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THE USE OF ANTICOMMUTING INTEGRALS 

* IN STATISTICAL MECHANICS I 

By 

Stuart Samuel 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

September 20, 1978 

ABSTRACT 

Integrals over anti commuting variables are 

used to rewrite partition functions as fermionic 

field theories. In particular, the method is 

applied to the two-dimensional Ising and dimer 

models. 
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I. INTRODUCTION 

This paper introduces a new method of attacking certain 

problems in statistical mechanics. It uses integrals over 

anti commuting variables to express partition functions in terms 

of field theories. 

The interplay of field theory and statistical mechanics is 

important. Many complicated field theories have simple underlying 

statistical mechanics analoguesl ). This supplies physical insight 

into these complicated field theoretic structures and allows one 

to extract the key concepts. On the other hand, When a statistical 

mechanics model is expressed as a field theory, various field 

theory techniques can be used such as perturbation theory, 

operator methods, variational methods, functional methods, etc. 

These are powerful avenues of attack, especially for extracting 

numbers. In short, the statistical mechanics point of view allows 

one physical insight whereas the field theory point of view supplies 

the powerful mathematical tools. It is therefore important to 

understand the connections between statistical mechanics and field 

theory. It is in this direction that this paper is written. 

I shall use integrals over anticommuting variables. They 

were introduced to handle fermionic degrees of freedom in a path 

integral formulation2). Until recentl~), they were usually used 

in formal ways, rarely being employed in actually calculations. 

In this paper and the following ones they will be used in a 

practical manner to obtain numbers. They are, without a doubt, 

powerful mathematical tools. They supply relations, relate 

unrelated models, organized unruly algebra, and evoke rapid 
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calculations often in a few steps. 

I will try to follow a logical development with a 

pedagogical touch. First, this paper will introduce and review 

integrals over anticommuting variables (Sec. II). I have tried 

to summarize their key properties. Further details may be found 

in the references. Next (Sec. III) I will show how several problems 

may be expressed in terms of anticommuting variable integrals. This 

is a brute force method involving no elegance or ingenuity. Often 

a model has several different representations. It is important, 

therefore, to find the "best" and "efficient" ones. The fourth 

section will present a couple models in solvable form. Finally, 

I will discuss what these variables mean in the context of operator 

field theory. 

This paper and the next deal only with solvable models. 

This is deliberate since it forms a testing ground on how these 

methods work. In the next paper, the actually solution of the two 

solvable models presented in Sec. IV will be carried out. 

II. INTEGRALS OVER ANTICOMMUTING VARIABLES 

This section will review4) some properties of integrals 

over Grassmann variables. More details may be found in reference 

four. A set of N Grassmann (or anticommuting) variables are 

objects, TJa (a = 1,2, N), satisfying 

TJa "j3 + TJj3 TJa o . (2.1) 

In particular, 2 
Tla O. Taking sums and products the most general 
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construct is 

f aO + L aaTJa + 
a 

L aatlTJa TJj3 + •.• + a123 •· 'NTJ1TJ 2" 'TJ N ' 
a<j3 

(2.2) 

with the a's real or complex numbers. Functions of these variables 

are defined via Taylor series, which because of eq.(2.1) terminate 

at the lith order. Equation (2.2) is the most general function, 

an lith order polynomial. 

The anticommuting variable integral of a function, f, of 

the form of eq. (2.2) is defined by 

/dTJf:; /dTJldTJ2'" d~f:; a123"'N • (2.3) 

The only term which contributes is the one where each TJ occurs 

precisely once, the sign being determined by the order (for example, 

~dTJldTJ2TJ2TJl = - 1). Often TJ'S are associated in pairs (or 

conjugates), one of which will have a dagger (i.e. TJa and TJ~)' 

This is convenient for determining the sign of an integral. For 

these the measure is defined as /dTJdTJ t :; f dTJl dTJ! ..• dTJNdTJ~ 
Statistical mechanics problems will involve spins, atoms, 

--> bonds, etc. at sites, x, to which anticommuting variables will 

--> be assigned. The variable, x, will range over the region of 

interest; for a cubic crystal this might be a three dimensional 

lattice so that ~ = (a,j3,r) has integer coordinates. Often 

several variables are needed at a site, in which case, an additional 

label, r, is required, and the TJ's will appear as 

-
... 

.... 

.. 
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r rt. } 
Tj~, Tj~ (r 1,2,···, T for T tY1?es. Graphically Tj~ and ~ may 
x x x x 

be represented by an "0" and an trxtl 
~ 

at x Different tY1?es 

may be distinguished by using different colors. The important 

point to remember is that a contribution to an integral occurs 

only if each site is covered by one "0" and one "x" of each 

color (tY1?e). 

Key properties of these integrals which are consequences 

of eq.(2.3) are the following: 

1. Shift of variable. Given Ja which anticommute with themselves 

and with all the Tj's, 

f dTj f((lla}) fdTj f( lTia + Ja }) . (2.4) 

2. Change of Variables. Let 

be linear combinations of Tj'S 

'IIa = L A~Tj~ (with A invertible) 

and hen~e an equivalent set of 

anticommuting variables. Then 

fdTj f(Tj) (det A) fd'll f(A-l'll) • (2.5) 

Constrast this with normal (i.e. Riemann) integration where there 

is a factor (det A)-l rather than (det A) in eq. (2.5). 

3. Quadratic and Quadratic-like Actions. 

!dTjdTj t exp( ~ TjaA~Tjt) = det A (2.6) 
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fdTj exp(~ ~ Tj~a~Tj~) Pf A. 

fdTjdTjt fd'lld'l/ exp(~ TjaTj~~'II~'II~) = perm A . 

fdTjdTjt exp(~ L TjaTj~a~Tj~Tj~)= hf A. 
a~ 

(2.7) 

(2.8) 

(2.9) 

These are respectively the determinant, Pfaffian5 ), permanent, and 

hfaffian of A. Permanents and hfaffians are determinants and 

Pfaffians without the sign of perm.utation factor. In eqs. (2.7) 

and (2.9) A must be even dimensional. In eq. (2.7) A may 

be chosen to be antisymmetric. In eq. (2.9) it may be chosen to' 

be symmetric, but must have zero's along the diagonal. These 

equations are easily proved by expanding the exponents: permutations 

of producwof Aa~ are obtained with the appropriate combinatorial 

and sign factors. Equation (2.6), however, is easier to prove 

by transforming Tjt ~A-1Tj t and using eq. (2.5). 

Anticommuting variables are powerful objects. Let us 

demonstrate some of their power by proving the well known result6 ) 

that (Pf A)2 = det A for an antisymmetric even dimensional matrix. 

Usual proofs are quite cumbersome. Use eq. (2.6) and rewrite 

Tja =~ (~l)+ iTj~2», rb =~ (~l)_ i~2», 
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d11ad~ = id~1)d~2). Since A is antisymmetric 

n~A ~t = 1 ~(l)A ~(l) + 1 n(2)A ~(2) (the cross terms cancel) 
'eX o:t3 13 2 0: 0:13 13 2 'eX o:t3 13 • 

The exponent factors into two exponents and the integral factorizes 

into two integrals, each of the form of eq. (2.7). 

Finally, one may take derivatives of anti commuting variables. 

d d 
For example, d- ~l = 1, d- ~2 = 0 . 

~l ~l 
All the usual rules of 

differentiation hold except for minus signs in the product rule due 

to anti commutation relations. Thus d 
di) (~2~1) 

1 
d) .d 

d; ~2 ~l - ~2 di) ~l 
·'1 1 

~2' These derivatives act to the 

right. Derivatives acting to the left are defined analogously: 
~ 

~ d£ = 1. A powerful tool is the following: 
1 ~l 

4. Integration by parts. Given two functions, 

fd~ f ({ g = fd~ f !. g 
d~ d~ 

f and g, 

(2.10) 

In conclusion, anticommuting variables may be manipulated, 

integrated, and differentiated much like ordinary variables except that 

anti commutation must be taken into account. 

III. SAMPLE REPRESENTATIONS 

In a dimer problem6,7,8) there are a set of sites and a 

set bonds connecting certain pairs of sites. The bonds may absorb 

dimers. If ~ is the energy of a particular dimer, 

~ = exp(-f3~) is the Boltzmann factor associated with an 

absorption. A site may be used only once, so that no two dimers 

may overlap or even touch. Effectively any two dimers are infinitely 

repulsive. There are two kinds of problems: the close-packed 
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problem in which every site must be covered exactly once, and the 

usual dimer problem where some sites may be left uncovered. 

The statistical mechanics of this system is determined 

by the partition function. This partition function may be 

represented as an anticommuting integral. As an example, let us 

consider the two dimensional close-packed dimer problem. The sites 

are the integer lattice points (0:,13) in a two dimensional plane. 

Bonds occur between nearest neighbors in the vertical and horizontal 

directions; Zv is associated with vertical bonds and zh with 

horizontal bonds. The partition function is 

Z(zh'zv) = Jd~d~ t exp [2: 
0: ,13 

( 
t t 

~~0:t3~0:t3~O:+lf3~O:+lf3 

+ zv~0:t3~n0:t3+l~~+l )] (3·1) 

There is an ~ and ~t for each site, and the total measure is a 

product over all sites of the measure at each site. The operator 

exp(~~0:t3~11a+lf3~~+lf3) = 1 + ~11af3Tj~~O:+lf3~+lf3 has the option 

of placing a dimer on the bond between· (0:,13) and (0: + 1,13) 

(see fig.l). If the option is exercised, a weight zh results and 

no more dimers may be placed on sites involving (0:,13) and 

(0: + 1,13). Since the integral is zero unless every site is covered 

exactly once, eq. (3.1) is the partition function for the two 

dimensional close-packed dimer problem. This model (and, in general, 

any close-packed dimer model) is by eq. (2.9) a hfaffian. 

Modifying the measure of eq. (3.1) by 

fdT\d~t-)fdT\dT\t exp(~ ~f3~~)' (3. 2 ) 

.. 

... 



... 

-1" 
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would produce the (usual) dimer partition function, since the 

t 
Tla(3Tl0(3 piece of exp ( Tl0(3 Tl~(3) ;; 1 + Tla(3 Tl~ would cover any 

uncovered site (a,(3). On the other hand, for sites already 

covered by a dimer the 1 term would be used. The new action would be 

Adimer(~' zv) 2: Tl0(3Tl~(3(l + ~Tla+l(3Tl~+l(3 + ZvTla(3+lTl~(3+l)·(3.3) 
a(3 

Equation (3.3) may be interpreted as the partition function of 

monomers and dimers where the enery of a monomer is zero. If 

Em is the energy of a monomer, then 

Adimer + monomer(Zm'~'Zv) 2: t + 
Tla(3Tla(3(Zm + ~Tla+l(3'b+l(3 

a(3 

+ ZVTl0(3+1~+1) , 
(3. 4) 

with zm = exp(- (3Em), is the partition function for dimers and 

monomers. By rescaling 

Zdimer + monomer(zm'~'zv) 

Tl0(3 ~{[ ~ 
m 

t -'I t 
Tla(3 ~l;_ Tla (3 

m 

N / 2 / 2 
zm Zdimer(ia zm' Zv Zm)' 

one obtains 

(3.5) 

where N is the number of sites. This result (that the partition 

function for dimers and monomers is simply related to the partition 

function for dimers alone) is easily derived using physical 

considerations. In general, there will be transformations on the 

Grassmann integral which yield results in a few steps that, unlike 
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this example, are difficult to obtain using physical arguments. This 

is one reason why anticommuting variables are powerful. 

To deal with a general dimer problem, let a be a 

labelling of sites. The set of bonds, B, is a set of pairs 

(a,(3) having Boltzmann factors zd(3' Then 

Z = jdTldTl t exp ( ~ TlaTl~ + L: za(3 TlaTl~Tl(3 Tl; ). 
(a,(3)EB 

(3.6) 

Dimer models are equivalent to TlTltTlTlt field theories with a 

kinetic e~ term consisting only of a mass piece, TlTl t. Tne 

field theory methods that deal with TlTltTlTlt theories may be applied 

to dimer problems. 

Almost all partition functions which have a graphical 

representation are expressible as anticommuting integrals. The 

d-dimensional Ising mode19) has such a graphical representation6,7,8), 

where one sum's over closed non-overlapping but (possibly) 

intersecting polygonal curves; in two dimensions this is obtained 

by starting with configurations where all spins are down and 

drawing curves around regions of up spi,n. There is a Boltzmann 

factor for each unit of "Bloch" wall. Alternatively, one may use 

bond variableslO ) (which works in any dimension) for which there is 

a similar representation with different Bloch wall Boltzmann factors. 

Let us consider d 2. Then 

ZIsing(Jh , Jv ) f Zclosed pOlygOns(~' zv) , (3·7) 

where ~ _ (Jh,J) is the Ising model partition function, with 
J:s~ng v 
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horizontal and vertical spin couplings ~ and J v ' 

Z 1 d 1 (z. , z) is the partition function for closed c ose po ygons h v 

non-overlapping polygons with Boltzmann weights, ~ and z 
v 

for horizontal and vertical Bloch walls, and f is a. multiplicative 

factor. For the first representation 

f = exp [N(i3Jv + j3Jh )] 

Zn = exp( -2j3Jv ) (3.8) 

Zv = exp(-2/3Jh ) 

where N is the number of sites. For the bond variable representati~n 

f 
N (200m j3J v cosh j3Jh ) , 

Zh = tanh j3Jh ' 

Zv = tanh j3Jv • 

(3.9) 

Duality is the well known fact that the Ising model has these two 

representations relating low and high temperatures, one using 

bond variables on the lattice and one using disorder variables on 

the dual lattice. 

To express the Ising model as a field theor.y, use four sets 

of anti commuting variables at a site 

r R("right"), L("left"), U("Up"), 

r 
(CX,j3) , T] 

cxj3 
or D("down") 

To draw the sides of polygons use dimer operators 

and T]~6 with 

(see fig.2). 
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R Rt L ' Lt 
T]Ctj3T]Ctj3T]CX+lj3T]CX+lj3 and 

U Ut D Dt 
T]Ctj3 T]Ctj3 T]Ctj3+l T]Ctj3+l (see fig. 3). They 

give rise to a wall action 

Awall 
""' [ (R Rt L Lt) + (U Ut D Dt) ] £.J zh T]Ctj3 T]Ctj3 T]cx +lj3 T]cx +lj3 z v T]Ctj3 T]cxj3 T]Ctj3 +1 T]Ctj3 +l • 
Ctj3 

(3.10) 

I next require "selection rules" at each (cx,j3) site. Suppose, 

~BT]~T]~T]~ is inserted in the integral, then only the configuration 

of (fig. 4a) may occur. Figure 4 illustrates the eight possibilities 

which can happen. To limit the graphs to these possibilities insert 

1 + g with 

g = H + ~rf' + h U + NUrf 
(3·11) 

+ NU~ + H + rfNT.lN , 

where Nr 
= {T]rt. By using 1 + g = exp [.en (1 + g) 1 exp(g - ~i) 

an action for these selection rules is obtained 

A s.r. L (~~ + ~~ + ~j3N~ + N~~j3 
Ctj3 

+ N~j3~j3 + ~j3 rf'Ctj3 - 2 ~N~~j3~) , (3·12) 

where again Nr 
Ctj3 

r rt 
T]Ctj3T]Ctj3 The total action for the Ising model 

is A = Awall + As •r • 

a: .. 

'<" 

.~. 
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I call the above method of obtaining integral representations 

the "selection rule" method. By weighting the configurations of 

fig. 4, more general Ising-like models are obtained. Representations 

of more complicated models like the Baxterll) mode] can be derived 

in a similar manner. 

The above representation of the Ising model is inefficient: 

It uses four sets of anticommuting variables per site; furthermore 

the action involves products of up to eight variables. Given a 

particular model, there will be many Grassmann integral representation& 

It is important to find efficient representations. Ingenuity in 

finding the "best" set of variables and the "best" actions will 

determine whether a model is exactly solvable and will determine 

how well approximation methods work. In the next section, efficient 

representations are found for these two 2-dimensional models. 

IV QUADRATIC ACTIONS 

Some models have quadratic action representations. I 

call these pseudo-free theories because they are exactly solvable 

by the techniques that solve free theories. In this section I 

will represent the two dimensional close-packed dimer and Ising 

models as pseudo-free theories. A later paper will calculate 

the partition functions and correlation functions . 

The two dimensional dimer problem will be dealt with first. 
y 

The method used to solve it closely follows the standard method C) 

of attack. In fact, I will be essentially reproducing the known 

method in integral form, circumventing a few algebraic steps along 

the way. 
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Take the lattice plane, group sites into units of four, and 

use the labelling indicated in fig. 5. Sites land 3 are called 

odd sites; sites 2 and 4 are called even sites. For each unit 

(a,~), assign four sets of anti commuting variables, 

r rt 
~~, ~~ (r = 1,2,3,4J, one for each of the four original lattice 

points. It will be shown that 

Z (A A) (B B f t dimer zh' Zv Zdimer~' Zv) = d~d~ exp(A), 

where 

A B A=A +A , 

AA " [A 1 2t 4t 3 L.J ~(~~~ + ~~) 
~ 

A 2t 3 4t 1 
+ zv(~~~~ + ~~~~) 

(4.1) 

(4.2) 

+ A 2t 1 + 3 4t ) + A( 1 4t + 3 2t )] zh(~~~a+l~ ~a~~a+l~ Zv ~a~~l~ ~~~~+l ' 

and AB is obtained by replacing A 
~ by 

B A 
~ , Zv by 

B 
Z 
v 

r 
~~ by 

rt 
~~, 

rt r 
and ~a~ by ~~ Equation (4.2) may look complicated, but 

it has a simple graphical representation in fig. 6. Each of the 

eight dimer-like operators of fig. 6a corresponds to a term of eq.(4.2). 

d · . t 1 2t "" t d"" t 2 The ~mer obJec, ~~a~' produces an 0 a 1 an an x a 

in the (a,~) unit. Arrows are used to indicate the order of the 

~'s as illustrated in fig. 7. The dimers weighted by A 
Z factors 

are the ones with "0'" s on odd sites and "x" 's on even sites 
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and are called A-dimers. The B-dimers have "x'" s on odd sites 

and "0'" s on even sites. 

We can now make contact with the usual method of solution. 

By the "golden rule" of Grassman integrals, each site must have an 

"x" and an "0". This means each site is covered by exactly one 

A-dimer and one B-dimer. Therefore, we have a simultaneous A and 

B dimer problem: Expand the B-action exponent and choose one 

configuration, b, which covers all sites with B-dimers. Let wb 

be its weight (that is, the product of the ~ and z~ factors; 

for example, if ~ = z~ = zB then wb = (zB)N/2 where N is the 

number of sites). Expanding the A-action exponent, each A-dimer 

covering results .in diagrams of closed non-overlapping polygons and 

overlapping isolated dimer pairs (see fig. 21, p. 233 of reference 7) 

with the proper Weight (up to possibly a minus sign). A minus sign 

could result because of reorderings of anticommuting variables in 

evaluating integrals. It is proven in Appendix A, however, that 

all terms are positive. The reader is invited to check some 

examples by using the rules of fig.8. Each configuration, b, 

B-dimers yields wb Zd' (~A, zA). Equation (4.1) results by 
~mer n w 

of 

summing over all B-coverings. 

Every planar close-packed dimer problem, which is exactly 

solvable by the usual techniques, is expressible as an anticommuting 

integral over a quadratic action. At this stage, Grassmann integrals 

are used only as a bookkeeping device which organizes the algebra. 

No true progress has been made. The next example will obtain a 

quadratic action for the Ising model. Although similar to 

previous derivations, several simplifications are made. 
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I shall use eq. (3.7) which relates the Ising model to a 

sum over closed non-overlapping but (possibly) intersecting 

polygons. I shall then use the anti commuting variables to "draw" 

these configurations. Two sets of variables will be used at each 

(a,f3) site: h ht
Tl
af3

, Tl
af3

, 
v vt 

and Tlaf3' Tlaf3 The superscripts "h" and 

"v" stand for horizontal and vertical. Consider 

Zclosed polygons (zh' zv) (- l)N ~TldTl+ exp(A), (4·3) 

where N is the number of sites and 

A=A +A +A Bloch wall corner monomer, 

~loch wall _ "( ht h + vt v ) 
- ~ zh11a(3Tla+lf3 zv11a(3Tlaf3+l ' 

(4.4) 

A corner " ( ht v vt h ~. a l Tlaf3Tlaf3 + a3Tlaf3Tlaf3 
vt ht v h) 

+ a2Tlaf3~ + a4Tlaf3~ 

A - "(b h ht b v vt) monomer - ~ h~Tlaf3 + vTlaf3Tlaf3 • 
af3 

The Bloch wall action produces a unit of Bloch wall in either the 

horizontal or vertical direction [see fig. (9)] weighted by the 

appropriate Boltzmann factor. The term Acorner produces the four 

corners of fig. (10) necessary to construct a ploygon. I have 

allowed for the most general quadratic form by weighting corners 

with the a
i 

For the Ising model, set a i 1. Finally, 

Amonomer fills all unoccupied "h" and trv" sites with monomer. 

if·· 

.... 

.. 
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Again, for the Ising model, set bh 
and bv 1. The eight Possible 

configurations which can occur at a site are shown in fig. (11) 

with their weights. There is an extra (-1) for each site 

because of the (_l)N in eq. (4.3). The minus signs in con-

figurations (b) through (g) always cancel in pairs and may be 

dropped. The extra minus sign in fig. (llh) is explained in 

Appendix B. This Appendix deals with minus signs due to reorderings 

of Grassmann variables. Finally, the double corners of fig. (12a,b) 

do not occur because a single corner uses up both horizontal and 

vertical variables. Equations (3.7), (4.3), and (4.4) form the 

quadratic action representation of the two-dimensional Ising model. 

V THE OPERATOR ALGEBRA 

This section dissusses the operator aspects of Grassmann 

variables and their probabilistic interpretation. 

In the previous two sections, partition functions have 

been expressed as fermionic field theories. By taking expectation 

values of Grassmann variables (as well as functions of them) 

we may treat them as operators. They act like "local observables", 

measuring tools with probabilistic interpretations. Consider for 

example, the two dimensional dimer problem whose action is given 

by eq. (3.3). 

t (t t 
Z(~a~~~) :; J d~d~ exp(Adimer)(~~~~)' (5.1) 

is the sum over dimer configurations with the restriction that no 

dimer be placed on the (a,~) site. Therefore, (~~~~~) is 

the probability that the (a,~) site is not covered by a dimer. 
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Likewise (1 - ~~~~) is the probability that (a,~) is covered. 

In general, the expectation value of an operator will be the 

probability that a corresponding configuration will occur. 

What do the equations of motion mean? The equation for 

~~ is obtained by taking d 
d~~ Adimer • Let 0 be an operator 

(i.e. some function of the ~ I S and ~ t,S) and use integration 

by parts [eq. (2.10)]: 

~ 0) 
d~~ 

(0: A) 
~a~ 

(5. 2 ) 

Equation (5.2), which involves the equation of motion of ~~, 

will generate many probability relations and is quite useful. For 

o u u 
example, let 0 be ~~ and let p(a,~)' p(a,~), p(a,~)and(a,~+l)' 

etc. be respectively the probabilities that (a,~) is occuPied, 

that (a,~) is unoccup'ied, that (a,~) and (a,~+l) are 

unoccupied, etc., then 

o 
p(a,~) lpu + pU ] 

~ (a,~)and(a+l,~) (a,~)and(a-l,~) , 

+ z [pU + pU J v ,(a,~)and(a,~+l) (a,~)and(a,~-l). (5.3) 

I invite the reader to derive this relation using physical 

considerations and compare it to the simple and powerful method of 

anti commuting variables. 

The set of relations of eq. (5.2) along with the anti

commutation equations [eq. (2.1)] determine the model. They are 
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an equivalent expression of it, because A is obtainable from 

eqs. (5.2). The Ising-like or dimer-like problems are uniquely 

determined by a set of local probability relations. In field 

theory the equations of motion are foremost. The operator 

techniques used to attack such field theories may be used in 

statistical mechanics. I call this the operator method of local 

observables. 
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APPENDIX A 

This Appendix treats the minus signs of the two dimensional 

close-packed dimer problem. 

An isolated dimer pair between two neighboring sites rand 

s (see fig. 13) will be of the form D DtDtD r s r s 
it has has the correct sign. 

+ t t 
DrDrDsDs ; so 

To deal with a closed polygon, P, orient it counterclockwise 

and call the parity of P the number of minus ~. which result 

from rule (b) of fig.8. There are two types of polygons: type 1 

(fig. 14a) and type 2 (fig. 14b). For type 1, there is a minus 

sign from rule (c) and no minus signs due to rule (a). Therefore, 

for type 1, the overall sign is opposite to the counterclockwise 

parity of P. For type 2, the identical conclusion is obtained 

using a similar approach. Kasteleyn's theorem13 ) (which is easily 

verified for test examples and easily proven by induction on the 

area of p) says that the counterclockwise parity is 1+1 (-1) (where 

I is the number of interior pOints) if all elementary polygons 

(ones with no interior points) have odd parity. In fig. 14, for 

example, I 1 and the parity is even. With the arrow assignment 

of fig. 6, all elementary polygons are odd parity. We conclude 

all polygons having an even number of interior points have the 

correct sign. Fortunately only these kinds of polygons occur in 

a covering since dimers, covering two sites at a time, cannot cover 

regions of an odd number of sites. Therefore, all polygons have the 

correct sign. 

.". 

Iii 

... 

., 
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APPENDIX B 

In this Appendix, I will analyze the sign problem 

associated with eqs. (4.3) and (4.4). The conclusion will be 

that the sign of a configuration of polygons is equal to the 

number of intersections which occur. This explains the extra 

minus factor in the weight of fig. (llh). I will proceed in steps: 

first dealing with an isolated non-self-intersecting polygon, then 

with one that self-intersects, and finally dealing with a multipoly-

gonal configuration. 

Consider a closed polygon, P, which does not intersect 

itself. I will show that its sign is positive. Choose a 

horizontal bond of P and proceed to the right (and eventually 

around the polygon). Start at the "x" and use the rules of 

fig.8. When moving upward or to the right no minus signs result 

from rules (a) or~) because arrows are in the correct direction 

and ";"'s occur before "x"'s. When moving downward or to the 

left, each site has a minus sign from rule (a) and a minus 

sign from rule (b). They cancel in pairs. Next consider what 

happens, when one goes around a corner. There are eight different 

types (see fig. 15) [two orientations times the four basic corners 

of fig. (10)]. They are oriented because we are moving around 

the polygon in a particular direction. Figure 15 summarizes the 

results: only corners of types d and d lead to a minus sign . 

Now use the following theorem (Which is easily proved by induction 

on the area of P): Let ma , ~, etc. be the number of type a, 

type b, etc. corners occurring in an oriented non-self-intersecting 

polygon, P. If P is counterclockwise oriented then 
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m - m_ 
a a 

~ - mb 

m 'm c 1! 

m - m_ 
d d 

1 , 

1 , 

1 , 

1 0 

This implies that the sign due to corners is 

(B.l) 

md mu 
(-1) (-1) = - 1 . 

For clockwise oriented, P, the theorem holds with a ~a 

b __ b, etc. Rules (a) and (b) therefore result in one minus 

sign which when combined with the minus sign of rule (c) gives an 

overall plus sign. 

Now consider an oriented self-intersecting polygon, P. 

It may be constructed from non-intersecting ones by the pasting 

construction of fig. 16. The order of the operators in P is 

indicated in Figure 17a. When they are regrouped into the forms 

occurring in the non-self-intersecting polygons (Figures 17b and 

17C) which "compose" P, a minus sign results for each intersection 

as Figure 17 illustrates. 

Finally, the result holds for multipolygonal configurations 

because pairs of polygons can only intersect an even number of 

times. Summarizing, an extra minus occurs for each intersection 

(fig. llh). 
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Figure 1. The dimer operators: (a) ~e horizontal dimer operator, 

~~~a+l~~~+l~' and (b) ~e vertical dimer operator 

t t 
~~~~+l1b:~+l . 

Figure 2. The two-dimensional lattice used for the Ising model: 

Figure 3. 

(a) Each site has been replaced by four sites, and 

(b) The notation used to label sites. The pair, 

(a,~), labels the group and "Right·", "Up''', "Left", 

and "Down" are used to label types. 

Bloch wall operators: 

R Rt L Lt 
~~~~"a+l~11a+~ and 

U ut D Dt 
1b:~~~"~+1~~+1 

(a) 

(b) 

The horizontal dimer operator, 

The vertical dimer operator, 

Figure 4. The eight possibilities which can happen at a vertex. 

In each case, the operator on the right will produce 

the dimer configuration on the left. Figures (a) - (g) 

represent the seven terms in eq. (3.11). To these one 

must add the last term which is the unity operator. 

Figure 5. The lattice plane reorganized into groups of four sites 

each. Each unit is labelled by a pair of integers 

(a,~) and each of the four sites in a unit are labelled 

by 1,2,3, or 4. Sites of type 1 and 3 are called odd 

sites, wheTIRS sites of type 2 and 4 are even sites. 

Figure 6. (a) The eight bonds corresponding to the eight terms 

in eq. (4.2). Each of these operators create A-dimers 

and is weighted by a A z factor. The arrows indicate 

the order of the ~'s (see fig. 7.). (b) The B-dimer 

operators which make up the B-dimer action, AB 

.. 

.' 

... 
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Figure 7. The use of arrows to indicate operator ordering. On 

the left-hand side is the operator, 1]tT], which 

equals minus the right-hand side operator, 1]1]t. The 

arrow originates from the first anti commuting variable 

and terminates on the second one. 

Figure 8. Sign rules. The rules for evaluating the sign of a 

"dimer loop" are as follows: Pick an initial "0" 

or "x" (here, "0" is chosen at A) and proceed 

around the loop (here, counterclockwise). There is 

a) a minus sign for each "x" occurring before an 

"0" (the point, B), b) a minus sign for each arrow 

in the opposite direction (the bond, C), and finally 

c) a minus sign if one begins with an 

figure the sign is positive. 

If tI 
X • In this 

Figure 9. Bloch wall operators: (a) is the graphical representation 

~h of 1]~Q1] 1 whiCh occurs in eq. (4.4) and produces a 
~mt3 

horizontal 

operator, 

Block wall; 

v t v 
lJo:t3 lJo:t3+ 1 

(b) is the vertical Bloch wall 

Figure 10. The corner operators in eq. (4.4). In all cases they 

occur at the (o:,t3) site, that is corner operators 

only change the direction of a curve; they do not 

connect neighboring sites. Although one could use 

labels to distinguish horizontal and vertical variables, 

it's easier to use the following convention: if an "0" 

or an "x" has a horizontal line coming into orout of 

it, it is a horizontal variable; on the other hand 

vertical variables have vertical lines flowing into or 
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out of them. For example, (a) involves a horizontal 

fiX" 
ht 

and a vertical ."of! v The arrow or 1]o:t3 or 1]($ 

indicates the order, so that this term is ht v the 1]o:t31]($ , 

first term in A corner of eq. (4.4). (b) , (c), and (d) 

are the other three terms . 

Figure 11. The eight possible configurations that can occur at a 

site. When disorder variables are used [eq. (3.8)], the 

first two columns represent corresponding spin 

configurations. In obtaining the weights of column 4 a 

(-1) 

(4.3). 

factor has been included from the N (-1) of eq. 

The minus signs in (b) through (g) may be 

eliminated because i) there are always an even number of 

(b) and (c) configurationa and ii) corners (d) and (f) 

as well as (e) and (g) occur in pairs. Alternatively, 

one could redefine the b's and a's in eq. (4.4) to 

have minus signs. Configuration (h) has an extra minus 

sign due to reordering of anticommuting variables as 

described in Appendix B. The numbers in column 4 are 

easily obtained: For example, the b
h 

of (b) is 

obtained because a vertical bond enters and exits' the 

vertical site and a horizontal monomer with bh must 

fill the empty horizontal site. 

Figure 12. Intersections. The double corners of figs. (a) and (b) 

are n~t allowed by eq. (4.3). When four lines meet at 

a site they must pass directly through as in fig. (c). 
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Figure 13. A typical dimer pair. The sign of this pair is plus 

. t t t t 
s~nce 11r11s 11r11s= + 11r11r11s 11s • 

Figure 14. The two types of polygons. Type 1 [fig. (a») is 

characterized by the fact that 
t 1111 occurs at each 

site when going counterclockwise arount the polygon. 

Alternatively, as one goes around the curve the "x" 

occurs before the "0" in a given dimer. For type 2 

[fig. (b»), 11 t11 products occur at each site. The 

parity of this polygon will be even if all elementary 

polygons are counterclockwise odd. The assignment of 

arrows in fig. (6) does make all elementary squares 

of odd parity. 
Figure 15. The eight oriented corners and the minus sign factors 

associated with them. 

Figure 16. The pasting construction. Polygon, P, may be 

obtained from two (possibly self-intersecting) polygons, 

Pl and P2 , by cutting open the corners and rejoining. 

There are four (two different types of pairs of corners 

times two orientations) possible.pasting constructions. 

Figure 17. How the minus sign arrises. This is just a "fermion" 

statistics effect. The order of operators in an 

intersection of P is indicated in Figure (a) and is 

(11{113 )(111114) When P is decomposed into non-inter-

secting polygons as in Figure 16, the order of the 
operators is that of (b) or ~c). For case (b), 

(111114)(111113) = - (111113 )(111114)' that is, there is a 

minus sign relative to (a). For case (c), (11;111)(114113) 

is also - (11i113)(11~114) 
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