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ARTICLE OPEN

Developing a resiliency model for survival without major
morbidity in preterm infants
Martina A. Steurer 1,2,5✉, Kelli K. Ryckman 3,5, Rebecca J. Baer4, Jean Costello2,4, Scott P. Oltman2,4, Charles E. McCulloch2,4,
Laura L. Jelliffe-Pawlowski2,4 and Elizabeth E. Rogers1,4

© The Author(s) 2022

OBJECTIVE: Develop and validate a resiliency score to predict survival and survival without neonatal morbidity in preterm neonates
<32 weeks of gestation using machine learning.
STUDY DESIGN: Models using maternal, perinatal, and neonatal variables were developed using LASSO method in a population
based Californian administrative dataset. Outcomes were survival and survival without severe neonatal morbidity. Discrimination
was assessed in the derivation and an external dataset from a tertiary care center.
RESULTS: Discrimination in the internal validation dataset was excellent with a c-statistic of 0.895 (95% CI 0.882–0.908) for survival
and 0.867 (95% CI 0.857–0.877) for survival without severe neonatal morbidity, respectively. Discrimination remained high in the
external validation dataset (c-statistic 0.817, CI 0.741–0.893 and 0.804, CI 0.770–0.837, respectively).
CONCLUSION: Our successfully predicts survival and survival without major morbidity in preterm babies born at <32 weeks. This
score can be used to adjust for multiple variables across administrative datasets.

Journal of Perinatology (2023) 43:452–457; https://doi.org/10.1038/s41372-022-01521-3

INTRODUCTION
In infants born preterm, gestational age (GA) is the best indicator
of maturity and is a strong driver of survival and other health and
neurodevelopmental outcomes [1]. Several other predictors
influence outcomes in this vulnerable patient population. In their
landmark paper, Tyson and colleagues showed that consideration
of birth weight, sex, antenatal steroid administration, and multiple
gestation improved prediction of survival of extremely low
gestational age infants [2]. Several prediction models have
subsequently been developed to predict mortality and morbidity
in very preterm neonates including a variety of maternal,
antenatal, and postnatal candidate predictors with variable
predictive performance [3, 4].
Risk assessment and outcome prediction in extremely preterm

neonates is important for multiple reasons. Understanding an
infant’s range of potential outcomes can inform counseling and
medical decision making, both antenatally when making shared
decisions around the provision of intensive care at delivery as well
as postnatally if complications develop [5]. Another important goal
of prediction models includes their use in benchmarking and
comparing performance across centers to guide continuous
quality improvement in care practices [6]. Finally, prediction
models can help ensure that both care practices and outcomes are
observed to be equitable in order to reduce the impact of
discrimination and structural racism [7].
It has been shown that race/ethnicity as well as certain

sociodemographic factors are associated with a variety of long-

term outcomes in very preterm neonates [8, 9]. Some of the
previously described prediction models include race/ethnicity
and/or sociodemographic factors [4]. This approach, however,
assumes that the models are performing equally across all racial,
ethnic, and sociodemographic groups, which should not be
assumed. It may also limit our ability to adequately address risk
and resiliency specifically in communities most in need.
Interestingly, all currently existing survival and major morbidity

prediction models for infants born preterm have defined their
prediction around “risk factors.” Such an approach may encourage
a focus by care providers on deficits rather than on strengths that
may foster better outcomes. Resilience can be conceptualized as a
positive adaptation to an experienced adversity. This concept may
deepen our understanding of the variation in outcomes after the
adverse experience of preterm birth [10–12]. Focusing on
resilience rather than risk in predictive modeling may shift our
framework from identifying deficits to promotive factors [10]. This
frameshift has also been prioritized by families experiencing
preterm birth.
The goal of this study was to develop a prediction model for

survival without major morbidity in preterm infants born at
<32 weeks using a resiliency frame. Machine learning was used to
build a resiliency score with a focus on maternal, perinatal, and
neonatal factors known at the time of birth. The model was
externally validated. Performance was assessed across race/ethnic
and sociodemographic subgroups to ensure validity across diverse
populations.
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METHODS
Our primary dataset was drawn from all California live born infants
between 2011 and 2017. Birth and death certificates (up to 12 months of
age) from California Vital Statistics were linked to the database maintained
by the California Office of Statewide Health Planning and Development
(OSHPD). This dataset was randomly divided into a training dataset (2/3 of
the data) and an internal validation dataset (1/3 of the data). We also
externally validated the model using a retrospective cohort derived from
the Iowa Perinatal Health Research Collaborative (IPHRC) database.
The primary OSHPD dataset included detailed information on maternal

and infant characteristics from hospital discharge records from one year
prior to birth to one year of age. The data included diagnosis and
procedure codes based on the International Classification of Diseases, 9th
and 10th Revision, clinical modification (ICD-CM). GA was determined by
best obstetric estimate from ultrasound and/or last menstrual period. This
dataset has been used in multiple studies examining birth and neonatal
outcomes [13–17]. All linked singleton liveborn infants with GA < 32 weeks
without major congenital or chromosomal anomalies were included in this
study (ICD-9 and 10 codes used to define major congenital or
chromosomal anomalies are listed in Supplemental Table 1).
The primary outcome was survival to 1 year of age (determined by death

certificate or death as the hospital discharge status). The secondary
outcome was a composite of survival without any major neonatal
morbidity. Major neonatal morbidity was determined from ICD-9 and
ICD-10 CM codes. These included bronchopulmonary dysplasia (BPD, ICD-9
770.7, ICD-10 P27.1), necrotizing enterocolitis (NEC, ICD-9 777.5, ICD-10
P77), intraventricular hemorrhage > grade II (IVH, ICD-9 772.13 and 772.14,
ICD-10 P52.2), periventricular leukomalacia (PVL, ICD-9 779.7, ICD-10 P91.2),
and retinopathy of prematurity (ROP) > stage 2. To define ROP > stage 2 we
used diagnostic or procedure codes (ICD-9 362.25-7 or 14.2, 14.5, 14.7 14.9,
ICD-10 H35.14-6 or any procedure code for surgery on retina or choroid
plexus).
The data was randomly divided into a training and validation dataset as

described above. The model was developed using the training sample
only. Maternal, perinatal, and neonatal covariates that have been
significantly associated with neonatal outcomes in prior studies were
considered for inclusion in the model (Supplemental Table 2).
We fit a logistic regression model to the outcomes. Due to the large number

of potential covariates, the model was built using the least absolute shrinkage
and selection operator (LASSO). The LASSO is a logistic regression method that
is able to accommodate large numbers of predictors in a statistically principled
way to reduce model complexity and avoid over-fitting the prediction model.
It involves penalizing the absolute size of the regression coefficients with the
consequence that regression coefficients are reduced in absolute size and
variables that do not strongly predict the outcome have the coefficients set to
zero, eliminating them from the model. Cross-validation (within the training
data) was used to select the optimal weighting parameter (lambda) and thus
the final model. The resiliency score for a specific observation consists of the
sum of all the beta coefficients based on the state of the observed covariates.
In order to convert the resiliency score to a survival probability, the constant of
the model is added to the score and the following formula can be used:
survival probability = e(constant + resiliency score)/(1+ e(constant + resiliency score)).
Discrimination was assessed in the internal and external validation

samples by calculating c-statistics and receiver operator characteristic
curves (ROCs) for the resiliency score and both of our outcomes.
Calibration was assessed in the primary dataset by dividing the validation
sample into deciles based on the resiliency score values and comparing
predicted and observed survival and survival without major morbidity
rates for each decile of the validation sample.
For each subject we calculated the predicted outcome probabilities

based on the model. We then stratified the sample by gestational age and
found the smallest and the largest observed predicted outcome
probability in this group. We then stratified the sample by race/ethnicity,
insurance status, and maternal education to assess the resiliency score
performance in different race/ethnic and sociodemographic groups. For
that purpose, we calculated the observed outcome probability and the
predicted outcome probability for each subgroup. The predicted outcome
probability was calculated by finding the mean value of all predicted
outcome probabilities in the respective subgroup.
We also performed external validation in a retrospective cohort derived

from the Iowa Perinatal Health Research Collaborative (IPHRC) database, a
resource composed of linked maternal and newborn electronic health
record (EHR) data for deliveries occurring at a single tertiary care unit. EHR
data within this database were provided by the Institute for Clinical and
Translational Science (ICTS) Bioinformatics Core at the University of Iowa.

The validation dataset included 1347 deliveries at <32 weeks gestation
born between January 1, 2012 and December 31, 2019. We excluded 261
deliveries that were missing either the maternal or delivery medical record,
4 newborns transferred out of the facility during the first day of life, 13 fetal
demises, 294 twin or higher order multiples, 13 infants born to mothers
already included in the dataset with a previous pregnancy, and 86
newborns with a major congenital anomaly as defined in Supplemental
Table 3.
The primary and secondary outcomes were defined in the same manner

as in the derivation dataset. Maternal, perinatal, and neonatal character-
istics were defined by ICD9 and ICD10 codes as outlined above
(Supplemental Table 2) examining infant codes up to 365 days after birth
and maternal codes between 280 days before delivery through 42 days
after delivery. Maternal body mass index (BMI) was derived either directly
from a reported BMI in the EMR or by calculating BMI using weight and
height, using the earliest recorded BMI or height and weight during the
antenatal period. Mode of delivery was recorded directly from the medical
record. Resiliency scores for survival and survival without major morbidity
were calculated for the Iowa population using the coefficients from the
model developed in the California dataset and AUCs were calculated to
assess discrimination in the validation dataset.
All analyses were performed by using STATA version 16.1 (Stata

Statistical Software: Release 16. College Station, TX: StataCorp LP). The
use of the OSHPD database was approved by the Committee for the
Protection of Human Subjects within the California Health and Human
Services Agency, the use of the Iowa dataset was approved for a waiver of
consent by the University of Iowa Institutional Review Board (IRB number:
202007280).
We utilized California’s Office of Statewide Health Planning and

Development database (OSHPD). The data use agreement with the OSHPD
prohibits distribution of any patient-level data; thus, the data used for this
study are not made publicly available. Data can be requested from OSHPD
(https://www.oshpd.ca.gov/HID/HIRC/index.html) by qualified researchers
for a fee. Similarly, the data use agreement of the Iowa clinical database
does not allow to share patient level data. All other analytic methods and
study materials are available upon reasonable request from the
corresponding author.

RESULTS
We identified 21,483 preterm infants born alive <32 weeks of
gestation in California from 2011–2017. Mortality in the entire
dataset was 13.5% (2896/21483), 18.1% survived with neonatal
morbidity (3884/21483) and 68.4% survived without morbidity
(14,703/21,483). The training dataset consists of 14,322 infants and
the validation dataset of 7161 infants, respectively. Maternal,
perinatal, and neonatal characteristics for the training dataset are
shown in Table 1.
After applying the LASSO method for survival, the cross

validated lambda was 0.00075. Supplemental Fig. 1a shows the
cross-validation plot. Out of the 30 covariates, 29 were retained
in the model: …maternal age, maternal BMI, sex, gestational age
and z-score for BW, vaginal delivery, absence of preeclampsia,
hypertension, diabetes, smoking, drug abuse, infection, abrup-
tion, uterine rupture or PPROM, oligohydramnios, or polyhy-
dramnios. The only factor not included in the model is “no
preterm labor.” Similarly, after applying the LASSO method for
survival without severe morbidity, the cross validated lambda
was 0.00032. Supplemental Fig. 1b shows the cross-validation
plot. All 30 covariates were retained in the final model. Table 2
shows the beta coefficient for each covariate or covariate level
from the LASSO model for survival and survival without severe
morbidity. Covariate categories with a listed value of 0 are the
reference category. Covariates or covariate categories with a
negative beta coefficient reduce the resiliency score and are
negatively associated with the specified outcomes, while
covariates or covariate categories with a positive beta coefficient
are positively associated with survival or survival without severe
morbidity.
Discrimination of the model in the internal validation dataset

was excellent with a c-statistic of 0.895 (95% CI 0.882–0.908) for

M.A. Steurer et al.

453

Journal of Perinatology (2023) 43:452 – 457

https://www.oshpd.ca.gov/HID/HIRC/index.html


survival and 0.867 (95% CI 0.857–0.877) for survival without severe
neonatal morbidity, respectively (Supplemental Fig. 2). Calibration
of both models was also excellent with very similar observed and
predicted rates for both outcomes (Supplemental Table 4).
The strong predictive value of GA can be seen in the wide range

of values for the beta coefficients for GA categories: for survival,
the beta coefficient is −0.968 for GA of 22 weeks and +0.608 for
GA of 31 weeks, and for survival without major neonatal
morbidity, the beta coefficient for GA of 22 weeks is −0.773
while it is +1.0 for GA of 31 weeks. However, the other covariates
also contribute significantly to the model. Supplemental Table 5
and Fig. 1 show the relative importance of all the other covariates
by presenting the smallest and largest outcome range based on
the model stratified by each week of GA.
Supplemental Table 6 shows the observed and expected

outcome probabilities for racial and ethnic groups as well as for
groups defined by different sociodemographic factors. The
observed and expected outcome probabilities closely approxi-
mate each other for each of these subgroups.
With regards to external validation, the baseline characteristics

of the Iowa dataset are presented in Table 3. Mortality in this
dataset was 5.6% (38/676); 46.9% (317/676) survived with
neonatal morbidity and 47.5% (321/676) survived without
morbidity. However, the proportion of survived with neonatal
morbidity dropped to 4.3% (29/676) when BPD was excluded
from the neonatal morbidity definition. Discrimination of the
model in the external validation dataset remained excellent with
a c-statistic of 0.817 (95% CI 0.741-0.893) for survival and 0.804
(95% CI 0.770-0.837) for survival without severe neonatal
morbidity, respectively. Calibration in the external validation
dataset is shown in Table 4 for the morbidity definition including
and excluding BPD.

Table 1. Characteristics of the derivation dataset (n= 14,322).

Survived
(n= 12398)

Died (n= 1924)

Maternal covariates

Maternal age, median
(IQR)

30 (25–35) 29 (24–34)

Preeclampsia, n (%) 3064(24.7%) 201(10.5%)

Hypertension, n (%) 720 (5.8%) 111 (5.8%)

Diabetes, n (%) 2266 (18.3%) 224 (11.6%)

BMI, median (IQR) 26.2 (22.4–31.2) 26.6 (22.6–31.9)

Smoking, n (%) 739 (6.0%) 135 (7.0%)

Drug abuse, n (%) 780(6.3%) 129 (6.7%)

Infection during
pregnancy, n (%)

2886 (23.3%) 389 (20.2%)

Perinatal covariates

Placental abruption,
n (%)

1975(15.9%) 350 (18.2%)

Uterine rupture, n (%) 37 (0.3%) 3 (0.2%)

PROM, n (%) 3784 (30.5%) 670 (34.8%)

Preterm labor, n (%) 6268 (50.6%) 994 (51.7%)

C-section, n (%) 8077(65.2%) 879 (45.7%)

Oligohydramnios, n (%) 671(5.4%) 110 (5.7%)

Polyhydramnios, n (%) 120 (1.0%) 50 (2.6%)

Neonatal factors

Female sex, n (%) 5760 (46.5%) 835 (43.4%)

GA, median (IQR) 29 (27–31) 24 (22–25)

Z-score for BW,
median (IQR)

0.17 (−0.42 to 0.73) 0 (−0.62 to 0.56)

BMI body mass index, PROM premature rupture of membranes, GA
gestational age, BW birth weight, IQR interquartile range.

Table 2. Prediction model for survival neonates < 32 weeks
gestational age in training dataset (n= 14,322).

Survival Survival without
significant morbidity

Beta
coefficient

Beta coefficient

Constant 2.801 1.106

Maternal covariates

Maternal age, years

≤18 −0.067 −0.020

>18 to <35 0 0.027

≥35 0.001 0

No preeclampsia −0.188 −0.118

No hypertension −0.0507 0.005

No diabetes −0.062 0.053

BMI

Underweight (<18.5) −0.040 −0.030

Normal weight
(18.5–24.9)

0 −0.029

Overweight (25–30) 0.027 0.011

Obese (>30) −0.005 0

No smoking 0.005 0.041

No drug abuse 0.044 0.030

No infection −0.021 −0.027

Perinatal covariates

No abruption 0.061 0.012

No uterine rupture 0.011 −0.005

No PROM −0.035 −0.069

No preterm labor NA −0.046

Vaginal delivery −0.036 0.039

No Oligohydramnios 0.029 0.021

No Polyhydramnios 0.248 0.165

Neonatal factors

Male sex −0.130 −0.097

GA

22 −0.968 −0.773

23 −0.704 −0.608

24 −0.530 −0.452

25 −0.328 −0.29

26 −0.218 −0.179

27 0 0

28 0.10 0.199

29 0.220 0.416

30 0.411 0.691

31 0.608 1.0

Z-score for BW

<−1 −0.419 −0.355

−1 to < 0 −0.187 −0.156

0 to 1 0.0 0.0

>1 0.069 1.166

BMI body mass index, PROM premature rupture of membranes, GA
gestational age, BW birth weight.
Calculation of resiliency score: add all beta coefficient based on the specific
covariates for the baby (for example for 30weeks GA add 0.411, for no
PROM subtract −0.035).
Calculation of predicted survival: use the following formula to convert the
resiliency score to predicted survival e(constant + resiliency score)/(1+ e(constant +
resiliency score)). The constant is displayed at the top of the table. For example,
if the resiliency score is −0.5, then the predicted survival = e(2.801-0.5)/
(1+ e(2.801-0.5))=90.9%.
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DISCUSSION
Using maternal, perinatal, and neonatal predictors readily avail-
able in most administrative databases at the time of birth, we built

a model based on resiliency score with excellent discrimination
and calibration to predict survival and survival without neonatal
morbidity in neonates <32 weeks of gestational age. This
prediction model performed well in an external validation cohort.
While gestational age had the strongest influence on the resiliency
score, the other included predictors increased the predictive
ability of the model. The resiliency score performed well in all
race/ethnic and sociodemographic subgroups.
A wide variety of predictive models for survival and survival

without severe morbidity after preterm birth have been devel-
oped [2–4, 18]. Some of these models are parsimonious and
others incorporate a wide variety of predictors. Like previous
models, the main driver for successful prediction in our model is
GA at birth, as can be clearly seen by the variability of the beta
coefficients. Importantly, despite GA being the strongest predictor
of survival and survival without severe morbidity, other factors
contribute and should not be ignored. In our prediction model, we
show how outcome predictions vary widely for the same GA
based on other predictors, validating the importance of these
factors. For example, a neonate born at 23 weeks with the highest
resiliency score, or most favorable covariates, had a predicted
survival chance of 66.7%, while the neonate born at the same GA
with the lowest resiliency score, or least favorable covariates, had
a predicted chance of survival of 0.5%.
Our model adds to the existing literature on neonatal

outcome prediction in a few novel ways. First, we used
machine learning, more specifically the LASSO method, to
develop our model. The main benefit of the LASSO method
compared to traditional logistic regression is the ability of the
LASSO method to select relevant variables. It is superior to
forward or backward selection often used in logistic regression
and avoids overfitting by shrinking the coefficients [19].
Second, the main advantage of this score is that it incorporates
many variables that are available in the different administrative
datasets available. This score can be used to adjust for several
important maternal and neonatal factors and may make
comparison between databases more streamlined.
The focus of our model on resilience or promotive factors, rather

than risks or maladaptive factors, is a frameshift from previous
algorithms focused on risk. Preterm birth has increasingly been
understood to be an adverse event biologically for the infant, after

Fig. 1 The boxplots for observed predicted probability for survival and survival without morbidity by gestational age.

Table 3. Characteristics of the external validation dataset (n= 676).

Survived
(n= 638)

Died
(n= 38)

Maternal covariates

Maternal age, median (IQR) 28.9 (24.7
to 33.1)

30.3 (25.8
to 34.3)

Preeclampsia, n (%) 183 (28.7) <5

Hypertension, n (%) 143 (22.4) 6 (15.8)

Diabetes, n (%) 86 (13.5) 6 (15.8)

BMI, median (IQR)a 29.2 (25.2
to 34.8)

32.0 (25.7
to 37.1)

Smoking, n (%) 104 (16.3) 5 (13.2)

Drug abuse, n (%) 45 (7.1) <5

Infection during pregnancy,
n (%)

120 (18.8) <5

Perinatal covariates

Placental abruption, n (%) 107 (16.8) 6 (15.8)

Uterine rupture, n (%) <5 <5

PPROM, n (%) 240 (37.6) 20 (52.6)

Preterm labor, n (%) 399 (62.5) 27 (71.1)

C-section, n (%) 401 (62.9) 16 (42.1)

Oligohydramnios, n (%) 52 (8.2) <5

Polyhydramnios, n (%) 9 (1.4) <5

Neonatal factors

Female sex, n (%) 295 (46.2) 17 (44.7)

GA, median (IQR) 28 (26 to 30) 24 (22 to 26)

Z-score for BW, median (IQR) 0.13 (−0.49
to 0.64)

0.14 (−0.49
to 0.59)

amissing BMI for 44 mothers.
BMI body mass index, PROM premature rupture of membranes, GA
gestational age, BW birth weight.
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which both adaptive and maladaptive processes can occur to render
an infant resilient or at risk [10, 12] There have been previous studies
focused specifically on resiliency of preterm infants, but these have
focused on longer term outcomes at transition to home or in early
school age, rather than in the immediate neonatal hospitalization
[11, 20]. Additionally, caregivers of preterm infants have increasingly
called for the use of strength-based frameworks, such as the use of
hope and resilience, both for antenatal counseling and in under-
standing long term prognosis of their infants [21]. For our model to fit
the needs of caregivers and bedside clinicians as critical stakeholders
in the outcomes, we chose this specific frameshift from risk to
resilience. We would like to acknowledge though that resiliency is just
the opposite of risk, and survival is just the opposite of mortality. If we
were to develop a traditional risk score, the results with regards to
discrimination and calibration would have been the same.
We intentionally did not include race/ethnicity or socioeco-

nomic risk factors in our model. There is increasing recognition
that inclusion of race and ethnicity into prediction algorithms
might lead to bias and can exacerbate health care disparities [22].
For example, the calculator for successful vaginal birth after
cesarean section (VBAC) included race/ethnicity. A Hispanic or
Black woman with the same medical characteristics as a white
woman had a much lower predicted success rate for VBAC [23]. In
this example, if providers are influenced by concerns over
perceived risk, they may be less likely to offer a trial of labor to
women with low VBAC scores, and the race-based correction in
the VBAC calculator may exacerbate racial disparities [23]. It is
important to recognize that race and ethnicity reflect social
constructs rather than a biological truth wherein biological
definitions of race have been challenged by findings of greater
genetic variation within rather than between groups based on
skin color [24]. Several recent studies highlight the importance of
minimizing racial bias in prediction models [25, 26]. Similarly,
socioeconomic factors have been shown to be associated with
poor clinical outcomes [27]. However, this association is often
mediated through medical risk factors and predictors as well as
structural discrimination; as such, we elected to not include those
into the model. We present model performance in different race/
ethnic and socioeconomic groups and found that it performed
well across groups. This is an important finding and will allow this
scoring to be used across subpopulations thereby minimizing
biased approaches to care in different race/ethnic and socio-
economic groups.
A significant strength of this study is the use of an external

validation dataset. While our internal validation avoided over-
fitting of the model, the external validation shows that this model

can discriminate well in other populations. The calibration in the
Iowa dataset identified interesting issues. BPD has historically
been a complicated morbidity to capture accurately in adminis-
trative datasets based on differing definitions. The BPD ICD9 and
10 codes are used significantly more often in the Iowa dataset
compared to California due to local definitions of BPD, leading to
different rates of neonatal morbidity in the two cohorts. This led to
overestimation of survival without neonatal morbidity in the
calibration table. After excluding BPD from the morbidity
definition, the neonatal morbidity is extremely low in the Iowa
cohort at just 4.3%, and therefore, the model underestimates the
survival without major morbidity. The truth is somewhere in
between as some of the infants in this cohort will have long-term
pulmonary morbidity. This example shows the importance of
understanding local context and the potential need to recalibrate
the model if it is used across different populations or with variable
definitions of important outcomes.
As the above paragraph illustrates, one of the main

weaknesses of this study is that it relies on ICD9 and ICD10
codes, which can lead to misclassification. BPD has historically
been a complicated morbidity to capture accurately in
administrative datasets. Coders with limited medical knowl-
edge often determine that diagnosis leading to an over-
estimation in certain datasets. For example, BPD is often used
as a diagnosis for any infant with respiratory distress and
prolonged respiratory support. Additionally, the score can only
be used in datasets with the available variables which might
reduce its potential for broad application.
Our model using resiliency score is shown here to success-

fully predict survival and survival without major morbidity in
preterm babies born at <32 weeks. In addition, it can be used
across different epidemiological settings and race/ethnic and
sociodemographic subpopulations. A resiliency score can be
used and be helpful in clinical settings and in antenatal and
postnatal counseling with a focus on protection rather
than risk.

DATA AVAILABILITY
The data use agreement with the OSHPD prohibits distribution of any patient-level
data; thus, the data used for this study are not made publicly available. Data can be
requested from OSHPD (https://www.oshpd.ca.gov/HID/HIRC/index.html) by qualified
researchers for a fee. Similarly, the data use agreement of the Iowa clinical database
does not allow to share patient level data. All other analytic methods and study
materials are available upon reasonable request from the corresponding author.

Table 4. Calibration in the external validation sample for survival and survival without major morbidity including and excluding BPD (in deciles).

Survival Survival without major morbidity
(including BPD)

Survival without major morbidity
(excluding BPD)

n Observed (%) Predicted (%) Observed (%) Predicted (%) Observed (%) Predicted (%)

68 72.1 86.6 5.9 61.5 69.1 61.5

69 91.3 90.4 5.9 68.6 91.2 68.6

66 93.9 92.1 17.9 72.7 76.1 72.7

68 92.7 93.2 30.9 76.9 94.1 76.9

67 98.5 94.2 58.0 80.3 95.7 80.3

68 100.0 94.8 62.1 83.2 93.9 83.2

68 100.0 95.3 73.5 85.9 92.7 85.9

67 98.5 95.9 73.1 88.1 95.5 88.1

69 98.6 96.4 76.8 89.7 94.2 89.7

66 98.5 97.0 71.2 93.5 98.5 93.5

BPD bronchopulmonary dysplasia.
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