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Abstract

Understanding how humans learn by themselves is crucial to
develop interventions to prevent dropout and improve learner
engagement. Classical learning curves were proposed to fit
and describe experimental data involving enforced learning.
However in real-world learning contexts such as MOOCs and
hobbies, learners may quit - and often do. Even in formal
settings such as college, success typically requires intensive
self-study outside lectures. Previous research in educational
psychology supports a positive reciprocal relationship between
motivation and achievement. Integrating insights from learn-
ing curves, forgetting curves and motivation-achievement cy-
cles, we propose a formal Reciprocal-Practice-Success (RPS)
model of learning ‘in the wild’. First, we describe the different
components of the basic RPS model. Using simulations, we
then show how long term learning outcomes critically depend
on the shape of the learning curve. Concave curves lead to
more consistent learning outcomes whereas S-shaped curves
lead to either expertise or dropout. We also provide a dynam-
ical systems version for the RPS model which shows similar
qualitative behaviour. Through a bifurcation analysis of two
controllable learning parameters - minimum practice rate and
success sensitivity, we show which learner-specific interven-
tions may be effective to preventing dropout. We also discuss
theorized mechanisms which affect the inflection point of S-
shaped learning curves such as task-complexity and relative
feedback from failures vs. successes. These provide more
task-specific interventions to lower quitting rates. Finally, we
discuss possible extensions to the basic RPS model which will
allow capturing spacing effects and insights from other moti-
vation theories.
Keywords: Self-Regulated Learning, Motivation-
Achievement Cycles, Learning Curves

Introduction
Reciprocal relationships involve two variables which are mu-
tually causes and effects of each other. In learning processes
such reciprocal processes may reinforce either positive or
negative outcomes. The literature on this type of develop-
mental processes is extensive and diverse. Examples include
studies of the Matthew effect (Perc, 2014), academic moti-
vation (Guay et al., 2010; Schunk, 1991; Marsh and Craven,
2006), drop-out (De Witte et al., 2013), and, on the positive
side, expertise learning (Anders Ericsson and Towne, 2010).
An important reciprocal relationship is between practice and
success or performance (Vu et al., 2022, van Bergen et al.,
2021). When practice and success reinforce each other, it may
lead to positive reinforcing cycles as learners become highly
engaged, practice more and achieve higher skill. However
there is also a danger of learners performing poorly and losing
interest, leading to even less practice and in extreme cases,

dropout. Indeed, in the increasingly popular Massive Open
Online Courses (MOOCs), combating high dropout rates are
one the biggest challenges (Hone and El Said, 2016; Goopio
and Cheung, 2021).

In studying the dynamics of practice and success there is an
important difference between free and forced practice. Our
proposed model is applicable in free practice scenarios such
as taking up learning chess, guitar or running as a hobby,
where practice needs to be regulated by the learners them-
selves. In contrast, forced practice include scenarios such as
learning math in school or ceramic pottery lessons forced by
your partner. These are scenarios where the learner has no
choice (or rather, choices with severe consequences) but to
practice.

We build upon work on learning curves for forced practice
which have been extensively studied in mathematical psy-
chology. However, free practice is very different from the
experimental conditions of traditional learning experiments.
Participants in such experiments could drop out, but normally
their data were excluded. As an example, Thurstone (1919) in
his seminal paper on the learning curve eliminated 20 out of
81 participants in his sample because of irregular attendance.

The Reciprocal-Practice-Success Model
Framework

Our central idea is that learning a skill, operationalized as
improvement in some metric of performance, can only occur
through practice which in turn is (partially) dependent upon
current skill. How often an agent practices is related to the
psychological construct of motivation. In our model motiva-
tion is not an observable but it impacts learning by chang-
ing the frequency of practice, which can be measured. A
higher practice rate means that learners practice more often
or, equivalently, less time is spent between practice sessions.
When learners aren’t practicing, their skills decay due to for-
getting. Practice sessions are modelled to be points in time
when learning takes place. Crucially, we claim that the prac-
tice rate is influenced by the skill of the learner in a positive
reciprocal relationship. (Vu et al., 2022; Marsh and Craven,
2006; van Bergen et al., 2021). So while learning the guitar,
the better you are, the more often you will practice all else re-
maining equal. Depending on the task, there are always other
factors which influence the practice rate. For instance, even
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if you are a good guitarist you may stop practicing when you
no longer notice improvements. Such details could also be
incorporated into the RPS model, although the basic model
doesn’t consider them.

A Simple Formalization - The Basic RPS Model
We now describe one possible way to formalize the ideas of
RPS framework into a minimal model. Depending on the
specific context we are modelling - be it running, learning
the guitar or a second language - the details of the model
will change. Certain forced-practice scenarios can also be
incorporated within the RPS framework. However, our aim
is to have a minimal model incorporating the ideas presented
above. Figure 1 shows a block diagram of the model along
with a possible learning trajectory. We briefly describe each
component of the model.

(a) Model Schematic

(b) Sample Learning Trajectory

Figure 1: Learner skill S (0≤ S ≤ 1) jumps at practice-events.
Waiting-times between practice events are assumed to fol-
low an exponential distribution with practice rate λ = a+bS,
which is an increasing linear function of skill S in the basic
model. a > 0 is the minimum practice rate while b > 0 is the
success-sensitivity of a learner. Between practice events an
exponential decay of skill occurs, representing forgetting.

1. Measuring Success (or Skill): The state of a learner is
presumed to be captured by the skill S which is an increas-

ing function of how ‘good’ the learner is. This may be ELO
ratings in chess or average 1 km running speed in case of
running. In the model we assume 0 ≤ S ≤ 1 and interpret
it as the probability of success on the task.

2. Forgetting: As time passes continuously, the learner’s
skill decays exponentially with a forgetting rate β (Ander-
son and Tweney, 1997; Averell and Heathcote, 2011), ex-
cept at practice events. So without practice, the dynamics
of skill is given by:

dS
dt

=−βS (1)

Here we do not consider lowered forgetting rates with
subsequent practice or spacing effects (Hintzman, 1974;
Pavlik Jr and Anderson, 2005a).

3. Practice Events: At practice events, the learner practices
and their skill S increases according to the update rule
Snew = Sold +∆S. The impact of practice is captured by
the change in skill ∆S at a practice event. We take it to be
a function of the skill S just before the practice event, so
that:

∆S = f (S) (2)

Different functional forms of f (S) give us different shapes
of the learning curve. If f (S) decreases with increasing
skill S, a concave learning curve is obtained where practice
gives diminishing returns - the higher your skill, the less
it improves from practicing once. If f (S) first increases
to a maximum and then decreases, we have an S-shaped
learning curve.

4. Waiting Times: The waiting-time ∆t between two con-
secutive practice-events are assumed to be an exponential
distribution with rate λ, so that ∆t ∼ Exp(λ). The expected
waiting time is then E[∆t] = 1

λ
. A higher practice rate indi-

cates shorter waiting times and thus less forgetting of skill
S before the next practice-event increases S again.

Exponential waiting times are arise naturally as the dis-
tance between two consecutive events in a Poisson pro-
cesses and are used to model phenomenon - from time
spent in a queue to distance between mutations in DNA.
Barabasi (2005) showed through simulations that waiting
times for a task are heavy tailed when agents decide to
perform the highest-priority task from a set of to-do tasks.
Exponential waiting times result when users pick a random
task to complete, regardless of priority.

5. Reciprocity: The reciprocal relationship between practice
and success is captured by assuming a simple linear depen-
dence of practice rate upon skill for the basic RPS model:

λ(S) = a+bS = g(S) (3)

In Equation 3, a is the minimum practice rate and b the
sensitivity to success. When b = 0, practice occurs with a
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fixed rate independent of success rate. This can be used to
model forced-practice scenarios, such as attending school
or doing a fixed number of trials in a learning task in a
behavioural experiment.

The Shape of Learning

Figure 2: Learning curves without forgetting (left) and the
corresponding impact function (right)

The effect of practice on success has been studied exten-
sively since the start of psychology as a scientific discipline
(Ebbinghaus, 1885; Thurstone, 1919). Illustrative of the ini-
tial interest in this issue is Gulliksen’s (1934) insightful re-
view of mathematical equations for the learning curve in the
context of forced practice. There are two main forms of the
learning curve reported in the literature 2 (left). The first form
is concave, characterized by deceleration of success with in-
creasing practice. The second form is S-shaped characterized
by first an acceleration and then a deceleration. Note that
these equations have been developed mainly to fit data from
experiments where the practice periods are not under the par-
ticipant’s control. This is also why learning curves are some-
times described as success as a function of practice trials S(P)
and not time S(t). When practice trials are evenly spaced in
time (say every 10 seconds), P also counts time t . The crucial
point we make is that in free-practice scenarios, time between
consecutive practice sessions are not evenly spaced. We thus
describe the forced-practice learning curves as functions of
time S(t).

In our notation, f (S) = ∆S is the marginal increase in skill
from the next practice trial. In other words, f (S) captures the
impact of practice 2 (right). In our basic model this is taken
to be the rate of learning (the time derivative) in continuous-
time learning curves S(t):

f (S) =
dS
dt

(4)

Concave Learning Curve When f (S) is a decreasing func-
tion of S, we have a concave learning curve. In such a sce-
nario, impact of practice is highest when the learner knows
nothing and gets progressively lower as learning progresses 2.
Many possible functional forms exist but two popular choices
are the (negative) exponential and power laws (Estes, 1950;
Newell and Rosenbloom, 2013; Rescorla, 1972). We will use

the exponential learning curve where the rate of learning dS
dt

is proportional to how much skill can yet be improved:

dS
dt

= α(Smax −S)

Here α is the learning rate 1 which we assume is a constant
throughout the learning process for a given individual on a
given task. Also in our model, Smax = 1. So the above equa-
tion translates into the following marginal impact of practice:

∆Scon = fcon(S) = α(1−S) (5)

Sigmoid Learning Curve: The learning curve with a S-
shaped form starts slow, then accelerates and finally decel-
erates, as is typical in logistic growth. A number of empirical
examples of such curves are depicted in Culler and Girden,
1951. This form is often called S-shaped. S-shape functions
are consistent with theories that divide the learning process in
phases of acceleration and then a deceleration; for instance,
into algorithmic and retrieval based (Logan, 1988; Rickard,
2004).

If f (S) first increases and then decreases with increasing S,
we have a scenario where rate of learning dS

dt is initially slow
but accelerates, reaching a maximum before slowing down
again as the maximum limit of skill Smax is reached. A pop-
ular example is logistic growth, where the rate of learning is
a product of how much is learned and how much is yet to be
learned so that dS

dt = αS(Smax −S). As before, α is the learn-
ing rate which is assumed to be constant for an individual on
a given task. We use this as the marginal impact of practice
for the sigmoidal case:

∆Ssig = fsig(S) = αS(1−S) (6)

A point to note is that the inflection-point in logistic-
growth, where the marginal impact of practice ∆Ssig is max-
imum, occurs at Sin f =

1
2 which is the midpoint between the

minimum (Smin = 0) and maximum (Smax = 1) skill values.
Indeed, two proposed mechanisms through which sigmoid
learning curves may arise allow for inflection points to be lo-
cated at points other than 0.5 (Leibowitz et al., 2010; Murre,
2014). Richard’s curves (Richards, 1959) provide another
general family of sigmoid curves where the inflection point
can be anywhere between 1/e ≈ 0.37 and 1. S-shaped curves
with low inflection points are more similar to concave curves
as the slowly-growing initial phase is over soon. The expo-
nential learning curve can be thought of as having S = 0 as its
inflection point where impact of practice is highest.

Learning Mechanisms Shape the Curve
Here we present three mechanisms which can lead to differ-
ently shaped learning curves. One straightforward way indi-
vidual S-shaped curves may remain undetected is by averag-
ing across participants to get a mean learning curve (Gallistel
et al., 2004). Higher inflection points which visually look

1Not to be confused with the rate of learning dS
dt
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more S-shaped also depends on how exactly performance is
measured. Murre (2014) showed that when trials are scored
as 1 (correct) or 0 (incorrect), increasing task complexity -
the number of subtasks one needs to correctly perform on
one trial - leads to more of an S-shape, even when learn-
ing on the subtasks increase concavely. For example, while
learning a new language the test questions (trials) to mea-
sure success may be either to translate words or entire sen-
tences of 4-5 words. If a point is only awarded if the whole
word/sentence is correctly translated, we will see more of an
S-shaped learning while translating sentences. Finally, Lei-
bowitz et al. (2010) showed how feedback plays an important
role - if both failures and successes provide the same amount
of information a concave shape is seen, while if failures pro-
vide no or very low information we get an S-shaped learning
curve.

Fate of Free-Learners - A Simulation Study
We examined how identical learners under the Reciprocal-
Practice-Success model formalization stated earlier would
fare. Specifically we were interested in how f (S) affects
long-term skill S and practice rate λ. We simulated N = 1000
agents over a time period of tmax = 100 units of time. Each
agent starts with a skill of S0 = 0.1 and practice rate λ0 = 1.
The minimum practice rate, sensitivity and forgetting rates
are fixed at a = 0.2,b = 5 and β = 0.2 respectively.

Simulation Results
Concave Learning Curve For a concave learning curve,
we used Equation 5 with concave learning rate αcon = 0.2.
The learning trajectories of 50 random agents are given in
Figure 3 (a), along with the histogram of final skills at time
t = 100. All the learners eventually hover around mean skill
value (around S = 0.8 in the figure). Learners improve their
skill in large jumps early on in the learning process. This is
due to ∆Scon being larger the lower the skill is. Forgetting oc-
curs with rate β but is not enough to take away all gains from
practice. As skill improves, the benefits due to practice de-
crease and eventually a kind of equilibrium is obtained where
learners forget between sessions as much as they gain from
one practice-event. Importantly no learners have dropped-
out.

Sigmoid Learnerning Curve In contrast, for a sigmoidal
learning curve, we used impact of practice fsig(S) from Equa-
tion 6 with learning rate αsig = 0.4. The results are given in
Figure 3 (b). Now two extreme outcomes are possible - learn-
ers either get into a positive feedback loop of more success
from a higher skill S leading to a higher practice rate λ or a
negative cycle of low skill S leading to a decreasing practice
rate until they dropout. This occurs due to the reciprocity built
into the RPS model (Equation 3). The final fate of learners is
shown in the histogram in Figure 3 (b). Around 20% of the
learners have dropped out and stopped practicing, forgetting
everything (skill S ≈ 0). The rest have gone into a positive
feedback loop and their skill hovers around a high skill value.

(a) Concave Learning Curve

(b) Sigmoid Learning Curve

Figure 3: Sumarry of Simulation

Intuition
To understand what is going on, it is helpful look again at
Figure 2 (right) which plots the impact due to practice in con-
cave fcon and sigmoid fsig learning curves. For a sigmoidal
learning curve, the impact of practice is very low at low skill
levels and forgetting overwhelms any gains from practice.
Peak practice impact is at the inflection point of Sin f = 0.5,
after which learning slows down again. In our simulation
the ‘lucky’ learners manage to practice enough early in the
learning trajectory to get their skill over the hill at Sin f = 0.5.
Thereafter it is uncommon to drop out despite continuous de-
cay of skill. The practice rate is high enough that learners do
not forget enough to go below the inflection point. On the
other hand the ‘unlucky’ learners in our model simply do not
practice enough in the beginning and forgetting keeps lower-
ing their skill, reducing the practice rate further. Learners are
stuck below the hill at Sin f = 0.5 and never recover, eventu-
ally ‘quitting’. We see a kind of Matthew effect, where the
tiny initial gap between the learners in positive and negative
feedback loops diverge as time goes on. Depending on the
initial learning trajectory learners reach one of the two ‘sta-
ble states’.

Dynamical Approximation of the RPS Model
We can form a dynamical approximation of the RPS model
which shows similar qualitative behaviour. This allows us to
analytically understand the role of control parameters. De-
pending on the learning context what can be controlled may
vary. In this section we take minimum practice rate (a) and
sensitivity to success (b) as control parameters - knobs we can
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turn up or down to intervene in a learning context. To get the
dynamical model, we ask what the rate of change of skill S(t)
is. Consider the time interval (t, t +∆t]. The practice rate is
λ(S) = a+ bS, so on average there are λ∆t practice events.
We assume that each of these practice events have an impact
f (S), which is the impact function. At the same time, for-
getting occurs with rate βS. Combining these two effects, the
change in skill ∆S in the time interval (t, t +∆t] is:

∆S = (λ(S)∆t) f (S)− (βS)∆t

=⇒ ∆S
∆t

= λ(S) f (S)−βS

In the limit as ∆t → 0, this becomes the derivative dS
dt . So

the dynamics of skill S is given by:

dS
dt

= λ(S) f (S)−βS (7)

For a concave learning curve, where impact is fcon(S) =
α(1−S) and Equation 7 gives the following differential equa-
tion:

dS
dt

= (−bα)S2 +((b−a)α−β)S+aα

For a sigmoid learning curve the impact function is
fsig(S) = αS(1−S) and after some algebra we have:

dS
dt

= (−bα)S3 +(b−a)αS2 +(aα−β)S

What happens to skill in the long run in the dynamical ap-
proximation of the RPS model is qualitatively captured by the
location of the stable fixed points of skill S. S0 is called a fixed
point if the derivative is zero at the point, dS

dt |S=S0 = 0. This
means that in absence of perturbations a learner who starts off
at skill S0 will remain there forever. A fixed point S0 is stable
if S(t) returns back to S0 when perturbed slightly like a ball
placed at the bottom of a valley rolls back to the bottom on
being slightly nudged. In contrast, an unstable fixed point S0
is like placing the ball at the top of a hill. On being slightly
disturbed, S(t) will tend to move away from the unstable fixed
point. In the real world noise is always present - learners con-
stantly face successes and failures, bursts in motivation along
with periods of feeling less competent. This means that only
the stable fixed points are feasible.

Bifurcation Diagrams
Concave Curve Figure 4 shows the fixed points as a func-
tion of minimum practice rate a and sensitivity to success b.
There is always one stable fixed point Seq given by the blue
line, which increases on increasing both a and b. All learn-
ers eventually reach a skill of Seq. Increasing a or b only
increases this equilibrium skill value but otherwise qualita-
tively nothing changes. Intuitively, as we force the learner
to practice more often (increasing a), they will end up with
a higher asymptotic skill. Increasing b which measures how
sensitive their practice rate is to skill also does the same thing
qualitatively.

(a) α = 0.2,β = 0.4,b = 2

(b) α = 0.2,β = 0.4,a = 0.5

Figure 4: Bifurcation diagrams of minimum practice a and
success sensitivity b in Concave Case

Sigmoid Curve: A more interesting behaviour is seen in
the sigmoidal case (Figure 5). Now S = 0 is the only stable
fixed point as as long β > (a+b)2α

4b . In this region, quitting is
the only possible outcome and skill eventually decays to 0.
S = 0 is stable when β > aα and unstable otherwise.

As minimum practice a is increased from a low starting
value, a new pair fixed-points appear at a = a1, but quitting
remains a stable outcome, if participants start off with low
skill. On further increasing minimum practice a, zero even-
tually becomes unstable at a = a2 =

β

α
. Now only one stable

fixed point remains which is positive. Thus when a > a2, all
learners eventually reach a high skill and quitting never hap-
pens. Between a1 and a2 two stable states are possible - one
at S = 0 and another at a high skill S > 0. Hysteresis is seen
in this region. When a1 ≤ a ≤ a2, learners starting off below
the unstable fixed point (red curve in Figure 5 (a)) eventually
quit while those starting off above the red line reach exper-
tise. The bifurcation diagram of a informs us about possi-
ble interventions to prevent quitting. If a learner has quit, a
possible intervention is to increase a ≥ a2. Now S = 0 loses
stability and the learner’s skill will increase to the high stable
point (blue curve in Figure 5 (a)). This gets the learner into
a positive feedback loop of practice and success and a can
be reduced again (though not below a1) and the learner will
maintain their high skill. When a < a1, again the high stable
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(a) α = 0.5,β = 0.3,b = 2

(b) α = 0.5,β = 0.3,a = 0.5

Figure 5: Bifurcation diagrams of minimum practice a and
success sensitivity b in Sigmoid Case

point disappears and all learners eventually quit.
The control parameter b (sensitivity to success) has no ef-

fect on stability of 0. So if a learner has already quit increas-
ing b is not a feasible intervention to get them into a positive
practice-success feedback cycle. However if b is too low, 0
remains the only stable point and quitting occurs.

Interventions
The basic RPS simulations and bifurcation analysis of the
dynamical model inform us about what interventions would
work to prevent quitting and nudge learners towards exper-
tise. We describe both task and learner specific interventions
which follow from our work below.

1. Tasks should be structured so that the forced-practice learn-
ing curves are concave or otherwise have low inflection
points. This may be done through providing adequate feed-
back on failures (Leibowitz et al., 2010) or breaking down
complicated tasks (Murre, 2014). These are task-specific
interventions, but may be non-trivial to carry out in reality.
Unlike in our simulations, learners in the real-world are not
identical with the same starting skills, learning and forget-
ting rates. The shape of learning curves really depends on
the interaction between the task at hand and present state
of the learner.

2. The minimum practice rate a can be increased through

changing the environment (placing books in sight if one
wants to read more), connecting socially with other learn-
ers or even forced-practice interventions (Franken et al.,
2023; Hone and El Said, 2016). To maintain expertise, suc-
cess should be motivating. In our basic model this trans-
lates into requiring success sensitivity b to be high enough.

Limitations, Extensions and Future Work
In this paper we provided a formal framework to model free-
practice learning by combining results from learning and for-
getting curves, modelling practice-events as a point-process
with varying rate (λ) which reciprocally depends on current
skill. We showed the shape of learning curves play a criti-
cal role in long-term learning outcomes. However the map
is not the territory and the basic RPS model ignores a lot of
complexity. First, we described a learner’s state by a sin-
gle variable S for simplicity. Depending on context, multi-
dimentional states may be more appropriate. Similarly, we
took re-learning forgotten skills to have the same learning rate
as learning for the first time. Overall skill need not determine
or even be the major motivating factor - the rate of increase
of skill may also play a role. We tried out different setting
practice rate to λ = a+ bS+ c(∆S), where ∆S is the change
in skill from the last practice event. This leads to a positive
impact on practice rate during progress and a negative impact
otherwise. These changes did not affect the qualitative results
of our simulations.

The basic RPS model also does not consider spacing ef-
fects which are robust findings showing that forgetting rates
decrease when practice is spaced out (Delaney et al., 2010).
Within the RPS framework this can be incorporated by al-
lowing forgetting rates β to depend on the entire history of
wait-times (∆t1,∆t2, . . .∆tn) between practice events (Pavlik
Jr and Anderson, 2005b):

β(∆t1, . . . ,∆tn) = βmin +(βmax −βmin) · e−ε·∑n
i=1(∆ti)s

(8)

Here ε > 0 controls the amount of spacing effect, s the de-
gree of non-linearity (Cepeda et al., 2008). βmin and βmax
are the min. and max. forgetting rates. It is also possible to
change Eqn (3) to model higher practice rates as assignment
deadlines and exams approach closer in more formal learn-
ing settings. Below we give a simple extension inspired from
temporal motivation theory (Steel and König, 2006). Here, Γ

and Dt are respectively impulsivity and time to next deadline
for the learner.

λ =
a+bS

1+ΓDt
(9)

Presenting detailed simulation results of such extensions
are beyond the scope of this paper. Importantly, we also
left out the social aspect of free-learning. We learn effec-
tive strategies from our peers and may get (de)motivated from
comparing ourselves to them. Future work will involve incor-
porating more realistic assumptions in model dynamics (in-
evitably making it more complicated) and testing the different
components of our model to real-world data.
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