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Abstract 

 
Evaluation of Sutter Health Programs Utilizing the Synthetic Control Method: A 

Secondary Analysis of Electronic Health Record Data 
 

by 
 

Wendy M. Qi 
 
 

Doctor of Philosophy in Epidemiology 
 

University of California, Berkeley 
 
 

Professor John M. Colford, Jr., Co-Chair 
Professor Arthur L. Reingold, Co-Chair 

 
 

Background: Health programs and interventions designed to improve patient outcomes 
within health care systems are implemented widely; however, many are implemented 
without a plan for evaluating the impact of the program on relevant and meaningful 
outcomes. Program evaluations are important for providing context, assessing whether 
the intervention is having its desired effect, deciding whether the program should be 
continued, identifying any unintended consequences, and highlighting areas for 
improvement. Many health programs fall under the category of observational studies, 
and thus methods such as matching, difference-in-differences (DiD), regression 
discontinuity, and pre-test/post-test are often used for evaluation. Recently, the 
synthetic control method (SCM) has surfaced as an important tool for program 
evaluation and has been described as “arguably the most important innovation in the 
policy evaluation literature in the last 15 years” 1. SCM is motivated by the common 
difficulty in identifying a single control unit that approximates the most relevant 
characteristics of the treated unit. The central idea of SCM is that a combination of 
control units may provide a better “counterfactual” for the treated unit than any one 
single control unit alone. A data-driven approach is used to assign weights to potential 
control units to create a “synthetic” version of the treated unit that closely approximates 
the time series for the actual treated unit in the pre-intervention period. With this, 
predictions about what counterfactual trends would look like in the post-intervention 
period, had the intervention never been implemented, can be made.  
 
Methods: In this dissertation, I apply SCM to evaluate hospital-level effects of three 
programs recently implemented within the Sutter Health system: (1) the Advancing 
Health Equity (AHE) asthma program at Alta Bates Summit Medical Center that brings 
culturally appropriate community-based care to African American/Black patients, and 
provides high-touch and high-tech counseling services to educate patients about 
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disease and medication self-management; (2) the ETOH-P program at Eden Medical 
Center that implements two protocols for treating patients who are at risk for developing 
alcohol withdrawal syndrome; and 3) a group-based lifestyle change program 
implemented within several Sutter clinics for diabetes management. For each program, 
we compare the hospital-level results from the SCM analysis to individual-level results 
from a propensity score matched analysis.  
 
Significance: This dissertation illustrates the application of SCM to evaluate the impact 
of health care programs implemented within an open health care system such as Sutter 
Health. SCM has previously been applied to study a wide range of topics including 
political and economic effects following terrorist conflict2, state-level policy changes3. 
health systems reforms4,5, nutritional interventions6, climate events such as drought7, 
and most recently COVID-19 mitigation strategies and mandates8–14. To our knowledge, 
SCM has never been applied in such a setting, in which individuals choose to 
participate in the program or intervention. Lessons learned from this exercise provide 
valuable insight into the utility of this evaluation tool for health care systems research 
and offer both data and methodological considerations for future applications.  
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Chapter 1 - Introduction 
 
1.1  Motivation 
 
 
Interventions and programs aimed at improving patient outcomes are implemented 
widely within the health care system setting. These health interventions can be 
educational programs, health policy changes, or health promotion campaigns that seek 
to improve or modify health behaviors and health outcomes among the population 
served. Assessing the impact of these health interventions and programs enables 
health care systems to learn and improve their procedures of care, as well as make 
decisions about scaling up programs. In many cases, these interventions and programs 
are developed and implemented without a subsequent plan for how to evaluate the 
success of the program. While patient testimonials and clinician stories on how these 
programs positively affect health outcomes are encouraging, it is often the case that 
health care systems wish to quantify the success of these programs in terms of both 
relevant health outcomes but also from a cost-effectiveness perspective. An impact 
evaluation is an empirical assessment of the program’s effects; it measures the extent 
to which outcomes experienced by participating individuals were caused by the 
intervention, and which can be attributed to other unrelated factors15. In particular, 
rigorous impact evaluations are crucial to presenting data-driven evidence for program 
effectiveness in the health-care setting. 
 
Two main evaluation study designs are frequently used within health care systems 
research. Experimental designs in the form of Randomized Controlled Trials (RCTs) are 
the gold standard for identifying causal impacts and involve random assignment of 
individuals to the intervention group and the control group. The main advantage of 
RCTs is their high internal validity, but RCTs can be limiting in terms of generalizability 
to other populations, and it is not always practical nor ethical to randomize interventions 
that are known to be beneficial. For these reasons, observational studies that do not 
utilize a non-random selection process are widely used. Observational studies aim to 
mimic the experimental design by creating equivalent intervention and control groups. 
Methods such as matching, difference-in-differences (DiD), regression discontinuity, 
and pre-test/post-test are often used in observational study designs 15.  
 
Recently, the synthetic control method (SCM) has surfaced as an important tool for 
program evaluation2,3. Athey and Imbens describe the synthetic control approach as 
“arguably the most important innovation in the policy evaluation literature in the last 15 
years” 1. SCM originates from political science and economics, which uses comparative 
case studies to examine events or policy interventions that take place at an aggregate 
level and affect group-level entities such as schools, countries, regions, cities, etc. In 
the last several years, synthetic controls have been used to study a wide range of topics 
including political and economic effects following terrorist conflict2, state-level policy 
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changes3. health systems reforms4,5, nutritional interventions6, climate events such as 
drought7, and most recently COVID-19 mitigation strategies and mandates8–14. 
 
SCM is motivated by the common difficulty in identifying a single control unit that 
approximates the most relevant characteristics of the treated unit; thus, the idea behind 
the synthetic control approach is that a combination of control units may provide a better 
“counterfactual” for the treated unit than any one single control unit alone. In SCM, A 
data-driven approach is used to assign weights to potential control units to create a 
“synthetic” version of the treated unit. This eliminates the need for researchers to 
arbitrarily pick one control unit. The goal of the “synthetic” version of the treated unit is 
to closely approximate the time series for the actual treated unit in the pre-intervention 
period, such that it can be used to make predictions about what counterfactual trends 
would look like in the post-intervention period, had the intervention never been 
implemented3,16. 
 
Figure 1.1 below visually represents this concept in a mock example of the ETOH-P 
intervention. The red line represents the outcome trend for ETOH-P intervention 
patients. The blue line represents the outcome trend for the “synthetic” ETOH-P 
intervention patients and is constructed using weights applied to a pool of potential 
control units. As demonstrated, the blue “synthetic” line closely approximates the 
outcome trend of the actual red line during the pre-intervention weeks. After the 
intervention is implemented at week 10, the two lines diverge, with the blue “synthetic” 
line representing what would have happened in the red line, had the intervention never 
occurred (the counterfactual).  
 

 
Figure 1.1 example of synthetic control method using mock data 

 
We present a motivating model to more formally present details of the method, following 
previously published guidance2,3,16,17. We will proceed as if only one unit was exposed 
to the intervention of interest. In cases in which there are multiple units that received the 
intervention, it is advised to aggregate those exposed units together.  
 



 3 

Suppose we have 𝑗 = 1,… , 𝐽 + 1	hospitals for time periods 𝑡 = 1,… , 𝑇, where the first 
hospital is the treated hospital and the remaining J control hospitals can possibly 
contribute to the synthetic control. This set of control clinics is termed the “donor pool”. 
We define two potential outcomes. 𝑌!"# is the outcome that would be observed for 
hospital i at time t if hospital i is not exposed to the intervention for units 𝑖 = 1,… , 𝐽 + 1 
and time periods 𝑡 = 1,… , 𝑇. 𝑌!"$  is the outcome that would be observed for hospital 𝑖	at 
time 𝑡 if hospital 𝑖 is exposed to the intervention in periods 𝑇% + 1 to 𝑇 .  
 
Let 𝑇% be the number of preintervention periods, with 1 ≤ 𝑇% < 𝑇. We observe 𝑌!"$   in the 
post-intervention period for the treated hospital, but 𝑌!"# is unobserved for the treated 
hospital in the post-intervention period. The goal of the synthetic control method is to 
construct a synthetic control group that yields a reasonable estimate of this missing 
potential outcome. In doing so, we will be able to estimate the effect of the intervention 
on our outcome of interest for the treated hospital in the post-intervention period. 
Formally, this effect is the difference between the two potential outcomes for the 
intervention period: 
 

𝛼!" = 𝑌!"$ −	𝑌!"# 
 
The synthetic control should resemble the treated hospital in terms of relevant pre-
program characteristics and pre-intervention outcomes. We define a (Jx1) vector of 
positive weights𝑊 = (𝑤&, … , 𝑤'())′ such that 𝑤' ≥ 0 for	𝑗 = 2,… , 𝐽 + 1 and 𝑤& +
	…	𝑤'() = 1 (sum to 1). Each particular value of the vector W represents a specific 
weight averaged of the control hospitals, and thus a separate synthetic control. Thus, 
the estimator of 𝛼!" can be expressed as  
 

𝛼)"9 = 𝑌)" − ∑ 𝑤'∗𝑌'"
+()
',&  for 𝑡 ∈ {𝑇% + 1,… , 𝑇} 

 
Weights W* are chosen such that the synthetic control best approximates the treated 
hospital with respect to outcome predictors and linear combinations of pre-intervention 
outcomes. In some cases, it may not be possible to obtain a weighted combination of 
control units such that it matches exactly the treated hospital; in such scenarios where 
the fit is poor, it is not recommended to use a synthetic control.  
 
Abadie et al.16 caution that even if the synthetic control is a good approximation for the 
treated unit, interpolation biases can still be large if the simple linear model presented 
above does not hold over all the potential control units. This bias may be avoided by 
restricting the pool of donor control units to those with similar characteristics within a 
certain magnitude to the treated unit. The outcome variable is observed for T total 
periods, 𝑡 = 1,… , 𝑇 for the intervention hospital 𝑌)" and for the control hospitals 𝑌'" 
where 𝑗 = 2,… , 𝐽 + 1. X1 will be a (k x 1) vector containing the values of the pre-program 
characteristics of the treated clinic that we aim to match as closely as possible. X0 is a k 
x J matrix with values of the same variables for the control clinics. The preintervention 
characteristics in X0 and X1 may include pre-intervention values of the outcome(s). We 
will utilize the synth package (cite R synth package) to choose the vector W* that 
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minimizes the distance ‖𝑋) − 𝑋%𝑊‖	between X1 and X0W. The synth() function solves 
for W* by minimizing 
 

‖𝑋) − 𝑋%𝑊‖𝑣 = A(𝑋) − 𝑋%𝑊)′𝑉(𝑋) − 𝑋%𝑊) 
 
Where V is a (k x k) matrix allowing for different weights to be applied to variables in X0 
and X1 based on their predictive power on the outcome. We will utilize a data-driven 
procedure to choose V*, such that the mean-squared prediction error (MSPE) of the 
outcome is minimized over the pre-program years2,16,17  
 

𝑎𝑟𝑔𝑚𝑖𝑛-	∈	𝒱(𝑍) − 𝑍%𝑊∗(𝑉))′(𝑍) − 𝑍%𝑊∗(𝑉)) 
 
Since large sample inferential techniques are not appropriate in this setting due to the 
small number of units, Abadie et al. (2010) propose a method of inference for synthetic 
controls based on exact inferential techniques; placebo/permutation test may be used to 
assess how unusual an effect would be if it were due to chance and thus provide 
context for the effect size. In short, the effect of the intervention is estimated separately 
for each unit in the donor pool through a series of placebo (permutation) tests; we 
iteratively apply the synthetic control method for each control hospital, reassigning the 
treatment to each control hospital as though it were the one that had implemented the 
intervention, and obtaining a distribution of “placebo effects”. The estimated effect of the 
actual treated hospital can then be compared to the size of these other effect estimates. 
The effect of the treatment on the actual affected unit is considered significant when its 
magnitude is large relative to the distribution of “placebo effects”. Typically, the 
permutation test results are compared for hospitals in which pre-program trends are well 
predicted by the synthetic control, because hospitals with a poorly matched synthetic 
control might appear to have more extreme differences resulting from an artifact of poor 
prediction.  
 
It is possible that even if a synthetic control is able to closely approximate the outcome 
trend of the treated unit during the preintervention period, it may not be able to do so for 
all the units in the donor pool during permutation tests. Thus, Abadie et al. (2010) define 
the root mean squared prediction error (RMSPE) of the synthetic control estimator as: 
 
For 0 ≤ 𝑡) ≤ 𝑡& ≤ 𝑇 and 𝑗 = {1, … , 𝐽 + 1} let  
 

𝑅'(𝑡), 𝑡&) = J
1

𝑡& − 𝑡) + 1
K L𝑌'" − 𝑌1"#MN

&"!

",""
O
)/&

 

 
where	𝑌1"#M  is the outcome on period t produced by a synthetic control for any unit j that is 
the treated unit and all others are part of the donor pool. The ratio between the post-
intervention RMSPE and the pre-intervention RMSPE for unit j is  
 

𝑟' =
𝑅'(𝑇% + 1, 𝑇)
𝑅'(1, 𝑇%)
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and measures the quality of the fit of a synthetic control for unit j during the 
postintervention period, relative to the quality of the fit in the pre-intervention period and 
is a useful test statistic for inference based on the permutation distribution. A p-value 
can be calculated to summarize the results of the permutation tests:  

𝑝 =
1

𝐽 + 1K𝐼((𝑟) − 𝑟')
+()

',)

 

 
where 𝐼( is an indicator function that returns one for non-negative arguments and zero 
otherwise18.   
 
SCM offers a suitable alternative evaluation approach when there is a small number of 
treated and control units. Unlike traditional DiD methods that rely on assumptions that 
the trend in the pre-implementation period would have continued into the post-
implementation period had the intervention not occurred, SCM does not rely on such a 
parallel trends assumption to estimate the treatment effect. This can be advantageous 
in situations where it is difficult to establish whether the parallel trends assumption 
holds. Despite the practical advantages of SCM, successful application of the method 
depends heavily on data requirements as well as important contextual decisions during 
the data preparation process. While SCM has been applied widely to study the impact 
of laws, policies, reforms and other large-scale events, to our knowledge, it has not 
been used as an evaluation method for programs offered to patients within a health-
care system setting. Programs delivered within health systems often have complex 
causal pathways that require understanding of the specific pathways to seeking care 
within the health care system, recognize higher level influences on individual behavior, 
consider multiple outcome measures both proximal and distal to the intervention, and 
recognize that strict adherence to the protocol is unlikely given geographical and 
resource variations within different sites of the health care system. This dissertation will 
apply the SCM to three programs implemented in recent years within Sutter Health, a 
large health care system in Northern California. In doing so, we hope to determine any 
impacts of the program, illuminate any methodological limitations, and provide guidance 
on when and how SCM should be applied within similar settings.   
 
 
1.2 Specific Aims 

 

In this dissertation, I conduct a SCM analysis of three programs implemented with the 
Sutter Health system. My specific aims are as follows: 
 

1. To evaluate the impact of the Advancing Health Equity (AHE) Asthma program 
on 30-day and 90-day return to the emergency department for any reason and 
for breathing-related difficulties (Chapter 2). 

2. To assess the impact of a new protocol for treating individuals at risk for 
developing Alcohol Withdrawal Syndrome on leaving against medical advice 
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(AMA), risk of intensive care unit (ICU) admission and hospital length of stay 
(Chapter 3).  

3. To evaluate the impact of the Group Lifestyle Balance (GLB) program on mean 
weight and mean body mass index (BMI) (Chapter 4).  

 
All three evaluations will utilize electronic health record (EHR) data from Sutter Health’s 
Epic system and be compared against results of an individual-level propensity score 
matched analysis. The focus of Chapter 5 will be to summarize results from the three 
applications of SCM and discuss lessons learned from applying this method within a 
health-care system setting. 
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Chapter 2 - Evaluation of the Sutter Health 
Advancing Health Equity Asthma Program 
Utilizing Propensity Score Matching and the 
Synthetic Control Method 
 
Abstract 
 
Purpose 
To evaluate the impact of the Advancing Health Equity (AHE) Asthma program on 30-
day and 90-day all-cause return to the emergency department (ED).  
 
Methods 
We conducted an EHR-based retrospective cohort study of African American adults with 
asthma who enrolled in Sutter Health’s AHE Asthma program. We utilized propensity 
score matching and synthetic controls to examine the program effect at the individual-
level and at the hospital-level, respectively. To account for confounding based on 
comorbid COPD, we considered both the complete cohort and the cohort stratified by 
COPD status in the individual-level propensity score analysis. For the synthetic control 
analysis, we used the mean squared prediction error as a measure of fit between the 
treated unit and its synthetic control during the pre-program period. To obtain inference 
for the synthetic control method, we performed a series of placebo (permutation) tests in 
which we implemented the synthetic control method for each control hospital, as though 
it were the one that had implemented the asthma program. We then compared the 
treatment effect to the distribution of effects from these placebo tests.  
 
Results 
A total of 373 patients were enrolled into the asthma program from January 1, 2019 to 
February 29, 2020. After matching on the propensity score, the final analytic cohort 
consisted of 372 program participants and 1383 control patients. The odds of returning 
to the ED for breathing difficulty related reasons among program participants was 1.28 
(0.99, 1.64) times the odds among non-participants. Stratified by COPD status, a similar 
effect was observed. For 30-day returns to the ED, program participants had 0.85 times 
the odds of returning compared to non-participants (0.62, 1.16). Again, this effect is 
mirrored when stratified by COPD status, with odds ratios of 0.63 (0.34, 1.20) and 0.89 
(0.61, 1.29) for those with COPD and those without COPD, respectively. Lastly, the 
odds of returning within 90-days to the ED for program participants was 1.06 (0.83, 
1.36) times that of non-participants. This was consistent among those without a history 
of COPD. Among those with COPD, program participants had 0.91 (0.54, 1.54) times 
the odds of 90-day return compared to non-participants.  
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In the synthetic control analysis, our results did not suggest a significant effect of the 
asthma program on 30-day or 90-day return to the ED, at either ABSMC location. The 
differences in outcomes between the actual ABSMC Ashby and its synthetic control 
indicate that there was an average increase during the program of approximately 0.52 
returns and 1.2 returns, for 30-day and 90-day returns respectively. For ABSMC 
Summit, the average increase during the program was approximately 0.72 and 2.29 
returns for 30-day and 90-day returns respectively. However, for both 30-day and 90-
day returns to the ED, the synthetic ABSMC Ashby did not closely reproduce the 
outcome trend for the real ABSMC Ashby during the study period. The same trend is 
reflected in ABSMC Summit, where the synthetic ABSMC Summit also did not 
approximate closely the real ABSMC Summit.  
 
Conclusions 
We did not find evidence that the AHE Asthma program had an effect on our outcomes 
of interest at the individual level. Program participants appear to have fewer returns to 
the ED within 30-days, although this result was not significant. We also did not find any 
significant effects of the program at the hospital-level. Future explorations of synthetic 
controls in this setting should include additional hospital-level covariates to obtain better 
pre-program fit. 
 
 
Abbreviations 
 
ABSMC – Alta Bates Summit Medical Center 
AHE – Advancing Health Equity 
ED - Emergency department  
ER – Emergency room 
COPD – chronic obstructive pulmonary disorder 
HEI – health equity index 
AA – African American 
 
 
2.1. Background 
In the United States, the burden of asthma disproportionately affects low-income and 
minority populations; in particular, African American (AA) and Latino populations exhibit 
higher rates of asthma and poorer asthma outcomes, including hospitalizations and 
deaths19–23. Because asthma is considered an ambulatory care sensitive condition24, 
ER visits and hospitalizations for asthma are a marker for poor self-management of 
asthma. Recent trends indicate that the black to white racial disparity in asthma 
hospitalization is widening among the U.S adult population25. Much of this disparity can 
be attributed to unequal access to preventative asthma care for Blacks/AA compared to 
Whites. One study found that significantly fewer Blacks/AAs report care that is 
consistent with asthma recommendations, including use of inhaled corticosteroids (ICS), 
self-management education, education to avoid triggers and use of specialist care26. 
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Black and Hispanic individuals tend to underuse long-term control medications, due to a 
variety of reasons, including under-prescribing by physicians to patients who should 
receive them, as well as socioeconomic challenges or language and literacy barriers23. 
All these factors result in a pattern of health behavior characterized by under-use of 
routine health care services and a reliance on emergency care services for asthma.   

Sutter Health is a large health-care system in Northern California that provides care to 
>3 million people per year across diverse urban and rural communities, and thus offers 
a unique opportunity to enhance our understanding of health disparities and further 
solutions for achieving health equity. In 2017, Sutter Health designed and implemented 
a novel Health Equity Index (HEI) to identify and quantify health inequities for 
ambulatory care sensitive condition management in health-care systems27. The HEI 
represents the average ratio of observed-to-expected hospital encounters for a given 
disease or diagnosis in a set period of time and can be stratified by racial and ethnic 
subgroups28. A ratio of 1.0 or less indicates that the outcomes for the group are at least 
as good as or better than expected under conditions of equity. A ratio greater than 1.0 
indicates that the outcomes are not as good as expected for that particular group. Sutter 
Health’s HEI is the first implemented health equity metric to combine real-time, health 
care system data with external demographic, prevalence and utilization statistics to 
produce a value that can be attributed to specific racial and ethnic groups.  
 
In 2016, Alta Bates Summit Medical Center (ABSMC) had 649 patients who utilized the 
ED a total of 877 times for asthma-related reasons, resulting in an HEI value of 1.5. This 
was largely driven by Black/AA patients, in particular Black/AA women 60+ years of age 
and Black/AA men 45-64 years, who were disproportionately utilizing emergency 
services for asthma compared to what would have been expected under conditions of 
equity27. Based on this information, Sutter Health leaders at ABSMC began to design 
and implement a pilot program to address disparate outcomes for Black/AA patients 
with asthma who presented at ABSMC.  
 
To thoroughly evaluate the impact of Sutter Health’s AHE asthma program, we utilize 
two different approaches. First, we conducted a propensity score matched analysis at 
the patient level in which we compared AHE asthma program participants to control 
patients who did not receive the program. And second, we conducted a synthetic control 
analysis at the hospital level, in which ABSMC was compared to other Sutter Health 
EDs that did not implement the program. Specifically, we examined 30-day and 90-day 
return to the ED, as well as return to the ED for breathing related difficulties. 
 
 
2.2. Methods 
 
Study Design and Setting 
This is a retrospective EHR-based observational study conducted at Sutter Health, a 
large, not-for-profit community-based health care delivery system in Northern California 
that provides medical services across 130 ambulatory clinics and 24 acute care 
hospitals, including 22 ED sites. All Sutter Health clinics and hospitals are linked by a 
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single electronic health record system (Epic, Verona, WI). Sutter Health has 
approximately 11 million ambulatory visits, 870,000 ED visits and 200,000 hospital 
discharges annually. This study was approved by the UC Berkeley Committee for the 
Protection of Human Subjects (CPHS) and the Sutter Health Institutional Review Board 
(IRB) with a Health Insurance Portability and Accountability Act (HIPAA) waiver of 
authorization and informed consent.  
 
Asthma Program 
In January 2019, ABSMC partnered with a community-based federally qualified health 
clinic, Lifelong Medical Center in East Oakland and Berkeley, to launch the AHE asthma 
program designed to address the specific needs of Black/AA patients who utilized the 
ED for asthma-related reasons. Implemented at the two separate ABSMC locations, 
Summit campus and Ashby campus, the program aims to bring culturally appropriate 
community based respiratory and primary care to patients, to provide education about 
the disease and medication self-management, and to use high-touch and high-tech real-
time counseling services27. Although eligible patients are triggered by going to ABSMC’s 
ED, the asthma program is considered an outpatient program. Patients are invited to 
participate in the program by trained program coordinators, and receive an intensive, 
personalized experience. The program consists of: 

1. One-to-one educational sessions with a licensed respiratory therapist to review 
and teach proper medication protocols and adherence. 

2. Home visits to assess for allergens and triggers and identify ways to ameliorate 
them. 

3. Group classes to foster community and engage open discussions for long-term 
management. 

 
Cohort identification 
AHE program patients were identified via a monthly patient list sent from Lifelong 
Medical Clinic. In order to be eligible for the program, patients had to be aged 18 years 
or older, self-identify as African American, and have a discharge diagnosis of asthma 
from one of the two ABSMC ED campuses. Patients enrolled in the program from 
January 1, 2019 to November 11, 2020 were included in this study. To identify potential 
controls, we queried the Sutter Health Clarity EHR system using the same criteria for 
the same time period across the 20 non-intervention Sutter Health hospitals. Basic 
demographic information was also extracted from the EHR including age, sex, health 
insurance information, as well as medical history of COPD or any respiratory diseases 
within the last four years (Appendix Table A1).  
 
Covariates 
We selected covariates to include in the propensity score model based on available 
data, as well as a priori specification of variables that are believed to influence the 
probability of participating in the asthma program. These variables included age, sex, 
history of COPD, history of respiratory diseases, and health insurance type.  
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For the synthetic control analysis, we gathered hospital-level aggregate data on age, 
sex, race, ethnicity, and health insurance type from January 1, 2015 to February 29, 
2020.  
 
Outcome measures 
We considered two primary outcomes of interest: return to the ED within 30 days and 
90-days for any reason (both dichotomous outcomes). We assigned the anchor visit as 
the first initial ED visit during the study timeframe. We looked for any return to the ED 
within 30 days or 90 days after the initial anchor visit and created a binary indicator of 
having a return during the respective period. Because 30-day and 90-day all-cause 
return was an unspecific outcome, we also included return to the ED for breathing 
difficulty-related reasons as a secondary outcome for the propensity score matched 
analysis. We defined this for each patient as having at least one encounter visit for 
breathing difficulty reasons. In a subgroup analysis, we estimated the effect of the 
program on these outcomes, stratified by patient history of COPD.  
 
For the hospital-level synthetic control analysis, we aggregated counts of 30-day and 
90-day returns to the hospital level. 
 
Statistical Analyses 
 
All analyses were conducted in R version 4.0.3.  
 
Propensity score matching 
 
Observational studies are increasingly being used to estimate the causal effects of 
interventions. As it is not possible to randomly assign the asthma program intervention 
to patients, treatment selection will be influenced by subject characteristics. Thus, 
baseline characteristics between treated and untreated subjects may differ 
systematically and needs to be taken into account when estimating the effect of 
treatment on outcomes. Thus, we will utilize propensity score methods to correct for the 
treatment-selection bias imposed when estimating effects using observational data. 
 
The propensity score29 is the probability of receiving treatment conditional on observed 
baseline covariates. It is essentially a balancing score such that, conditional on the 
propensity score, the distribution of baseline covariates is similar between treated and 
untreated subjects30,31.  In randomized controlled trials, the true propensity score is 
known. However, in observational studies, it is not known, but can be estimated using 
data. Propensity score matching, in which treated and untreated subjects are matched 
together based on a similar propensity score value, allows for estimation of the average 
treatment effect among the treated (ATT): 
 

 𝐸[𝑌(1) − 𝑌(0)|𝑍 = 1] 
 

where Y(1) is the potential outcome under active treatment and Y(0) is the potential 
outcome under control treatment. The ATT is defined as the average effect of the 
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treatment on the sub-population who ultimately received the treatment. Once a matched 
sample has been created, the treatment effect can be estimated by comparing the 
outcomes between treated and untreated subjects in the matched sets. However, since 
observations within a propensity score matched sample are no longer independent, as 
treated and untreated subjects have similar values of the propensity score, this lack of 
independent should be taken into account either by treating the matching variable as a 
fixed or random effect30–32. 
 
We estimated the propensity scores as the probability of receiving the asthma program 
conditional on baseline characteristics. We used the MatchIt package33 to match 
asthma program patients to control patients 1:4, with replacement, using nearest 
neighbor matching with calipers width equal to 0.2 of the standard deviation of the logit 
of the estimated propensity score. We choose to match more than one control for each 
treated unit in order to increase the power of the procedure34. We checked covariate 
balance in the sample before and after matching by calculating the standardized mean 
difference (SMD)32 and via plotting procedures. The SMD is not confounded by sample 
size and thus allows for appropriate comparison between the balance in the original 
sample with the matched sample32. We considered an SMD greater than 0.1 as the 
threshold for imbalance35. Variables that created imbalance were included in the 
matching selection model36. 
 
In a sensitivity analysis, we stratified the original cohort by COPD status, and then 
matched control patients to program participants within each stratification, again using 
the nearest neighbor method and a caliper width of 0.2.  
 
We created a propensity score matched sample by matching program patients with 
controls that had a similar propensity score, thus treated and control patients within the 
same matched pair have a similar propensity score. We estimate the effect of the 
asthma program on our pre-specified outcomes as the difference in the probability of 
30-day return and 90-day return between treatment groups by directly estimating the 
difference in proportions between treatment groups in the propensity score matched 
sample. Because these patients within the same matched set have baseline covariates 
that are, on average, more similar than two randomly selected treated and control 
patients, they can no longer be considered independent32. Therefore, we calculated 
Mantel Haenszel adjusted odds ratios, stratifying by the matched set, to account for the 
matched nature of the propensity score matched sample. We used McNemar’s test for 
correlated binary proportions to assess statistical significance30–32. We chose this 
method, as opposed conditional logistic regression that is often used for matched-pairs 
data, because conditional logistic regression has been shown to result in biased 
estimation of odds ratios32.  
 

Synthetic control method  

While the program is administered at the individual patient level, the health equity 
leadership committee at Sutter Health are also interested in the clinic-level effects of the 
program, and thus we will also perform a synthetic control analysis to assess any 
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hospital-level changes resulting from the program with the goal of evaluating the 
program for scale-up and roll-out to other Sutter Health clinics.  

The synthetic control method (SCM) is an approach to program evaluation in which one 
or a small number of units are subject to intervention, and a comparative control unit is 
constructed such that the outcomes of the control units are weighted to construct the 
counterfactual outcome of the treated unit(s) in the absence of the treatment. This 
method has previously been used to analyze political and economic effects following 
large-scale events, state-level policy changes, health systems reforms, nutritional 
interventions, climate changes, and even the current COVID-19 pandemic2,4,8,17,37–40 
where it is difficult to find a single comparison unit that best approximates the relevant 
characteristics of the treated unit; indeed, a combination of units often provides a better 
comparison unit than any single unit alone. 

SCM offers another tool for program evaluation by using the pre-treatment interval to 
construct a predicted course among the treated group (after initiation of the intervention) 
if, contrary to fact, they had continued without intervention. No extrapolation is required 
as weights are restricted to be non-negative and sum to one, and the weights are 
calculated and chosen without seeing the post intervention data, reducing the risk of 
cherry picking or p-hacking, since no outcome data during the intervention is used to 
create the synthetic control18. The contribution of each control unit to the synthesized 
control is made explicit and offers transparency in the selection of the best 
counterfactual18. Additionally, SCM provides a visual representation of the impact of the 
intervention and how it varies over time, as well as a clear visualization of the actual 
discrepancy between the treated unit and the convex combination of untreated units, 
something that propensity score methods do not provide. Plots are produced that 
display what the observed outcome looks like compared to what would be expected in 
the absence of the intervention. Lastly, predictions from SCM may serve as input to the 
propensity score model, by acting as a baseline counterfactual. 

As the asthma program began in January of 2019, we define the years prior to 2019 as 
the pre-intervention period, and from January 1, 2019 to February 29, 2020 as the post-
intervention period. We use a data-driven approach that takes a weighted combination 
of hospitals to create a synthetic “control” ABSMC hospital, which provides an estimate 
of the expected outcome in ABSMC if the asthma program had not been implemented. 
The hospitals that comprise ABSMC’s synthetic control are selected by the method 
based on their pre-2019 trends in covariate and outcome values. Those that are best 
able to predict the pre-2019 outcome trends for ABSMC are chosen to be included in 
the synthetic control. The expected outcome trend for ABSMC from January 2019 to 
February 29, 2020 in the absence of the asthma program are then compared against 
the observed outcome trend. The difference between the observed and expected values 
is the treatment effect of interest, or the impact of the asthma program.  
 
We will utilize the Synth package41 to choose the vector of weights by minimizing 
 

‖𝑋) − 𝑋%𝑊‖𝑣 = A(𝑋) − 𝑋%𝑊)′𝑉(𝑋) − 𝑋%𝑊) 
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Where V is a matrix allowing for different weights to be applied to variables in X0 and X1 
based on their predictive power on the outcome. The synth() function also allows for a 
data-driven procedure to choosing V*, such that the mean-squared prediction error 
(MSPE) of the outcome is minimized over the pre-program years. Thus, the MSPE 
measures the quality of the fit of a synthetic control for the treated unit in the post-
program period2,17,37.  
 
Traditional large sample inferential techniques are not appropriate in this setting due to 
the small number of units; however, exact inferential techniques, such as a permutation 
test may be used to assess how unusual an effect is42. As advised in prior literature, we 
applied the synthetic control method to each control hospital, as though it were the one 
that had implemented the asthma program beginning January 2019. The estimated 
effect for ABSMC can then be compared to the size of these other effect estimates from 
the placebo tests. We used the SCtools43 package in R to generate and plot placebos 
as well as calculate and plot MSPE. We present the results of the test for all hospitals, 
in addition to the results for those hospitals with two times the mean squared prediction 
error (MSPE) observed for ABSMC. 
 
 
2.3. Results 
 
ABSMC consists of two separate sites, the Ashby campus and the Summit campus. 
While Abadie et al., 2010 suggests combining multiple treated units, we did not want to 
obscure differences in outcome trends and thus created two separate synthetic controls 
for each ABSMC hospital site that implemented the asthma program (Figure 2.1) 
 
We show in Figures 2.2 – 2.3 that plotting the outcomes of ABSMC compared to the 19 
other control hospitals demonstrates that a simple average of the control units does not 
closely approximate the outcome trend in ABSMC. One hospital, California Pacific 
Medical Center (CPMC) Van Ness, did not have sufficient covariate data during the pre-
period to be included. Thus, this motivates our decision to construct a synthetic control 
for each ABSMC site, with the goal of approximating a better counterfactual. 
 
 
Study Cohort Description 
We identified 373 patients who enrolled in the asthma program from January 1, 2019 to 
February 29, 2020, and 2,093 control patients that met the eligibility criteria for 
participating in the asthma program during the same time period. All but one (372 of 
373) asthma program patients were matched to at least one control patient, although 
not all had four matches. Thus, the final matched data set consisted of 1755 total 
patients. After matching on the propensity score, we found that all covariates were 
balanced, as shown in Table 2.1. 76 asthma program patients had a history of COPD, 
compared to 308 control patients without any history of COPD. The back-to-back 
histograms in Figures 2.4 and 2.5 show the distributions in propensity scores before 
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and after the match. This match suggests that the two groups are more similar in terms 
of their propensity scores after the match.  
 
 
30-day and 90-d all-cause return 
Among the program participants, 58 (15.59%) patients had an ED return within 30 days 
and 126 (33.87%) patients had an ED return within 90 days. We found that the odds of 
a 30-day return to the ED for any reason among program participants was 0.85 (0.62, 
1.16) times the odds of return among control patients (Figure 2.6). When stratified by 
COPD status, the effect was similar. The odds ratio associated with 30-day return was 
0.63 (0.34, 1.20) among those with a history of COPD, and 0.89 (0.61, 1.29) among 
those without a history of COPD. We saw a change in direction for the effect on 90-day 
returns. Program participants had 1.06 (0.83, 1.36) times higher odds of 90-day return 
compared to control patients (Figure 2.7). Although not significant, among those with 
COPD history, the odds of 90-day return among program participants was 0.91 (0.54, 
1.54) times the odds among control patients. Among those without COPD history, the 
odds of 90-day return was 1.09 (0.82, 1.45) times higher among program participants.  
 
Breathing Difficulty 
Matched program participants returned to the ED for breathing difficulty related reasons 
in similar proportions to the control patients: 33.1% and 28.4 %, respectively. Figure 2.8 
shows that the odds of returning to the ED for breathing difficulty reasons was 1.28 
(0.99, 1.64) times higher for patients in the asthma program compared to control 
patients. When stratified by COPD status, the adjusted odds ratio for returning to the ED 
for breathing difficulty was 1.56 (0.89, 2.75) and 1.25(0.95, 1.64), among those with 
history of COPD and no history of COPD, respectively.  
 
 
Synthetic control results 
A total of 19 other Sutter EDs comprised the potential control hospitals. Appendix 
figures A1 and A2 show a panel view of the available outcome data for each hospital at 
each month since January 2015. There was insufficient covariate data from one 
location, CPMC Van Ness Campus, and thus was dropped from the analysis. 
 
Tables 2.2-2.5 compares the pre-program characteristics of ABSMC to those of the 
synthetic ABSMC and also to those of a population weighted average of all 19 hospitals 
in the donor pool. Overall, this suggests that the synthetic ABSMC provides a much 
better comparison for ABSMC than the average of our sample of other Sutter hospitals.   
 
Tables 2.6-2.9 displays weights of each control hospital in the synthetic ABSMC. The 
weights indicate that 30-day return trends in ABSMC Ashby prior to the asthma program 
is best reproduced by a combination of CPMC Davies Campus, CPMC Mission Bernal 
Hospital, and Delta Medical Center. All other states in the donor pool are assigned zero 
weights. 90-day trends at ABSMC Ashby are best approximated by CMPC Davies 
Campus, Delta Medical Center, Eden Medical Center, Sutter Medical Center 
Sacramento and Sutter Solano Medical Center. The synthetic ABSMC Summit 30-day 
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return trend is comprised of only two hospitals. Most notably, the synthetic control for 
ABSMC Summit’s 90-day return trend is comprised of a single unit, Delta Medical 
Center.  
 
We used the mean squared prediction errors (MSPE) to measure fit between the 
treated unit and its synthetic control during the pre-program period. The MSPEs in the 
pre-program period for 30-day and 90-day returns are listed in Table 2.10.  
 
 
Effect of the AHE Asthma program 
Figure 2.9-2.12 displays the 30-day and 90-day returns to the ED for ABSMC Ashby 
and Summit and their respective synthetic controls for the period of January 1, 2015 to 
February 30, 2020. The number of 30-day and 90-day returns for the actual ABSMC 
Ashby were unsteady in the post-program period, dropping to zero in August/September 
of 2019 and spiking in November 2019. For both outcomes, the synthetic ABSMC 
Ashby does not closely reproduce the outcome for the real ABSMC Ashby during the 
study period; in fact, the two lines cross at multiple points during the post-program 
period.  The same trend is reflected in ABSMC Summit, with the synthetic ABSMC 
Summit unable to approximate well the real ABSMC Summit. 
 
Our estimate of the effect of the AHE asthma program on 30-day and 90-day return to 
the ED is given by the difference between the actual ABSMC and its synthetic version, 
or the “gap” between the two curves (figures 2.13-2.16). If our hypothesis is correct, we 
would hope to see a reduction in the number of 30-day and 90-day returns, and thus the 
gap (treated – synthetic) should be a negative number. However, as the figure 
indicates, the difference between the two series oscillates back and forth from positive 
to negative for the entire study period. The differences in outcomes between the actual 
ABSMC Ashby and its synthetic control indicate that there was an average increase 
during the study period of approximately 0.52 returns and 1.2 returns, for 30-day and 
90-day returns respectively. For ABSMC Summit, the average increase during the 
program was approximately 0.72 and 2.29 returns for 30-day and 90-day returns 
respectively. Thus, our results do not suggest a pronounced effect of the asthma 
program on reducing 30-day or 90-day returns to the ED, at either ABSMC location.  
 
 
Placebo tests 
To evaluate the significance of our results, we use placebo tests to determine if our 
results could be driven entirely by chance (how often we would obtain results of this 
magnitude if we had chosen a hospital at random for the study instead of ABSMC). 
Figures 2.17-2.22 displays the results of the placebo test. The gray lines represent the 
gap associated with each iteration of the test or the difference in 30-day returns 
between each hospital in the donor pool and its respective synthetic control. The 
superimposed black line denotes the gap estimated for ABSMC Ashby and Summit, 
respectively. As specified earlier, the placebo tests allow us to obtain synthetic control 
estimates for hospitals that did not actually implement the asthma program, and thus we 
can compare the estimated effect of the asthma program on ABSMC to the distribution 
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of placebo effects obtained for other hospitals. We consider the effect significant if the 
estimated effect for ABSMC is unusually large relative to the distribution of placebo 
effects. As figures 2.17-2.22 illustrates, the estimated gap for ABSMC does not appear 
to be unusually large relatively to the distribution of the gaps for the other hospitals in 
the donor pool.  
 
The pre-program mean squared prediction error (MSPE) for ABSMC Ashby (the 
average of the squared discrepancies between 30-day returns and 90-day returns in 
ABSMC Ashby and its synthetic counterpart during the pre-program period) is 2.9 and 
5.6, respectively. These are fairly small MSPEs. The lack of fit is more pronounced for 
ABSMC Summit, with a MSPE of 11.2 and 22.2 for 30-day and 90-day returns 
respectively. The control hospital with the worst fit compared to its synthetic in the pre-
program period is Sutter Medical Center Sacramento, with a MSPE of 11.6 for 30-day 
returns. This indicates that the outcome trend at Sutter Medical Center Sacramento is 
not well reproduced by a combination of all other hospitals. For 90-day returns, Delta 
Medical Center has the highest MSPE (26.7) compared to its synthetic version.  
 
As Abadie et al. (2010) suggests, we repeat the placebo tests again, this time excluding 
hospitals with poor fit in the pre-program period (pre-program MSPE more than two 
times the MSPE of ABSMC). For ABSMC Ashby this meant discarding two hospitals 
with large pre-program MSPE values. Evaluating against only hospitals that have a low 
MSPE (good fit), the gap for ABSMC Ashby still does not appear unusual. We did not 
restrict the MSPE for ABSMC Summit as the MSPE for the actual treated unit was 
higher than all the other placebo test MSPEs.  
 
Finally, we evaluate the ABSMC gap relative to the gaps obtained from the placebo 
runs by looking at the distribution of the ratios of post/pre-program MSPE. A ratio of the 
post-program MSPE to the pre-program MSPE measures the quality of the fit of a 
synthetic control for its treated unit in the post-program period, relative to the quality of 
the fit in the pre-program period. Figure 2.23-2.26 displays the distribution of post/pre-
program ratios of the MSPE for ABSMC and all 19 control hospitals. The ratio for 
ABSMC Ashby 30-day returns is about 1.25 and does not clearly stand out in the figure; 
two control hospitals achieved a larger ratio than ABSMC Ashby. Indeed, we obtained a 
p-value of 0.15 and 0.1 for 30-day and 90-day returns at ABSMC Ashby respectively. In 
other words, if we were to assign the program at random, the probability of obtaining a 
post/pre MSPE ratio as extreme or more extreme than that of the treated unit is 0.15 
and 0.1, respectively. Likewise, the p-values for 30-day and 90-day returns at ABSMC 
Summit are 0.7 and 0.25 respectively. 
 
This further confirms the trends shown in figure 2.17 – 2.22. The trend for the actual 
ABSMC Ashby and ABSMC Summit is not unusually large or small compared to the 
placebo trends, thus indicating that the effect is not significant. 
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2.4. Discussion 
 
Selecting appropriate comparison groups is critical to assessing the impact of programs 
implemented within health care systems. We explore the construction of two different 
comparison groups applied to an asthma education program within Sutter Health.   
 
Results from the propensity score matched analysis indicate that there was no 
significant effect of the AHE asthma program on return visits to the ED. While not 
significant, the magnitude of the odds ratio in the opposite direction we would expect if 
the program had its intended effect. The results for 30-day returns to the ED indicate 
that the effect of the program is in the direction we would hope, however the results are 
not significant. In addition, ED returns for breathing difficulty reasons were also not 
lower in the treated group.  
 
Based on the synthetic control analysis, at the hospital level, we also did not find 
evidence that the AHE asthma program at ABSMC was associated with a decrease in 
the number of 30-day and 90-day returns to the ED, relative to the synthetic control. 
However, the credibility of a synthetic control estimator depends heavily on its ability to 
track the trajectory of the treated unit’s outcome during the pre-period. As tables 6-9 
indicate, the synthetic control may be underfitted, as weights are assigned to only a few 
hospitals or a single hospital, which suggests that the construction of the synthetic 
control is not really borrowing much information across the control units. This may 
suggest that SCM is not the best method for making a prediction model of the treated 
unit from the control units. Thus, due to the fact that the synthetic ABSMC failed to fit 
30-day and 90-day returns for the real ABSMC during the pre-program, we cannot 
definitely say that there was no effect of the program in the post-program period. 
Similarly, placebo runs with poor fit prior to the program also do not provide information 
to measure the relative rarity of estimating a large post-asthma program gap for any 
given hospital.   
 
Interestingly, for the outcome 90-day returns, Delta Medical Center was given a 
relatively large weight in forming the synthetic control for both ABSMC Ashby and 
Summit. However, in placebo tests in which we constructed a synthetic Delta Medical 
Center, the MSPE comparing the actual Delta Medical Center to its synthetic resulted in 
a higher value (11.6). One possible explanation of this is that ABSMC is more extreme 
in terms of the outcome compared to the control hospitals, so the method selects other 
extreme units as good comparators. However, when they rotate into the role of the 
“treated” unit in placebo tests, they are also difficult to fit well by a combination of all 
other hospitals.  
 
Actual counts of the outcome were very low, both prior to program implementation and 
after program implementation, with many months in which the outcome was zero. As 
the nature of synthetic controls focuses on a single treated unit (or a small number of 
treated units), it is possible that small effects are indistinguishable from other influencers 
of the outcome in the treated unit, especially if the outcome is highly volatile18 . As a 



 19 

result of this, the impact of “small” programs with effects of a magnitude similar to the 
volatility of the outcome may be difficult to detect.  
 
We acknowledge several limitations in our study. First, we had limited ability to replicate 
all of the relevant characteristics of the treatment population in the comparison group 
given the available data. It is possible that there are other confounding factors that we 
did not have data on, and thus were not able to adjust for in our analysis. Additionally, 
while the synthetic control method allowed us to capture the desired scope of impacts of 
the asthma program, it is non-specific and does not allow us to test the specific 
mechanism that led to the change. It is possible that unrelated factors we did not control 
for changed during the study period, and though unrelated to the asthma program, 
affected rates of returning to the ED. As such, a major limitation of the synthetic control 
method is that it does not allow us to distinguish between co-occurring events. To 
explore this further, future analyses should incorporate techniques such as a negative 
control, which estimates the effect of an exposure on an outcome that it should be 
plausibly impact, but which may be affected by a confounding factor44. If an effect is still 
observed, it can be assumed that there is confounding or bias present. Another valid 
concern in the context of this study is the potential for spillover effects. It is possible that 
other hospitals may have had their own asthma education programs, and thus we would 
expect the synthetic control estimator to be attenuated, thus underestimating the effect 
of the program.   
 
This study also benefits from several strengths. We utilized two evaluation 
methodologies to study our outcomes at both the patient-level and the hospital-level. 
We chose to use the synthetic control method in order to improve our control group 
selection. One of the central motivations for using the synthetic control method was that 
it provides researchers with a quantitative tool to select appropriate comparison groups. 
In our analysis, a handful of control hospitals emerged as potential comparisons to 
ABSMC, which we displayed in Table 2.3, making explicit the contribution of each 
comparison unit to the counterfactual of interest. Traditional regression analysis fails to 
provide such a transparent list, as typically all units contribute to the regression fit and 
the contribution of units with positive regression weights may be counteracted by 
negative weights. In addition, because synthetic control weights are non-negative and 
sum to one, they avoid extrapolation outside the area of support, something that 
regression does due to the fact that weight may fall outside of the (0,1) bounds.  
 
We believe that future explorations of the use of synthetic controls to evaluate a health 
care system program should incorporate additional hospital-level variables in order to 
obtain a better pre-program fit. Many of the predictor variables used in our synthetic 
control analysis were patient-level characteristics, aggregated to the hospital level. 
Information related to hospital resources, utilization costs, socioeconomic factors, etc. 
may provide added value. 
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2.5. Conclusions 
 
Health care systems research needs additional program evaluation tools to quickly 
evaluate the success of their programs. In this paper, we utilize propensity score 
techniques to compare outcomes between asthma program participants and their 
matched control patients, as well as apply the data-driven synthetic control method to 
select the most appropriate comparison unit for ABSMC. We find that the AHE asthma 
program does not appear to have an effect at the individual level, or at the hospital 
level. Using placebo tests, we show that the effect of the asthma program is not 
unusually large compared to placebo estimates of the program effects among the 
control units.  
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2.6. Figures 
 
 
 

 
Figure 2.1. Trends in 30-day and 90-day return to the ED: ABSMC Ashby vs ABSMC 
Summit 

 
 
 
 
 
 
 
 
 

 
Figure 2.2. Trends in 30-day and 90-day return to the ED, ABSMC Ashby vs. other 
Sutter Health hospitals. 
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Figure 2.3. Trends in 30-day and 90-day return to the ED, ABSMC Summit vs. other 
Sutter Health hospitals. 

 
 

 
Figure 2.4. Distribution of propensity scores before matching. 

 
 
 

 
Figure 2.5. Distribution of propensity scores after matching. 
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Figure 2.6. 30-day returns for asthma program participants and control patients. 
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Figure 2.7. 90-day returns for asthma program participants and control patients. 
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Figure 2.8. Breathing Difficulty returns for matching asthma program participants and 
control patients. 
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Figure 2.9. Trends in 30-day return to the ED, ABSMC Ashby vs Synthetic ABSMC 
Ashby. 

 
 
 
 
 
 

 
Figure 2.10. Trends in 90-day return to the ED, ABSMC Ashby vs Synthetic ABSMC 
Ashby. 
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Figure 2.11. Trends in 30-day return to the ED, ABSMC Summit vs. Synthetic ABSMC 
Summit. 

 
 
 
 
 
 
 

 
Figure 2.12. Trends in 90-day return to the ED, ABSMC Summit vs. Synthetic ABSMC 
Summit. 
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Figure 2.13. Gap in 30-day returns between ABSMC Ashby and synthetic ABSMC 
Ashby. 

 
 
 
 
 

           

 
Figure 2.14. Gap in 90-day returns between ABSMC Ashby and synthetic ABSMC 
Ashby. 
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Figure 2.15. Gap in 30-day returns between ABSMC Summit and synthetic ABSMC 
Summit. 

 
 
 
 
 
 
 

 
Figure 2.16. Gap in 90-day returns between ABSMC Summit and synthetic ABSMC 
Summit. 
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Figure 2.17. Gap in 30-day returns between control hospitals and ABSMC Ashby and 
their respective synthetic controls, all hospitals. 
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Figure 2.18. Gap in 30-day returns between control hospitals and ABSMC Ashby and 
their respective synthetic controls, hospitals with <2 MSPE of ABSMC Ashby. 
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Figure 2.19. Gap in 90-day returns between control hospitals and ABSMC Ashby and 
their respective synthetic controls, all hospitals. 
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Figure 2.20. Figure 18. Gap in 90-day returns between control hospitals and ABSMC 
Ashby and their respective synthetic controls, hospitals with <2 MSPE of ABSMC Ashby 
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Figure 2.21. Gap in 30-day returns between control hospitals and ABSMC Summit and 
their respective synthetic controls, all hospitals. 
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Figure 2.22. Gap in 90-day returns between control hospitals and ABSMC Summit and 
their respective synthetic controls, all hospitals 
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Figure 2.23. Ratios of post-program MSPE and pre-program MSPE, ABSMC Ashby vs 
control hospitals, 30-day returns. 

 
 
 
 
 

 
Figure 2.24. Ratios of post-program MSPE and pre-program MSPE, ABSMC Ashby vs 
control hospitals, 90-day returns. 
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Figure 2.25. Ratios of post-program MSPE and pre-program MSPE, ABSMC Summit vs 
control hospitals, 30-day returns. 

 
 
 
 
 
 
 

 
Figure 2.26. Ratios of post-program MSPE and pre-program MSPE, ABSMC Summit 
vs. control hospitals, 90-day returns. 
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2.7. Tables 
 
Table 2.1. Baseline covariates for Asthma program participants and control patients. 

 Unmatched Cohort Matched Cohort 
 Program 

Participan
ts 

Control 
Patients 

 Program 
Participa

nts 

Control 
Patients 

 

 N = 373 N = 2093 Standardized 
Mean 

Difference 
(SMD) 

N = 372 N = 1383 Standardi
zed Mean 
Differenc
e (SMD) 

Demographics       
Mean Age, 
Years  ± SD 

46.08 ± 
16.31 

40.54 ± 
15.46 

0.349* 45.97 ± 
16.19 

44.11 
(15.23) 

0.118* 

Female (%) 239 
(64.1%) 

1235 
(59%) 

0.104 239 
(64.2%) 

859 
(62.1%) 

0.044 

History of 
COPD (%) 

76 (20.4) 308 (14.7) 0.149* 75 (20.2) 246 (17.8) 0.061 

History of 
respiratory 
disease (%) 

270 (72.4) 1379 
(65.9) 

0.141* 269 (72.3) 953 (68.9) 0.075 

Insurance type   0.226*   0.075 
  HMO, n (%) 45 (12.1) 369 (17.6)  45 (12.1) 151 (10.9)  
  Medicaid/Medi
-Cal 

219 (58.7) 1055 
(50.4)  

219 (58.7) 820 (59.3) 
 

  Medicare FFS 76 (20.4) 402 (19.2)  76 (20.4) 274 (19.8)  
  Other, 
PPO/FFS, Self, 
Unknown 

33 (8.8) 267 (12.8) 

 

33 (8.8) 138 (10.0) 

 
*P<0.05 (derived from t tests or Chi-square tests of independence) 



 39 

 

Table 2.2. Predictors prior to the implementation of the asthma program, 30-day returns, 
ABSCM Ashby. 
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Table 2.3. Predictors prior to the implementation of the asthma program, 90-day returns, 
ABSMC Ashby. 
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Table 2.4. Predictors prior to the implementation of the asthma program, 30-day returns, 
ABSMC Summit 
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Table 2.5. Predictors prior to the implementation of the asthma program, 90-day returns, 
ABSMC Summit. 
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Table 2.6. Hospital weights for synthetic ABSMC Ashby in approximating the number of 
30-day returns to the ED. 
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Table 2.7. Hospital weights for synthetic ABSMC Ashby in approximating the number of 
90-day returns to the ED. 
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Table 2.8. Hospital weights for synthetic ABSMC Summit in approximating the number 
of 30-day returns to the ED. 
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Table 2.9. Hospital weights for synthetic ABSMC Summit in approximating the number 
of 90-day returns to the ED. 

 
 
 
 
Table 2.10. Mean squared prediction error (MSPE) in the pre-program period. 
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Chapter 3 - A Propensity Score and Synthetic 
Control Approach to Evaluating a New Protocol 
for Patients at Risk for Alcohol Withdrawal 
Syndrome 
 
 
Abstract 
 
Purpose: To evaluate the impact of Eden Medical Center’s (EMC) new alcohol (ETOH-
P) withdrawal syndrome treatment protocol on risk of patient’s leaving the hospital 
against medical advice (AMA), intensive care unit (ICU) admissions, and hospital 
length-of-stay (LOS).  
 
Methods: We utilized EHR data from Sutter Health’s Epic system to conduct a 
retrospective secondary analysis of the impact of the ETOH-P treatment protocol 
implemented at EMC beginning in April 2019. Using propensity score matched methods 
and synthetic controls, we assess the impact of the program on risk of patient’s leaving 
the hospital AMA, ICU admissions, and hospital LOS at both the patient level and 
hospital level, respectively. We matched patients at EMC to patients who presented to 
other Sutter Health EDs based on relevant characteristics captured in a propensity 
score. We constructed a synthetic EMC using a combination of other Sutter Health EDs 
with similar characteristics during the years prior to April 2019 and performed a series of 
placebo tests to compare the treatment effect to the distribution of placebo effects.  
 
Results 
A total of 310 patients from EMC received the ETOH-P protocol from April 1, 2019 to 
March 2, 2020. Of the 310, 76 patients received only the active withdrawal order set, 
159 patients received only the prophylaxis order set, and 67 patients received both 
order sets. 1229 control patients were matched to the ETOH-P protocol patients. 
Patients who received the ETOH-P protocol had 1.47 (0.96, 2.27) times the odds of 
leaving AMA and 1.00 (0.77, 1.30) times the odds of ICU admissions compared to those 
who did not receive the protocol. Neither of these estimates were statistically significant. 
Patients on the ETOH-P protocol had, on average, 0.19 (0.11, 0.26) more days in the 
hospital, compared to those not on the ETOH-P protocol, and this difference was 
statistically significant. We were not able to construct a synthetic EMC that closely 
mimicked the outcome trends of the actual EMC during the pre-intervention period. 
During the post-intervention period, the trends at EMC for all three outcomes were 
generally higher compared to the synthetic version, showing the opposite effect than we 
had originally hypothesized.  
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Conclusions 
For both the propensity score matched analysis and the synthetic control analysis, we 
did not find evidence that the ETOH-P program led to fewer patients leaving AMA, fewer 
ICU admissions, or shortened length of stay. Future assessment of the ETOH-P 
program should focus on additional outcomes such as severity of AWS, and factor in 
additional information such as patient comorbidities and the number of diagnoses. 
 
 
 
Abbreviations 
 
EMC - Eden Medical Center  
ED - Emergency department  
AMA - Against Medical Advice  
LOS - Length of stay  
ICU - Intensive Care Unit  
ETOH-P – Ethanol: in the context of this study, it refers to a new alcohol withdrawal 
syndrome prophylaxis protocol implemented at Eden Medical Center 
AWS – Alcohol Withdrawal Syndrome 
CIWA - Clinical Institute Withdrawal Assessment for Alcohol 
SCM – Synthetic Control Method 
PSM – Propensity Score Matching  
 
 
 
3.1. Background 
 
Alcohol abuse is a widespread societal and economic burden in the United States, 
resulting in 85,000 deaths and 200 billion dollars in spending annually45. On a larger 
scale, alcohol contributes substantially to the global burden of disease with 4-6% being 
attributable to alcohol and has been identified as a major risk factor for chronic disease 
and injury. In 2004, 3.8% of all global deaths were attributable to alcohol, 6.3% for men 
and 1.1% for women46. Unsurprisingly, alcohol-use disorders follow the same pattern as 
alcohol-attributable harm, with men having more disorders than women. Alcohol use 
disorders offer a major burden on American society, with one in four children younger 
than 18 years having some exposure to family alcohol problems47. 
 
In 2006, the estimated economic cost of excessive drinking was $223.5 billion, 
approximately $746 per person48. Excessive alcohol consumption also causes direct 
consequences such as premature death, increased health care costs, as well as indirect 
costs associated with property damage from fire and motor vehicle accidents, increased 
crime and criminal justice system costs, and lost worker productivity in the form of 
missed work, diminished output and reduced earnings potential46,48. 
 
The burden of alcohol-related problems on hospitals and health care systems is 
tremendous, both in terms of ED and out-patient services. In a prospective study 



 49 

conducted at an inner-city hospital in north-west England, they found that overall 6.2% 
of all hospital admissions were due to alcohol-related problems, and that over 2,800 
new out-patient visits were likely to have been generated over an 18-month period due 
to an initial alcohol-related visit49. Between 2006 and 2014, the number of ED visits 
involving alcohol consumption increased 61.6% in the United States50. The largest 
increase in rates for acute alcohol-related visits to the ED occurred in age groups 45 to 
54 and 55 to 64, which is consistent with the age group that experienced the highest 
increase in alcohol-induced liver cirrhosis deaths (37%)50. EDs present a pivotal 
opportunity to detect and refer patients who misuse alcohol, as it is an appropriate place 
to offer patients initial health and education on their drinking habits. In a cost-benefit 
analysis assessing the impact of alcohol intervention programs in trauma centers on 
health care costs, the authors found that 27% of adult patients presenting to the ED 
were candidates for a brief alcohol intervention, and that the net cost of savings due to 
the intervention was $89 per patient screened, and $330 for each patient offered an 
intervention51.  
 
It has been well established that abrupt reduction, or total cessation of chronic alcohol 
use leads to serious complications. Diagnosis of alcohol withdrawal is defined by the 
Diagnostic and Statistical Manual of mental Disorders (DSM-5). In most cases, the 
symptoms of alcohol withdrawal are mild and do not require medical intervention, 
disappearing within 2-7 days after the last drink, but in more severe cases, medical 
intervention may be needed.  Alcohol withdrawal syndrome (AWS) is a set of signs and 
symptoms that vary between mild to severe, typically developing in alcohol-dependent 
people within 6-24 hours of their last drink52. The symptomology of AWS can be divided 
into three categories of symptoms. The first consists of autonomic hyperactivity in the 
form of tremulousness, sweating, nausea, vomiting, anxiety and agitation, which 
appears within hours of the last drink and peaks within 24-48 hours. The second 
consists of neuronal excitation symptoms, which includes epileptiform seizures 
occurring within 12-48 hours of abstinence. The final set of symptoms consists of 
delirium tremens, which develops in a few patients (3-5%), characterized by auditory 
and visual hallucinations, confusion, disorientation, clouding of consciousness, impaired 
attention, and pronounced autonomic hyperactivity. In the most severe cases, death 
may occur from respiratory and cardiovascular collapse.  
 
The pathophysiology of AWS is complex as chronic alcohol use affects various 
neurotransmitter system responses within the brain. Ƴ-aminobutyric acid (GABA), the 
major inhibitory neurotransmitter in the CNS and its receptor are downregulated during 
chronic alcohol use such that upon abstaining, this downregulation continues, leading to 
many of the AWS symptoms. Prolonged alcohol use also inhibits glutamate 
neurotransmitter activity, the major excitatory neurotransmitter in the CNS, and alters 
the conformational form of N-methyl-aspartate (NMDA) receptors53. Abrupt cessation of 
alcohol exposure results in brain hyper excitability, as receptors previously being 
inhibited by alcohol are no longer inhibited.  
 
Medical history and physical examination are key in diagnosing the severity of alcohol 
withdrawal. Standardized clinical rating scales have been developed to help monitor the 
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severity of AWS. The Clinical Institute Withdrawal Assessment for Alcohol (revised) 
(CIWA-Ar) is a validated and reliable ten-item rating scale of patients’ symptoms that 
may be used to guide clinical decision making54. CIWA-Ar scores of 8 points or lower 
correspond to mild withdrawal, while scores of 9 to 15 indicate moderate withdrawal, 
and scores greater than 15 points indicate severe withdrawal. The standardized 
treatment management for patients with suspected alcohol withdrawal is initial 
resuscitation and rehydration, and administration of a GABA agonist53. Benzodiazepines 
offer one treatment option by increasing the frequency of GABA-receptor channel 
opening and preventing progression to more serious withdrawal symptoms. There is no 
clear consensus on the best benzodiazepine treatment, but several are available for 
treatment including diazepam, lorazepam, midazolam, oxazepam, and 
chlordiazepoxide.  
 
Current practice varies greatly both within the Sutter Health system and the overall 
medical community. While some hospitals utilize the CIWA assessment method and 
strictly Benzodiazepines for treatment, others have implemented protocols where 
providers prescribe both Benzodiazepines with additional medications to address hyper-
adrenergic and delirium symptoms. Historically, the protocol at EMC has been to assess 
patients using the CIWA score and treat symptoms of AWS with benzodiazepines. 
While the CIWA tool has been shown to have high validity and inter-rater reliability, it 
requires the clinical team to wait for the patient to show signs and symptoms of 
withdrawal prior to starting treatment. However, as recent studies have shown that 
delirium increases hospital acquired conditions, length of stay, cost of care, death and 
long-term cognitive impairments55, the question of why treatment can’t be initiated 
sooner to prevent AWS symptoms before they begin is pertinent. Thus, in April of 2019, 
EMC implemented a new treatment protocol (ETOH-P) for patients at risk of developing 
AWS.  
 
To thoroughly evaluate the impact Eden Medical Center’s (EMC) ETOH-P protocol 
program, we utilized two different approaches. First, we conducted an analysis to 
determine the effect of the new protocol at the patient level in which we compared EMC 
participants to control patients who did not receive the ETOH-P protocol using a 
propensity score matched analysis. Second, we considered its effect at the hospital 
system level using a synthetic control method in which we compared EMC to other 
Sutter Health Eds that did not implement the ETOH-P protocol. Specifically, we 
examined the risk of leaving AMA, average hospital length of stay, and risk of ICU 
admission. The present analysis represents an application of the SCM method to an 
inpatient hospitalization protocol, where a patient receives the protocol if they present at 
the ED with indications of heading into alcohol withdrawal. We hypothesize that the 
implementation of the ETOH-P protocol within EMC will show an overall increase in the 
use of this multimodal approach to AWS, resulting in improved overall care for this 
patient population via fewer patients leaving the hospital AMA, fewer patients admitted 
to the ICU and shorter hospital stays.  
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3.2. Methods 
 
Study Design and Setting 
This is a retrospective EHR-based observational study conducted at Sutter Health, a 
large, private, and not-for-profit community-based health care delivery system in 
Northern California that provides medical services across 130 ambulatory clinics and 24 
acute care hospitals, including 22 ED sites (Appendix A3). All Sutter Health clinics and 
hospitals are linked by a single electronic health record system (Epic, Verona, WI). 
Sutter Health has approximately 11 million ambulatory visits, 870,000 ED visits and 
200,000 hospital discharges annually. This study was approved by the UC Berkeley 
Committee for the Protection of Human Subjects (CPHS) and the Sutter Health 
Institutional Review Board (IRB) with a Health Insurance Portability and Accountability 
Act (HIPAA) waiver of authorization and informed consent.  
 
ETOH-P Program 
The ETOH-P program, designed to reduce the number of patients who progressed to 
AWS, was implemented at EMC beginning April 2019. The program consists of two 
protocols, one aimed at preventing AWS (prophylaxis protocol) and the other at treating 
AWS earlier in its course with targeted pharmaceuticals (active withdrawal protocol). 
Upon admission to EMC, patients are identified as being at mild, moderate or severe 
risk of developing AWS based on their history of developing AWS. Patients are placed 
on either the Mild Risk Prophylaxis Protocol, the Moderate Risk Prophylaxis Protocol, or 
the Severe Risk Prophylaxis Protocol based on their history of withdrawals. If no 
withdrawal history is obtainable and the patient is known to drink more than three drinks 
per day, they are placed on the Mild Risk Prophylaxis Protocol. For each protocol, the 
ordering provider has the option of choosing between two benzodiazepine tapered dose 
regimens. Each patient will also be started on a course of supportive medications that 
include thiamine, folic acid and multivitamins. Vital signs and the Richmond Agitation 
Sedation Scale (RASS) are monitored continuously.  
 
If active withdrawal develops (either present at the time of admission or otherwise), the 
patient is treated with a symptom-based Active Withdrawal Protocol that treats each 
symptom with an appropriate corresponding pharmacological medication. Patients are 
also classified into Mild Active Withdrawal, Moderate Active Withdrawal or Severe 
Active Withdrawal based on their symptoms. Benzodiazepines, in combination with 
medications for hyperadrenergic activity and delirium are used if those symptoms are 
also present. Patients are also started on a course of supportive medications that 
includes thiamine, folic acid and multivitamins. Vital signs and the RASS are monitored 
routinely.  
 
Cohort identification 
EMC patients who received the ETOH-P protocol were identified from the EHR if they 
received either the prophylaxis order set, or the active withdrawal order set. From the 
EHR, we retrospectively identified “control” patients who did not receive the protocol 
from a pool of eligible patients from all other Sutter Health hospitals. Patients were 
included in the study if they were  
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1. at least 18 years of age upon admission to the hospital 
2. a Sutter in-patient during the time period of January 1, 2018 to March 4, 2020  
3. had relevant ICD 9 or 10 codes 

We excluded patients who had expired, visited historical/merged hospitals, had an 
acute neurological diagnosis, and those with a past medical history of dementia.  
For all patients, we extracted demographic information and information on primary 
insurance and hospitalization (admission date, discharge date, discharge diagnosis). 
 
 
Covariates 
Covariates included in the propensity score model were based on the available data, as 
well as a priori specification of variables that are thought to influence the probability of 
receiving the ETOH-P protocol. These variables included age, sex, ethnicity, race, 
median household income (MHI), and medical insurance type.  
 
We obtained MHI by zip code for each California county from the U.S Census Bureau’s 
publicly available data and assigned MHI based on the patient home address zip code.  
For the synthetic control analysis, we extracted and aggregated at the hospital level 
age, sex, race, ethnicity, and health insurance type from January 1, 2018 to March 4, 
2020. 
 
Outcome measures 
We had three primary outcomes of interest: (1) the proportion of patients who left the 
hospital against medical advice (AMA), (2) average hospital length of stay (LOS), and 
(3) the proportion of patients who had an intensive care unit (ICU) admission. We 
created a dichotomous indicator of leaving AMA if the patient had a discharge status of 
“Left Against Medical Advice or Discontinued Care”. For hospital length of stay, we took 
the maximum number of days in the hospital for each patient. Lastly, we created an 
indicator of ICU visit, if the patient ever had an ICU visit in any of their visits.  
 
For the hospital-level synthetic control analysis, we aggregated outcomes to the hospital 
level.  
 
Statistical Analyses 
 
Propensity score matching 
 
Observational studies are increasingly being used to estimate the causal effects of 
intervention. As it is not possible to randomly assign the ETOH-P program intervention 
to patients, treatment selection will be influenced by subject characteristics. Thus, 
baseline characteristics between treated and untreated subjects may differ 
systematically and needs to be taken into account when estimating the effect of 
treatment on outcomes. Thus, we will utilize propensity score methods to correct for the 
treatment-selection bias imposed when estimating effects using observational data. 
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The propensity score29 is the probability of receiving treatment conditional on observed 
baseline covariates. It is essentially a balancing score such that, conditional on the 
propensity score, the distribution of baseline covariates is similar between treated and 
untreated subjects30,31. In randomized controlled trials, the true propensity score is 
known. However, in observational studies, it is not known, but can be estimated using 
data. Propensity score matching, in which treated and untreated subjects are matched 
together based on a similar propensity score value, allows for estimation of the average 
treatment effect among the treated (ATT): 
 

 𝐸[𝑌(1) − 𝑌(0)|𝑍 = 1] 
 

where Y(1) is the potential outcome under active treatment and Y(0) is the potential 
outcome under control treatment. The ATT is defined as the average effect of the 
treatment on those who ultimately received the treatment.  
 
Once a matched sample has been created, the treatment effect can be estimated by 
comparing the outcomes between treated and untreated subjects in the matched 
sample. However, since observations within a propensity score matched sample are no 
longer independent, as treated and untreated subjects have similar values of the 
propensity score, this lack of independent should be taken into account30–32.   
 
A propensity score model was used to predict receipt of the ETOH-P program at intake, 
conditional on baseline characteristics shown in Table 3.1.  We used the MatchIt 
package33,56 to match EMC patients to control patients 1 to 4, with replacement, using 
nearest neighbor matching with calipers of width equal to 0.2 of the standard deviation 
of the logit of the estimated propensity score. We chose to match more than one control 
for each treated unit in order to increase the power of the procedure34.   
 
We checked covariate balance in the sample before and after matching by calculating 
the standardized mean difference (SMD)32,35 and via plotting procedures (figures 3.1-
3.4). The standardized mean difference is not confounded by sample size and thus 
allows for appropriate comparison between the balance in the original sample with the 
matched sample32. We considered an SMD greater than 0.1 as the threshold for 
imbalance35,57. The propensity score model for this study included all the variables that 
were imbalanced36. To avoid issues with multicollinearity, we created broader insurance 
group types of Medi-Cal, Medicare and Other/Unknown insurance (which includes self-
pay and worker’s compensation).  
 
We created a propensity score matched sample by matching AWS protocol patients 
with controls that had a similar propensity score, such that the treated and control 
patients within the same matched pair have a similar propensity score. We estimated 
the effect of the ETOH-P protocol delivery method by directly estimating the difference 
in outcomes between the treatment group and controls in the propensity score matched 
sample.   
 



 54 

Because these patients within the same matched set had baseline covariates that are, 
on average, more similar than two randomly selected treated and control patients, we 
could no longer consider them independent units32. Thus, we calculated Mantel 
Haenszel adjusted odds ratios for our binary outcomes, stratifying by the matched set, 
to account for the matched nature of the propensity score matched sample. We used 
McNemar’s test for correlated binary proportions to assess statistical significance30–32,58. 
We chose this method, as opposed conditional logistic regression that is often used for 
matched-pairs data, as conditional logistic regression has been shown to result in 
biased estimation of odds ratios30–32,58. Accounting for the matched nature of the sample 
results in tests with appropriate type I error rates and confidence intervals because 
estimates of the standard error of the treatment effect are closer to the standard 
deviation of the sampling distribution of the treatment effect58. For count outcomes such 
as average hospital LOS, we calculated a difference in counts using conditional 
permutation tests within matched sets, each time calculating a paired t-test statistic.  
 
Data extraction and statistical analyses were performed using R statistical software 
package v3.6.3 and Microsoft SQL Server Management Studio 13.0.15700.28.  
 
Synthetic control method 
While the program is administered at the individual patient level, the health equity 
leadership committee at Sutter Health are also interested in the hospital-level effects of 
the program, and thus we will also perform a synthetic control analysis to assess any 
hospital-level changes resulting from the program.  

SCM is an approach to program evaluation in which one or a small number of units are 
subject to intervention, and a comparative control unit is constructed such that the 
outcomes of the control units are weighted to construct the counterfactual outcome of 
the treated unit(s) in the absence of the treatment. Statistical details on the method can 
be found in the appendix. This method has previously been used to analyze political 
and economic effects following large-scale events, state-level policy changes, health 
systems reforms, nutritional interventions, climate changes, and even the current 
COVID-19 pandemic2,3,6,8,17,40,59,60 where it is difficult to find a single comparison unit 
that best approximates the relevant characteristics of the treated unit; indeed, a 
combination of units often provides a better comparison unit than any single unit alone. 

SCM offers another tool for program evaluation, in which time series for the unit of 
interest in the period before the intervention are used to make predictions about what 
future trends would look like without the intervention. No extrapolation is required as 
weights are restricted to be non-negative and sum to 1, and the weights are calculated 
and chose without seeing the post intervention data, reducing the risk of cherry picking 
or p-hacking. The contribution of each control unit to the counterfactual is made explicit 
and offers transparency in the selection of the best counterfactual18. Additionally, SCM 
provides a visual representation of the impact of the intervention and how it varies over 
time, as well as a clear visualization of the actual discrepancy between the treated unit 
and the convex combination of untreated units, something that propensity score 
methods do not provide. Plots are produced that display what the observed outcome 
looks like compared to what would be expected in the absence of the intervention. 
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Lastly, predictions from SCM may serve as input to the propensity score model, by 
acting as a baseline counterfactual. 

If the program proves to be successful at EMC, we are interested in spreading this 
program to other Sutter Health hospitals, therefore, we considered the effect of the new 
ETOH-P protocol at the hospital level. As the ETOH-P protocol was implemented 
beginning in April of 2019, we define the period from January 1, 2018 to April 1, 2019 as 
the pre-intervention period. We define April 1, 2019 to March 4, 2020 as the post-
intervention period. We utilize the synthetic control method, a data-driven approach that 
creates a weight combination of control hospitals in order to create a “synthetic” EMC, 
providing an estimate of the expected outcome at EMC, had the ETOH-P protocol not 
been implemented. The hospitals that comprise the “synthetic” EMC are selected by the 
method based on their pre-program trends in both covariate and outcome values. The 
combination of control hospitals that are able to best match the pre-intervention 
outcome trends for EMC are chosen to be included in the synthetic control. The 
expected outcome trend for EMC in the post-intervention period in the absence of the 
ETOH-P protocol are then compared against the observed outcome trends. We 
estimate treatment effect of interest as the difference between the observed and 
expected values. 
 
We will utilize the Synth package41 to choose the vector of weights by minimizing 
 

‖𝑋) − 𝑋%𝑊‖𝑣 = A(𝑋) − 𝑋%𝑊)′𝑉(𝑋) − 𝑋%𝑊) 
 
Where V is a matrix allowing for different weights to be applied to variables in X0 and X1 
based on their predictive power on the outcome. The synth() function61 also allows for a 
data-driven procedure to choosing V*, such that the mean-squared prediction error 
(MSPE) of the outcome is minimized over the pre-program years2,17,37. Thus, the mean 
squared prediction errors (MSPE) is used as a measure of fit between the treated unit 
and it’s synthetic control during the pre-intervention period.  
 
Traditional large sample inferential techniques are not appropriate in this setting due to 
the small number of units; however, exact inferential techniques, such as a permutation 
test may be used to assess how unusual an effect would be if it were due to change and 
thus provide context for the effect size. As advised in prior literature, we obtained 
inference for these estimates by using a series of placebo (permutation tests), in which 
we applied the synthetic control method iteratively across all the control hospitals in our 
sample, each time treating each hospital, as if it we the one that had implemented the 
ETOH-P protocol and calculating an estimate of the effect of the protocol42. We then 
compared the estimate of effect for EMC to the distribution of effects obtained from the 
placebo tests.  
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3.3. Results 
 
Study Cohort Description 
 
A total of 310 patients at EMC received the ETOH-P program from April 1, 2019 to 
March 2, 2020. Of the 310, 76 patients received only the active withdrawal order set, 
and 159 patients received only the prophylaxis order set. 67 patients received both 
order sets. 1229 controls patients were matched to the ETOH-P program patients.  
 
Propensity score matching results 
 
Matching on the propensity score improved covariate balance between the two 
treatment groups (Table 3.1) and reduced the final matched analysis cohort to 1550 
patients. After the match, the two groups are more similar in terms of their propensity 
scores and share a common region of support (Figure 3.1-3.4).  
 
The average hospital length of stay among the whole matched cohort, ETOH-P patients 
and control patients was 7.16 days, 7.32 days and 7.13 days respectively. 10.3% of 
ETOH-P patients left the hospital AMA compared to 7.3% of control patients who left 
AMA. 109 ETOH-P patients (35.2%) had an ICU admission, compared to 435 control 
patients (35.1%).  
 
The results indicate that patients who received the ETOH-P protocol had 1.47 (0.96, 
2.27) times the odds of leaving AMA compared to those who did not receive the 
protocol, however, this was not statistically significant (Figure 3.8-3.10). For ICU 
admissions, patients who received the ETOH-P protocol had 1.00 (0.77, 1.31) times the 
odds of ICU admissions compared to those who did not receive the protocol, though 
also not statistically significant. Patients on the ETOH protocol had, on average, 0.19 
(0.11, 0.26) more days in the hospital, compared to those not on the ETOH protocol, 
and this difference was statistically significant.  
 
Synthetic Control results 
 
We show in Figures 3.5-3.7 that plotting the outcomes of EMC compared to the 19 
other control hospitals illustrates that a simple average of the control units does not 
closely approximate the outcomes at EMC. Thus, we sought to explore if the 
construction of a synthetic control would provide a better “counterfactual” to the EMC 
trend. Two hospitals, CPMC Mission Bernal Hospital and CPMC Van Ness Campus did 
not have any outcome data in the pre-program period, and thus were dropped from the 
potential control pool. 
 
A total of 19 other Sutter Health hospitals comprised the potential pool of donor hospital. 
There was insufficient covariate data from two locations, CPMC Mission Bernal Hospital 
and CPMC Van Ness Campus, and thus were dropped from the analysis.  
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Table 3.2 compares the pre-intervention characteristics of EMC to those of the synthetic 
EMC and to those of the population weighted average of all 19 hospitals in the donor 
pool. Overall, this suggests that the synthetic ABSMC provides a much better 
comparison for EMC than the sample average of all other Sutter hospitals.  
 
Tables 3.3-3.5 displays weights of each control hospital in the synthetic EMC. The 
weights indicate that leaving AMA trends in EMC prior to the ETOH-P protocol is best 
reproduced by a combination of ABSMC Ashby, ABSMC Summit, CPMC Davis 
Campus, Delta Medical Center, Sutter Davis Hospital, Sutter Medical Center 
Sacramento, and Sutter Tracy Community Hospital. All other states in the donor pool 
are assigned zero or near zero weights. Trends at EMC for ICU admissions is best 
represented by a combination of Delta Medical Center, Sutter Coast Hospital, Sutter 
Davis Hospital, and Sutter Santa Rosa Regional Hospital. Lastly, average hospital LOS 
at EMC is best approximated by ABSMC Ashby, Delta Medical Center, Peninsula 
Medical Center, Sutter Coast Hospital, Sutter Lakeside Hospital, Sutter Medical Center 
Sacramento, Sutter Santa Rosa Regional Hospital, Sutter Solano Medical Center, and 
Sutter Tracy Community Hospital.  
 
The MSPEs in the pre-intervention period for leaving AMA, average hospital LOS and 
ICU admissions are listed in Table 3.6.  
 
Effect of the ETOH-P protocol 
 
For each outcome, the trends for EMC and its respective synthetic controls for the 
period of Jan 1, 2018 to March 4, 2020 are visualized in Figures 3.11 – 3.13. In 
general, the number of patients who left AMA and had an ICU admission was very low 
during the study period. As indicated in Figures 3.11 – 3.13, the pre-intervention trends 
for leaving AMA and ICU admission did not appear to be well approximated by their 
respective synthetic controls; in fact, the EMC curve crosses at multiple points with the 
synthetic control curve during the pre-intervention period. It does appear that the 
synthetic control for ICU admissions provides a better approximation of actual trends 
(Figure 3.12). After the implementation of the ETOH-P program, in general, the 
outcome trends at EMC remained higher compared to the synthetic EMC for all three 
outcomes. 
 
Our estimate of the effect of the ETOH-P program on our outcomes of interest was 
determined by the difference between the actual EMC and its synthetic control version, 
or the “gap” between the two curves (Figures 3.15-3.16). If our hypothesis is correct, 
we would expect to see a reduction in the proportion of patients who left AMA, the 
average LOS and the proportion of patients who had an ICU admission, and thus the 
gap (treated – synthetic) would be a negative number. However, as Figures 3.15-3.16 
indicates, in general the difference between the two series remained positive during the 
entire study period. The differences between the actual EMC and its synthetic control 
indicate that there was an average increase in the proportion of patients who leave AMA 
during the program period of approximately 0.0003. There was an average increase in 
the proportion of patients admitted to the ICU of 0.0012 and an increase in the average 
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hospital length of stay of 2.03 days. Thus, our results did not suggest that the ETOH-P 
protocol led to a reduction in our outcomes of interest at EMC.  
 
Placebo tests 
To evaluate the significance of our results, we used placebo tests to determine of our 
results were driven entirely by chance (how often we would have obtained the results of 
this magnitude if we had chosen a hospital at random for the study, instead of EMC). 
The results of the placebo test are displayed in Figures 3.16 - 3.18. The gray lines 
represent the gap associated with each iteration of the test or the difference in 
outcomes between each hospital in the donor pool and its respective synthetic control. 
The superimposed black line denotes the gap estimated for EMC, the hospital that 
actually implemented the ETOH-P program. The placebo tests allowed us to obtain 
synthetic control estimates for hospitals that did not actually implement the ETOH-P 
program, and thus we can compare the estimated effect of the ETOH-P program on 
EMC to the distribution of placebo effects obtained for other hospitals. We considered 
the effect to be significant if the estimated effect for EMC is unusually large relative to 
the distribution of placebo effects. As Figures 3.16 - 3.18 indicate, the estimated gap for 
EMC does not appear to be unusually large compared to the distribution of gaps for the 
other hospitals in the donor pool, for any of the outcomes.  
 
The pre-intervention mean squared prediction error (MSPE) for EMC (the average of 
the squared discrepancies between the outcome of interest in EMC and its synthetic 
counterpart during the pre-intervention period) was 0.000000045, 0.00000018, and 1.34 
for the proportion of patients who left AMA, the proportion of patients who had an ICU 
admission, and average LOS, respectively.  
 
The control hospital with the worst fit compared to its synthetic in the pre-intervention 
period is Delta Medical Center for AMA, with an MSPE of 0.00000013. A higher MSPE 
indicates that the outcome trend at Delta Medical Center was not well reproduced by a 
combination of all other hospitals. For ICU admissions and average LOS, Sutter Santa 
Rosa Regional Hospital (0.00000057) and CPMC Davies Campus (23.4) had the 
highest MSPE, respectively, compared to its synthetic version. 
 
Finally, we evaluated the EMC gap relative to the gaps obtained from the placebo runs 
by looking at the distribution of the ratios of post to pre-program MSPE. A ratio of the 
post-program MSPE to the pre-program MSPE measures the quality of the fit of a 
synthetic control for its treated unit in the post-program period, relative to the quality of 
the fit in the pre-program period. Figures 3.19 – 3.21 displays the distribution of 
post/pre-program ratios of the MSPE for EMC and all 19 control hospitals. The ratio for 
EMC leaving AMA is about 2.7 and does not clearly stand out from the other ratios; in 
fact, five control hospitals achieved a larger ratio than EMC. We obtained a p-value of 
0.32 and thus, if we were to have assigned the program at random, the probability of 
obtaining a post/pre MSPE ratio as extreme or more extreme than that of the treated 
unit is 0.32. The results from the ratio of post to pre-program MSPE and p-value were 
consistent with the placebo plots, which indicated that the effect of the ETOH-P program 
on leaving AMA was not significant.  
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The ratio for EMC average LOS was about 6.5. However, two control hospital achieved 
a larger ratio than EMC. We obtained a p-value of 0.2 from the placebo tests and thus, 
the effect of the program on average LOS was not significant. Lastly, the ratio for EMC 
ICU admissions was about 12.4. This was the largest ratio compared to all other control 
hospitals. Indeed, the p-value obtained from placebo tests was 0.05. 
 
 
 
3.4. Discussion 
 
To assess the impact of the ETOH-P program implemented at EMC to treat patients 
who present to the ED with AWS, we utilized a propensity score matched group of 
controls and a synthetic control. The propensity score matched analysis indicated that 
the ETOH-P program was actually associated with an increase in the proportion of 
patients who left AMA, the proportion of patients who had ICU admission and longer 
hospital LOS; while this effect was not statistically significant, it was in the opposite 
direction than we had originally hypothesized. Based on the synthetic control analysis, 
we did not find evidence that the ETOH-P program at EMC was associated with a 
decrease in the proportion of patients who left AMA, the proportion of patients who had 
an ICU admission, or the average LOS. In fact, we found that outcome trend at EMC for 
all three outcomes was generally higher than the synthetic control during the post-
intervention period. For LOS, this effect was significant (p=0.05).  
 
It is important to note that the credibility of the synthetic control estimator depends 
heavily on its ability to track the trajectory of the treated unit’s outcome during the pre-
intervention period. Thus, due to the fact that the synthetic EMC did not appear to 
adequately match the outcome trend of the real EMC during the pre-intervention period, 
we cannot make any definitive conclusions from this analysis. Similarly, placebo runs 
with poor fit prior to the program also do not provide information to measure the relative 
rarity of estimating a large post-ETOH-P program gap for any given hospital.   
 
The results of our study contradict what has been found in previous studies; when a 
revised AWS protocol with focused use of benzodiazepines was implemented at a large 
tertiary academic medical center in adult patients, those who received the focused 
treatment had a significant decrease in hospital LOS and ICU length of stay62,63. 
However, in a recent study that also utilized routinely prospectively collected EHR data 
to investigate inpatients undergoing alcohol withdrawal, the authors found that higher 
maximum AWS scores are associated with increased LOS and in-hospital mortality64. In 
our study, categorization of whether a patient was “treated” or not was based solely on 
whether or not they visited EMC. It is possible that patients at EMC had higher AWS 
scores, leading to increased LOS and more severe progression of AWS resulting in ICU 
admission. Future work should take the severity of symptoms into consideration when 
evaluating the ETOH-P program.  
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Our study has several strengths. We utilized a large sample of patients and hospital 
stays from a diverse pool of patients that Sutter Health services. We used two different 
evaluation methodologies to study our outcomes of interest at the patient-level and 
hospital-level. We chose to use the synthetic control method in order to improve our 
control group selection. As Figures 3.1-3.3 showed, a simple average of all 19 control 
hospitals did not closely mimic the outcome trends at EMC, thus we attempted to 
construct a synthetic control group that might better approximates these trends. Another 
central motivation for using the synthetic control method was that it provides 
researchers with a quantitative tool to select appropriate comparison groups. In our 
analysis, a handful of control hospitals emerged as potential comparisons to EMC, 
which we displayed in Tables 3.5-3.7, making explicit the contribution of each 
comparison unit to the counterfactual of interest. Traditional regression analysis fails to 
provide such a transparent list, as typically all units contribute to the regression fit.  
 
We also recognize several limitations to our study. First, we had limited ability to 
replicate all of the relevant characteristics of the treatment population in the comparison 
group given the available data. It is possible that there are other confounding factors 
that we did not have data on, and thus were not able to adjust for in our analysis. 
Additionally, while the synthetic control method allowed us to capture the desired scope 
of impacts of the ETOH-P program, it is non-specific and does not allow us to test the 
specific mechanism that led to the change. It is possible that unrelated factors we did 
not control for changed during the study period, and though unrelated to the ETOH-P 
program, affected rates of our outcome. As such, a major limitation of the synthetic 
control method is that it does not allow us to distinguish between co-occurring events. 
To explore this further, future analyses should incorporate techniques such as a 
negative control, which estimates the effect of an exposure on an outcome that it should 
be plausibly impact, but which may be affected by a confounding factor44. If an effect is 
still observed, it can be assumed that there is confounding or bias present.  
 
Another major limitation of our study is that other Sutter Hospitals have their own 
protocols for treated patients at risk for developing AWS, and thus the effect of the 
ETOH-P program within EMC on our three outcomes of interest may have been 
attenuated (underestimation of the effect). In fact, actual counts of all three outcomes 
were very low throughout the entire study period; there were several months in which 
there were zero patients who left AMA. As the nature of synthetic controls focuses on a 
single treated unit (or a small number of treated unit), it is possible that small effects are 
indistinguishable from other influencers of the outcome in the treated unit, especially if 
the outcome is highly volatile18. As a result of this, the impact of “small” programs with 
effects of a magnitude similar to the volatility of the outcome may be difficult to detect.  
 
Lastly, we recognize that the time period of our study (April 1, 2019 to March 4, 2020) 
was relatively short, and that additional years of data may be beneficial to our ability to 
appropriately match the outcome trends at EMC during the pre-implementation period. 
As with other time series analyses, having sufficient data points prior to implementation 
and post-implementation is key. Since we only had 16 months of data prior to the 
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implementation of the ETOH-P protocol, and 11 months post-implementation, additional 
time points may help to reveal trends in the outcome. 
 
Despite these limitations, we believe that our synthetic control analysis of the ETOH-P 
program demonstrates an application of the method to a program implemented within a 
health care system. Whether or not this method should be applied in such a setting 
depends on the research question of interest and availability of data. Future 
assessment of the ETOH-P program should also factor in additional information such as 
severity of AWS symptoms, patient comorbidities and the number of prior diagnoses.  
 
 
 
3.5. Conclusions 
 
The application of propensity score matching and the synthetic control method to 
evaluate implementation of an inpatient hospitalization protocol for AWS did not find 
evidence that the ETOH-P protocol was effective at reducing the number of patients 
leaving AMA, the number of patients with an ICU admission, or the average length of 
stay in the hospital. Future work in this area should incorporate additional years of pre-
implementation data, as well as additional information on the severity of AWS 
symptoms, patient comorbidities and the number of prior diagnoses.  
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3.6. Figures 
 
 

 
Figure 3.1. Histograms of the propensity score for the original cohort and the matched 
cohort, ETOH-P patients compared to control patients 
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Figure 3.2. Jitter plots of the propensity score for the original cohort and the matched 
cohort, by ETOH-P patients compared to control patients. 

 
 



 64 

 
Figure 3.3. Distribution of propensity scores before matching. 

 
Figure 3.4. Distribution of propensity scores after matching. 
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Figure 3.5. Trends in the proportion of patients who leave AMA at Eden Medical Center 
compared to control hospitals, April 1, 2019 to March 4, 2020. 
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Figure 3.6. Trends in the proportion of patients who have an ICU admission at Eden 
Medical Center compared to control hospitals, April 1, 2019 to March 4, 2020. 
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Figure 3.7. Trends in the average LOS at Eden Medical Center compared to control 
hospitals, April 1, 2019 to March 4, 2020. 
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Figure 3.8. Proportion of patients who left AMA for ETOH-P protocol patients vs. control 
patients, April 1, 2019 – March 4, 2020. Patients who received the ETOH-P protocol 
had 1.47 (0.96, 2.27) times the odds of leaving AMA compared to control patients. 
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Figure 3.9. Proportion of patients who had an ICU admission for ETOH-P protocol 
patients vs. control patients, April 1, 2019 – March 4, 2020. Patients who received the 
ETOH-P protocol had 1.00 (0.77, 1.30) times the odds of an ICU admission compared 
to control patient 
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Figure 3.10. Average LOS for ETOH-P protocol patients vs. control patients, April 1, 
2019 – March 4, 2020. Patients who received the ETOH-P protocol had on average, 
0.19 (0.11, 0.26) more days in the hospital compared to control patients. 
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Figure 3.11. Trends in the proportion of patients who left AMA, EMC vs. Synthetic EMC, 
April 1, 2019 – March 4, 2020. 

 

 
Figure 3.12. Trends in the proportion of patients who had an ICU admission, EMC vs. 
Synthetic EMC, April 1, 2019 – March 4, 2020. 
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Figure 3.13. Trends in average LOS, EMC vs. Synthetic EMC, April 1, 2019 – March 4, 
2020. 

 
 
 

 
Figure 3.14. Gap in the proportion of patients who left AMA between EMC and Synthetic 
EMC, April 1, 2019 – March 4, 2020. 
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Figure 3.15. Gap in the proportion of patients who had an ICU admission between EMC 
and Synthetic EMC, April 1, 2019 – March 4, 2020. 

 
Figure 3.16. Gap in average LOS between EMC and Synthetic EMC, April 1, 2019 – 
March 4, 2020. 
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Figure 3.17. Difference in proportion who left AMA between control hospitals and EMC 
and their respective synthetic controls, all hospitals from  April 1, 2019 – March 4, 2020. 
The superimposed black line denotes the gap estimated for EMC, the hospital that 
actually implemented the ETOH-P program. 
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Figure 3.18. Difference in proportion who had an ICU visit between control hospitals and 
EMC and their respective synthetic controls, all hospitals from April 1, 2019 - March 4, 
2020. The superimposed black line denotes the gap estimated for EMC, the hospital 
that actually implemented the ETOH-P program. 
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Figure 3.19. Difference in average LOS between control hospitals and EMC and their 
respective synthetic controls, all hospitals from April 1, 2019 – March 4, 2020. The 
superimposed black line denotes the gap estimated for EMC, the hospital that actually 
implemented the ETOH-P program. 

 



 77 

 
Figure 3.20. Ratios of post-intervention MSPE and pre-intervention MSPE for AMA at 
EMC and all hospitals in the donor pool.  

 
 
 
 

 
Figure 3.21. Ratios of post-intervention MSPE and pre-intervention MSPE for ICU 
admissions at EMC and all hospitals in the donor pool. 
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Figure 3.22. Ratios of post-intervention MSPE and pre-intervention MSPE for LOS at 
EMC and all hospitals in the donor pool. 
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3.7. Tables 
 
 
Table 3.1. Baseline covariates for ETOH-P patients and control patients. 

 Unmatched Cohort Matched Cohort 
 ETOH-P 

patients 
Control 
Patients 

 ETOH-P  
patients  

Control 
Patients 

 

 N = 310 N = 
3,086 

|SMD| N = 310 N = 1229 |SMD| 

DEMOGRAPHICS       
Female, n (%) 67 (21.6) 960 

(31.1) 
0.217 67 (21.6) 263 

(21.4) 
0.005 

Mean Age, Years  
± SD 

55.06 ± 
15.37 

53.88 
(14.61) 

0.078 55.06 ± 
15.37 

55.09 
(14.47) 

0.002 

Ethnicity       
   Hispanic 0.24(0.43) 0.18 

(0.39) 
0.144 0.24 

(0.43) 
0.23 

(0.42) 
0.037 

   Non-Hispanic 0.75 
(0.43) 

0.80 
(0.40) 

0.082 0.75 
(0.43) 

0.77 
(0.42) 

0.076 

   Unknown  0.01 
(0.45) 

0.01 
(0.12) 

0.121 0.01 
(0.08) 

0.00 
(0.04) 

0.048 

Race category       
  Black 0.15 

(0.35) 
0.14 

(0.34) 0.022 
0.15 

(0.35) 
0.14 

(0.34) 0.027 
  Asian 0.06 

(0.24) 
0.03 

(0.17) 0.148 
0.06 

(0.24) 
0.05 

(0.22) 0.043 
  Other 0.17 

(0.38) 
0.17 

(0.38) 0.004 
0.17 

(0.38) 
0.15 

(0.36) 0.066 
  White 0.64 

(0.48) 
0.67 

(0.47) 0.075 
0.64 

(0.48) 
0.67 

(0.47) 0.080 
Insurance type        
   Medi-Cal 0.44 (0.5) 0.46 

(0.50) 0.052 
0.44 

(0.50) 
0.44 

(0.50) 0.016 
   Medicare FFS 0.32 

(0.47) 
0.29 

(0.45) 0.052 
0.32 

(0.47) 
0.33 

(0.47) 0.039 
   Other/Unknown 0.07 

(0.26) 
0.07 

(0.25) 0.018 
0.07 

(0.26) 
0.06 

(0.24) 0.030 
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Table 3.2. Predictors prior to the implementation of the ETOH-P protocol. 
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Table 3.3. Hospital weights for synthetic EMC in approximating the proportion of 
patients who leave AMA. 
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Table 3.4. Hospital weights for synthetic EMC in approximating the proportion of 
patients with an ICU admission. 
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Table 3.5. Hospital weights for synthetic EMC in approximating the average LOS. 

 
 
 
 
Table 3.6. Mean squared prediction error (MSPE) in the pre-intervention period. 
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Chapter 4 - A Synthetic Control Approach to 
Evaluating ELEVATE-DP  
 
 
Abstract 
 
Purpose:  
To apply the synthetic control method (SCM) to evaluate the impact of the GLB program 
on mean weight (kg) and mean body mass index (BMI) at the clinic-level.  
 
Methods: We utilized the SCM to conduct a retrospective secondary analysis of 
electronic health record (EHR) data from the ELEVATE-DP study in order to evaluate 
the impact of the GLB program offered at 20 different Sutter Health clinics. Using data 
from 2005 to 2017 and a pool of control clinics that did not offer the GLB program during 
the study period, we constructed a synthetic control comparison group for the GLB 
clinics. We used a series of permutation tests to assess whether our results could have 
been due to chance.    
 
Results 
A total of 26 control clinics were included in the synthetic control. While the outcome 
trends for the actual GLB clinics remained elevated over the synthetic control during the 
period after program implementation, we did not find a significant effect of the GLB 
program on either mean weight or mean BMI.  
 
Conclusions 
This study provides valuable insight into the feasibility and applicability of SCM applied 
to evaluating a health care system program. Future studies should explore 
methodological adjustments to SCM that will take into account programs that do not 
uniformly impact the entire population of interest.  
 
 
Abbreviations 
 
BMI – Body Mass Index 
ELEVATE-DP – Evaluation of the Lifestyle Intervention Adopted for Clinical Practice for 
Diabetes Prevention 
DPP – Diabetes Prevention Program 
LCP – Lifestyle Change Program 
CDC – Centers for Disease Control and Prevention 
EHR – Electronic Health Record 
GLB – Group Lifestyle Balance 
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ICD – International Classification of Disease 
SCM – Synthetic Control Method 
IGT – Impaired glucose tolerance 
 
 
4.1. Background 
Diabetes and GLB program background 

In the United States, more than 34 million people have diabetes, and over 88 million US 
adults have prediabetes, both of which increases the risk of developing a heart disease 
and stroke65. The CDC estimates that in 2017, the total cost of diagnosed diabetes was 
$327 billion. With rates of obesity increasing and much of the country leading a 
sedentary lifestyle, the burden of diabetes will also continue to increase.  

The Diabetes Prevention Program (DPP) was a 27-center randomized clinical trial to 
determine whether a lifestyle intervention program or pharmacological therapy could 
help prevent or delay the onset of diabetes in individuals who had impaired glucose 
tolerance (IGT). The DPP found that an intensive lifestyle intervention program reduced 
the incidence of diabetes by more than half66–69. However, intensive lifestyle 
interventions like DPP are difficult to implement and sustain within busy healthcare 
systems, thus there is a need for real-world adaptations of the DPP lifestyle 
intervention.  

To address this, and to accomplish the widespread implementation of the DPP results, 
the CDC established the National DPP in order to develop an evidence-based, 
comprehensive training curriculum to deliver a year-long lifestyle change program to 
people with diagnosed prediabetes or those at high risk for developing Type 2 
diabetes70. The curriculum focuses on lifestyle change and the importance of at least 
150 minutes of moderate physical activity per week, healthy eating and weight loss of 5-
7% over the 1-year program period. Since establishing the National DPP, there have 
been numerous applications of translating the DPP into group-based lifestyle 
interventions within the general community, with most studies finding clinically 
meaningful reductions in weight among program participants68,69,71.  

At Sutter Health, the Group Lifestyle Balance (GLB) program is also modeled off the 
original DPP intervention, consisting of a year-long, group-based curriculum divided into 
three phases. To our knowledge, there is no previous work that utilizes SCM to evaluate 
a group-based lifestyle change program (LCP). As the method focuses on determining 
group-level effects, we are ultimately interested in understanding the impact of the GLB 
program at the clinic-level.  

Synthetic control method  

SCM is an approach to program evaluation in which one or a small number of units are 
subject to intervention, and a comparative control unit is constructed such that the 
outcomes of the control units are weighted to construct the counterfactual outcome of 
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the treated unit(s) in the absence of the treatment. This method has previously been 
used to analyze political and economic effects following large-scale events, state-level 
policy changes, health systems reforms, nutritional interventions, climate changes, and 
even the current COVID-19 pandemic2,4,8,17,37,38,40,60 where it is difficult to find a single 
comparison unit that best approximates the relevant characteristics of the treated unit; 
indeed, a combination of units often provides a better comparison unit than any single 
unit alone. 

SCM offers another tool for program evaluation, in which time series for the unit of 
interest in the period before the intervention are used to make predictions about what 
future trends would look like without the intervention. No extrapolation is required as 
weights are required to be non-negative and sum to 1, and the weights are calculated 
and chosen without seeing the post intervention data, reducing the risk of cherry picking 
or p-hacking. The contribution of each control unit to the counterfactual is made explicit 
and offers transparency in the selection of the best counterfactual18. Additionally, SCM 
provides a visual representation of the impact of the intervention and how it varies over 
time, as well as a clear visualization of the actual discrepancy between the treated unit 
and the convex combination of untreated units, something that propensity score 
methods do not provide. Plots are produced that display what the observed outcome 
looks like compared to what would be expected in the absence of the intervention. 
Lastly, predictions from SCM may serve as input to the propensity score model, by 
acting as a baseline counterfactual. 

The main analysis sought to examine the effectiveness of the Sutter Health GLB 
program in comparison to usual care in a real-world healthcare setting (ELEVATE-DP 
study). An electronic health record (EHR)-based, propensity score matched analysis 
was performed and found that compared with usual-care patients (N=965,265), 
participants in the program (N=3,156) had a greater odds of attaining clinically 
meaningful weight loss at 12-months and 24-months of follow-up, as well as a greater 
odds of blood pressure control at 12-months of follow-up72. While the GLB program is 
administered at the individual patient level, the health equity leadership committee at 
Sutter Health are also interested in the clinic-level effects of the program, and thus in 
the present analysis, we are interested in detecting any clinic-level changes as a result 
of the GLB program. Our hypothesis is that the in-person, group-based GLB program 
will support patients to lose weight and make behavioral modifications that will ultimately 
lead to improved weight management and reduced incidence of Type 2 Diabetes. As 
such, we would expect that the GLB would lead to a decrease in mean weight and BMI 
at the clinics that implemented the GLB program. 
 
 
4.2. Methods 
 
Study Design and Setting 
This is a retrospective EHR-based observational study conducted at Sutter Health, a 
large, private, and not-for-profit community-based health care delivery system in 
Northern California that provides medical services across 130 ambulatory clinics and 24 



 87 

acute care hospitals, including 22 ED sites. All Sutter Health clinics and hospitals are 
linked by a single electronic health record system (Epic, Verona, WI). Sutter Health has 
approximately 11 million ambulatory visits, 870,000 ED visits and 200,000 hospital 
discharges annually. This study was approved by the Sutter Health Institutional Review 
Board (IRB) and the UC Berkeley Committee for the Protection of Human Subjects 
(CPHS), with a Health Insurance Portability and Accountability Act (HIPAA) waiver of 
authorization and informed consent.  
 
 
 
GLB Program 
 
Sutter Health offers a group-based, 12-month structured LCP, known as the Group 
Lifestyle Balance (GLB) program, an adaptation of the original Diabetes Prevention 
Program (DPP) intervention. The GLB program targets individuals who are non-diabetic, 
overweight/obese individuals, at least 18 years of age, with a diagnosis of pre-diabetes 
and/or metabolic syndrome but is open to all patients who are at risk of a 
cardiometabolic event72. The program has been offered at 20 clinics since 2010, and 
consists of a 12 month in-person, group-based format led by trained lifestyle coach, with 
the primary goal of enhancing self-efficacy through social support and mastery of self-
regulation skills (e.g., goal setting, self-monitoring).  
 
The GLB program is composed of three phases72: 

• The core phase (months 1-3) focuses on weight loss and behavioral goal setting 
through weekly sessions for the first 12 weeks. 

• The transition phase (months 4-6) continues the focus on weight loss and 
behavioral goals through four bimonthly/monthly sessions. 

• The support phase (months 7-12) consists of a session once a month to (1) 
facilitate continued behavior change through an iterative guided mastery process, 
(2) to foster self-efficacy and independence, and (3) to reinforce problem-solving 
and behavior maintenance skills.  

The goal of the GLB program is to enhance self-efficacy through social support and 
gradual mastery of self-regulation skills (e.g., goal setting, self-monitoring).  
 
Exposure 
If the clinic implemented the GLB program, it will be considered a “treated” clinic. Clinics 
in which GLB was not available will be considered “control” clinics.  
 
Covariates 

We will utilize the following hospital-level covariates: 

• Mean weight  
• Mean BMI  
• Proportion of the patient population that is male 
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• Mean age 
• Median Household Income based on hospital zip code 
• Proportion of the patient population that is covered by each type of health 

insurance (Preferred Provider Organization (PPO)/ Fee-for-service (FFS), health 
maintenance organization (HMO), Medicare, Medicaid, Other, Unknown) 

• Mean diastolic blood pressure 
• Mean systolic blood pressure 
• Proportion of the population who are smokers 

 
Outcome measures 
The two primary outcomes of interest were mean weight and mean BMI.  
 
Statistical Analyses 
 
Data extraction and statistical analyses were performed using R statistical software 
package v3.6.3 and Microsoft SQL Server Management Studio 13.0.15700.28.  
 
We used SCM developed by Abadie, Diamond and Hainmueller17 to assess the impact 
of the GLB program at the clinic-level. This method uses a weighted combination of 
clinics to create a “synthetic” version of the treated clinic(s) that estimates the expected 
trends in mean weight and mean BMI in the GLB clinics had they never implemented 
the program. SCM then compares these to the observed trends to quantify the GLB 
program’s impact on weight and BMI during 2010-2017. The difference between the 
observed and expected values is the effect of interest.  
 
To construct the synthetic control, we used pre-program outcome and covariate data 
from 2005 to 2010. While most examples in the synthetic control literature utilize one 
treatment unit, we had 20 clinics that implemented the GLB program. Thus, we chose to 
group these clinics together into one treated clinic, as suggested by Abadie et al., 2010. 
 
Traditional large sample inferential techniques are not appropriate in this setting due to 
the small number of units; however, exact inferential techniques, such as a 
placebo/permutation test may be used to assess how unusual an effect would be if it 
were due to chance and thus provide context for the effect size. As advised in prior 
literature, we obtained inference for these estimates by using a series of placebo 
(permutation) tests, in which we applied the synthetic control method for each control 
clinic, as though it were the one that had implemented the GLB program. The estimated 
effect of the actual GLB clinic can then be compared to the size of these other effect 
estimates. Typically, the permutation test results are compared for clinics in which pre-
program trends are well predicted by the synthetic control. Thus, we compared the 
effect of the actual GLB clinics to all control clinics, as well as just those with five times 
the MSPE observed for the actual GLB clinics, because clinics with a poorly matched 
synthetic control might appear to have more extreme differences resulting from an 
artifact of poor prediction.  
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4.3. Results 
 
Synthetic Control results 
 
A total of 26 clinics comprised the pool of possible donor control clinics. These were the 
only clinics that had sufficient outcome and covariate data during the pre-program 
period to construct a synthetic control. Additionally, we chose to discard data from 2002-
2004 due to large amounts of missing data.  Both mean weight and mean BMI were on 
the rise during the study period (Figure 4.1 and 4.2). The covariates used to calculate 
the weights for the synthetic control series are listed in Table 4.1, along with their 
values in GLB clinics, the mean values for the rest of the clinics, and their values in the 
mean weight and mean BMI synthetic controls.  
 
The clinics included in the synthetic controls are listed along with their corresponding 
weight in Tables 4.2 and 4.3. The weights indicate that mean weight and mean BMI 
trends for GLB clinics are best reproduced by a combination of many clinics, with only a 
few receiving zero weight. We used the mean squared prediction errors (MSPE) to 
measure fit between the treated unit and its synthetic control during the pre-intervention 
period. The MSPE in the pre-program period for both outcomes are listed in Table 4.4. 
A small MSPE indicates that the synthetic control approximates well the actual outcome 
trend during the pre-program period. A comparison of outcome trends in GLB clinics vs 
non-GLB clinics (Figures 4.1 and 4.2) illustrates that a simple average of the control 
units does not closely approximate the outcomes of GLB clinics. Thus, we sought to 
explore if the construction of a synthetic control would provide a better “counterfactual” 
to the GLB clinic trend.  
 
Overall, the pre-program mean weight and mean BMI levels appear to be well 
approximated by the synthetic control (Figures 4.3 and 4.4). Actual trends of mean 
weight diverged from the synthetic control in 2012, increasing and peaking around 
2016, while remaining elevated over the control for most of the post-program period 
(Figure 4.3). The differences in mean weight between the actual GLB clinics and its 
synthetic control from 2010 to 2017 indicate that there was an average increase in 
mean weight during the program of approximately 4.2 kg (Figure 4.5). The permutation 
test suggests that this effect is not significant compared to other clinics (Figures 4.7 
and 4.8), when comparing to all control units, as well as just those control units with an 
MSPE < 5 times that of the actual GLB clinics. The ratio of post-program MSPE to pre-
program MSPE for the actual GLB clinics was approximately 54. Only one other clinic 
had a ratio larger than this. Despite this, we obtained a p-value of 0.07 from the 
permutation tests and thus, the effect of the program on mean weight was not 
significant.  
 
Actual trends of mean BMI remain relatively steady across the study period and start to 
diverge from the synthetic control around 2012. The actual mean BMI trend was 
elevated over the synthetic control for most of the post-program period (Figure 4.4). 
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The differences in mean BMI between the actual GLB clinics and its synthetic control 
from 2010 to 2017 indicate that there was an average increase in mean BMI during the 
post-program period of approximately 1.64 (Figure 4.6). This did not appear to be a 
significant effect as the permutation tests indicate that the observed effect for the actual 
GLB clinics was not unusually large compared to the distribution of effects from other 
clinics (Figures 4.9 and 4.10). Additionally, the ratio of post-program MSPE to pre-
program MSPE for the actual GLB clinics does not stand out from other clinics (Figures 
4.11 and 4.12); one clinic had a higher ratio than the actual GLB clinics.  
 
 
 
4.4. Discussion 
We did not find evidence that the GLB program was associated with a decrease in 
mean weight and mean BMI relative to the synthetic control. For both outcomes, the 
average difference between the actual GLB clinics and the synthetic control during the 
post-program period was positive. If our hypothesis about the impact of the GLB 
program was correct, we would have expected to see a reduction in our outcomes of 
interest, and thus the gap (treated – synthetic) would be a negative number. However, 
as the average difference between the two series remained positive during the entire 
study period, we saw the opposite effect than what we would have expected. 

Based on previous studies of diabetes prevention and education programs, we 
expected to see a decrease in weight and BMI as a result of the GLB program73. 
However, our results suggest that weight and BMI increased during the program period. 
In fact, the results of this synthetic control system-level analysis contradict the primary 
individual-level analysis of ELEVATE-DP, which found that participants in the GLB 
program had a greater odds of clinically meaningful weight loss through 24 months and 
BP control through 12 months, compared to usual care patients. This reversal of effect 
may be attributable to the fact that the GLB program is open to all Sutter Health patients 
and patients are specifically referred to the GLB program if they have elevated CMD risk 
(including those who are overweight/obese, pre-diabetic, or with metabolic syndrome). 
This may lead patients to choose GLB clinics outside of their typical healthcare 
utilization patterns. If this self-selection into GLB clinics were true, it would inflate the 
mean weight and mean BMI values at GLB clinics, making it appear as if the program 
had no effect, or an effect in the opposite direction than hypothesized. Additionally, 
because the majority of patients pay out-of-pocket for the GLB program, and costs vary 
between affiliates, the program may select for specific socio-demographic 
characteristics. It is also possible that small effects are difficult to detect as the number 
of patients impacted by the program is small relative to the overall patient population. If 
outcome trends are volatile, it is possible that the impact of “small” programs with 
effects that are of a magnitude similar to the volatility of the outcome will be difficult to 
detect18. 

Our study benefits from several strengths. We utilized a large sample of patients and 
encounter visits from a diverse pool of patients that Sutter Health services. We used five 
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years of pre-program data to establish outcome trends in the GLB clinics prior to the 
program implementation. We chose to use the synthetic control method in order to 
improve our control group selection. As Figures 4.1-4.2 showed, a simple average of all 
control clinics did not closely mimic the outcome trends of the GLB clinics, thus we 
attempted to construct a synthetic control group that might better approximates these 
trends. Another central motivation for using the synthetic control method was that it 
provides researchers with a quantitative tool to select appropriate comparison groups. 
In our analysis, many control clinics received weight in the synthetic control. Tables 4.2 
and 4.3 make explicit the contribution of each comparison clinic to the counterfactual of 
interest. Traditional regression analysis fails to provide such a transparent list, as 
typically all units contribute to the regression fit.  

We also acknowledge several limitations in our study. First, we had limited ability to 
replicate all of the relevant characteristics of the GLB clinics in the control clinics given 
the available data. Additional clinic-level covariate data, as well as additional years of 
pre-program data would greatly benefit the ability to construct the best synthetic control 
possible. Additionally, while the synthetic control method allowed us to capture the 
impact of the GLB program, it is non-specific and thus does not allow us to test the 
specific mechanism that led to the change. It is possible that factors or events that we 
did not control for during the study period, while unrelated to the GLB program, affected 
our outcomes of interest. To explore this further, future analyses should incorporate 
techniques such as a negative control, which estimates the effect of an exposure on an 
outcome that it should be plausibly impact, but which may be affected by a confounding 
factor44. If an effect is still observed, it can be assumed that there is confounding or bias 
present. Additionally, it is likely that some of the control clinics had their own diabetes 
prevention or support programs to some effect. If this were the case, the effect of the 
GLB program may appear to be attenuated (effect is underestimated).  

While the core components of the GLB program are similar across sites, variation in 
how the program was implemented within each affiliate based on existing infrastructure, 
resources and workflow exist, and may have an impact on the results of our evaluation. 
In particular, the GLB program was not rolled out to all clinics at the same time; it began 
in 2010 and was rolled out to more clinics in subsequent years. Lastly, we acknowledge 
that missing data for our study was not missing at random; not all hospitals within the 
Sutter system have been using the EpicCare EHR system for all the pre-intervention 
years. The last hospital to come online with EHR was in 2015. Therefore, data from 
some hospitals may be incomplete and missing, thus leading us to throw out much of 
the available data. Additionally, because Sutter Health is an open-network healthcare 
system, patients may obtain care outside the system, and thus not all clinical 
effectiveness and healthcare utilization outcomes may be captured. We will assume that 
any under-reporting or misclassification of these outcomes is non-differential across 
clinics, which would bias our estimates towards the null. 
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4.5. Conclusions 
Health care systems are highly interested in evaluating the impact of programs on 
patient outcomes. The synthetic control method provides another tool for evaluation, in 
which only aggregate level data over multiple years is required. While our results did not 
indicate that the GLB program had its intended effect, this analysis still provides 
valuable information on how SCM may be applied in a health-care systems context. 
Future studies should take into account the open nature of the GLB program. Unlike a 
law or policy that affects all individuals in the group, programs implemented within a 
health care system are often voluntary and target a specific population at risk for 
specific conditions, and thus pose additional methodological considerations that may 
require extensions to the traditional SCM. 
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4.6. Figures 
 
 

 
Figure 4.1. Trends in mean weight (kg), GLB clinics vs non-GLB clinics (2002-2017). 

 

 
Figure 4.2. Trends in mean BMI, GLB clinics vs non-GLB clinics (2002-2017). 
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Figure 4.3. Trends in mean weight (kg), GLB clinics vs Synthetic GLB, 2005 – 2017. 
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Figure 4.4. Trends in mean BMI, GLB clinics vs Synthetic GLB, 2005 – 2017. 

 
 
 
 
 
 

 
Figure 4.5. Gap in mean weight (kg) between GLB clinics and Synthetic GLB, 2005 – 
2017. 
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Figure 4.6. Gap in mean BMI between GLB clinics and Synthetic GLB, 2005 – 2017. 
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Figure 4.7. Difference in mean weight between control clinics and GLB clinics and their 
respective synthetic controls, all clinics from 2005 - 2017. The superimposed black line 
denotes the gap estimated for the actual GLB clinics.  
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Figure 4.8. Difference in mean weight between control clinics and GLB clinics and their 
respective synthetic controls, clinics with <5 MSPE of the actual GLB clinics from 2005 - 
2017. The superimposed black line denotes the gap estimated for the actual GLB 
clinics. 
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Figure 4.9. Difference in mean BMI between control clinics and GLB clinics and their 
respective synthetic controls, all clinics from 2005 - 2017. The superimposed black line 
denotes the gap estimated for the actual GLB clinics. 
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Figure 4.10. Difference in mean BMI between control clinics and GLB clinics and their 
respective synthetic controls, clinics with <5 MSPE of GLB clinics from 2005 - 2017. The 
superimposed black line denotes the gap estimated for the actual GLB clinics. 

 
 
 
 
 
 

 
Figure 4.11. Ratios of post intervention MSPE to pre-intervention MSPE for mean 
weight (kg) for GLB clinics and all the clinics in the control group. 
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Figure 4.12. Ratios of post intervention MSPE to pre-intervention MSPE for mean BMI 
for GLB clinics and all the clinics in the control group. 

 
 
 
4.7. Tables 
 
 
Table 4.1. Comparison of mean covariate levels in GLB clinics, its synthetic control, and 
control clinics. 
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Table 4.2. Clinics included in the synthetic control along with their weights, mean weight 
(kg). 
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Table 4.3. Clinics included in the synthetic control along with their weights, mean BMI. 

 
 
Table 4.4. Mean squared prediction error (MSPE) in the pre-program period. 
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Chapter 5 - Conclusion 
 

 
5.1. Key Findings 
 
Findings from Chapter 2: Evaluation of the Advancing Health Equity Asthma Program 
Utilizing Propensity Score Matching and the Synthetic Control Method 
 
Objective: to evaluate the impact of the AHE asthma program on 30-day and 90-day 
return to the ED for any reason and for breathing difficulty related difficulties, from 
January 1, 2019 to February 29, 2020.  
 
In 2016, Sutter Health’s ABSMC found that 649 patients utilized the ED at total of 877 
times for asthma-related reasons, resulting in an HEI value of 1.5. This was largely 
driven by a disproportionate number of elderly Black/AA patients compared to other 
racial groups. Because of this, the AHE Asthma program was implemented to address 
the specific needs of Black/AA patients who utilized the ED for asthma-related reasons. 
The program brings culturally appropriate community based primary care, asthma 
education about the disease and medication self-management, and high-touch and 
high-tech real-time counseling services. We evaluated the program using propensity 
score matching and synthetic controls in order to assess individual-level and hospital-
level impact of the program.  
 
Based on the propensity score matched analysis, we found that the odds of returning to 
the ED for breathing difficulty related reasons among program participants was 1.28 
(0.99, 1.64) times the odds among non-participants. This effect was mirrored when 
stratified by COPD status. For 30-days returns to the ED for any reason, we saw results 
that were consistent with the direction of effect we had hypothesized, however the 
estimates were not significant. The odds ratio for 30-day return to the ED for any reason 
was 0.85 (0.62 – 1.16) comparing program participants and control patients. The odds 
ratio associated with 30-day returns for any reason was 0.63 (0.34 – 1.20) and 0.89 
(0.61 – 1.29) for those with a history of COPD and those without a history of COPD, 
respectively. For 90-day return to the ED for any reason, program participants had 1.06 
(0.83 – 1.06), 0.91 (0.54 – 1.54), and 1.09 (0.82 – 1.45) times the odds compared to 
control patients for the whole cohort, those with COPD and those without COPD, 
respectively.  
 
Using SCM, we did not find a significant effect of the program on reducing the number 
of 30-day and 90-day returns to the ED for any reason. We had hypothesized that the 
introduction of the AHE Asthma program would allow program participants to better 
manage their asthma symptoms and thus reduce the burden of utilizing the ED. 
However, contrary to our hypothesis, we found that outcome trends at both ABSMC 
sites were consistently higher than their synthetic control during the post-intervention 
period. At ABSMC Ashby, there was an average increase during the program of 
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approximately 0.5 returns and 1.2 returns for 30-day and 90-day returns respectively. At 
ABSMC Summit, the average increase during the program was about 0.72 returns and 
2.29 returns for 30-day and 90-day returns respectively. Based on the results of placebo 
tests, the gaps for both ABSMC Ashby ABSMC Summit for either outcome did not 
appear to be unusually large, even when restricting the placebo tests to only those 
hospitals that had <2 times the MSPE of the treated unit. Examining the ratio of post-
program MSPE to pre-program MSPE further supported this conclusion as the ratio for 
the ABSMC hospitals did not stand out from ratios for the control hospitals. However, for 
both outcomes, outcome trends at ABSMC Ashby and ABSMC Summit did not appear 
to be well approximated by their respective synthetic controls, evidenced both visually 
and by the relatively large MSPE, and thus the results during the post-intervention 
period are not reliable. 
 
Findings from Chapter 3: A Propensity score and Synthetic Control Approach to 
Evaluating a New Protocol for Patients at Risk for Alcohol Withdrawal Syndrome 
 
Objective: to assess the impact of a new protocol for treating individuals at risk for 
developing Alcohol Withdrawal Syndrome on leaving against medical advice, risk of ICU 
admission, and hospital length of stay from April 1, 2019 to March 2, 2020.  
 
Current practice for treating patients who are at risk for developing Alcohol Withdrawal 
Syndrome varies greatly both within the Sutter Health system and the overall medical 
community. Historically, the protocol at EMC is to assess patients using the CIWA score 
and treat symptoms of AWS with benzodiazepines. While the CIWA tool has been 
shown to have high validity and inter-rater reliability, it requires the clinical team to wait 
for the patient to show signs and symptoms of withdrawal prior to starting treatment. 
However, as recent studies have shown that delirium increases hospital acquired 
conditions, length of stay, cost of care, death and long-term cognitive impairments, the 
question of why treatment can’t be initiated sooner to prevent AWS symptoms before 
they begin is pertinent. Thus, in April of 2019, EMC implemented a new treatment 
protocol (ETOH-P) for patients at risk of developing AWS. The program consists of two 
protocols, one aimed at preventing AWS (prophylaxis protocol) and the other at treating 
AWS earlier in its course with targeted pharmaceuticals (active withdrawal protocol). We 
utilized propensity score matched methods and a synthetic control analysis to assess 
the impact of the ETOH-P program on risk of leaving AMA, average hospital length of 
stay and risk of ICU admission at both the patient-level and hospital-level, respectively. 
 
The average hospital length of stay among the whole matched cohort, ETOH-P patients 
and control patients was 7.16 days, 7.32 days and 7.13 days respectively. 10.3% of 
ETOH-P patients left the hospital AMA compared to 7.3% of control patients who left 
AMA. 109 ETOH-P patients (35.2%) had an ICU admission, compared to 435 control 
patients (35.1%).  
 
We found that patients who received the ETOH-P protocol had 1.47 (0.96, 2.27) times 
the odds of leaving AMA compared to those who did not receive the protocol, however, 
this was not statistically significant. For ICU admissions, patients who received the 
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ETOH-P protocol had 1.00 (0.77, 1.31) times the odds of ICU admissions compared to 
those who did not receive the protocol, though also not statistically significant. Patients 
on the ETOH-P protocol had, on average, 0.19 (0.11, 0.26) more days in the hospital, 
compared to those not on the ETOH protocol, and this difference was statistically 
significant. 
 
Overall, the pre-intervention trends for leaving AMA and ICU admission did not appear 
to be well approximated by their respective synthetic controls; in fact, the EMC curve 
crosses at multiple points with the synthetic control curve during the pre-intervention 
period. It does appear that the synthetic control for ICU admissions provides a better 
approximation of actual trends. The EMC curve crosses at multiple points with the 
synthetic control curve during the pre-intervention period for all three outcomes. The 
differences in the proportion of patients who leave AMA between the actual EMC and its 
synthetic control indicate that there was an average increase during the program period 
of approximately 0.0003. There was an average increase in the proportion of patients 
admitted to the ICU of 0.0012 and an increase in the average hospital length of stay of 
2.03 days.  
 
Based on the placebo tests, the estimated gap for EMC did not appear to be unusually 
large compared to the distribution of gaps for the other hospitals in the donor pool, for 
any of the outcomes. The results from the ratio of post- to pre-intervention MSPE and p-
value were consistent with the placebo plots, which indicated that the effect of the 
ETOH-P program on leaving AMA and ICU admission was not significant, but hospital 
LOS was significant.  
  
 
 
Findings from Chapter 4: A Synthetic Control Approach to Evaluating the ELEVATE-DP 
Study 
 
Objective: to evaluate the impact of the Group Lifestyle Balance (GLB) program on 
mean weight and mean BMI from 2010 to 2017.  
 
The landmark Diabetes Prevention Program (DPP) randomized clinical trial found that 
an intensive lifestyle intervention program was effective at reducing the incidence of 
diabetes by more than half. Sutter Health’s real-world adaptation of the LCP is the GLB 
program, consisting of a year-long group-based curriculum modeled off the original 
DPP. The primary evaluation of the effectiveness, adoption, implementation and 
maintenance of the GLB program has previously be conducted; an EHR-based, 
propensity score matched analysis was performed and found that compared with usual-
care patients, participants in the program had a greater odds of attaining clinically 
meaningful weight loss at 12-months and 24-months of follow-up, as well as a greater 
odds of blood pressure control at 12-months of follow-up. In this analysis, we were 
interested in whether this same effect would be evident at the clinic-level, and thus we 
used synthetic controls to study the impact of the GLB program on mean weight and 
mean BMI from 2010 to 2017.  
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Overall, the pre-program mean weight and mean BMI levels appeared to be well 
approximated by the synthetic control. The differences in mean weight between the 
actual GLB clinics and its synthetic control from 2010 to 2017 indicate that there was an 
average increase in mean weight during the program of approximately 4.2 kg. The 
permutation test suggests that this effect is not significant compared to other clinics 
when comparing to all control units, as well as just those control units with an MSPE < 5 
times that of an actual GLB clinic. Actual trends of mean BMI remain relatively steady 
across the study period and start to diverge from the synthetic control around 2012. The 
actual mean BMI trend was elevated over the synthetic control for most of the post-
program period. The differences in mean BMI between the actual GLB clinics and its 
synthetic control from 2010 to 2017 indicate that there was an average increase in 
mean BMI during the post-program period of approximately 1.64. Permutation tests 
indicate that this was also not significant as the observed effect for the actual GLB 
clinics was not unusually large compared to the distribution of effects from other clinics.  
 
 
5.2. Discussion 
 
SCM was first developed and formalized by Abadie, Diamond, and Hainmueller37 to 
study the impact of a 1988 large-scale tobacco control program that was implemented 
in California and Abadie and Gardeazabal2 to investigate the economic effect of terrorist 
conflict in the Basque Country of Spain. While the method originated from comparative 
case studies in economics, in which an intervention effect is assessed by comparing the 
aggregate-level outcomes of the treated unit to a group of units that are similar, but 
unaffected by the treatment. However, it is often difficult to identify a single unit that is 
the best comparison group, and comparative case studies lack a formalized, systematic 
method for selecting comparison units. Since then, SCM has been used as an 
evaluation tool to study programs and interventions at the group-level in many different 
settings and disciplines. In recent years, SCM has been applied to study key policy 
issues around tobacco control and smoking policies74–77, gun control and right-to-carry 
laws78–81, health care delivery and insurance reform programs82–89, carbon emissions 
and deforestation90–93, and even drought40. Synthetic controls have also been used to 
study important recent events such as the legalization of same sex marriage94, vaccine 
introductions95–97, marijuana98,99, the adoption of open data among research 
publications100, and the COVID-19 pandemic8,10,13,101.  
 
Boutell et al. (2018)102 surveyed the use of SCM in health research settings and 
provided a very valuable and thorough introduction of SCM to public health researchers. 
They found 38 health-related studies utilizing SCM to study topics spanning health 
finance and health systems reform, health industry reform (ban on trans fat, mobile 
phone bans, alcohol licensing hours, etc.), taxation policies (tax on sugar-sweetened 
drinks, cigarettes, etc.), nutritional interventions, and health welfare reforms103. In 
general, SCM has proven to be a valuable addition to the program evaluation toolbox, 
particularly in the observational study design setting, however the method is underused 
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in public health research. Some key assumptions are made in all of these health-related 
applications of SCM. First, although weights are systematically calculated by the 
method to ensure the most appropriate synthetic control, it is assumed that the treated 
unit(s) is sufficiently similar to the control units in the donor pool. Second, the method 
assumes that there is no contamination or spillover of the intervention into any potential 
control units. Third, there must be no external shocks to the pool of control units. As 
much of the existing literature notes, and as we discuss below, these assumptions must 
be carefully considered within the health system setting.  
 
A common theme highlighted throughout many of these prior applications is that 
synthetic controls can be readily applied when there is aggregate-level data available, 
particularly if it is publicly available; for example, an assessment of the impact of a 
sugar-sweetened beverage tax on employment used monthly employment count data 
from the Bureau of Labor Statistics104, and a study looking at the effects of border 
shutdowns on the spread of the COVID-19 outbreak used confirmed case counts from 
the World Health Organization (WHO) situation reports13. While we did not find any 
applications of SCM to study asthma or AWS programs, we found one paper that 
examined the impact of sugar and processed food imports in 172 countries on average 
BMI. The study found that overtime, imports of sugar and processed food was 
associated with an increase in average BMI in Fiji compared to the synthetic control 
group105.  
 
Compared to traditional regression methods, SCM offers several advantages. Synthetic 
control estimators avoid extrapolation beyond the data because the weights are 
restricted to be positive and sum to one. Regression weight in comparison may be 
outside the [0,1] range, allowing for extrapolation outside the bounds of the data. 
Because the synthetic control is a weighted average of potential control units, readers 
can assess for themselves, the relative contribution of each control unit to the synthetic 
control. Those with expert knowledge of the potential control units can quickly assess 
the validity of the synthetic control based on the units that are given weight. Additionally, 
the audience can judge for themselves similarities and differences in outcome and 
predictor values between the treated unit and the synthetic control. In further contrast 
with regression methods, construction of the synthetic control does not require access 
to post-intervention outcomes. Synthetic control weights can be calculated using just 
pre-intervention data before even seeing any post-intervention data. This is 
advantageous as it allows you to make decisions about study design, such as 
identifying the most appropriate comparison group without knowledge of how they might 
affect the conclusions of the study18. Furthermore, SCM provides a nice visual 
representation of the impact of the intervention and how it varies over time, as well as a 
clear visualization of the actual discrepancy between the treated unit and the convex 
combination of control units, something that alternatives such as propensity score 
methods do not provide. Plots are produced that display what the observed outcome 
looks like compared to what would be expected in the absence of the intervention; the 
sharp divergence of the outcome trends can provide a strong visual aid in telling a story 
about program impacts.  
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This dissertation describes three separate applications of the synthetic control method 
to evaluate 1) an outpatient asthma program in which participants are recruited into the 
program by a program coordinator based on eligible characteristics, 2) an inpatient 
hospitalization protocol for patients who present to the ED who are at risk for AWS, and 
3) an outpatient diabetes program available to all Sutter Health patients who are at 
cardiometabolic risk. In doing so, this dissertation contributes to the literature by being 
the first study, to our knowledge, to utilize SCM to evaluate an inpatient or outpatient 
health system program. While the focus of this dissertation is the synthetic control 
analysis, we also performed an individual-level analysis of the asthma and ETOH-P 
programs utilizing propensity score matched methods; a previous study undertook a 
propensity score matched analysis of the GLB program. In conducting these analyses, 
we learned several key considerations for utilizing SCM as an evaluation tool within this 
setting. We divide these into data acquisition and data preparation considerations and 
methodological considerations.  
 
Data acquisition and data preparation 
 

1. SCM requires complete aggregate-level data for outcomes and predictors 
during the pre-intervention period. As chapters 2-4 demonstrated, the SCM 
method requires aggregate-level data for the outcomes and predictors for the 
treated unit and all potential control units. However, even more important is 
having sufficient pre-intervention data for all outcomes and predictors. This is 
because the credibility of a synthetic control estimator depends largely on its 
ability to reproduce the outcome trajectory of the treated unit during the pre-
intervention period. Abadie, Diamond and Hainmueller (2010) discuss this by 
showing that bias in the synthetic control estimator is bounded by a function that 
is inversely proportion to the number of pre-intervention periods, therefore 
necessitating a large pre-intervention period.  

2. Sufficient pre-intervention data are necessary. We found that in order to 
construct a synthetic control, complete outcome data was required for all time 
points during the pre-intervention period. Because of this, we ended up throwing 
out large portions of the data; this was particularly true for the GLB program 
evaluation where we discarded multiple years of data due to too much 
missingness. Furthermore, additional years of data for all three applications 
would have strengthened the match during the pre-intervention period as it may 
have shed light on any seasonal trends. We utilized data from Sutter Health’s 
EHR system, which began onboarding of hospitals to their EHR system in 2012, 
but wasn’t fully implemented at every hospital until 2015, thus hospital data 
availability prior to the EHR system is fragmented and sparse. Future uses of 
SCM data within a health-care system should take into consideration the fact that 
data availability may pose a challenge to obtaining a close fit during the pre-
intervention period.  
 

3. Sufficient post-intervention data are also necessary. Programs implemented 
within health systems are usually not introduced at one point in time, in fact they 
are generally implemented over a period of time, either because they are being 
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rolled out to multiple clinics (such as with GLB) or because the program slowly 
ramps up as logistics and kinks are sorted out. Thus, unlike prior application of 
SCM that evaluate a law or policy that goes into effect at one specific point in 
time, health system programs do not have one specific start point. Because of 
this, it is all the more important to have post-intervention data sufficiently into the 
future to identify program effects that are expected to take some time. In our 
evaluations of the asthma program and ETOH program, both had short post-
intervention periods of around one year. It is possible that the outcomes we 
chose for these evaluations were too “downstream” of the intervention to be 
detected within such a short period of time, such that the mechanism between 
intervention and the outcomes of interest were too variable and subject to many 
outside influences. A longer post-intervention window would allow for a more 
complete picture of the intervention trend. 
 

Methodological considerations 
 

4. While SCM is motivated by the use of a data-driven approach to control 
selection, there still existing subjective decisions during the data 
preparation process. For example, we chose to aggregate all the GLB clinics 
together into one “treated” unit. As the synth() procedure could only accept a 
complete and balanced dataset, we had to make subjective decisions based on 
data availability and amount of missingness; these decision included which years 
of data to use and which control units to keep within the donor pool.  

5. Size of the effect and volatility of the outcome. As made evident throughout 
this dissertation, SCM is an evaluation tool that can be used to estimate the 
effect of an intervention on an aggregate level. In most cases, the intervention is 
implemented at only one unit or a few units. Thus, it is possible that the effects of 
some interventions are too small to be detectable at the aggregate level. This is 
particularly true if the outcome of interest is highly volatile, and the trend of the 
outcome is highly variable over time. Intervention effects that are a smaller or 
similar magnitude to the volatility of the outcome will be indistinguishable from 
the normal variability of the outcome18. As we saw with outcomes in the asthma 
evaluation (30-day and 90-day return to the ED) and ETOH-P evaluation 
(proportion of patients leaving the hospital AMA, proportion of patients who had 
an ICU admission, and the average hospital length of stay), the trends fluctuated 
during the pre-period, crossing over at multiple time points with the synthetic 
control trend line. It could be that changes to these outcomes were too small to 
detect at the hospital-level; one possibility being that the uptake of the program 
was small relative to the overall population at those hospitals.  

6. No interference or spillover effects. The organization of a health care system 
such as Sutter Health appears to be a seemingly suitable setting to apply SCM, 
as it is an integrated network of care centers with various hospital locations; 
when programs are implemented only at one hospital and not at others within the 
same health care system, SCM should be considered as a tool for program 
evaluation. However, it is important to carefully consider the potential control 
hospitals to be included in the donor pool. Hospitals with very dissimilar 
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characteristics to the treated hospital should be excluded from the possible donor 
pool. This is because, although weights are restriction to avoid extrapolation, it is 
still possible for interpolation biases to exist if the synthetic control has to 
average away large differences in order to closely match the treated unit18. 
Additionally, control hospitals should be eliminated from the donor pool if they 
themselves implemented a similar program during the study period. If these 
hospitals were to be included in the donor pool, it could attenuate the effect of the 
program we observe in the treated unit. Likewise, outcomes in control hospitals 
that are affected by the intervention should also be disregarded as this “spillover” 
effect could also bias the results towards the null, making it appear that the 
program is less effective than it actually was. 

7. Patients are free to seek care where they want. One final consideration when 
using SCM within a health system such as Sutter Health is that patients are free 
to choose hospital locations from which to seek care. If the program is highly 
successful at having a beneficial effect on its targeted outcomes, patients may 
choose to seek care at the hospital where the new program is implemented, even 
if it is not the hospital they normally go to. We believe that this was the case for 
the GLB program. As DPP was a landmark study that gained national attention 
and awareness, once the GLB program began at Sutter Health, it is likely that 
patients heard about the program and actively choose to seek care at a GLB 
program clinic. As patients targeted for GLB are those who are overweight/obese 
and at high risk for cardiometabolic events, it may have appeared that our 
outcomes of interest increased during the program period, when actually average 
weight and BMI at GLB program clinics was actually increasing because patients 
were self-selecting into the program. Furthermore, it is possible that patients who 
choose to enroll in these programs are systematically different from those who do 
not participate. This form of self-selection bias is highly likely and may obscure 
any true effects of the intervention 

8. SCM is nonspecific. While SCM allows us to capture the impact of an 
intervention on our outcomes of interest, it does not test the specific mechanism 
for how the intervention led to change, thus SCM is non-specific and does not 
allow us to distinguish between co-occurring events that could affect the 
outcome. One possible way in which to address this would be to use a series of 
negative controls, an outcome that the intervention should not plausibly impact, 
but which may be affected by a confounding factor. If an effect of the intervention 
is observed when using a negative control, it can be assumed that there is some 
level of confounding or bias present that needs to be taken into account. 

 
Despite these issues to consider, the application of SCM within Sutter Health is 
promising and benefits heavily from understanding the context of the program. The 
impact of health-system programs on patient outcomes has a high potential to be 
mediated through a range of individual, social, cultural and organizational factors. 
Failure to account for these contextual effects makes it difficult to determine whether 
nonsignificant effects of the program on patient outcomes is truly due to an ineffective 
intervention or other reasons. In our SCM analysis, we were not able to control for these 
complexities; in most cases, we had data on sex, age, race and ethnicity, type of health 
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insurance and limited medical history. Additional data on patients that might affect 
health-seeking behaviors as well as contextual program factors may help to shed light 
on whether or not the intervention was truly ineffective or not. Furthermore, as a health-
care system is in essence a nesting of multiple levels that interact with each other 
(patients within providers, within hospitals, within neighborhoods, etc.) SCM may not be 
the most appropriate method to evaluate these programs. Instead, multilevel modeling 
should be considered as a potential alternative, as multi-level statistical models account 
for the nested and clustered structures present in health systems106. Additionally, the 
use of mixed-methods is also highly appropriate for evaluating health-care system 
programs, as it would add more to the understanding of specific mechanisms for 
change and how variations in program implementation might impact the evaluation 
results.  
 
One of the primary issues in our applications of SCM was the difficulty in obtaining pre-
intervention fit in the outcome trends between the treated unit and the synthetic control. 
While we discuss above that selecting appropriate controls for the donor pool may 
improve this fit, there have also been very recent methodological extensions of SCM 
that address this issue. In 2019, Ben-Michael et al. proposed the augmented synthetic 
control method (ASCM), which can be applied in settings where good pre-intervention 
match between the treatment unit and the synthetic control is infeasible. Ben-Michael et 
al. uses a ridge-regularized linear regression as the outcome model to directly control 
pre-intervention fit while relaxing the non-negative weight restriction that the original 
SCM uses107. There have been many additional advances related to SCM that are 
discussed in methodological detail elsewhere18, but we highlight a select few here. 
Abadie and L’Hour (2019)108 discuss situations in which there is not one unique solution 
to finding the synthetic control that best reproduces the outcome of the treated unit. In 
such cases, a synthetic control estimator that penalizes the pairwise discrepancies 
between characteristics of the treated units and characteristics of the donor pool units 
may be used. This extension is useful in situations where there are multiple treated 
units, such as our GLB program, and there may not be one unique solution that 
minimizes the distance between treated and control units. Doudchenko and Imbens 
(2017)109 propose a generalization of SCM that uses elastic net regression such that 
weights can be negative and not sum to 1, allowing for a permanent additive difference 
between the treated unit and the synthetic controls, similar to a DiD approach. Lastly, 
Arkhangelsky et al. (2019)110 present a new perspective on SCM using a weighted least 
squares regression estimator with time fixed effects and weights for both unit and time, 
termed a synthetic difference in differences (SDID) estimator, and can also be 
generalized to cases with multiple treated units and multiple treated periods.   
 
Lastly, this exercise in the application of SCM within a health care setting reminds of the 
importance of reproducible science and transparency. The recent narrative of the 
“reproducibility in science crisis” has sparked increased efforts across all fields to make 
research more transparent and results reproducible111. The modern approach to 
incorporating reproducibility into the scientific process incorporates steps such as 
registration of protocols and pre-analysis plans, internal replication with blinded 
analyses and sharing data and code publicly at the time of publication112. As previously 
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mentioned, the development of SCM stemmed from the need for a formalized 
systematic approach to choosing comparison units in comparative case studies. As 
such, SCM may be a champion for reproducibility and transparency efforts as it allows 
researchers to clearly present which units have been selected to contribute to the 
synthetic control, along with their respective weights. This may be determined 
beforehand, before ever seeing any post-intervention outcomes, and can be specified in 
a pre-analysis plan that may be registered before conducting any analyses or drawing 
conclusions. Additionally, much of health systems research involves confidential patient 
data, and thus individual-level datasets cannot be easily shared. SCM is a valuable tool 
in this setting as it utilizes aggregate-level data; researchers may remove any personal-
identifying information from the datasets and thus share data and code at the time of 
publication. Efforts such as these may help to bolster confidence that health programs 
implemented within health care systems are improving patient outcomes, and thus 
improve reproducibility and transparency within the field.  
 
 
5.3 Conclusions 
 
The analyses presented in this dissertation are, to our knowledge, the only applications 
of SCM to evaluate health programs within an integrated health-care delivery system 
like Sutter Health. We sought to understand if SCM could be utilized as an evaluation 
tool to study health programs targeted at specific disease condition. While we did not 
find a significant effect of any of the programs when utilizing SCM (or traditional 
propensity score matching methods), we did gain some key takeaways for future 
applications. Primarily, we learned that there are significant data requirements as well 
as methodological considerations to contemplate prior to undertaking an SCM analysis. 
Sufficient aggregate-level outcome and predictor data for the treated units and pool of 
control units is necessary during the pre-intervention period as well as post-intervention 
period. Within health care delivery systems, these are important considerations as often 
1) multiple EHR systems are used or implemented at different times, resulting in dis-
jointed data or insufficient time series data over a long period of time, and 2) 
implementation of the program occurs over a period of time, potentially resulting in 
delayed effects, if any. We had to make decisions about which units and time periods to 
include in the analysis, resulting in areas of subjective decision-making. 
Methodologically, outcome volatility, interference and spillover between units, patients’ 
path to seeking care and the mechanism of change should be considered beforehand in 
the context of a health care system. We recommend continued use of SCM within 
Sutter Health; with the above lessons in hand, we believe SCM is an efficient evaluation 
method that provides valuable results for hospital-level decision making.  
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Appendix A 
 
Appendix Table A1. ICD-9/ICD-10 codes for respiratory disease history 
 
ICD9 ICD9 Description ICD10 ICD10 Description 
466 Acute bronchitis J20.9 Acute bronchitis, unspecified 

466.11 Acute bronchiolitis due to 
respiratory syncytial virus (RSV) J21.0 Acute bronchiolitis due to 

respiratory syncytial virus 

466.19 Acute bronchiolitis due to other 
infectious organisms J21.8 Acute bronchiolitis due to other 

specified organisms 

477.9 Allergic rhinitis, cause 
unspecified J30.0 Vasomotor rhinitis 

477 Allergic rhinitis due to pollen J30.1 Allergic rhinitis due to pollen 

477.8 Allergic rhinitis due to other 
allergen J30.2 Other seasonal allergic rhinitis 

477.1 Allergic rhinitis due to food J30.5 Allergic rhinitis due to food 

477.2 Allergic rhinitis due to animal 
(cat) (dog) hair and dander J30.81 Allergic rhinitis due to animal 

(cat) (dog) hair and dander 

477.8 Allergic rhinitis due to other 
allergen J30.89 Other allergic rhinitis 

477.9 Allergic rhinitis, cause 
unspecified J30.9 Allergic rhinitis, unspecified 

472 Chronic rhinitis J31.0 Chronic rhinitis 
472.2 Chronic nasopharyngitis J31.1 Chronic nasopharyngitis 
472.1 Chronic pharyngitis J31.2 Chronic pharyngitis 
473 Chronic maxillary sinusitis J32.0 Chronic maxillary sinusitis 
473.1 Chronic frontal sinusitis J32.1 Chronic frontal sinusitis 
473.2 Chronic ethmoidal sinusitis J32.2 Chronic ethmoidal sinusitis 
473.3 Chronic sphenoidal sinusitis J32.3 Chronic sphenoidal sinusitis 
473.8 Other chronic sinusitis J32.4 Chronic pansinusitis 
473.8 Other chronic sinusitis J32.8 Other chronic sinusitis 
473.9 Unspecified sinusitis (chronic) J32.9 Chronic sinusitis, unspecified 

490 Bronchitis, not specified as 
acute or chronic J40 Bronchitis, not specified as 

acute or chronic 
491 Simple chronic bronchitis J41.0 Simple chronic bronchitis 
491.1 Mucopurulent chronic bronchitis J41.1 Mucopurulent chronic bronchitis 

491.8 Other chronic bronchitis J41.8 Mixed simple and mucopurulent 
chronic bronchitis 

491.9 Unspecified chronic bronchitis J42 Unspecified chronic bronchitis 
492 Emphysematous bleb J43.9 Emphysema, unspecified 
492.8 Other emphysema J43.9 Emphysema, unspecified 
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491.22 Obstructive chronic bronchitis 
with acute bronchitis J44.0 

Chronic obstructive pulmonary 
disease with acute lower 
respiratory infection 

493.21 Chronic obstructive asthma with 
status asthmaticus J44.0 

Chronic obstructive pulmonary 
disease with acute lower 
respiratory infection 

491.21 Obstructive chronic bronchitis 
with (acute) exacerbation J44.1 

Chronic obstructive pulmonary 
disease with (acute) 
exacerbation 

493.22 Chronic obstructive asthma with 
(acute) exacerbation J44.1 

Chronic obstructive pulmonary 
disease with (acute) 
exacerbation 

491.2 Obstructive chronic bronchitis 
without exacerbation J44.9 Chronic obstructive pulmonary 

disease, unspecified 

493.2 Chronic obstructive asthma, 
unspecified J44.9 Chronic obstructive pulmonary 

disease, unspecified 

496 Chronic airway obstruction, not 
elsewhere classified J44.9 Chronic obstructive pulmonary 

disease, unspecified 

493 Extrinsic asthma, unspecified J45.20 Mild intermittent asthma, 
uncomplicated 

493.1 Intrinsic asthma, unspecified J45.20 Mild intermittent asthma, 
uncomplicated 

493.02 Extrinsic asthma with (acute) 
exacerbation J45.21 Mild intermittent asthma with 

(acute) exacerbation 

493.12 Intrinsic asthma with (acute) 
exacerbation J45.21 Mild intermittent asthma with 

(acute) exacerbation 

493.01 Extrinsic asthma with status 
asthmaticus J45.22 Mild intermittent asthma with 

status asthmaticus 

493.11 Intrinsic asthma with status 
asthmaticus J45.22 Mild intermittent asthma with 

status asthmaticus 

493.92 Asthma, unspecified type, with 
(acute) exacerbation J45.901 Unspecified asthma with 

(acute) exacerbation 

493.91 Asthma, unspecified type, with 
status asthmaticus J45.902 Unspecified asthma with status 

asthmaticus 

493.9 Asthma, unspecified type, 
unspecified J45.909 Unspecified asthma, 

uncomplicated 

493.81 Exercise induced bronchospasm J45.990 Exercise induced 
bronchospasm 

493.82 Cough variant asthma J45.991 Cough variant asthma 

493.9 Asthma, unspecified type, 
unspecified J45.998 Other asthma 

327.2 Organic sleep apnea, 
unspecified G47.30 Sleep apnea, unspecified 

780.51 Insomnia with sleep apnea, 
unspecified G47.30 Sleep apnea, unspecified 
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780.53 Hypersomnia with sleep apnea, 
unspecified G47.30 Sleep apnea, unspecified 

780.57 Unspecified sleep apnea G47.30 Sleep apnea, unspecified 

530.11 Reflux esophagitis K21.0 Gastro-esophageal reflux 
disease with esophagitis 

530.81 Esophageal reflux K21.9 Gastro-esophageal reflux 
disease without esophagitis 
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Appendix Figure A1. Panel view plots of 30d returns for SCM analysis
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Appendix Figure A2. Panel view plots of 90d returns for SCM analysis  
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Appendix Figure A3. Summary statistics for Sutter hospitals, include map of service 
areas 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Synthetic control details 
In this dissertation, we follow the guidance by Abadie et al., 2010 and define two 
potential outcomes: 𝑌!"# and 𝑌!"$ , where 𝑌!"# is the outcome that would be observed for 
hospital i at time t if hospital i is not exposed to the intervention, and 𝑌!"$  the outcome 
that would be observed if hospital i is exposed to the intervention. We observe 𝑌!"$   in the 
post-intervention period for the treated hospital, but 𝑌!"#  is unobserved for the treated 
hospital in the post-intervention period. The goal of the synthetic control method is to 
construct a synthetic control group that yields a reasonable estimate of this missing 
potential outcome. In doing so, we will be able to estimate the treatment effect of 
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interest, or the effect of the program on our outcomes of interest for the treated hospital 
in the post-intervention period: 

𝛼)" = 𝑌!"$ − 𝑌!"# 
The program occurs at time period 𝑇% + 1 so that 1, 2, …, 𝑇% are the pre-program 
periods and 𝑇% + 1, 𝑇% + 2, …, T are the post-program periods. 
The synthetic control should resemble the treated unit in relevant pre-program 
characteristics and pre-intervention outcomes. Thus, we define 𝑈! as a vector of 
observed covariates for each unit. These variables should consist of a set of predictors 
of the outcome. We also define a (T0 x 1) vector 𝐾 = L𝑘), … , 𝑘3#N′ that denotes some 
linear combination of pre-intervention outcomes.  
Abadie and Gardeazabal (2003) and Abadie et al. 2010 propose that weight W* are 
chosen such that the synthetic control best approximates the program hospitals with 
respect to outcome predictors 𝑈!and linear combinations of pre-intervention outcomes 
𝑌Y!
4" , … . , 𝑌Y!

4$.  
 
X1 will be a (k x 1) vector containing the values of the pre-program characteristics of the 
treated hospital that we aim to match as closely as possible. X0 is a k x J matrix with 
values of the same variables for the control hospitals. The preprogram characteristics in 
X0 and X1 may include pre-intervention values of the outcome(s).  
 
We will utilize the synth package to choose the vector W* that minimizes the distance || 
X1-X0W|| between X1  and X0 W9. The synth() (Abadie 2010, Abadie 2019, ADH 2011)  
function solves for W* by minimizing 
 

‖𝑋) − 𝑋%𝑊‖𝑣 = A(𝑋) − 𝑋%𝑊)′𝑉(𝑋) − 𝑋%𝑊) 
 
Where V is a matrix allowing for different weights to be applied to variables in X0 and X1 
based on their predictive power on the outcome. The synth() function allows for a data-
drive procedure to choose V*, as proposed in Abadie and Gardeazabal (2003) and 
Abadie et al. (2010), such that the mean-squared prediction error (MSPE) of the 
outcome is minimized over the pre-program years (Abadie, Diamond, Hainmueller, 
2011). 
 
Large sample inferential techniques are not appropriate in this setting due to the small 
number of units; however, exact inferential techniques, such as a placebo/permutation 
test may be used to assess how unusual an effect would be if it were due to change and 
thus provide context for the effect size. As advised in prior literature (Abadie et al 2010, 
etc.) we obtained inference for these estimates by using a series of placebo 
(permutation tests), in which we applied the synthetic control method for each control 
hospital, as though it were the one that had implemented the program. The estimated 
effect of the actual treated hospital can then be compared to the size of these other 
effect estimates. Typically, the permutation test results are compared for hospitals in 
which pre-program trends are well predicted by the synthetic control.  
 
 
 




