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C A N C E R

XYZeq: Spatially resolved single-cell RNA sequencing 
reveals expression heterogeneity in the  
tumor microenvironment
Youjin Lee1,2,3,4*†, Derek Bogdanoff5,6†, Yutong Wang7,8†, George C. Hartoularos9,12,21,  
Jonathan M. Woo1,2,3,4, Cody T. Mowery1,2,3,4,10,11, Hunter M. Nisonoff8, David S. Lee3,12,21, 
Yang Sun3,12,21, James Lee13, Sadaf Mehdizadeh2, Joshua Cantlon14, Eric Shifrut1,2,3,4,  
David N. Ngyuen1,2,3,4,15, Theodore L. Roth1,2,3,10,11, Yun S. Song16,17,18, 
Alexander Marson1,2,3,4,15,18,19,20,21,22*, Eric D. Chow5,6*, Chun Jimmie Ye12,18,20,21,22,23,24*

Single-cell RNA sequencing (scRNA-seq) of tissues has revealed remarkable heterogeneity of cell types and states 
but does not provide information on the spatial organization of cells. To better understand how individual cells 
function within an anatomical space, we developed XYZeq, a workflow that encodes spatial metadata into scRNA-
seq libraries. We used XYZeq to profile mouse tumor models to capture spatially barcoded transcriptomes from 
tens of thousands of cells. Analyses of these data revealed the spatial distribution of distinct cell types and a cell 
migration-associated transcriptomic program in tumor-associated mesenchymal stem cells (MSCs). Furthermore, 
we identify localized expression of tumor suppressor genes by MSCs that vary with proximity to the tumor core. 
We demonstrate that XYZeq can be used to map the transcriptome and spatial localization of individual cells in 
situ to reveal how cell composition and cell states can be affected by location within complex pathological tissue.

INTRODUCTION
Over the past decade, massively parallel single-cell RNA sequencing 
(scRNA-seq) has emerged as a powerful approach to catalog the re-
markable cellular heterogeneity in complex tissues (1,  2). While 
scRNA-seq can profile the transcriptomes of thousands of cells in a 
single experiment, it requires the dissociation of tissue into single- 
cell suspensions before library preparation and sequencing, elimi-
nating any spatial information (3–6). Several strategies have emerged 

to obtain molecular and spatial information simultaneously from 
complex tissue. Imaging-based strategy combines high-resolution 
microscopy with fluorescence in situ hybridization to achieve sub-
cellular resolution and could profile the entire transcriptome 
(7–10), but this requires lengthy iterative microscopy workflows 
and large probe panels. Another approach is to hybridize RNA di-
rectly from tissue slices onto a microarray containing spatially bar-
coded oligo(dT) spots or beads to encode location information into 
RNA-seq libraries. These approaches can sample the entire transcrip-
tome without the need for iterative rounds of hybridization (11), and 
recent improvements using DNA-barcoded beads (high-definition 
spatial transcriptomics and Slide-seqv1/v2) report spatial resolu-
tions at or below the diameter of a single cell (12–14). However, be-
cause of the low numbers of mRNA molecules captured per bead, 
these spatial transcriptomic approaches often aggregate neighboring 
beads before downstream analysis, resulting in lower effective reso-
lution and averaging of transcript abundances from multiple cells. 
As a result, annotation of specific cell types present within each spa-
tial unit of analysis is accomplished by aggregating gene sets com-
putationally defined from orthogonal scRNA-seq datasets (15, 16). 
While integration methods have demonstrated the ability to local-
ize cell types within the spatial organization of complex tissue, they 
rely on having available data from two independent assays and have 
limited ability to infer how spatial context influences the cell state of 
individual cell types.

RESULTS
To overcome these limitations, we have developed XYZeq, a meth-
od that uses two rounds of split-pool indexing to encode the spatial 
location of each cell from a tissue sample into combinatorially in-
dexed scRNA-seq libraries (17, 18). Critical for the performance of 
XYZeq, we fixed tissue slices with dithio-bis(succinimidyl propio-
nate) (DSP), a reversible cross-linking fixative that has been shown 
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to preserve histological tissue morphology while maintaining RNA 
integrity for single-cell transcriptomics (19). In the first round of 
indexing, a fixed and cryo-preserved tissue section is placed on and 
sealed into an array of microwells spaced 500 m center to center. 
The microwells contain distinctly barcoded reverse transcription 
(RT) primers (spatial barcode). This step physically partitions intact 
cells from tissue into distinct in situ barcoding reactions. After RT, 
intact cells are removed from the array, pooled, and distributed into 
wells for a second round of polymerase chain reaction (PCR) index-
ing, imparting each single cell with a combinatorial barcode (Fig. 1, 
A and B). After sequencing and demultiplexing, the spatial barcode 
maps each cell back to its physical location in the array (Fig. 1B). 
This combinatorial barcoding strategy theoretically could enable 
spatial transcriptomic analysis of large sets of single cells—with two 
rounds of split-pool indexing, 768 spatial RT barcodes, and 384 PCR 
barcodes, up to 294,912 unique single-cell barcodes can be generated.

To determine whether XYZeq can assign transcriptomes to sin-
gle cells, we performed a mixed-species experiment where a total of 
11 distinct ratios of DSP-fixed human [human embryonic kidney 
(HEK) 293T)] and mouse (NIH 3T3) cell mixtures were deposited 
into each of the 768 barcoded microwells, creating a cell proportion 
gradient along the columns of the array (Fig. 1C and Materials and 
Methods). XYZeq was used to generate scRNA-seq data for 6447 
cells. A total of 94.8% of cell barcodes were assigned to a single spe-
cies with an estimated barcode collision rate of 5.1% based on the 
percentage of cell barcodes with reads mapping to both human and 
mouse transcriptomes (fig. S1A). We hypothesized that a portion of 
collisions were due to contamination from ambient RNA released by 
damaged cells. Using DecontX (20), a hierarchical Bayesian method 
that assumes the observed transcript counts of a cell is a mixture of 
counts from two binomial distributions, we removed contaminat-
ing transcripts, reducing the collision rate to 0.7% (Fig. 1D and Ma-
terials and Methods). After computational decontamination and 
removal of collision events, we obtained a median of 939 unique 
molecular identifiers (UMIs) and 439 genes per human cell and 816 
UMIs and 336 genes per mouse cell. Mapping each single cell to its 
originating microwell, we observed a high concordance between the 
observed and expected cell type proportions along the columns of 
the wells (Lin’s concordance correlation coefficient = 0.91; Fig. 1E 
and fig. S1B). Together, these results demonstrate that a minimal 
amount of barcode contamination takes place from single cells in 
each well and between neighboring wells on the array after pooling, 
indicating that the XYZeq workflow successfully produces spatially 
resolved scRNA-seq libraries.

We next applied XYZeq to a fixed and cryopreserved heterotop-
ic murine tumor model established by intrahepatic injections of a 
syngeneic colon adenocarcinoma cell line, MC38, into immuno-
competent mice. This model mimics tissue-infiltrating features of 
metastatic cancer and is associated with a relatively well-defined 
tumor boundary (21, 22). MC38 tumor cells also have immuno-
modulating properties with previous data showing immune cells 
infiltrating the tumor/tissue interface approximately 10 days after 
tumor inoculation (23, 24). Thus, we predicted that XYZeq could 
simultaneously capture the gene expression states and spatial organi-
zation of parenchymal liver cells, cancer cells, and tumor-associated 
immune cell populations. A 25-m slice of fixed-frozen liver/tumor 
tissue from a C57BL/6 mouse was placed on top of the prefrozen 
microwell array while a sequential 10-m slice was fixed for immuno-
histochemical staining (fig. S2A and Materials and Methods). We 

also deposited fixed human HEK293T cells into the same array at 
an average of 58 cells per well to serve as a mixed-species internal 
control to experimentally quantify collision rates. We performed 
XYZeq and observed an initial collision rate of 7.3% based on com-
paring the ratio of human versus mouse transcripts (fig. S2B). After 
computational decontamination and further quality control, which 
includes filtering cells based on cell counts and mitochondrial ex-
pression, the collision rate was reduced to 4.4% (Fig. 2A and Mate-
rials and Methods). After removing collisions, we obtained a total of 
8746 cells and detected a median of 1596 UMIs and 629 unique 
genes per HEK293T cell and 1009 UMIs and 456 unique genes per 
cell from the heterotopic murine tumor model at 46% sequencing 
saturation (Fig. 2B). A hematoxylin and eosin (H&E)–stained serial 
section of the tissue revealed a histological boundary between the 
tumor and adjacent liver/tumor tissue (Fig. 2C). As expected, we 
observed HEK293T human cells distributed across the entire array, 
while mouse cells were sequestered within the boundary of the mu-
rine tissue (Fig. 2D). Note that empty spatial wells with no cells de-
tected were likely due to a limited number of cells targeted for 
sequencing (~10,000). We obtained a median of 3 human cells per 
well and 9 mouse cells per well with a total of 13 cells per well ex-
pected (fig. S2C).

XYZeq revealed distinct cell types within the murine liver and 
tumor. Semisupervised Leiden clustering revealed 13 cell popula-
tions in the murine tumor model (fig. S3A), from which seven cell 
types were annotated on the basis of markers that define each pop-
ulation: hepatocytes, cancer cells (MC38), Kupffer cells, liver sinu-
soidal endothelial cells (LSECs), mesenchymal stem cells (MSCs), 
lymphocytes, and myeloid cells (Fig. 3A). The annotation of MC38 
tumor cells was supported by a high correlation of chromosomal 
copy numbers estimated from XYZeq scRNA-seq data and publicly 
available MC38 cytogenetic data (Pearson r = 0.78) (25). Notably, a 
partial amplification of chromosome 15 and a partial deletion of 
chromosome 14 observed in the XYZeq data were consistent with 
common chromosomal abnormalities seen in MC38 cells (fig. S3B). 
As a negative control, we saw low chromosomal copy number cor-
relation when comparing MC38 cells to hepatocytes (26) and immune 
cells (21) (Pearson r = 0.05 and r = 0.17, respectively) (fig. S3B). A 
heatmap showing differentially expressed genes across seven cell 
types uncovered distinct clusters of cells defined by expression of 
canonical genes that are relatively exclusive to each cell type (Fig. 3B). 
Note that we estimated uniformly low rates of contamination of each 
cell cluster (median under 1%) with the exception of hepatocytes, 
which had a slightly higher rate at 2.2% (fig. S3C and Materials and 
Methods). We found comparable median UMIs and genes detected 
across all cell clusters including immune cell populations that have 
been difficult to profile using other combinatorial indexing meth-
ods (fig. S3, D and E) (27). Cell types expected in non–tumor-bearing 
liver were identified using markers previously described, which in-
cluded hepatocytes, Kupffer cells, and LSECs (26). Consistent with 
the known heterogeneity of hepatocytes, we identified hepatocyte 
subsets annotated by the expression of pericentral markers (Glul, 
Oat, and Gulo) (fig. S3F) (26). MC38 adenocarcinoma cells com-
prised a large uniform cluster and were distinguished by the expres-
sion of the known marker Plec (22). Myeloid cells were defined by 
canonical markers Cd11b and Cd74 (28), but other noncanonical 
markers were also observed, including Myo1f (29) and Tgfb (30). 
Lymphocytes showed a similar mix of broad and specific expression 
patterns of cell type markers, with expression of pan-lymphocyte 
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Fig. 1. XYZeq enables single-cell and spatial transcriptome profiling simultaneously. (A) Schematic of the XYZeq workflow. (B) Schematic of XYZeq sequencing li-
brary structure. P5 and P7, Illumina adaptors; bp, base pairs; R1 and R2, annealing sites for Illumina sequencing primers. (C) Schematic representation of the mixed-species 
cell gradient pattern printed on the chip with 11 unique cell proportion ratios (see Methods for specific cell proportion ratios). (D) Scatterplot of mouse (x axis) and human 
(y axis) UMI counts detected from a mixture of HEK293T and NIH 3T3 cells after computational decontamination. Blue refers to human cells (n = 4182), red refers to mouse 
cells (n = 2220), and gray refers to collisions (n = 45). (E) Proportion of HEK293T (blue) cells, NIH 3T3 (red) cells, or collisions (gray) detected by XYZeq for each column of 
the microwell array.
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marker Il18r1, T lymphocyte marker Prkcq, and cytotoxic T cell 
marker Cd8b (31–33). Last, we detected a cluster of MSCs/stromal 
cells that expressed both broad mesenchymal cell markers Rbms3 
and Tshz2 and stem/stromal cell markers Prkg1 and Gpc6 (fig. S3F) 
(34–38).

We next assessed the reproducibility of XYZeq while comparing 
changes in the transcriptional landscape across the z-layer of the 
organ. Four nonsequential 25-m tissue slices from the same frozen 
liver/tumor sample block were processed and analyzed. The average 
expression over all cells for genes detected across all slices was high-
ly correlated between each pair of slices (average pairwise Spearman 
r = 0.93) (fig. S4A). We noted that among the four tissue sections, 
slices 1 and 2, which were the two most proximal slices in their z 
coordinates (separated by 80 m), had the highest expression cor-
relation (Spearman r = 0.96). In contrast, slices 1 and 4, which were 
the most distal in z coordinates (separated by 830 m), had the lowest 
correlations (Spearman r = 0.91). Further, clusters jointly annotated 
across all four slices consisted of cells from each slice, suggesting 
that the observed heterogeneity is not due to batch effects (fig. S4B).

We further compared the quality of the scRNA-seq data gener-
ated by XYZeq to another single-cell technology that is commercially 
available. To accomplish this, we compared the cell type clusters 
identified from XYZeq to those identified from an independent 
scRNA-seq dataset of the same liver/tumor model generated using 
the 10x Genomics droplet-based Chromium system. Most cell 

populations detected by 10x were also observed by XYZeq, except 
neutrophils, erythroid progenitors, and plasma cells (Fig. 3C and 
fig. S5A), which are immune cell populations known to be sensitive 
to the cryopreservation (39) required for XYZeq. 10x did not cap-
ture MSCs even though cells were isolated from fresh liver/tumor 
samples. In addition, B cells identified using the 10x platform cor-
related with the myeloid population detected by XYZeq, likely due 
to the transcript capture of Ly86, Cd74, and several class II histo-
compatibility antigen genes (e.g., H2ab1 or H2dmb1). For the six 
cell types identified in both the 10x and XYZeq data, we observed 
high correlations in both the cell type proportions (Lin’s concor-
dance correlation coefficient = 0.99; fig. S5B) and the pseudobulk 
expression profiles of each cell type (Pearson r = 0.64 to 0.86, 
P < 0.01; Fig. 3C).

Next, we turned to the critical question of whether XYZeq can 
determine the spatial location of each cell. To do this, we compared 
the spatial localization of each cell cluster to the images of H&E-
stained sequential slices. First, to determine that we could accurate-
ly define liver from tumor tissue, we confirmed that the density of 
hepatocytes and cancer cells across the spatial wells overlap with the 
histological annotation of the adjacent section (Fig. 3D). Projection 
of other cell types revealed distinct spatial organization patterns for 
myeloid cells, lymphocytes, Kupffer cells, MSCs, and LSECs (Fig. 3D 
and fig. S6A). Quantification of cellular composition occupying each 
spatial well revealed that MSCs, lymphocytes, and myeloid cells 

Fig. 2. Spatially resolved single-cell transcriptomes captured from tissue. (A) Scatterplot of mouse (x axis) and human (y axis) UMI counts detected from liver/tumor 
tissues (n = 4) at 500 UMI cutoff after decontamination processing. Blue refers to human cells (n = 2657), red refers to mouse cells (n = 5707), and gray refers to collisions 
(n = 382). (B) Violin plots showing the number of detected UMIs (left) and genes (right) per mouse (red) and human (blue) cell. Median UMI counts for human cells: 1596; 
mouse cells: 1009. Median gene counts for human cells: 629; mouse cells: 456 across all liver/tumor slices. (C) H&E-stained image of the liver/tumor tissue slice. Tumor 
region, dark purple with yellow dotted outlines; liver region, pink. Scale bar, 2 mm. (D) Visualization of human (blue) and mouse (red) cell distribution on the XYZeq array 
overlayed on the H&E-stained slice.
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Fig. 3. Frequency and spatial mapping of single-cell clusters from tissue. (A) tSNE visualization of the cell types identified from liver/tumor tissue. A total of 6623 total 
cells were plotted. (B) Heatmap of scaled marker gene expression and hierarchical clustering of genes that define each cell type from liver/tumor tissue. Reference for 
color bar in (A). (C) Correlations of pseudobulk expression values for matching cell types between XYZeq and 10x Genomics Chromium. (D) Spatial localization of hepato-
cytes, MC38, and myeloid cells overlaid on a bright-field image of tissue. Yellow dotted outline indicates tumor regions. (E) Pie chart of cell type composition for each 
XYZeq well from a representative liver/tumor tissue slice (top) and bar chart illustrating combined cell type composition across all four slices of liver/tumor tissue, which 
tracks with proximity to the tumor (bottom) (see Methods for proximity score). (F) Pairplot showing the frequency of hepatocytes, MC38, and myeloid cells in each well. 
Scatterplots show the colocalization of two cell types in each well. Histograms show the distribution of number of cells (x axis) per well (y axis) for each cell type. Pearson 
correlation (r) and P values are annotated.
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were colocalized with cancer cells, while Kupffer cells and LSECs 
colocalized with hepatocytes, suggesting potential regions of cellu-
lar interaction in tumor-infiltrated tissue (Fig. 3E and Materials and 
Methods). These qualitative observations were confirmed by pair-
wise correlation analysis of cell type proportion across all the wells 
(0.37 ≤ Pearson r≤ 0.77, P < 0.05; Fig. 3F and fig. S6B).

To assess the generalizability of XYZeq to other tissues, we pro-
cessed samples from the same heterotopic murine tumor model in 
the spleen. We recovered a total of 7505 cells at a median of 1312 

UMIs and 661 unique genes per HEK293T cell and 1169 UMIs and 
577 unique genes per mouse cell at an estimated collision rate of 
1.36% (fig. S7, A and B). Similar to the liver/tumor model, XYZeq 
was able to reconstruct the boundaries of the splenic mouse tissue 
with the MC38 tumor region annotated on a sequential H&E-stained 
slice (fig. S7, C to E). A median of four human cells per well and 
seven mouse cells per well were detected (fig. S7F). Semisupervised 
Leiden clustering revealed six distinct cell populations for the spleen/
tumor model including B cells, T cells, myeloid cells, MSCs, 

Fig. 4. Expression of gene modules in space that track with cellular composition. (A) Projection of average expression of hepatocyte-enriched module (LM14) in tSNE 
space. Each dot is a cell and colored by the average expression of top contributing module genes (Materials and Methods). (B) Spatial expression of hepatocyte-enriched 
module (LM14). Each spatial well is colored by the average expression of the top contributing module genes weighted by the number of cells per well. Wells are binarized 
into high (above weighted average) versus low (all other nonzero expression). Yellow dotted outlines indicate tumor regions. (C) Heatmap representing the number of 
overlapping genes between each pair of modules in liver/tumor and spleen/tumor. Each row is an LM, and each column is an SM. (D) tSNE projection of XYZeq scRNA-seq 
data colored by annotated cell types in liver/tumor (top left) and spleen/tumor (bottom left) and mean gene expression of the top overlapping modules between liver/
tumor (top row) and spleen/tumor (bottom row). Tumor response modules correspond to LM5 and SM12, and immune regulation modules correspond to LM19 and SM7. 
ECs, endothelial cells. Spatial projection visualizes the mean expression of the tumor response modules (E) corresponding to LM5 and SM12 and the immune regulation 
modules (F) corresponding to LM19 and SM7. Each well in (E) and (F) is colored by the average gene expression of each module weighted by the number of cells per well 
(high versus low), and yellow dotted outline indicates tumor regions. Wells are binarized into high (above weighted average) versus low (all other nonzero expression).
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Fig. 5. Differential gene expression within MSCs associated with their spatial proximity to tumor. (A) Average expression of the cell migration modules (LM10 and 
SM17) in tSNE space. Each dot is a cell colored by its mean expression of the top module genes between corresponding liver/tumor and spleen/tumor modules. (B) XYZeq 
array colored by the tumor proximity score. Values near 1 (yellow) indicate regions rich in tumor, values near 0 (purple) indicate regions rich in nontumor cells, and wells 
capturing the border between the two tissue types take on values around 0.5 (blue/green). (C) MSCs colored by the cell-specific proximity score in tSNE space. (D) Row- 
clustered heatmap showing the scaled, mean gene expression in MSCs of genes enriched in three spatial regions (intratumor, boundary, and intratissue) along the 
one-dimensional proximity score. For spleen/tumor, statistically significant genes enriched in the tumor and nontumor regions are highlighted. (E) Log expression (y axis) 
of Csmd1 (left) and Tshz2 (right) along the proximity score (x axis). Each dot corresponds to one MSC cell, and the regression line is fitted using the negative binomial 
distribution (Materials and Methods). (F) Projection in space of mean expression of Csmd1 (left) and Tshz2 (right) in MSCs. Yellow dotted outline indicates tumor region.
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endothelial cells, and MC38 tumor cells (fig. S8A). We observed 
that all four spleen/tumor slices contributed to each cell type clus-
ter, suggesting that the annotated clusters are not due to batch ef-
fects (fig. S8B). A heatmap showing differentially expressed genes 
across the six cell types revealed distinct clusters of cells expressing 
canonical genes that are relatively exclusive to each type (fig. S8C). 
Cells from each type could be spatially mapped across the tissue 
(fig. S8D). Collectively, these results demonstrate that XYZeq can 
generate spatially resolved scRNA-seq data from different fixed- 
frozen tissues.

The ability to obtain spatial and single-cell transcriptomic data 
simultaneously allowed us to assess the effects of cellular composition 
on gene expression patterns across space. We applied non-negative 
matrix factorization (NMF) to both the liver/tumor and spleen/tumor 
scRNA-seq data to define modules of coexpressed genes and associ-
ated the expression of each module in each cell type with its expression 
across spatial wells. Using our approach, we identified 20 modules of 
coexpressed genes in each tissue (Materials and Methods). As a proof 
of principle of the approach, we first identified liver module (LM) 14 
from the liver/tumor data, which was predominantly expressed by 
the hepatocyte cluster in the t-distributed stochastic neighbor em-
bedding (tSNE) space (Fig. 4A). As expected, the highest LM14- 
expressing wells were enriched for hepatocytes, suggesting that the 
spatial variability of this module is largely driven by the frequency of 
hepatocytes (Fig. 4B).

Next, we reasoned that because both the liver and spleen were 
injected with the same tumor cell line, the invading tumors may 
induce a shared gene expression profile that vary over space, driven 
in part by the cellular composition of the tumor microenvironment. 
To test this hypothesis, we first identified pairs of matching gene 
modules between the two tissues from the NMF analysis (Materials 
and Methods). We found four distinct LMs that had at least 25% of 
genes overlapping with spleen/tumor modules (SMs) (Fig. 4C and 
fig. S9A). Gene ontology analysis of the modules revealed the en-
richment of genes implicated in tumor response, immune regulation, 
and cell migration (figs. S9, B and C, and S10B). Consistent with the 
enrichment analysis, many of the genes from these modules have 
been implicated in tumorigenesis (complete gene lists are in table 
S1). Unlike LM14, further analysis of these matching modules re-
vealed a heterogeneous composition of cell populations that con-
tributed to the expression of specific module genes (fig. S9D and 
Materials and Methods). For example, the tumor response module 
LM5 and its matching modules SM2 and SM12 (Fig. 4C and fig. S9A) 
consisted of genes predominantly expressed in MC38 tumor cells 
with some expression in myeloid cells and lymphocytes (Fig. 4D, 
fig. S9D, and Materials and Methods). The immune regulation mod-
ules, LM13 and LM19 (matched with SM7 and SM20), consisted of 
genes expressed primarily in both conventional (e.g., myeloid and 
lymphocytes) and nonconventional (e.g., Kupffer cells from liver 
samples) immune cells (Fig. 4, C and D, and fig. S9D). The expres-
sion of these overlapping modules was highest in regions densely 
infiltrated with cancer cells (Fig. 4, E and F). Collectively, these re-
sults show that the joint analysis of scRNA-seq and spatial metadata 
from XYZeq can identify spatially variable gene modules due to dif-
ferences in cellular composition across tissue samples.

We next focused our analysis on matching modules LM10 and 
SM15/SM17, which are primarily expressed by MSCs and enriched 
for genes involved in cell migration (Figs. 4C and 5A and figs. S9D 
and S10, A and B). Because MSCs are known to have homing 

abilities to injured or inflamed sites (40), we hypothesized that 
LM10 could be differentially expressed in MSCs based on their 
proximity to the tumor. To test this hypothesis, we first computed a 
tumor proximity score for each well based on the composition of 
and distance from nearby wells (Fig. 5B; see Materials and Methods 
and fig. S11 for score definition). Projecting the proximity score 
onto MSCs in tSNE space revealed that the transcriptional hetero-
geneity of the population is associated with spatial proximity to tu-
mor (Fig. 5C). We then analyzed the MSC expression profiles using 
tradeSeq (41) to identify differentially expressed genes that tracked 
with the proximity score. We identified and clustered 177 genes 
from the liver/tumor tissue (P < 0.05) and 66 genes from the spleen/
tumor tissue (P < 0.05) that are associated with the continuous, 
one-dimensional proximity score (Fig.  5D). The genes were 
broadly divided into three groups based on the proximity cells to 
tumor: intratumor, tumor-tissue boundary, and intratissue with 
statistically significant genes highlighted for the spleen/tumor tissue 
(Benjamini-Hochberg false discovery rate < 0.05) (Fig. 5D). For 
MSCs found in the intratumor regions of the spleen/tumor, many 
of the differentially expressed genes are reported to regulate the 
extracellular matrix (ECM) (Fig.  5D, right) (42–45), suggesting 
that MC38 cells may induce a local gene expression program in 
neighboring MSCs that could contribute to malignant remodeling 
of the ECM.

Last, we leveraged the scRNA-seq data from XYZeq to visualize 
how individual MSCs expressed Tshz2 and Csmd1, two genes of di-
vergent function that are spatially variable with respect to the tumor 
in the spleen. Both genes are characterized as tumor suppressor 
genes and are often silenced in cancer cells to promote malignant 
growth and metastasis (36, 46, 47). However, we found that spleen/
tumor MSCs expressed lower levels of Csmd1 but higher levels of 
Tshz2 in closer proximity to the tumor (Fig. 5E). The mean differ-
ential expression of these genes was specific to splenic MSCs and 
not expressed by MC38 tumor cells. The expression pattern of each 
of these genes in space revealed a pattern consistent with the afore-
mentioned spatial trajectory analysis, suggesting that their hetero-
geneous expression in MSCs may be determined by the location of 
the cells with respect to tumor (Fig. 5F). Together, these results re-
veal that joint analysis of spatial and single-cell transcriptomic data 
from XYZeq can detect transcriptionally variable genes within spe-
cific cell types (e.g., MSCs) driven by their location within the com-
plex tissue architecture.

DISCUSSION
We introduce XYZeq, a new scRNA-seq workflow that encodes 
spatial meta information at 500-m resolution. XYZeq enables un-
biased single-cell transcriptomic analysis to capture the full spectrum 
of cell types and states while simultaneously placing each cell within 
the spatial context of complex tissue. In murine tumor models, we 
demonstrate that XYZeq identifies both spatially variable patterns 
of gene expression determined by cellular composition and hetero-
geneity within a cell type determined by spatial proximity. Looking 
forward, XYZeq provides a scalable workflow that can be adapted to 
multiple z-layers of tissue and can potentially facilitate analysis of 
entire organs. Large-scale integrated profiling of multiple modali-
ties of single cells mapped to the structural features of their tissue 
will enable greater understanding of how the tissue microenvironment 
affects cellular infiltration and interaction in health and disease.
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MATERIALS AND METHODS
Mice, tumor cell line, and tumor inoculation
Six- to 12-week-old C57BL/6 female mice were purchased from Jackson 
Laboratories and housed under specific pathogen–free conditions. 
MC38 colon adenocarcinoma cell line expressing luciferase was a gift 
from R. D. Beauchamp (Vanderbilt University). MC38 cell line was cul-
tured in complete cell culture medium (RPMI 1640 with GlutaMAX, 
penicillin, streptomycin, sodium pyruvate, Hepes, non-essential amino 
acid, and 10% fetal bovine serum). Cell lines were routinely tested for 
mycoplasma contamination. For experiments, mice were given an anes-
thetic cocktail of buprenorphine (300 l) and meloxicam (300 l) 
30 min before the procedure. At the time of surgery, one drop of 
bupivacaine was administered, and mice were anesthetized with 
isoflurane before intrahepatic (or intrasplenic) injection of MC38 
colon adenocarcinoma cells (50 l at 10 × 106 cells/ml) using a 
30-gauge 1/2-inch needle. Incision was stapled closed, and postoperative 
care was given to the mice. All experiments were conducted in ac-
cordance with the animal protocol approved by the University of 
California, San Francisco Institutional Animal Care and Use Committee.

Cancer model system
The intrahepatic and intrasplenic cancer model that we used for the 
paper is described in great detail in a recently published report by 
Lee et  al. (21). Briefly, intrahepatic and intrasplenic tumors were 
generated by subcapsular injection of the tumor cells directly into 
the organs. To establish the ideal time point for sacrificing the mice, 
in vivo imaging was done on tumor-inoculated mice. Intraorgan- 
injected MC38 cells were modified to express the firefly luciferase. 
Mice were intraperitoneally infected with d-luciferin (150 mg/kg; 
Gold Biotechnology) 7 min before imaging with the Xenogen IVIS 
Imaging System. Mice with detectable tumor nodules with at least 
5-mm fluorescence were euthanized for tissue harvesting. Organs 
to be used for XYZeq were fixed with DSP (Thermo Fisher Scientif-
ic) and cryopreserved, while organs used for 10x Genomics Chro-
mium single-cell sequencing were digested in RPMI 1640 complete 
medium that were supplemented with collagenase D (125 U/ml; 
Roche) and deoxyribonuclease I (20 mg/ml; Roche) and then pro-
cessed for single-cell suspension using the gentleMACS tissue dis-
sociator per the manufacturer’s protocol (Miltenyi).

10x Genomics Chromium platform
Cells isolated from tissue were washed and resuspended in phosphate- 
buffered saline with 0.04% bovine serum albumin at 1000 cells/l 
and loaded on the 10x Genomics Chromium platform per the man-
ufacturer’s instructions and sequenced on NovaSeq or HiSeq 4000 
(Illumina).

Tissue harvesting and cryopreservation
At day 10 after tumor inoculation, mice were euthanized and harvested 
for the tumor-injected liver (or spleen) and incubated for 30 min in ice-
cold dimethyl sulfoxide–free freezing media (Bulldog Bio). This was fol-
lowed by 30  min of incubation in ice-cold DSP (Thermo Fisher 
Scientific) supplemented with 10% fetal calf serum (FCS) and then neu-
tralized in ice-cold 20 mM tris-HCl (pH 7.5). The organs were placed in 
a cryomold, sealed airtight, and slowly frozen overnight at −80°C.

Cells and reagent dispensing into array
The sciFLEXARRAYER S3 (Scienion AG) was used to dispense 
cells and reagents to the microwell arrays. Drop stability and array 

quality were assessed for each experiment. Before dispensing into 
the microwell arrays slides, Autodrop detection was used to assess 
drop stability and quantify the velocity, deviations, and drop volume 
for each reagent. Volume entry was used to determine the number 
of drops required to reach the total designated well volume. Each 
well oligo(dT) primer (5′-CTACACGACGCTCTTCCGATCTNN-
NNNNNNNN[16–base pair unique spatial barcode] TTTT-
TTTTTTTTTTTTTT-3′, where “N” is any base; IDT) was spotted 
into a different well in the array. During barcoding, the dew point 
control software monitored the ambient temperature and humidity, 
allowing dynamic control of the temperature of the source plate to 
maintain nominal oligo concentrations through the duration of the 
run. Barcoded slides were dried in the wells before storage. Reaction 
mix (Thermo Fisher Scientific) was added to wells and automated 
with a 10% bleach wash between each probe to eliminate carryover 
contamination. Dissociation/permeabilization buffer was printed into 
each well on the day of experiment, and tissue section was loaded 
onto the microwell array slides. For all tissue experiments, DSP-
fixed HEK293T cells were added at 5 l (at 10 × 106 cells/ml) to the 
RT digestion mix before being dispensed across all the wells in the 
microarray. The average number of HEK293T cells were 58 cells per 
well; however, the absolute number of cells per well likely varied 
across the array due to the cells being in suspension inside the dis-
pensing nozzle. Cells harvested from the array after incubation 
were analyzed on the Aria (BD Biosciences), and datasets were ana-
lyzed using FlowJo software (Tree Star Inc.).

Array fabrication
Photoresist masters are created by spinning on a layer of photoresist 
SU-8 2150 (Thermo Fisher Scientific) onto a 3-inch silicon wafer 
(University Wafer) at 1500 rpm and then soft baking at 95°C for 
2 hours. Then, photoresist-layered silicon wafer is exposed to ultra-
violet (UV) light for 30 min over a photolithography mask (CAD/Art 
Sciences, USA) that was printed at 12,000 DPI (dots per inch). After 
UV exposure, the wafers are hard-baked at 95°C for 20 min and then 
developed for 2 hours in fresh solution of propylene glycol mono-
methyl ether acetate (Sigma-Aldrich) to develop, followed by a manual 
rinse with fresh propylene glycol monomethyl ether acetate then baked 
at 95°C for 2 min to remove residual solvent. Polydimethylsiloxane 
(PDMS) mixture (Sylgard 184, Dow Corning, Midland) with pre- 
polymer:curing agent ratio of 10:1 was poured over the SU-8 silicon 
wafer master. This was placed in a 100-mm petri dish and was cured 
overnight in a 70°C oven. This PDMS-negative mold was peeled off 
the SU-8 silicon master the following day. PDMS block was placed 
on a flat surface, and Norland Optical Adhesive 81 (NOA81) (Thor-
labs) was poured into the mold to cover the entire surface. A slide 
was placed on top of the NOA-poured PDMS mold, and a transpar-
ent weight was placed on top. NOA was cured for 2 min under UV 
light, flipping once halfway through the UV curing time. Last, the 
PDMS mold was detached from the cured NOA microwell array slide 
(referred to as microwell array chips). The dimensions of each hex-
agonal well are approximately 400 m in height and 500 m in diam-
eter with the volume of 0.04 mm3, which can hold 40 nl of liquid.

XYZeq methodology
Liver/tumor organ was mounted on a cyrostat (Leica) and sliced at 
25 m for use as an XYZeq experimental sample or mounted on a 
histology slide at 10 m for immunohistochemical staining. On the 
day of experiment, XYZeq microwell array chips were spotted with 
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an RT cocktail mix that was spiked-in with DSP-fixed HEK293T 
cells. The microwell array chips were brought down to −80°C, and a 
tissue slice was placed on top of the array. A digital image was taken 
to document the orientation of the tissue before sandwiching a sili-
cone gasket sheet between the XYZeq microwell array chip and a 
blank histology slide. The chip was placed in a microarray hybrid-
ization chamber (Agilent) to ensure an airtight seal while undergo-
ing tissue digestion and RT. To recover high-quality RNA from 
fixed-frozen tissue, the microarray hybridization chamber housing 
the chip had to undergo a gradual step-wise temperature increase to 
42°C before the 20-min incubation to undergo RT. The chip was 
removed from the chamber and placed in a 50-ml conical tube with 
50 ml of 1× SSC buffer and 25% FCS. The tube was vortexed and 
spun down at 1000 rcf for 10 min. Excess volume was removed, and 
cells were filtered and stained for DAPI (4′,6-diamidino-2-phenylindole; 
Life Technologies) before sorting (BD Aria) into 96-well plates pre-
loaded with 5 l of the second RT mix. Plates were reverse-transcribed 
for 1.5 hours at 42°C, followed by PCR using 2× Kapa HotStart 
ReadyMix (Kapa Biosystems). PCR amplification was performed 
with an indexing primer (5′-AATGATACGGCGACCACCGA-
GATCTACAC [i5]ACACTCTTTCCCT ACACGACGCTCTTC-
CGATCT-3′; IDT). Contents of the PCR plate were pooled into 2-ml 
Eppendorf tubes, and complementary DNA (cDNA) was purified 
with AMpure XP SPRI bead (Beckman). cDNA was tagmented and 
amplified with Illumina Nextera library p7 index (IDT). Final library 
was analyzed by BioAnalyzer (Agilent) and quantified by Qubit (In-
vitrogen) and sequenced on a NovaSeq or HiSeq 4000 (Illumina) (read 
1: 26 cycles; read 2: 98 cycles; index 1: 8 cycles; index 2: 8 cycles).

XYZeq decontamination analysis
In our analysis, we recognized that some reads aligning to the mouse 
genes were present in cells that otherwise had high alignment to the 
human genome. We suspected that these reads were ambient RNA 
contamination and sought to remove them. We first removed mouse-
aligned transcripts with an extremely high expression in human cell 
population [n = 59, log(counts +1) > 6]. The human cell population 
was considered a control in the contamination detection, because any 
ambient RNA from lysed cells was expected to contaminate both mouse 
and human cells. DecontX (20) was then performed to estimate the 
contamination rate for different cell populations using the human- 
mouse mixture dataset and therefore derive a decontaminated count 
matrix from the raw data. Briefly, the algorithm applies variational 
inference to model the observed counts of each cell as a mixture of 
true gene expression of its corresponding cell population and the con-
tamination signature (from other cell populations) and then subtracts 
the contamination signature (fig. S3C). By considering the human- 
mouse mixed-species experiment, we could remove those counts poten-
tially contributing to collision and effectively account for all potential 
transcripts in the lysed cells that contribute to ambient RNA. In fig. 
S3C, the initial estimated contamination rate for each mouse cell type 
is plotted with the median estimates ranging from 0.06 to 0.31%, with 
the highest seen in the hepatocyte cell cluster with 2.18% initial con-
tamination fraction. All the downstream analysis was performed on 
the basis of the decontaminated data after contamination removal.

How distinctions were made between collision rate 
and contamination rate
The collision rate is directly calculated from the gene expression 
of human-mouse mixture dataset based on the ratio between 

mouse-aligned and human-aligned transcripts, while the contami-
nation rate for each cell is estimated as a cell-specific parameter in the 
Bayesian hierarchical model via variational inference from DecontX. To 
specify the contamination rate, each cell has a beta-distributed pa-
rameter modeling its proportion of transcript counts, which come 
from its native expression distribution. The estimated contamina-
tion rate for each cell is the proportion of transcript counts, which 
come from contamination in the Bayesian model. Each transcript in 
a cell follows a multinomial distribution parameterized by the na-
tive expression distribution of its cell population or contamination 
from all the other cell populations, given a Bernoulli hidden state, 
indicating whether the transcript comes from its native expression 
distribution or from the contamination distribution.

Cell species mixing experiment
Mixture of HEK293T and NIH 3T3 cells were deposited into wells 
in a gradient pattern across the columns of the array with a total of 
11 distinctive cell proportion ratios. Specifically, columns on the 
array were spotted with human cell–to–mouse cell ratio of 100/0; 
90/10; 80/20; 70/30; 60/40; 50/50; 40/60; 30/70; 20/80; 10/90; 0/100; 
10/90; 20/80; 30/70; 40/60; 50/50; 60/40; 70/30; 80/20; 90/10; and 
100/0, with only human cells flanking the end columns and only 
mouse cells in the center columns. The ratio of UMI deduplicated 
reads aligning to either human or mouse reference genomes was 
calculated for each cell, and those with less than 66% aligning to a 
single species were deemed barcode collision cells.

XYZeq single-cell analysis
Single-cell RNA sequence data processing was performed where se-
quencing reads were processed as previously described (17). Briefly, 
raw base calls were converted to FASTQ files and demultiplexed on 
the second combinatorial index using bcl2fastq v2.20. Reads were 
trimmed using trim galore v0.6.5, aligned to a mixed human (GRCh38) 
mouse (mm10) reference genome and UMI deduplicated. Reads 
were then assigned to single cells by demultiplexing on the first 
combinatorial index, before the construction of a gene by cell count 
matrix. The count matrix was processed using the Scanpy toolkit. 
Cells with less than 500 UMIs and greater than 10,000 UMIs, as well 
as cells expressing less than 100 unique genes or more than 15,000, 
were discarded. Cells with more than 1% mitochondrial read per-
centage were also discarded. Gene counts were normalized to 10,000 
per cell, log-transformed, and further filtered for high mean expres-
sion and high dispersion using the filter genes dispersion function, 
with a minimum mean of 0.35, maximum mean of 7, and minimum 
dispersion of 1. Gene counts were then corrected using the regress 
out function with total counts per cell and the percentage mito-
chondrial UMIs per cell as covariates. Subsequent dimensionality 
reduction was done by scaling the gene counts to a mean of 0 and 
unit variance, followed by principal components analysis, comput-
ing of a neighborhood graph, and tSNE. Leiden clustering was per-
formed with a resolution of 0.8, and cells were grouped to reveal 
distinct murine cell types and human HEK293T cells.

10x data processing
Count matrices were generated using the “count” tool from Cell 
Ranger version 3.1.0, using the combined human and mouse refer-
ence dataset (version 3.1.0) and the “chemistry” flag set to “five-
prime.” The count matrix was processed using the Scanpy toolkit. 
Cells with less than 500 UMIs and greater than 75,000 UMIs, as well 
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as cell expressing less than 100 unique genes and greater than 10,000, 
were discarded. Cells with more than 7.5% mitochondrial read per-
centage were also discarded. Gene counts were normalized to 10,000 
per cell, log-transformed, and further filtered for high mean expres-
sion and high dispersion using the filter genes dispersion function, 
with a minimum mean of 0.2, maximum mean of 7, and minimum 
dispersion of 1. Gene counts were then corrected using the regress 
out function with total counts per cell and the percentage mitochon-
drial UMIs per cell as covariates. Subsequent dimensionality reduc-
tion was done by scaling the gene counts to a mean of 0 and unit 
variance, followed by principal components analysis, computing of 
a neighborhood graph, and tSNE. Leiden clustering was performed 
with a resolution of 1, and cells were grouped to reveal major mu-
rine cell types and human HEK293T cells.

Heatmap for XYZeq
Mouse cells were subsetted from the XYZeq processed data matrix. 
The processed gene expression values were plotted in a heatmap 
with a minimum fold change of 1.5 and hierarchically clustered 
using the heatmap function from Scanpy, with the default settings 
of Pearson correlation method and complete linkage.

XYZeq gene pairplot
Four slices of liver/tumor tissue were processed using the XYZeq 
assay (with HEK293T cells spiked in) and aligned to a joint human 
and mouse reference. All genes with at least one count in each slice 
were kept, and the counts across the common set of genes between 
pairwise slices were plotted in the lower triangle, with the Spearman 
correlation for the data shown in the upper triangle. Along the diag-
onal, histograms were plotted showing the distribution of counts 
per gene for all the nonzero genes for each slice.

XYZeq cells per well pairplot
Pairplot shows the number of microwells containing pairwise combi-
nations of cell types. For scatterplots, each point in the plot represents 
a well, and its coordinate positions indicate the number of cells of each 
cell type present in that well. Every dot on the scatterplot is a gene 
representing mean per gene for common genes across all cells in the 
slices. Along the diagonal of the figure are histograms, showing the 
univariate distribution of cell number per well for the given cell type.

Heatmap comparing 10x to XYZeq
Mouse cells were subsetted from each of the processed data matri-
ces. For pairwise mouse Leiden clusters found between XYZeq and 
10x, the scaled and log-transformed gene expression values of com-
mon genes were plotted. For each comparison, a Pearson correla-
tion was calculated and plotted in the heatmap. Row/column labels 
were ordered according to their corresponding cell types.

Correlation plot
Mouse cells were subsetted from each of the processed data matrices. 
Proportions for each cell type (as determined by the Leiden clustering 
and visualized using tSNE) were plotted, and the coefficient of deter-
mination was calculated by fitting to the model that assumes propor-
tions are equal between the two assays.

Gene module analysis of top contributing genes
To identify gene modules using NMF, genes expressed in fewer than 
five cells and cells expressing fewer than 100 genes were filtered out. 

Variance stabilizing transformation was performed on count data, 
and confounding covariates including number of counts per cell, 
batch, and mitochondrial read percentage were regressed out by a regu-
larized negative binomial regression model using the SCTransform 
(48) function in the Seurat R package. Pearson residual values from 
the regression model were centered, and all negative values were con-
verted to zero. Nonsmooth NMF (nsNMF) was performed on the re-
sulting expression data with a rank value of 20 using the nmf (49) 
function in NMF R package. In each module, genes were sorted by 
their magnitude in the corresponding coefficient matrix in a descend-
ing order. Gene ontology enrichment analysis was performed for the 
sorted genes in each module using GOrilla (50). For each module, the 
top consecutive genes with higher coefficients in this module com-
pared to all the other modules were further selected as genes contrib-
uting the most to the module (51) in the tissue-specific analysis. 
Binary spatial plots were generated by first calculating the median 
expression across all the cells for each well within each batch based on 
the log-normalized gene expression data. We then extracted the mean 
expression across all the genes within one module for each well and 
calculated the average of mean expression across selected module 
genes for each well weighted by the number of cells in each well. The 
wells with a mean expression across genes above the weighted average 
were labeled as highly expressing for that gene module, and all the 
other wells with nonzero expression of those selected module genes 
were labeled as lowly expressing that gene module. tSNE plots repre-
senting the gene modules were colored by their mean expression of 
genes within the annotated module.

Overlapping analysis between the gene modules identified 
in liver/tumor and spleen/tumor
Gene modules were first identified using nsNMF with a rank value 
of 20 for the two tissues, liver/tumor and spleen/tumor, respectively. 
The top 200 genes in each sorted gene list for a module were selected 
as having high association with the module. For each module in the 
liver/tumor tissue, the spleen/tumor module with the largest gene 
overlap was initially matched as functionally similar. We then re-
moved those matched pairs with fewer than 25% overlapping genes 
out of top 200 genes in the liver/tumor module. To calculate cell 
type fractions that make up each module, the average gene expres-
sion for each gene across all the cells was calculated. Median expres-
sion across all the overlapping genes for each cell type was further 
computed, which was later transformed into fractions by dividing 
by the sum of median expression across all the cell types.

Defining the proximity score by wells
We sought to define a score for each well of the hexagonal well array 
that would capture how centrally located a well was within either 
the tumor or nontumor tissue domains. Central to the method was 
the determination of successive concentric “layers” of wells that were 
adjacent to a well in question: those corresponding to its immediate 
neighbors (layer 1), those wells exactly two wells away (layer 2), and 
so on, for n layers. In the spleen/tumor, we selected several wells on 
the far side of the tumor region and set the score of these wells to 1. 
We then took 10 successive layers of wells and decreased the score 
linearly with each layer, with the wells in layers 10 and beyond set to 
0. In the liver, MC38 cells were found in different locations, and 
therefore, unlike the spleen, there was no single unidirectional spa-
tial dimension to place all MC38 cells at one end and all nontumor 
tissue cells at the other. Therefore, we used an alternative approach 
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to calculate these scores in the liver/tumor tissue. For each well wx, y, 
annotated by their x, y position on the hexagonal well array, we cal-
culated the proportion of hepatocytes, px,y, since the hepatocytes 
were the most abundant parenchymal cell type in and strictly asso-
ciated with the nontumor liver tissue

   t  x,y   = # of total hepatocytes and MC38 cells in  w  x,y    

   h  x,y   = # of hepatocytes in  w  x,y    

   p  x,y   =   
 h  x,y   ─  t  x,y      

Then, for each well in question wx,y, we tabulated the surround-
ing wells in each of the successive concentric 10 layers. We denote 
these wells wx′y′ to differentiate from the well in question. For each 
of those layers l, we took its constituent wells’ px′,y′ and calculated a 
cell number–weighted average px,y, l

   w  x,y,l   = { w  x′y′   ∈ layer l of  w  x,y  }  

   t  x,y,l   = # of total hepatocytes and MC38 cells in  w  x,y,l    

   p  x,y,l   =   ∑ 
x′,y′

  
 w  x,y,l  

     
 t  x′,y′   ─  t  x,y,l      p  x′,y′    

Then, for the well in question wx,y, we calculated a distance- 
weighted average of all the px,y,l, and this became the proximity 
score sx,y for the well in question. The distance weights for each 
layer, ul, were based on an exponential decay, terminated to 10 
terms and then normalized to 1 by dividing by the sum of all weights 
us. We give equal weight to px,y and the value for the layer 1 neigh-
bors px,y,1. A decay factor d of 1.05 was chosen empirically, as it 
seemed to create the most uniform-like distribution of the scores 
across all wells

  d = 1.05,  u  s   =   ∑ 
l=1

  
10

      1 ─ 
 d   l 

    

   u  l   =   
 (     1 _ 

 d   l 
  )  
 ─  u  s      

   s  x,y   =  u  1    p  x,y   +   ∑ 
l=1

  
10

     u  l    p  x,y,l    

These calculations were repeated for all wells containing at least 
one murine cell.

Trajectory inference analysis
Genes expressed in fewer than five cells and cells expressing fewer 
than 100 genes were excluded. Variance stabilizing transformation 
was performed using the SCTransform (48) function in the R Seurat 
package. The resulting corrected count data in MSC in one tissue 
were used as the count matrix input in trajectory inference analysis, 
using the tradeSeq (41) package in R. Genes whose expression is asso-
ciated with the proximity score were identified by the associationTest 
function in tradeSeq, based on a Wald test under the negative bino-
mial generalized additive model. The P values were corrected using 

Benjamini-Hochberg multiple testing procedure, and genes with 
corrected P values smaller than 0.05 were considered to be signifi-
cantly associated with the proximity score.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/17/eabg4755/DC1

View/request a protocol for this paper from Bio-protocol.
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