)= === — %=
€107a “2

The differential equations and the associated boundary conditions

can be written in dimensionless form by letting : »
Dt - . ‘ \
T= —, :

n= ~ 1
X
-6‘ CZ‘_H: 0 $T] $(¥,'
o Ci/cio’ -1 <m<0°
cz/m_cio, 0Osn<e

(continued)
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D :
b 1 S : :
« =2 A 5 | (2)
| - # b, | o o
and
: b
. M= a‘ m . ‘ : . (3)
The resulting equations are
| 2
9C . 8. C  fop “i<m<O0 o4,
T 5 T\Z 0<n<ea '

and

The initial condition,Eq. 1, becomes

1, -i<sn<0 = '
C(0,m) = ’ : (4)

0, 0<n=<c

and the quantity f is

C _ _
(7)) =— ‘Z_ _— . - (5)
1-MC, : : .
where o
G, = —2] Ciroman. )
0 - : :

. The manner in which {(7) approaches unity. as T approaches
- depends upon the parameters‘ @ and M. A useful series solution

can be obtained directly either by the associated eigenftinction technique

“or by the Laplace transform method. With the former, general initial
 conditions can be accommodated more easily, and this scheme is out-

. lined below._
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The solutioﬁ ‘c.an be applied to the analégous heat conduction
situation by replacing Di/DZ in Eq. 2 by the ratio of the thermal dif-
fusivities and m in Eq. 3 by the inverse ratio of the volumetric heat
vcapacities. In this case, f 'i's the ratio of the average temperatures - 4

in the two regions.

Associated Eigenfunction Technique

Following L.anczos [1], one considers the associated eigenvaluev

problem for Ck( gl

2 . ; R

__T_-;-}j((jk:O for -1< <0, 0 <n<ao,

with
dC dC
-~ nt K -y . M Tk o+

Ck(O)~Ck(Q), T‘RT(O-)— e d"'l_(o)"
© and

ac ' dc

Tk _ Kk _

T“-’l_(—_i)— "a—,(T(OZ)—O-

Its solution is

- sin )»k sin an + cos )‘k cos kkn, ~l<n<0
Ck(n‘ = A’k a: . ,
-3 Sin )"k s1p )»k'q +.cos Xk'cos )\.k'q, O<sn<a
with the eigenvalues given by l R
tan)\k=- —atana)\k , for.‘k=0,1,2,---., S )
Only the nonnegative eigenvalues need be considered; let them be ordered
so that )‘o=,0<}‘1<)‘2<”" | | o
The eigenfunctions {Ck (n)} do not form an orthogonal set over -

(?i; a) for this problem, but they are biorthogonal with the (disééntinuous)

functions
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that is,

A0 ifk=j

1]
o

. - 1/(1+M)1/2,, TR . o 1
Ak 2 , 7_: 1/2 S
[2/(1 + 9;-\7[-55.1*1 )\k+Mcos)\kU ) for k

il
-~
3%}
-
w

then the eigenfunctions are normaliz'eyl'dl,iso_ that

o4
I4

| j Ol G an =g

For the geheral initial ‘cohditibn' C(0, n) = g(n), the solution to the
problem in terms of the nor'rr.l.alivzed‘ eigenfunctions is
: k=0 e T ' _
where the Bk ~are the Fot'rief coeﬁfi_cients,of ‘g(n) = g Bka (mn ,
o

B, = f : g’(n) Gk(ﬂ)d” "‘

For the specific initial condition, Eq. 4, these are -

1
o

AT , for k
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The quantity C—Z( 7) in Eq. 6 is given by

_ o . '
1 A B . 2
S > B2 s
jrey}

for the initial éondition; Eq. 4, this becomes

oo

5 -
— 1 2 exp (-Ngc T) '

SPA v i > 5 5 N) - B
o o _

- k=1 M).i <csc )\k-{- 9_1\71_ csc

The lirﬁiting form of the series solution as a — w agrees with the

solution given Ey Lovering for n=0/[2].
Discussion

Even for moderate values of )\i’r the series Eq. 8 converges
extremely rapidly, and only the first term or two need be calculated.
The required eigenvalues can be found numerically by solving Eq. 7 by ‘ |
an iterative technique, such as Newton's method, taking care to use tvhvek
appropriate branchés of tan \. Tables have been prepared giving the |
first ten positive/solutiOns of Eq. 7 fo foﬁr places for several values.of
o and M in the range 0.004 < a <1.0 and 0.001.<M <1000 [ 3]. ‘These -
) tables can also be used to directiy obtain the roéts for 1.0 <o <£1000.
Figures 1 and 2 depict £(T), Eq. 5, using C_Z(’r). as calcgla.ted |
| from Eq. 8, with the series truncated at k = 40. This number of terms
is requlred to glve plotting accuracy for extremely small values of (1)
apd ?\1 T. Away from the neighborhood of the origin, however, far

fewer terms are required. Figure 1 shows the variation of f(T) with
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M when a=1. If o=1, Eq. 8 becomes simply

’ » T : 2_2
— 1 - 8 ko A
CM = o 1'? T22eP T . O
, =1 k-
&
k odd

so that
2£,(7)

£(7) = T+, (7) + MII-5,(7] *

where fi(T) denotes f(T) when ao= M= 1. Thus, if o= 1, one can ob-

tain f(7) directly from fi(T) for values of M not expliéitly shéwn in Fig. 1.

Equation 9agrees withthe solution given by Carslaw_a.nd Jaeger for a= M=1[4].
" Figure 2shows the variation of f(T) with o when M =1, If

M = 1 then -—(—32(7) for a= 2 and - 52(7') for a= i/ao are related by

— q -
Cz(T7 a—o-) = CZ(O{O 75 0/0)
so that
-4 2
£y o—) = flag T o) -
0
Here EZ(T;_ @) and f{(T;a) denote EZ(T) and £(T) for a given «. Thus,

if M =1, one can obtaih (1) for a= 1/a0 by simply changing the T
scale on the o = 2 curve. In particular, since the curves for o <0.1
are essentially indistinguishable from the curve for a=0, f(7) for values
of o larger than 10 (on less than 0.1) is approximately given by

£ —— ) & f(ag’r; 0)-.

o

O N
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T for o= 1 and_several valuesof M.

T for M= 1 and several values of o.
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sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

. A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
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may not infringe privately owned rights; or
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or for damages resulting from the use of -any infor-
mation, apparatus, method, or process disclosed in
this report. :
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or employee of such contractor, to the extent that
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of such contractor prepares, disseminates, or provides access
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with the Commission, or his employment with such contractor.








