
Fast and Area-Efficient SRAM Word-Line
Optimization

Bin Wu
Computer Science and Engineering
University of California Santa Cruz

Santa Cruz, CA 95064
bwu8@ucsc.edu

James E. Stine
Electrical and Computer Engineering

Oklahoma State University
Stillwater, OK 74078

james.stine@okstate.edu

Matthew R. Guthaus
Computer Science and Engineering
University of California Santa Cruz

Santa Cruz, CA 95064
mrg@ucsc.edu

Abstract—A word line driver controls the access of cells in
a row in Static Random Access Memories (SRAMs) and has
a significant impact on SRAM speed and power consumption.
When gate delay is the dominant factor, simple models are a
good guideline for fast word lines. However, routing wire delay is
significant when the row size is large, which causes these designs
to be suboptimal. This paper presents an analytical optimization
technique using a delay model that includes gate delay, wire resis-
tance, and wire capacitance to optimize high-performance word
line driver topologies for SRAMs. The proposed methodology
has a maximum 45% delay improvement and 42% buffer cost
reduction.

I. INTRODUCTION

In modern SRAMs, a word line controls the access of cells
in a row and has a significant impact on SRAM speed and
power. This paper focuses on detailed optimization of word
line driver sizes and topologies in order to investigate the
optimal word line driver configuration for a given memory size
and technology. Such techniques can be included in memory
compilers for high-performance memory variants [1].

Nand Buffer
 

IN 

EN

Cell 1 Cell n

A row of n cells

Word Line Wire
for Global Routing

Row Select
 Wire

 

Inverter Buffer
 Input Inverter 

Fig. 1. Conventional memories use a single buffer topology in which the
word line wire delay increases quickly as the word line size increases.

A conventional word line driver using a single buffer
topology is shown in Figure 1. The driver has a decode input
(IN) and an enable (EN) to access a single row after decoding
is complete. The NAND gate is typically used with a timed
enable signal to ensure that the word line is enabled after the
bit lines are precharged and the address is decoded. The delay
of the word line has five parts: the input inverter delay, the
NAND buffer delay, the row select wire delay, the inverter
buffer gate delay, and the word line wire delay.

The power of the single buffer topology increases dramati-
cally for large row sizes. To address this, hierarchical divided
word lines (DWL) modify the word line topology so that
portions of the word line that are not accessed can be disabled
using a select to save power [2]. This is shown in Figure 2

where an additional sub-row select signal is used to logically
divide the word line.

Global 
Buffer

 
IN

 

EN

Cell 1 Cell n/m

Divided Word Line Wire
(Local Wire)

Row Select Wire 
(Global Wire)

A row of n cells is divided into m sub-rows. Each sub-row has n/m cells.

Local 
Buffer

 

Input Inverter

Selection 1

 Uniform Local 
Buffer & Sub-Row 

Uniform Local 
Buffer & Sub-Row 

Selection m

 

Selection 1

 

Row Select Wire 
(Global Wire)

Fig. 2. DWL saves power by disabling unused portions of a row.

It is well known that wire delays grow quadratically as the
length increases. A DWL approach, though created to save
power, can be used to improve the speed of long word lines
much like the repeater insertion in global interconnects [3],
[4]. In addition, the grouping of cells into sub-rows and the
size of the local buffers can be further exploited to improve
the performance of all memory paths simultaneously.

While bit line delay is significant, word line delay must also
be optimized in a well-balanced SRAM design. Large memory
array designs are often split into multiple sub-arrays in both
the bit line direction [5]–[8] and the word line direction [2],
[9]–[13] for overall delay reduction. Interconnect delay has
a large impact on the delay of the word-line while the bit-
line delay is predominantly due to the weak bit cell drive and
large capacitance. The impact of word line interconnect delay
becomes more significant as technology scales down, since
word lines are often longer than bit lines. Our simulations
show that word line delay can be a significant contributor to
delay in high-speed SRAMs.

This paper proposes both uniform and non-uniform divided
word lines for SRAM performance improvement. Specifically,
our proposed optimization uses analytical models that include
both gate and wire delays to improve the speed while consid-
ering power. Results are verified with SPICE simulation.

In summary, this paper presents:
• The first use of uniform divided word lines for speed

improvement as opposed to power savings.
• The first non-uniform divided word lines with higher

accuracy gate and interconnect delay models.



• Comparisons of the previous approaches with conven-
tional single driver word line SRAMs.

The rest of this paper is organized as follows: Section II
explains the overview of the new idea, Section III explains
a simple uniform DWL optimization, Section IV explains
our non-uniform DWL optimization methodology details, Sec-
tion V summarizes the experimental setup, and Section VI
analyzes the results and makes conclusions.

II. OVERVIEW

The single buffer word line topology speed is sensitive
to the row size due to long word line wires. A long word
line has resistance that, when combined with the large fanout
capacitance of the row, causes delay comparable to gate delays.
The word line wire fanout has high capacitance compared to a
simple wire since it connects all the 6T cells and thus creates
a critical path sensitive to the array width.

The capacitance attached to the word line per 6T cell
consists of two parts: the input capacitance of two access
transistors and the capacitance of a wire that is the width
of the cell. The input gate capacitance is much higher than
the wire capacitance in this scenario. Hence, the word line
capacitance per 6T cell is much higher than that of a simple
wire. Due to the adjacent connection of the cells, the signal
has to go through this slow word line wire, which is as wide
as the array, to reach the farthest bit cell. This causes the total
row delay to grow quadratically as word line size increases.

Traditional repeater insertion [3], [4] is a bad option for
reducing the single buffer topology delay. While repeater
buffers can reduce the quadratic growth of a wire delay, it
is not intended for high-fanout connections like the 6T cells
in an SRAM row. In particular, the connection of all cells
would still be sequential and the critical path is still exposed
to the same total amount of capacitance.

The DWL approach, as shown in Figure 2, can be used
to improve speed of an SRAM in addition to, or instead of,
saving power. First, the DWL topology solves the sequential
connection issue by changing the critical path from a single
word line to the slowest word line of several smaller divided
sub-rows. The divided word lines, denoted as the local wires,
are shorter and faster and thus reduce the overall delay.
Second, the DWL topology solves the high capacitance issue
by using the row select wire, denoted as the global wire, for
global routing. The global wire, which connects the global
buffer and local buffers, only sees the input capacitance of
local buffers and thus shields much of the capacitance and is
much faster than the local wires and the word line wire in the
single buffer topology.

In the DWL topology, delay imbalance between sub-rows
ultimately limits the speed as the size of a row increases.
Hence, not only the number of sub-rows, but also the size of
the sub-rows and the size of local buffers need to be optimized.
Specifically, using non-uniform, tapered sizes for both sub-row
and local buffer sizes can compensate for the delay difference
between the left-most and right-most sub-rows.

III. FAST DELAY OPTIMIZATION FOR UNIFORM DIVIDED
WORD LINES

Logical effort sizing of buffers is a simple and fast approach
to optimize a uniform DWL topology. To find the best solution
in our uniform DWL approach, we enumerate the number of
sub rows from a single sub row until the word line delay
begins to increase. In each iteration, we use logical effort to
simultaneously size the buffers in each branch of the uniform
DWL. Increasing the number of sub rows reduces the overall
delay, because it reduces the local word line delay. On the
other hand, it simultaneously increases the row select wire
delay which is included in each sub-row delay. Eventually, the
select wire delay becomes the critical path and enumeration
is stopped.

The main drawback of such a fast method is that the logical
effort model only includes the interconnect capacitance and
ignores resistive shielding of the word line interconnect. Such
an effect exists and is included in our SPICE simulation for
final results and verification of the uniform DWL. Hence,
a simple sizing approach tends to use more buffers than
necessary. Our non-uniform DWL optimization (presented
next) uses more accurate interconnect models by using a π-
model [14] and computing the effective capacitance of the
reduced π-model uses a fast lookup table using SPICE pre-
characterization [15].

IV. NON-UNIFORM DIVIDED WORD LINES

The proposed non-uniform DWL, shown in Figure 3, has
global and local wires that can span a row layout similar to
the uniform DWL topology. The global wire uses a high metal
layer, thus can route over local buffers and 6T cells without
design rule violations. The local wire is the existing 6T cell
word line wires which are connected by bit cell adjacency.

Both the local array size and the local buffer placement
affect the global wire delay. The local buffer size has a minor
effect compared to the bit cells and is not included in our
model. In addition, the width of a local buffer is much smaller
than the sub-row size when the word line size is large so we
do not account for this effect on wire length.

Two approaches are used to improve the speed of the DWL
topology. First and simplest, the local buffers are inverters
rather than NAND gates. Second, sub-rows and local buffers
are non-uniform and can compensate for the delay imbalance
from the monotonically increasing global wire delay in sub-
rows that are farther from the global NAND gate driver.

A. Row and Sub-Row Nomenclature

An SRAM row has a number n of cells in the row and
a number m of sub-rows. Thus, there is one input inverter,
one global NAND gate, m local buffers in each row. In
Figure 3, the left-most sub-row is the first one and the right-
most sub-row is the m-th. The input inverter is minimum size
to lower the load on the decoder while the global NAND size is
sgbuf . The sizes of the sub-rows and local buffers are denoted
respectively as a 1 ×m matrix A and 1 ×m matrix S, where



Global NAND Gate 
Size sgbuf

 

IN

 

EN

Cell 1 Cell ai

The i-th Sub-
Row of ai Cells

Local Wire

Global Wire

Input Inverter
Minimum Size

 

Local Buffer Size si 

Non-Uniform
Local Buffer & 

Sub-Row

Global 
Wire

 

 

Non-Uniform
Local Buffer & 

Sub-Row

Fig. 3. The proposed topology optimizes global buffer size sgbuf , the number
of local buffers m, sizes si of each local buffer and the number of cells ai
in each sub-row.

the i-th sub-row size and the i-th local buffer size are denoted
as ai and si, respectively.

The delay of all the sub-rows is a 1 ×m matrix D where
the i-th element di is the delay from the input buffer to the
farthest bit cell in that sub-row. The row buffer critical path
depends on the slowest sub-row, so the delay of the row as a
whole is the largest element in matrix D,

fdelay(sgbuf , S,A) = max(di(sgbuf , S,A)), 1 ≤ i ≤ m. (1)

where each di and hence fdelay are a function of the row
parameters, sgbuf , S, and A.

B. Delay Optimization

This paper optimizes delay while ignoring area overhead
since the area difference between different buffer topologies
is insignificant compared to the 6T array itself. However, the
power-delay product or other metrics could easily be applied if
users desire. The proposed design uses a nonlinear program-
ming formulation due to multiple inputs and the nonlinear
delay models. We use the Python SciPy library “optimize”
function as our nonlinear optimizer.

1) Overall Optimization Structure: Figure 4 is the overall
optimization flow. The delay optimization of a row cannot
be solved by the nonlinear programming library function
directly because number of sub rows must be an integer
number. Hence, the delay optimization is split into several sub-
problems where the number of sub-rows m is fixed to solve a
larger integer nonlinear programming optimization. The tool
iterates over the number of sub-rows m, examines each sub-
problem, and finds the optimized result by comparing sub-
problem results.

2) Non-Linear Sub-Problem: Each sub-problem is a nonlin-
ear programming problem with an initial input and an objective
function to find the optimized solution. The SciPy “optimize”
function uses a sequential least squares programming (SLSQP)
algorithm, estimates the gradient numerically with the default
finite-difference setup. Several initial row solutions are gen-
erated with different strategies to prevent local minima in
fdelay(sgbuf , S,A).

With a fixed number of sub-rows, the optimization sub-
problem defines the constraints and boundaries of the inputs

Optimization of A Row 
Delay (Given Row SIZE)

Sub-Problem: Row Setup 
Delay Optimization (m fixed)

Sequential Least Squares Programming(SQSLP) 
from scipy.optimize()

Objective Function Constructed Using Proposed 
Fast Delay Model of Gate and Wire

HSPICE 
Verification

User 
Defined 
Initial 

Solution 
Strategies

Iterate the 
Sub-Row 

Number m

 Optimized Row Setup 

Optimized Setup Parameters
Sgbuf, S, and A (for all m)

Optimized Setup Parameters
Sgbuf, S, and A (for given m)

Iterate Inital 
Setup Solutions 

Inital Setup 
Solutions

Row Setup Parameters
Sgbuf, S, and A

Optimization Criterion 
(Delay)

Fig. 4. The problem is break into several optimization sub-problems that
can be formalized as Equation (2) and solved by a SciPy library function.
A fast objective function that models delay of gates and wires is crucial for
optimization.

and is based on Equation (1) and Section IV-A as

min fdelay(sgbuf , S,A)∑m
i=1 ai = n

1 ≤ ai ≤ n−m+ 1, 1 ≤ i ≤ m

1 ≤ sgbuf

1 ≤ si, 1 ≤ i ≤ m.

(2)

Each sub-row size ai has an upper limit of n−m+ 1, where
the other m− 1 sub-rows have one cell to keep the total cell
number as n. The global buffer size sgbuf and local buffer
size si have to be positive numbers bigger than one due to the
minimum size of buffers.

3) Objective Function: The nonlinear programming solver
calls the objective function to calculate the row delay, so
it needs to be fast and relatively accurate. While SPICE
simulation would be accurate, it is too slow. Hence, SPICE
is only used for final verification and fast/accurate analytical
delay models are used for the delays instead.

All interconnect delays use the Elmore delay model. Both
global and local wires are modeled as a distributed RC model
with each segment represented as a π-model. The 6T cell
access transistor gates are a added as a single capacitor.

The gate delay models use lookup tables to calculate the
output voltage delay/slew of a gate based on its size, gate
type, input voltage slew, and output node effective capacitance.
The input voltage slew is from the driving gate delay/slew
calculation. The gate’s output net is reduced to a single π-
model [14], so that the effective capacitance of the reduced
π-model can used by the gate lookup table [15].

V. EXPERIMENTAL SETUP

We use the FreePDK45 design rules [16] and lo-
cal/intermediate interconnect model parameters from the Pre-
dictive Technology Model [17]. A 6T cell has a width of
0.7um and so the word line wire resistance across the cell
is 1.0269Ω and the wire capacitance is 0.0987fF , assuming



a 0.075µm wire width and 0.01µm wire spacing. The P to N
ratio is 2 and unit transistor gate capacitance is 0.119fF .

The optimized baseline is a single buffer topology sized
using logical effort. Two optimized DWL topologies are ana-
lyzed: a uniform DWL topology sized using logical effort [18]
and a non-uniform DWL topology sized with our nonlinear
programming approach. Both DWL topologies use the lowest
delay solution by iterating over the number of sub-rows m
from 1 to 10. We considered word lines from 256 to 2048 bits
with a 256 bit step size.

VI. SIMULATION RESULTS WITH A 45NM TECHNOLOGY

Figure 5(a) shows the final delays of each design strategy
from SPICE simulation. Our non-uniform DWL design has the
smallest delay among all design strategies. Creating multiple
sub-rows is not needed when the row size is small, but is
essential for high-speed performance when the row size is
bigger than 512 bits. After 512 bits, the single buffer topology
delay increases at much faster rate than the DWL topologies.
The delays of all topologies can be a few hundred picoseconds,
and are thus significant for fast SRAM designs.

Figure 5(b) shows the delay improvement of all design
strategies compared to the optimized baseline. Both DWL
topologies show a steady increasing delay improvement as the
row size increases. The non-uniform is slightly lower delay
overall and at 2048 bits they are 45.35% lower delay and
42.79% lower delay than the baseline.

The non-uniform DWL shows slightly more delay (6ps)
when the word line size is 512 bits. This is due to mismatch
between SPICE simulations and our analytical models. The
mismatch leads to slightly sub-optimal row setups and caused
a delay increase only within a narrow intermediate row size
range when all delay components are very similar.

Figure 6 shows the area consumed by the row buffers for
the different design strategies. The buffer area is approximated
by the total transistor width of the buffers normalized to a
minimum width transistor. The uniform DWL topology uses
the same buffer size for the local buffer of each branch. The
non-uniform DWL topology uses the optimized row setup
from our methodology.

As mentioned in Section III, the baseline design and the
uniform DWL topology tend over-size buffers since they
exclude the shielding effect. The non-uniform DWL topology
has fewer buffers except at the row size of 512 bits which
is the same minor model mismatch as previously discussed.
Overall, Figure 6 shows an increasing area savings compared
to the baseline. The maximum is 42.84% when the row size
is 2048 bits.

VII. CONCLUSION

In summary, the non-uniform DWL has the fastest speed of
all approaches. An optimized uniform DWL topology can sig-
nificantly reduce delay compared to a single buffer topology,
but it does so with extra area compared to the non-uniform
DWL approach. An optimized non-uniform DWL topology
further reduces this delay and also saves buffer area. For large

(a) Delay Comparison

(b) Delay Reduction Compared to The Baseline

Fig. 5. The non-uniform DWL achieves the fastest speed compared to the
rest by using a non-uniform DWL topology.

(%
)

Fig. 6. When the row size is large enough, non-uniform DWL can save
significant buffer area.

row sizes, the difference in delay between the uniform DWL
and non-uniform DWL approaches becomes less significant,
but the area savings is significant in these situations.

The word line driver delay is significant for high-speed
SRAMs. To address the slow single buffer delay, this paper
proposed using both a fast uniform DWL topology and a fast,
area-efficient non-uniform DWL topology. The non-uniform
DWL topology uses an accurate analytical word line model
that considers both gate and interconnect delays and can be
used in a non-linear programming approach to enhance the
performance of SRAMs word lines in memory compilers [1].



REFERENCES

[1] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,
“OpenRAM: An open-source memory compiler,” ICCAD, pp. 1–6, 2016.

[2] M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara, H. Takagi,
S. Nagao, S. Kayano, and T. Nakano, “A divided word-line structure
in the static RAM and its application to a 64K full CMOS RAM,”
JSSC, vol. SC-18, no. 5, pp. 479–485, 1983.

[3] S. Dhar and M. A. Franklin, “Optimum buffer circuits for driving long
uniform lines,” JSSC, pp. 32–40, 1991.

[4] V. Adler and E. G. Friedman, “Repeater design to reduce delay and
power in resistive interconnect,” TCAS II, vol. 45, no. 5, pp. 607–616,
May 1998.

[5] R. Taylor and M. Johnson, “A 1-Mbit CMOS dynamic RAM with a
divided bitline matrix architecture,” JSSC, vol. SC-20, pp. 894–902,
1985.

[6] H.-B. Kang and H.-W. K. et.al, “A hierarchy bitline boost scheme for
sub-1.5 V operation and short precharge time on high density FeRAM,”
ISSCC, vol. 1, pp. 158–159, 2002.

[7] X. Zheng and M. Liu, “A 512 kb SRAM in 65nm CMOS with divided
bitline and novel two-stage sensing technique,” DDECS, pp. 191–192,
2012.

[8] N. K. Saini and A. Gupta, “Low power circuit techniques for optimizing
power in high speed SRAMs,” ICACCI, pp. 2399–2404, 2016.

[9] T. Hirose, “A 20 ns 4-Mb CMOS SRAM with hierarchical word
decoding architecture,” JSSC, vol. 25, no. 5, pp. 1068–1073, 1990.

[10] T. Chen, D. Lauderback, and G. Sunada, “Optimization of the number
of levels of hierarchy in large scale hierarchy memory systems,” ISCAS,
vol. 5, pp. 2104–2107, 1992.

[11] A. J. Bhavnagarwala, S. Kosonocky, and J. D. Meindlt, “Interconnect-
centric array architectures for minimum SRAM access time,” ICCD, pp.
400–405, 2001.

[12] B. Rooseleer, S. Cosemans, and W. Dehaene, “A 65 nm, 850 MHz, 256
kbit, 4.3 pJ/access, ultra low leakage power memory using dynamic cell
stability and a dual swing data link,” JSSC, vol. 47, pp. 1784–1796,
2012.

[13] B. Rooseleer and W. Dehaene, “A 40 nm, 454 MHz 114 fJ/bit area-
efficient SRAM memory with integrated charge pump,” ESSCIRC, pp.
201–204, 2013.

[14] P. O’Brien and T. Savarino, “Modeling the driving-point characteristic of
resistive interconnect for accurate delay estimation,” ICCAD, pp. 512–
515, 1989.

[15] R. Macys and S. McCormick., “A new algorithm for computing the
effective capacitance in deep sub-micron circuits,” CICC, pp. 313–316,
1998.

[16] “Freepdk45,” https://www.eda.ncsu.edu/wiki/FreePDK45:Contents.
[17] “Predictive technology model,” http://ptm.asu.edu/.
[18] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast

CMOS Circuits., 1999.


