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Modelling metric violations in (geometric) conceptual spaces
Karthikeya Kaushik (karthikeya.kaushik@berkeley.edu)

Department of Psychology, UC Berkeley

Bill Thompson (wdt@berkeley.edu)
Department of Psychology, UC Berkeley

Abstract

Understanding how people represent similarity relations be-
tween concepts is one of the most fundamental problems in
cognitive science, with implications for many theories of learn-
ing and reasoning. Human judgments of similarity violate ba-
sic metric assumptions, leading to effects such as judgment
asymmetry and the triangle inequality. These effects have been
difficult to capture with modern geometric representations of
conceptual structure such as vector embeddings. Here we in-
troduce a similarity function related to a feature-based view of
concepts. We show how this function can be applied to geo-
metric representations and that the resulting algorithm can ac-
count for classic judgment effects. Using representations ex-
tracted from a Large Language Model, we computed the pre-
dictions of this approach to similarity relations among a set
of everyday concepts (world countries), and evaluated these
predictions against human judgments of similarity in a behav-
ioral experiment. The model’s predictions correlate with hu-
man judgments. These results offer insight into human judg-
ments of similarity relations and the design of algorithms that
align with human reasoning.
Keywords: Vector space representations; Similarity; Concepts

Introduction
Similarity is one of the most fundamental theoretical con-
structs in cognitive science (Medin, Goldstone, & Gentner,
1993). judgments of similarity between objects or situations
play a role in theories of information processing in many
domains of cognition, including categorization and category
learning, decision-making, memory, and core functions of
perception such as object recognition and depth perception.
In addition to being a core computation in many cognitive
algorithms, similarity plays an important role in conceptual
structure, being central to our ability to learn and deploy the
semantic categories that underpin natural language, and the
relational principles that facilitate abstract reasoning (Block,
2016).

Despite its centrality and seeming simplicity, there are still
key gaps in our understanding of similarity. The computa-
tion of similarity is deeply related to the representational for-
mat in which concepts are expressed (Roads & Love, 2024;
Richie & Bhatia, 2021). Modern views of conceptual struc-
ture typically represent concepts using the notion of a geo-
metric space. Each concept is constructed as a point in a high
dimensional space, and similarity and difference can then
be expressed using a distance function between these points.
This modeling approach is popular because of its natural re-
lation to the high dimensional properties of lexical concepts

and their graded relationship to each other.
However, geometric representations of conceptual struc-

ture have some well-known difficulties. In particular, geo-
metric representations of conceptual structure are difficult to
reconcile with aspects of human similarity judgments that vi-
olate the principles of a metric. For example, one classic find-
ing in human judgments of similarity is deviation from sym-
metry (Tversky & Gati, 1982). That is, given two concepts
x and y, a participant may judge that “x is similar to y”, but
disagree that “y is similar to x”. This violates one of the three
assumptions of the mathematical structure underlying a met-
ric function – that of symmetry. Another difficulty relates to
the triangle inequality. The triangle inequality suggests that
given a triplet of concepts – x,y, and z, the perceived distance
from x to y added to the distance from y to z should be greater
than or equal to the perceived distance from z to x. However,
this property is routinely violated in human similarity judg-
ments - dogs are similar to wolves, and wolves are similar
to bears, but dogs are not similar to bears. (Tversky & Gati,
1978, 1982; Tversky, 1977).

In a series of classic experiments, (Tversky & Gati, 1982)
showed yet another seemingly paradoxical effect relating
judgments of similarity and dissimilarity. They found that
when participants were presented with a prominent pair
of countries to judge (e.g USA and Canada), and a non-
prominent pair (e.g Bulgaria and Albania), they often chose
the prominent pair as being both more similar than the
non-prominent pair and more dissimilar relative to the non-
prominent pair! Tversky and Gati explained this effect
through the suggestion that people weigh similar features
more in tasks involving similarity, and different features more
in tasks involving dissimilarity. A prominent pair of countries
is known to participants to share more common features than
the non-prominent pair, but is also known to participants to
have more features that are distinct.

Deviations from simple metric assumptions highlight the
need for models of similarity that can accommodate these
effects. Classic approaches relied primarily on a set-based
representation of concepts, with set-like properties attached
to any similarity function. For example, in the contrast
model (Tversky & Gati, 1982), similarity is a weighted sum
of the common and distinctive binary valued features be-
tween two concepts. Others, like the distance-density model
(Krumhansl, 1978) use the notion of density to loosen met-
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ric assumptions. Connecting these models with powerful
modern representations of conceptual structure (such as dis-
tributed vector representations) is an active area of research
(Griffiths, Steyvers, & Tenenbaum, 2007; Nematzadeh, Mey-
lan, & Griffiths, 2017; Jones, Gruenenfelder, & Recchia,
2018).

Recent advances in natural language processing offer new
ways to re-examine these longstanding questions, by inte-
grating distributed representations of semantics with auxil-
iary algorithms for the computation of similarity that go be-
yond simple metrics such as cosine distance. One example
of such an approach is a recent analysis by (Nematzadeh et
al., 2017)(see also (Nachshon, Cohen, Ben-Artzi, & Maril,
2022)). In this model, concepts are represented as high di-
mensional vector summaries. The similarity between two
concept vectors, vx,vy ∈ RD can be computed by first tak-
ing its dot product - vx.vy, which results in a value between
[−1,1], and then scaling down this value by the sum of all
other vector similarities between the source and other con-
cepts in a model’s repository. That is,

p(x|y) =
exp(vx.vy)

Σv j exp(v j.vx)
(1)

where p(x|y) is the conditional probability for a given pair
of words, seen as the probability of eliciting word x, given y
(See also (Jones et al., 2018) for a process model using Luce’s
choice algorithm on top of geometric models). However, this
approach does not immediately generate asymmetry in isola-
tion, since it relies on computations over not just a specific
pair of concepts, but a whole vocabulary of other possible
pairs too. While this is an important advance over previous
approaches, it is at odds with our capacity to flexibly make
judgments about pairs of concepts taken at one pair at a time.
In other words, this approach does not exploit the internal
structure of concepts when calculating similarity.

In this paper, we evaluate an approach to similarity that
makes use of concepts’ internal representational structure and
can be applied to modern semantic representations. In line
with classic theories of concepts (Rosch, 1978; Medin &
Schaffer, 1978) our approach identifies a concept by a statis-
tical distribution over features. However, unlike binary val-
ued features, we use high dimensional vector representations
of words and phrases relevant to a concept (e.g. “A dog has
a fluffy coat”, “A table has four legs”). These representa-
tions can be readily extracted from language models for ar-
bitrary concepts. While the semantic representations within
modern language model models may be opaque (e.g none
of their dimensions maps straightforwardly into human in-
terpretable features), they are internally coherent (Piantadosi
& Hill, 2022) and therefore suitable for similarity computa-
tions. Leveraging this internal coherence, we generate sets
of concept-specific descriptive phrases, and extract High Di-
mensional (HD) vector representations of these phrases, es-
sentially sampling from a HD subspace that is representative
of a concept. With such a representative subspace, we then

Figure 1: Computing Hausdorff distance : For each point
in the left circle, the shortest line is found, and the longest
of those is called the Hausdorff distance, dH (left,right) (In
green)

construct a distance function that acts over sets of vectors to
capture conceptual similarity. First, we show how the ap-
proach can produce some well known deviations from metric
assumptions. Then, we use this approach to predict similarity
judgments for a large set of broadly known concepts – world
countries. Finally, we evaluate the predictions of the model
through a behavioral experiment in which participants judged
the similarity and dissimilarity between pairs of countries.

Model
The Hausdorff metric, also called Pompeiu–Hausdorff dis-
tance, measures how far apart two sets are from each other.
For an intuitive explanation of how this is computed, con-
sider the distance between the USA and Spain. Both the US
and Spain are not single points in a 3D space, but consist of
large areas of land. Therefore, one convenient way to answer
the question of “distance between countries” is to first find the
distance from every city with an international airport in the
US, to its nearest destination airport in Spain. Next, we find
the maximum of these distances, and call that the distance
from the US to Spain. But we still don’t have the distance
from Spain to the US. We perform the same computations
- identify airports in Spain, and from every Spanish airport,
find the nearest American airport, and then take the maxi-
mum of that. Then, as shown in Eq. (2), we have two max-
imum distances - the maximum of this pair is the Hausdorff
distance. More formally, if we consider a two set of points
x ∈ X ,y ∈Y , the symmetric Hausdorff distance between them
is given by:

dH(X ,Y ) = max{maxx∈X d(x,Y ),maxy∈Y d(X ,y)} (2)

However, in this paper we will use a modified directional
version of the Hausdorff distance, given by eq. (3):

dH(X ,Y ) = maxx∈X d(x,Y ) = maxx∈X{miny∈Y d(x,y)} (3)

.
Where maxx∈X denotes the maximum over distances be-

tween points x ∈ X to all points in Y . Furthermore, the dis-
tance d(x,Y ) is given by d(x,Y ) = miny∈Y (d(x,y)). We use
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Figure 2: Asymmetry in the Hausdorff metric - dH(X ,Y ) >
dH(Y,X)

Minkowski distance to generalize d(x,y) to the setting of two
vector arguments v,u ∈ RD:

dminkowski(v,u) = (ΣD
i (|vi −ui|)ρ))

1
ρ (4)

Setting ρ = 1 recovers Manhattan distance, and ρ = 2 Eu-
clidean distance.

Deriving judgment Asymmetry
Figure 2 illustrates how asymmetry arises from the Hausdorff
metric in Eq. (3). For each of the points in the left circle,
compute the minimum distance to any point on the right cir-
cle; the resulting values vary depending upon where the ori-
gin point on the left circle was located. However, for points
in the smaller right circle, the nearest point in the left circle
does not vary substantially in distance from one origin point
to another. Therefore, since

maxpl∈Circlele f t{minpr∈Circleright d(pl , pr)}>
maxpr∈Circleright{minpl∈Circlele f t d(pr, pl)},

dH(le f t,right)> dH(right, le f t)

(5)

Put simply, under the Hausdorff metric the right circle is
farther from the left circle than the left is from the right. This
formulation is relevant to conceptual similarity because when
comparing two concepts (two sets of features), people are po-
tentially accounting for the shape of concepts (their extent in
a semantic space). The more skewed the distance between the
two sets, the more we observe the effect of direction on this
similarity computation. For example, consider a containment
relationship: a dog is an animal, but an animal need not be a
dog, because the span of features representing an animal con-
tains the span of features representing a dog. In this case, we
would find dH(dog,animal)> 0, but dH(animal,dog) = 0.

Recovering the Triangle Inequality
We approach the triangle inequality by drawing on recent re-
search from (Yearsley, Barque-Duran, Scerrati, Hampton, &
Pothos, 2017), which proposes a reformulation of this effect
using similarity terms instead of distance terms. The key in-
tuition, attributed to (Shepard, 1987), is that similarity is re-
lated by an inverse exponential relationship to psychological
distance, sim(x,y) ∝ exp(−D(x,y)). Yearsley et al. rewrite
the triangle inequality as:

D(x,y)+D(y,z)≥ D(x,z)

exp(−D(x,y)−D(y,z))≤ exp(−D(x,z))

exp(−D(x,y))∗ exp(−D(y,z))≤ exp(−D(x,z))

sim(x,y)∗ sim(y,z)≤ sim(x,z)

(6)

The motivation for this reformulation is that similarity is
not usually additive, and the multiplicative term sets a lower
bound on the inequality.

Recovering the similarity-dissimilarity
contradiction
We have described a metric in which d(X ,X) = 0. That is,
from any point x ∈ X , the smallest distance to any other point
in X is 0 since x ∈ X . However, consider a reformulation d̂H
in which we first find the maximum distance, and then the
minimum over distances between two sets:

d̂H(X ,Y ) = minx∈X{maxy∈Y d(x,y)} (7)

When X contains more than one element, we see that :

d̂H(X ,X) = minx∈X{maxxi∈X d(x,xi)}
= minx∈X{max(d(x,x1),d(x,x2),d(x,x3)..)}

(8)

Here, in the second term, since we have at least
one xi ̸= x, we also have a d(x,xi) > 0, therefore
{max(d(x,x1),d(x,x2),d(x,x3)..)} > 0. Substituting this
back into the equation, we find d̂H(X ,X) > 0. This formu-
lation provides a way to characterize the “overlap” between
sets, which the previous measure could not. In figure 3, we
see this property in action. Since Y is a subset of X , the orig-
inal metric would tell us that dH(Y,X) = 0 since Y is con-
tained in X . However, with the reformulation in 7, we find
d̂H(X ,Y )> 0, d̂H(Y,X)> 0. Consider d̂H(Y,X): we first find
the maximum distance from each point in Y to any point in
X : all of the maximum distances point from Y to the top left
corner. The minimum of these goes from the top left of Y
to the top left of X. Similarly, d̂H(X ,Y ) > 0. Therefore, it is
intuitive to associate “distances” with the regular Hausdorff
metric, and to associate a form of “overlap” with this refor-
mulated metric. Combining the two formulations will allow
us to recover the surprising relationship between similarity
and dissimilarity documented by (Tversky & Gati, 1978).

Methods
Behavioral Experiment
Participants We recruited 200 participants (2 excluded due
to platform error) on Prolific recruitment platform. Partici-
pants performed a simple similarity judgment task in which
they judged the similarity of multiple pairs of countries. Par-
ticipants were US-based and were paid 1$ for participation,
which took at most five minutes.
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Figure 3: Comparing dH and d̂H when Y is a subset of X

Procedure The experiment consisted of two blocks. In the
first block, on each trial participants were asked to rate how
similar a country X is to another country Y. On a previous in-
struction trial, they were told not to worry if they didn’t know
too much about a country, but instead to focus on how similar
the country X is to the country Y. Participants selected a posi-
tion on the slider, which recorded their response from 0-100,
with 100 being labelled “Identical”, and 0 being “No similar-
ity”. In the second block, participants were asked to rate how
different a country X is from another country Y, with ratings
from 0-100, where 100 was labelled “Completely different”,
and 0 labelled “Identical”.

Stimuli In each block of the experiment, participants rated
19 pairs of countries, chosen in random order, from a list of
334 pairs of countries. These 344 pairs had 167 unique com-
binations, with each combination appearing in two orders in
the stimuli set. Since collecting all permutations of 195 coun-
tries was prohibitive, we constructed this list so that pairs of
countries would include high and low similarities, and vary
in geographic location and other features. We chose coun-
tries because it was a convenient domain in which to sample
concepts that span well known to lesser known, and which
people were likely to have basic intuitions about.

Dataset & Data Processing In total, we collected 3762
similarity, and 3762 dissimilarity ratings. Each pair of coun-
tries received on average 11 ratings. Next, we normalised
the scores to make them comparable across participants, by
first z-scoring within participant, within condition (similar-
ity vs dissimilarity) data. This way, we obtained zscores for
similarities between pairs of countries for participants that
had rated those pairs, which was then averaged to obtain a
composite zscore rating per country pair. These scores were
then converted to probabilities by consulting the cumulative
ztable, giving us probabilities in the range [0,1] correspond-
ing to composite zscores. These constitute the data for our
subsequent analyses. Sample country pairs, and their similar-
ity and dissimilarity scores are shown in table .

Generating Model Predictions
To apply the Hausdorff metric over sets of features in a high
dimensional space, we first needed to construct the feature

Table 1: Sample similarities and dissimilarities

Country left Country right Similarity Dissimilarity
Poland China 0.067 0.959
USA Germany 0.238 0.731

Algeria Jordan 0.807 0.374

space. Therefore, we extracted feature descriptions for each
country from OpenAI’s ChatGPT 3.5 model using different
prompts. For example, “Give me 50 phrases describing Lux-
embourg’s culture, geography, and language. Be balanced, it
is okay to use both positive and negative language in your de-
scription.” Our motivation for using ChatGPT in this work is
purely instrumental - it gives us access to rich feature descrip-
tions without the processing steps needed to generate a simi-
lar description from traditional text sources like wikipedia.

For each prompt, we obtained 50 phrases for each coun-
try. We then used the BERT (Bidirectional Encoder Rep-
resentations from Transformers) model pretrained on the
BookCorpus, a dataset consisting of 11,038 books and En-
glish Wikipedia, to generate contextual embeddings for these
phrases. Each phrase or sentence was first tokenized using the
BERT tokenizer - a token usually corresponds to a meaning-
ful sub-word unit, and a sequence of tokens acts as the input
to the model. BERT then builds its internal state by pool-
ing together information from different parts of the sequence
of tokens, and generates a contextual embedding for each to-
ken. For example, the sentence “Luxembourg is a landlocked
country in Western Europe.” is tokenized as : [’[CLS]’, ’lux-
embourg’, ’is’, ’a’, ’land’, ’##lock’, ’##ed’, ’country’, ’in’,
’western’, ’europe’, ’.’, ’[SEP]’]”, where ’CLS’ and ’SEP’
are reserved tokens indicating start and end of sequence re-
spectively. The hidden state built by BERT is given by the
13x768 dimensional tensor, with 768 dimensions per token.
We took the mean over all tokens to obtain a 1x768 dimen-
sional vector for each phrase, and subsequently, a 50*768
dimensional matrix for all 50 phrases. This is denoted V ∈
RN×D, where D = 768, and N = 50.

For every pair of countries, we now have two such ma-
trices belonging to the country c1,c2, denoted Vc1 ,Vc2 . The
Hausdorff metric is then obtained by applying the distance
function over the two sets of feature vectors :

dH(Vc1 ,Vc2) = maxn1∈Nc1
(minn2∈Nc2

(d(vn1,c1 ,vn2,c2))),with

d(vn1,c1 ,vn2,c2) = (Σi(|vi
n1,c1

− vi
n2,c2

|2))
1
2

(9)
For further analyses, we converted these raw distances into

probabilities. To do this, we first converted distances into zs-
cores (z = (d −µ)/σ). Next, we converted zscores into prob-
abilities by taking the area of the unit normal curve less than
a given zscore (P(x < z)). These formed our distance mea-
sures from phrasal embeddings. Further, we constructed the
probabilistic model proposed by (Nematzadeh et al., 2017).
Under this model, we have a set of countries c ∈C, and D di-
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mensional vector representations of those countries vc ∈ RD.
Here, vc is simply the representation offered by BERT for
the input “India”, “China” etc. To recap, the metric here is a
probability value given by :

p(c1|c2) =
exp(vc1 .vc2)

Σc j exp(vc j .vc1)
(10)

Results
We first assessed whether the particular prompt and num-
ber of features influenced the result of the Hausdorff met-
ric. To test this, we used two different prompts eliciting
phrases listing (i) the country’s culture, geography, and lan-
guage (General) (ii) everything great about the country (Ev-
erything great). We found that the prompt eliciting general
overall descriptions led to better alignment (measured by the
spearman correlation coefficient) with human similarity and
dissimilarity data (4). In all figures, the gray dotted line shows
the competing probabilistic model from (Nematzadeh et al.,
2017)

To see the effect of varying number of features, we per-
formed 100 simulation runs in which we randomly sampled
subsets of features from the 50 phrases, varying the number
of features from 5 to 45. Figure 4 shows how set sized in-
fluenced correlation with human judgments – error bars show
standard error. Note that the directions of the correlations to
similarity have been reversed to make interpretation easier.

Figure 4: Number of features versus correlation to similarity
data.

Judgment Asymmetry
We compared our model’s predictions to the judgment asym-
metries evidenced in participant responses. As a reminder,
judgment asymmetries refer to the idea that e.g. people judge
the concept X to be more similar to concept Y than concept Y
is to concept X . For all 334 pairs of countries, we computed
the ratio of asymmetry among participant responses as:

σhuman =
sim(c1,c2)

sim(c2,c1)
(11)

We computed analogous ratios of asymmetry using our

model and the probabilistic baseline model as:

σdH =
dH(c2,c1)

dH(c1,c2)

σpr =
p(c1|c2)

p(c2|c1)

(12)

Figure 5 shows the correlation of asymmetry coefficients
in human judgments and asymmetry coefficients computed
using 12. Specifically, this plot shows a correlation of ratios.
Perfect positive correlation implies that the inverted ratio of
distances matches the ratio of similarities - a model using one
single vector for each country would always have an asym-
metry ratio=1, and as a result, cannot produce asymmetry.
These effects were largest for the prompt listing only positive
things about a country. As seen in 5, our model does sig-
nificantly better than the probabilistic model. Further, while
using the “general” prompt provides a better fit to human sim-
ilarity judgements overall, it performs worse than the “every-
thing great” when considering judgement asymmetry. We in-
tend to explore the reason for this sensitivity to prompting and
feature content in future work.

Figure 5: Correlation of asymmetry coefficients

Similarity-dissimilarity contradiction
We computed the average similarity and dissimilarity in par-
ticipant data for all pairs of countries using the mean partic-
ipant judgment of directional similarity and the mean partic-
ipant judgment of directional dissimilarity. Note the differ-
ence in interpretation - a score of 0.9 on similarity indicates a
high degree of similarity, while 0.9 on dissimilarity indicates
a highly distinct pair. Under conditions of complementarity,
similarity and dissimilarity ratings for a given pair of coun-
tries should sum to approximately 1. We calculated this sum
in our participant’s responses for specific country pairs. Fig-
ure 6 shows the distribution of these sums. Substantial devia-
tions from 1 indicate differences between similarity and dis-
similarity ratings within a pair. A value less than 1 indicates
that participants judge the pair to be both minimally similar
and minimally dissimilar. A value greater than 1 indicates
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Figure 6: The histogram of summed values of similarity and
dissimilarity

that participants judged the pair to be both highly similar and
highly dissimilar.

To assess whether our model can account for these effects,
we make use of dH and d̂H (Eq. 7). Following our reason-
ing above, the mean of d̂H measures average overlap, and the
mean of dH measures average distance. Therefore, we pro-
pose a push-pull relationship of the form : 1−dH + d̂H . The
interpretation here is - a high overlap and low distance gives
a prominent pair, while high distance and low overlap gives
a non-prominent pair. We then modelled a linear regression
considering this new composite variable, and found a posi-
tive relationship between our composite variable, and human
responses (Coefficient = 0.98, R2 = 0.965, p < 0.001).

Triangle inequality
Figure 7 shows a histogram of values from the multiplica-
tive triangle inequality. As described in the previous section,
when the condition sim(x,y).sim(y,z)− sim(x,z) ≤ 0 is met
for a triplet of concepts x, y, z, the triangle equality is vi-
olated. The triplets we analyzed are fully connected in the
experimental data (all pairwise similarity judgments are at-
tested among participant responses). We first obtained the
value of sim(x,y)∗ sim(y,z)− sim(x,z) for human responses,
and then obtained the model’s prediction of the same via co-
sine similarity (since we are operating over unit normal vec-
tors). We compared our model’s predictions to the predictions
from the probabilistic model and another basic word embed-
ding corresponding to the country eg. getting BERT’s em-
bedding for “India”. We find that our model performs better
than both the probabilistic and basic word embedding models
(ρdH = 0.446, ρprob = 0.433, ρbasic = 0.351).

Conclusion
Understanding how people judge similarity is a longstanding
research program in cognitive science with important impli-
cations for theories of cognition in many domains. Current
models have difficulty explaining violations of metric struc-
ture that have been evidenced in human judgments. We in-
troduced a set-based metric that can be applied to geomet-

Figure 7: The histogram of human and model predictions on
the triangle inequality - items to the left of the 0 line violate
the inequality

ric representational structures and compared its predictions
to human judgments of similarity among a set of everyday
concepts – world countries. Our application of the Hausdorff
metric can account for traditional failures of the metric ax-
ioms in geometric spaces, as shown by our application of this
approach to vector-based feature sets elicited from a large lan-
guage model. In future work, we would like to explore the
connections between the Hausdorff metric and classic mod-
els like the contrast model further. Additionally, the spe-
cific prompts used to elicit concept features have an impact
on model predictions, which we have not yet fully explored.
Understanding how prompt optimization can be leveraged to
improve alignment with human judgements is an exciting av-
enue for future research.

Acknowledgements
We thank Steve Piantadosi for his help in locating relevant
research articles, and anonymous reviewers for their helpful
suggestions.

References
Block, N. (2016). Semantics, conceptual role. In Routledge

Encyclopedia of Philosophy (1st ed.). London: Routledge.
Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007).

Topics in semantic representation. Psychological Review,
114(2), 211–244.

Jones, M. N., Gruenenfelder, T. M., & Recchia, G. (2018,
August). In defense of spatial models of semantic repre-
sentation. New Ideas in Psychology, 50, 54–60.

Krumhansl, C. L. (1978). Concerning the applicability of
geometric models to similarity data: The interrelationship
between similarity and spatial density. Psychological Re-
view.

Medin, D., Goldstone, R., & Gentner, D. (1993, April). Re-
spects for Similarity. Psychological Review, 100, 254–278.

Medin, D., & Schaffer, M. (1978). Context Theory of Clas-
sification Learning. Psychological Review, 207–238.

4238



Nachshon, Y., Cohen, H., Ben-Artzi, M., & Maril, A. (2022,
August). A Model of Similarity: Metric In a Patch
(preprint). PsyArXiv. doi: 10.31234/osf.io/fyd4q

Nematzadeh, A., Meylan, S. C., & Griffiths, T. L. (2017).
Evaluating Vector-Space Models of Word Representation,
or, The Unreasonable Effectiveness of Counting Words
Near Other Words. In CogSci.

Piantadosi, S. T., & Hill, F. (2022, August). Meaning without
reference in large language models. arXiv.

Richie, R., & Bhatia, S. (2021). Similarity Judgment
Within and Across Categories: A Comprehensive Model
Comparison. Cognitive Science, 45(8), e13030. ( eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cogs.13030)
doi: 10.1111/cogs.13030

Roads, B. D., & Love, B. C. (2024). Modeling Similarity
and Psychological Space. Annual Review of Psychology,
75(1).

Rosch, E. (1978). Principles of Categorization. In A. Collins
& E. E. Smith (Eds.), Readings in Cognitive Science, a Per-
spective From Psychology and Artificial Intelligence.

Shepard, R. N. (1987, September). Toward a Universal
Law of Generalization for Psychological Science. Science,
237(4820), 1317–1323.

Tversky, A. (1977, July). Features of similarity. Psy-
chological Review, 84(4), 327–352. doi: 10.1037/0033-
295X.84.4.327

Tversky, A., & Gati, I. (1978). Studies of Similarity. In
E. Rosch & B. Lloyd (Eds.), Cognition and Categoriza-
tion.

Tversky, A., & Gati, I. (1982). Similarity, Separability, and
the Triangle Inequality. Psychological Review, 89(2), 32.

Yearsley, J. M., Barque-Duran, A., Scerrati, E., Hampton,
J. A., & Pothos, E. M. (2017, November). The triangle
inequality constraint in similarity judgments. Progress in
Biophysics and Molecular Biology, 130, 26–32.

4239




