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ABSTRACT
Objective As healthcare systems continue to expand
and interconnect with each other through patient
sharing, administrators, policy makers, infection control
specialists, and other decision makers may have to take
account of the entire healthcare ‘ecosystem’ in infection
control.
Materials and methods We developed a software
tool, the Regional Healthcare Ecosystem Analyst (RHEA),
that can accept user-inputted data to rapidly create a
detailed agent-based simulation model (ABM) of the
healthcare ecosystem (ie, all healthcare facilities, their
adjoining community, and patient flow among the
facilities) of any region to better understand the spread
and control of infectious diseases.
Results To demonstrate RHEA’s capabilities, we fed
extensive data from Orange County, California, USA, into
RHEA to create an ABM of a healthcare ecosystem and
simulate the spread and control of methicillin-resistant
Staphylococcus aureus. Various experiments explored the
effects of changing different parameters (eg, degree of
transmission, length of stay, and bed capacity).
Discussion Our model emphasizes how individual
healthcare facilities are components of integrated and
dynamic networks connected via patient movement and
how occurrences in one healthcare facility may affect
many other healthcare facilities.
Conclusions A decision maker can utilize RHEA to
generate a detailed ABM of any healthcare system of
interest, which in turn can serve as a virtual laboratory
to test different policies and interventions.

INTRODUCTION
As healthcare systems continue to expand and
interconnect with each other through patient
sharing, healthcare facility administrators, policy
makers, infection control specialists, and other
decision makers have to take account of the entire
healthcare ‘ecosystem’ when seeking to prevent and
control infectious diseases. Individual healthcare
facilities are rarely isolated entities but rather are
connected to other healthcare facilities and the
community through extensive patient sharing, thus
forming a dynamic ecosystem.1 2 Patients dis-
charged from one facility may immediately or after
an intervening stay in the community, move to
another facility carrying infectious diseases with
them.
Creating models de novo of large healthcare

systems or of all the healthcare facilities in a region
can require substantial effort and time. To make
this task easier, we developed a computational

software tool, the Regional Healthcare Ecosystem
Analyst (RHEA) which decision makers can use to
rapidly create a detailed agent-based simulation
model (ABM) of any healthcare system or set of
healthcare facilities in any sized region with inte-
grated infectious disease transmission models. The
resulting simulation model can serve as a virtual
laboratory to help decision makers (eg, public
health officials, hospital administrators, and infec-
tion control specialists) test different policies, strat-
egies, and interventions before actually
implementing them, thereby saving the time and
effort that trial and error would incur. This study
introduces RHEA and its features, using a sample
location (Orange County, California, USA) and a
sample infectious pathogen (methicillin-resistant
Staphylococcus aureus (MRSA)) to demonstrate the
importance and impact of RHEA’s features.

MATERIALS AND METHODS
The Regional Healthcare Ecosystem Analyst
We developed an initial version of RHEA in
Fortran 90 and a subsequent version in C++. The
user can feed data (entered into standard spread-
sheet templates that are then read into RHEA) on a
healthcare system of any size or configuration into
a standard input deck which RHEA can then use to
rapidly create an ABM of that system. Table 1 sum-
marizes the inputs that may be needed for RHEA
to build a model and the potential data sources for
these inputs. The detail of the RHEA-generated
ABM will correspond to the detail of the input
data.

Computational agents representing patients
In the generated ABM, a computational agent
represents each patient. Like a real patient, each
simulated agent has a set of parameters, each
mapping to a particular characteristic, such as
gender, age, race/ethnicity, socioeconomic status,
insurance status, presence/absence of a variety of
co-morbidities, and infectious disease status. Each
parameter can assume a set of user-specified appro-
priate categorical, ordinal, or continuous values
(eg, infectious disease status, where 0 means the
agent is susceptible, 1 means colonized, and 2
means colonized with active infection; or location,
where each facility, ward, and bed within the ward
has a unique identifier). As described below, some
of the behaviors, movements, and actions of each
agent are conditional on the agent’s various param-
eter values.
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Representations of healthcare facilities
RHEA can create a model with practically any number and type
of healthcare facilities. Each facility has an identification param-
eter (eg, if a model has 100 facilities, each facility has a unique
identification number from 1 to 100). Each virtual facility has a
set of parameters that mirror a real healthcare facility’s charac-
teristics (facility type (acute care, long-term acute care (LTAC),
and long-term care), total number of beds, and patient
length-of-stay (LOS) distribution). In each facility, the beds are
divided into intensive care units (ICUs) and/or general wards
(eg, an acute care hospital may have a few ICUs and many
general wards, while a nursing home may have a single ward).
The user can specify the number of beds in each ward/unit.

Agent (patient) movement
Figure 1 shows how agents flow through a RHEA-generated
model. The simulation proceeds in 1-day discrete time steps.
Each simulated day, agents (representing admissions) enter each
healthcare facility and fill its available beds. On admission, the
agent draws from that facility’s LOS distribution (specified by
the user) which sets the starting value for that agent’s facility
LOS countdown clock, which determines how many days the
agent stays in that facility (eg, one agent may have its facility
LOS countdown clock set initially at 2 days, while another may
have it set at 5 days). Each passing day decreases the agent’s
facility LOS countdown clock by 1 day until it reaches zero,
prompting the agent to leave the facility.

If a facility has more than one type of unit/ward, a probability
draw determines what type of unit/ward the agent enters (eg, if
the randomly drawn probability between 0 and 1 is less than the
user specified probability of entering an ICU versus other wards
(pICU), the agent attempts to enter an ICU; otherwise, the agent
enters a general ward). Then, a subroutine scans the facility’s
complement of empty beds. Each empty bed has an equal prob-
ability of being filled by the agent. If all beds are filled, the
agent will have to move to another facility (see below on how
the destination of discharged agents is governed).

If an agent moves into an ICU, the agent draws from that
facility’s ICU-specific LOS distribution (user-specified) which
sets the starting value for the agent’s ICU LOS countdown clock
that determines how many days the agent stays in that ICU. As
with the agent’s facility LOS countdown clock, each passing day
decreases the agent’s ICU LOS countdown clock by 1 day until
it reaches zero, prompting the agent to leave the ICU. The
agent’s facility LOS countdown clock decreases simultaneously.
If upon transfer from the ICU, the agent’s facility LOS count-
down clock is still greater than zero, the agent moves into the
general ward and remains there until that agent’s facility LOS
countdown clock reaches zero at which time the agent leaves
the facility. If the facility LOS countdown clock has already
reached zero when the agent’s ICU LOS countdown clock hits
zero, the agent moves to the general ward for 1 day before
leaving the facility.

The user can specify whether the facility LOS distribution or
ICU LOS distribution is the same for all agents or conditional
on a given agent characteristic. For example, the user has the
option to dictate that agents infected by a pathogen will draw
from a different (eg, longer) LOS distribution (if such a LOS dis-
tribution is available).

Upon discharge, another subroutine determines the agent’s
destination. A probability draw between 0 and 1 determines
whether an agent moves to the community and leaves the model
(eg, a draw of less than a user-specified pcommunity means the
patient moves directly to the community). Otherwise the agent
moves to another facility, either immediately (direct transfer) or
after an intervening stay in the community (readmission). Each
agent moving to another facility has a probability of ending up
in any of the other facilities (eg, a patient being transferred from
facility 1 may have a 10% probability of going to facility 2, a
15% probability of going to facility 3, etc). An agent’s pcommunity

may depend on the agent’s characteristics (eg, agents infected by
a pathogen may be more likely to move to another facility than
to return to the community). At each time step, each agent can
have a probability of death and thereby leave the model. (Since
our current study aims to demonstrate the other general features
of the model, mortality was set at zero.)

A probability draw determines whether a direct transfer or
readmission occurs (preadmission; and thereby entering a holding
bin). Each agent entering the holding bin draws from a facility-
specific days-to-readmission distribution (lognormal) that deter-
mines how many days the agent stays until readmission. Once
this assigned days-to-readmission elapses, the agent has different
probabilities of being admitted to any of the healthcare facilities
in the region.

Infectious disease states
Each day an agent can assume one of a finite set of mutually
exclusive infectious disease states, as specified by the user (eg,
for MRSA, the user may specify that the agent can assume two
(non-colonized or colonized), three (non-colonized, colonized,
and active infection), or more states. For influenza, an agent

Table 1 Summary of RHEA inputs and potential data sources

Parameter Potential data sources

Facility characteristics
Admissions, bed size, length-of-stay
distribution*, age, gender, insurance, case mix

National and state
hospital databases3 4

Number and types of wards, beds per ward,
patient volume per ward

Facility surveys

Patient transfer data, by facility National and state
hospital databases3 4

Pre-admission and post-discharge facility
locations

National long-term care
databases5

Probability of admission to an ICU versus general
ward

Facility surveys

Probability of death, by facility National and state
databases

Probability of readmission, by facility National and state
hospital databases

Readmission to same facility National long-term care
databases

Readmission to another facility
Time to readmission (distribution) National and state

hospital databases
National long-term care
databases

Transmission coefficient (β)† Literature
Facility surveys

Infectious disease states and characteristics‡ Literature
Facility surveys

Infectious disease prevalence or incidence Literature
Facility surveys

*Can be stratified to represent different disease states or types of patients (eg, ICU or
general ward).
†Can be computed from the reproductive rate (R) and disease characteristics.
‡Including: incubation period, duration of infectiousness, duration of illness, duration
of recovered/immune state, etc, for state countdown clocks.
ICU, intensive care unit; RHEA, the Regional Healthcare Ecosystem Analyst.
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may have four possible states: susceptible (able to be infected),
exposed (infected but not yet able to transmit the pathogen to
others), infectious (able to transmit to others), or resistant
(unable to be infected). Each state has a countdown clock,
which can be turned off (an agent remains in that state indefin-
itely) or on (an agent remains in that state for a finite length of
time) and dictates the number of days the agent remains in that
state. When turned on, the agent’s state countdown clock starts
at a certain number of days (drawn from a user-specified distri-
bution) and then decreases by one with each passing day; when
the clock reaches zero, the agent transitions to the next state in
the progression.

Infectious disease transmission
Infectious disease transmission occurs within each ward/unit via
the following subroutine. Each day in each ward/unit, a

subroutine counts the number of agents that are in an actively
infectious state and the number of susceptible agents and then
utilizes the following equation to calculate the number of new
cases that should appear in that ward/unit for that day:

New cases for that day in that ward/unit=(ward/unit specific
transmission coefficient×number of agents in a susceptible state
that day×number of agents in an infectious state that day)

The result (rounded to the nearest integer) specifies how
many new cases the subroutine needs to ‘convert.’ The subrou-
tine will then randomly select this number of susceptible agents
in the ward/unit and converts their state from susceptible to
infectious (or exposed or colonized, depending on the type and
number of states specified by the user). For instance, if the
formula determines that two new cases need to occur in a ward/
unit and there are eight susceptible agents in the ward/unit, the
subroutine will randomly select two from among the eight.

Figure 1 Regional Healthcare Ecosystem Analyst overview. ICU, intensive care unit; LOS, length of stay.
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RHEA has default values for the transmission coefficient (β)
for each ward/unit drawn from the literature, but the user can
change any of these values. The formula above aims to represent
not only direct contact between agents in a ward but also indir-
ect contact via healthcare workers and the environment (eg,
equipment). Since the subroutine performs the counts and cal-
culates the formula for each ward/unit, infectious agents cannot
influence the states of agents in a different ward/unit, that is,
transmission can only occur within a ward/unit and not across
wards/units. The user can determine if and when a patient’s
LOS increases after the patient newly acquires a pathogen.

Outcome measures
Generating a simulation model makes it straightforward for the
user to tabulate daily statistics from almost every process. RHEA
tracks the daily number of agents in each state within each
ward/unit, in each facility. This allows the calculation of any epi-
demiologic measure that is a composite of these counts (eg,
prevalence and incidence).

Using RHEA to create a virtual laboratory of the hospital
ecosystem of Orange County, California
In order to demonstrate the capabilities and features of RHEA
and their relative importance, we utilized RHEA to generate a
detailed ABM of all 29 adult hospitals in Orange County,
California, USA, and conducted a suite of experiments varying
the values of different model parameters to explore their effects
on the spread of a sample infectious pathogen (MRSA) through-
out the hospital ecosystem of Orange County (OC). The input
parameters were derived from state and national databases
under institutional review board (IRB) approval from the
Regents of the University of California; the modeling, which
used de-identified data, was IRB exempt.

The first step was feeding the facility characteristics (table 2)
via spreadsheets into RHEA to generate virtual representations
of each healthcare facility. The admissions, bed capacity, and
LOS distributions came from the mandatory hospital discharge
dataset maintained by the California Office of Statewide Health
Planning and Development (OSHPD).3 In addition to facility
characteristics such as admissions and bed capacity, the OSHPD
dataset consists of line item information on each admission to
and discharge from all hospitals including diagnoses (via
International Classification of Diseases, Ninth Revision (ICD-9)
codes), dates of admission and discharge, and patient location
before and after admission. The combination of admission and
discharge dates and ICD-9 codes allowed calculation of LOS dis-
tributions for all patients for each facility as well as for those
with an MRSA diagnosis (an ICD-9 code of 041.11 (S aureus
bacterial infection), 038.11 (S aureus septicemia), or 482.41 (S
aureus pneumonia) paired with the V09.0 (antibiotic resistance)
code) to generate different LOS distributions for patients who
are MRSA positive.6–9

The second step was to calibrate patient flow among the facil-
ities and the communities by populating a transfer probability
matrix spreadsheet that could be subsequently input into
RHEA. This matrix consisted of rows representing each dischar-
ging hospital and columns representing each receiving hospital.
A cell entry then is the probability of a patient discharged from
the hospital for that row ending up in the hospital for that
column. These probabilities are derived from the OSHPD
dataset. Each person has a permanent unique encrypted identi-
fier that remains fixed across all admissions, allowing patients to
be tracked for 365 days as they move among facilities within the
county.

Tracking patients after discharge also allowed us to calculate
the time to readmission.

The third step was to calibrate the transmission model. Each
ICU, general, and LTAC ward in the model had a specific β cali-
brated to achieve a 3%, 1%, or 2% incidence of new MRSA
cases, respectively. These target incidences were based on real
observed incidences of MRSA cases in the different ward/unit
and facility types.10 11 By targeting these real-world incidences,
β aims to account for differences in MRSA susceptibility among
patients in different facilities and in transmission via staff
members.

Validation of our RHEA-generated OC model entailed com-
paring the simulation output to empirical data when possible,
by performing the following checks: verifying that the
simulation-generated LOS distributions for each facility matched
the empirical LOS data obtained from OSHPD; verifying that
the simulated-generated distribution of delay times until
readmission matched real-world data; and verifying that the
hospital-to-hospital transfer counts generated during the simula-
tion agreed with OSHPD data. When data were not available
for direct comparison with the simulation output, we used
expert judgment of the results within the broader context of
epidemiology, the current literature, and knowledge of MRSA
transmission. Validation of the model for other pathogens could
be carried out in a similar manner.

Outcome measures for the study presented in this paper
included MRSA prevalence and number of new MRSA cases
over time in each healthcare facility. From these outcome mea-
sures, we calculated additional measures such as the absolute
and relative changes in MRSA prevalence in each healthcare
facility and county with different scenarios and parameters.

RESULTS
The impact of transmission
Once RHEA generated an ABM of OC, a suite of experiments
varied different model parameters to determine how they would
affect MRSA prevalence in each healthcare facility. Each simula-
tion run consists of running the model for 5112 simulated days
for 100 000 Monte Carlo trials, allowing the outcome variables
to reach steady state or 90% of their final value. Of the 5112
simulated days, the first 1460 days are a burn-in period until
equilibrium is reached, after which an experiment can com-
mence; these days are not used in the analysis. Reported results
were averages (and distributions) of results from all 100 000
realizations.

Our first set of experiments evaluated how turning on and off
transmission within the wards/units affected the spread of
MRSA when all hospitals begin the simulation with a 5%
MRSA prevalence. To establish the baseline, we turned transmis-
sion off (ie, β=0) in all hospitals, so that prevalence changes
would be solely due to patient movement and simulated disease
prevalence increases (ie, from 5% to 15%) in a single hospital.
When this increase occurred in the largest hospital by bed cap-
acity (hospital V), all other OC hospitals eventually experienced
an MRSA prevalence increase. The median relative increase in
other hospitals was 1.4% (range: 0.2–21.4%). This generated a
median of 5.7 new cases a year in all other hospitals and a total
of 2822 cases per year countywide. Simulating an MRSA out-
break in the hospital that sends and receives many patients from
a large number of different hospitals over the course of a year
(hospital I) led to a 2.0% median relative prevalence increase in
all other hospitals (range: 0.3–6.0%). A hospital I outbreak gen-
erated a total of 1626 new cases a year in OC (median: 6.6 in
each hospital). By contrast, a similar outbreak in an LTAC ward
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Table 2 Orange County, California hospital characteristics fed into RHEA to generate virtual representations of hospitals

Hospital characteristics Hospital-specific LOS distribution MRSA-stratified LOS distribution
MRSA transmission
coefficient (β)

Adult patient
admissions in 2006 Bed capacity

Mean patient
LOS (days)

Median
LOS (days) General ward LOS* ICU LOS*

General ward LOS for
patients without MRSA*

General ward LOS for
patients with MRSA* General ward β ICU β

Acute care hospital
A 7111 127 6.57 4 1.57 (0.69) 1.25 (0.87) 1.56 (0.69) 2.20 (0.59) 0.00046 0.0109
B 15058 255 6.20 4 1.55 (0.69) 1.84 (0.63) 1.53 (0.68) 2.30 (0.68) 0.00065 0.0053
C 4540 70 5.70 4 1.40 (0.71) 1.19 (0.89) 1.39 (0.70) 2.17 (0.84) 0.00065 0.0067
D 21488 297 5.05 4 1.40 (0.60) 1.99 (0.58) 1.39 (0.59) 1.96 (0.72) 0.00083 0.0069
E 9202 102 4.06 3 1.24 (0.53) 1.84 (0.63) 1.23 (0.51) 1.91 (0.62) 0.0011 0.011
F 2481 30 4.55 4 1.33 (0.59) 1.84 (0.63) 1.31 (0.59) 1.89 (0.61) 0.0012 –

G 6932 83 4.41 3 1.30 (0.53) 1.84 (0.63) 1.29 (0.54) 2.04 (0.53) 0.00070 0.0120
H 2366 42 6.59 4 1.59 (0.72) 0.91 (1.00) 1.58 (0.72) 2.03 (0.53) 0.00063 0.0107
I 14347 258 6.59 4 1.49 (0.80) 1.63 (0.72) 1.47 (0.80) 2.28 (0.43) 0.00053 0.0060
J 13755 205 5.45 4 1.47 (0.62) 1.63 (0.72) 1.45 (0.60) 2.31 (0.66) 0.00075 0.0064
K 14281 194 4.96 4 1.37 (0.62) 1.84 (0.63) 1.36 (0.62) 2.17 (0.60) 0.00084 0.0085
L 16095 227 5.17 4 1.38 (0.65) 1.42 (0.80) 1.37 (0.64) 2.22 (0.81) 0.00078 0.0076
M 4028 47 4.30 4 1.28 (0.58) 1.22 (0.88) 1.27 (0.57) 1.97 (0.63) 0.0013 0.024
N 6535 102 5.72 4 1.46 (0.72) 2.54 (0.38) 1.45 (0.72) 2.11 (0.60) 0.00062 0.0077
O 11375 168 5.41 4 1.39 (0.69) 1.84 (0.63) 1.38 (0.68) 2.31 (0.69) 0.00061 0.0048
P 4399 76 6.32 4 1.53 (0.64) 1.57 (0.74) 1.52 (0.63) 2.41 (0.90) 0.00047 0.0117
Q 12020 148 4.50 3 1.28 (0.61) 1.84 (0.63) 1.27 (0.61) 1.83 (0.69) 0.00096 0.0058
R 8951 139 5.67 4 1.46 (0.67) 1.34 (0.83) 1.45 (0.66) 2.15 (0.72) 0.00069 0.0088
S 11505 143 4.54 4 1.33 (0.55) 1.84 (0.63) 1.32 (0.54) 2.05 (0.58) 0.00093 0.0059
T 2773 52 6.94 5 1.62 (0.69) 1.84 (0.63) 1.62 (0.69) 1.62 (0.69) 0.00057 0.0105
U 15967 204 4.67 4 1.34 (0.58) 1.84 (0.63) 1.33 (0.57) 1.93 (0.66) 0.00090 0.0091
V 26292 364 5.06 4 1.40 (0.60) 1.84 (0.63) 1.39 (0.59) 2.07 (0.74) 0.00082 0.0072
W 4810 70 5.39 4 1.36 (0.67) 1.54 (0.75) 1.36 (0.67) 1.70 (0.57) 0.00093 0.0219
X 4881 71 5.38 4 1.41 (0.67) 2.11 (0.53) 1.41 (0.67) 1.98 (0.66) 0.00081 0.040

LTAC facility
AA 388 36 33.97 28.5 3.31 (0.70) 1.84 (0.63) 3.29 (0.71) 3.38 (0.64) 0.00033 –

BB 947 96 37.15 25 3.25 (0.86) 1.84 (0.63) 3.22 (0.86) 3.38 (0.64) 0.00028 –

CC 3082 79 9.38 5 1.73 (0.81) 1.84 (0.63) 1.72 (0.81) 2.37 (1.18) 0.0016 –

DD 966 33 12.47 11 2.41 (0.50) 1.84 (0.63) 2.41 (0.49) 2.50 (0.78) 0.0011 –

EE 1819 16 3.32 3 1.07 (0.46) 2.99 (0.26) 1.06 (0.45) 2.69 (0.43) 0.0056 –

*Mean (SD); lognormal length of stay.
ICU, intensive care unit; LOS, length of stay; LTAC, long-term acute care; MRSA, methicillin-resistant Staphylococcus aureus; RHEA, the Regional Healthcare Ecosystem Analyst.
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caused a >1% relative prevalence increase in only one other
hospital.

Next, we repeated the suite of simulation runs after turning
on the disease transmission feature in each ward/unit in each
hospital. When the largest hospital (hospital V) experienced an
increase in MRSA prevalence to 15%, disease prevalence in all
other hospitals eventually increased by a median of 1.7%
(range: 0.6–18.4%). This generated a median of 9.3 new cases
(range: 0.4–25.0) in other hospitals for 3075 new cases county-
wide. Therefore, adding transmission further augmented the
relative prevalence increase in other acute care hospitals by a
median absolute difference of 0.3% (range: 0–0.8%). Although
two LTACs actually experienced a lower (absolute difference of
3.0% and 1.6%) relative increase in prevalence when transmis-
sion was added, their absolute MRSA prevalence was higher
with transmission (compared to no transmission).

Simulating an MRSA outbreak in hospital I led to a 2.6%
median relative prevalence increase in all other hospitals (range:
0.7–6.2%), generating a median of 10.4 new cases a year in
other hospitals (range: 1–28.6), for a total of 1871 cases annu-
ally countywide. Therefore, adding transmission further aug-
mented the relative prevalence increase in other acute care
hospitals by a median of 0.37% (range: 0–1.1%). Even with
transmission, a similar outbreak in an LTAC caused a >1% rela-
tive prevalence increase in only one other hospital (generating
only 35 new cases a year countywide).

When hospital V experienced a 50% increase in MRSA preva-
lence, there was a median 8.1% (range: 3.5–787.8%) relative
increase countywide (≤79.4% change in all other hospitals).
This outbreak generated 13 489 new MRSA cases a year in the
entire county with a median of 43 cases in other hospitals. A
50% outbreak in hospital I caused a median 11.0% relative
increase in the disease prevalence of all other hospitals (range:
3.3–26.7%), translating to a total of 8132 new cases annually
countywide. A 50% MRSA increase in smaller hospitals and
LTACs affected the prevalence in the county, although to a
smaller extent (median: 0.2%; range: 0–711.5%).

All subsequent reported experiment results include disease
transmission.

The impact of changes in lengths of stay
A second set of experiments kept initial MRSA prevalence at
5% in all hospitals and simply varied the LOS distribution for
patients (from the same for all patients to one based on MRSA
status). Making the LOS longer for those patients with the infec-
tious disease (corresponding to the LOS for patients diagnosed
with MRSA colonization as shown in table 2) increased MRSA
prevalence (median relative change: 40.0%; range: 3.2–190.0%)
throughout all facilities in OC. This corresponded to a median
of 161 new cases a year (range: 1.7–755) in each hospital for a
total of 6662 new cases per year countywide.

Changes in facility bed capacity
A third set of experiments explored the effects of varying hos-
pital bed capacity, which proportionally scaled the number of
admissions to the facility. Merely varying the bed capacity of
hospital V (average bed capacity=364) affected MRSA preva-
lence throughout the county. Decreasing the bed capacity of this
hospital by half (down to 182 beds) resulted in a 1.3% relative
decrease in disease prevalence within this hospital and a 0.1%
median relative decrease throughout the county. This change
alone averted 20 new cases in hospital V and 34 new MRSA
cases throughout the county annually. Conversely, doubling the
bed capacity of the largest hospital to 728 beds resulted in a

median 13.2% relative increase in MRSA prevalence in that hos-
pital and a 0.3% relative increase in other hospitals across the
county. This translated to 203 more cases in hospital V and 243
additional cases countywide per year.

Changes in probability of readmission
A fourth set of experiments altered the readmission probability
for those patients with MRSA. Increasing the readmission prob-
ability for those with MRSA by 30% also increased MRSA col-
onization prevalence throughout the county. This increase in
readmission probability caused a median 8.8% relative change
in prevalence in all OC hospitals (range: 6.6–23.8%) and gener-
ated an additional 1192 cases a year countywide (median: 33;
range: 4–105 per hospital).

Changes in the transmission coefficient
To represent various changes in transmission dynamics (eg,
altered pathogen characteristics/behavior, patient mixing, and
healthcare worker mixing among patients), a fifth set of experi-
ments explored the effects of doubling and quadrupling the
transmission coefficient (table 2) in every hospital. Doubling β
increased disease prevalence in OC hospitals by a median of
36.9% (range: 25.4–68.2%), generating a total of 5815 new
cases per year countywide (median: 142; range: 13–612 for
each hospital). Quadrupling β led to a median 209.9% relative
increase in disease prevalence in each hospital (range: 132.4–
364.0%), generating a total of 32 272 cases across the county
(median: 816 per hospital). Figure 2 shows how the final
disease prevalence in each healthcare facility changes with the
transmission coefficient.

DISCUSSION
Our study showed how RHEA can generate a virtual laboratory
for OC. Different experimental runs demonstrated the impact
of various features of the RHEA-generated model and the
importance of such explicit representations of healthcare facil-
ities when trying to understand the spread and control of
MRSA. Since healthcare facility networks may differ consider-
ably in size, characteristics, and composition, detailed simula-
tions grounded in real-world data may provide different

Figure 2 Effect of changing the transmission coefficient on final
disease prevalence in each healthcare facility.
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answers compared to much simpler and more theoretical
models.12–18 Previous models have represented infectious
disease spread within a single ward or single hospital.19–26 Some
models have looked at a limited number of facilities with gross
representations of each facility (ie, not explicitly representing
each ward and unit). Many existing studies utilize theoretical or
structured population models with limitations such as fixed hos-
pital capacity,18 27 limits on patient transfers or clustering,12 17 18

limited data sources,14 17 18 equal bed sizes,17 18 no readmis-
sion,17 random mixing,12 17 and homogeneous patient popula-
tions.27 While theoretical models are helpful in generating
hypotheses, deciding among and implementing policies and
interventions may necessitate more detailed simulations
grounded in extensive actual data.

One challenge in simulation modeling is to include enough
detail to adequately answer relevant questions, but not too
much detail to obscure relationships. Indeed, our study identi-
fied parameters that could substantially affect the results of
simulation experiments (eg, differentiating between the LOS for
disease patients versus non-disease patients could alter infectious
disease spread, suggesting the importance of further exploring
how an infectious disease may affect LOS). We also demon-
strated that representing specific facility details matters. In other
words, assuming that facilities are the same (eg, same LOS, bed
capacity, and patient sharing relationships) can yield different
results and conclusions.

RHEA’s initial primary target audience is infection control
specialists and other stakeholders (eg, public health officials)
interested in controlling healthcare-associated infections. RHEA
could serve as a virtual laboratory to test new policies, interven-
tions, and technology in specific regions of interest before their
implementation. Once the model is built, RHEA could be used
by hospital administrators, public health officials, policy makers,
third party payers, manufacturers, and other decision makers.
This, in turn, could save them the considerable time, effort, and
expense that trial and error would bring. Since the impact of a
policy or intervention may differ by location or circumstances,
RHEA offers the ability to rapidly create a simulation model of
a specific healthcare system and region, thereby bypassing the
time and effort entailed in building a new simulation model of a
region completely from scratch. We have begun to utilize RHEA
to test the effects of different infection control interven-
tions.28 29 Our ultimate goal is to create a friendly user interface
for stakeholders to directly use RHEA.

Limitations
All models by definition are simplifications of real life and
cannot represent every possible factor.30 Our model does not
include co-morbidities that may affect disease transmission or
mortality outcomes, and disease outcomes were not validated.
Although patients in real life can re-enter the ICU from the
general wards, to prevent multiple movements to and from
these wards during a single stay, we set the probability of ICU
entry from the general wards to zero. Patients in real life can
also transfer directly from the ICU to another facility. We also
do not represent healthcare facilities outside of OC that may
exchange patients with OC facilities (although 86% of patients
stay within OC for care). In addition, our model included only
adult patients and not pediatric patients. We also did not con-
sider community transmission.

CONCLUSIONS
A decision maker can utilize RHEA to generate a detailed ABM
of any healthcare system of interest to serve as a virtual

laboratory to test different policies and interventions. As health-
care systems become larger and more complex, there may an
increasing need for such a tool. The impact of a policy or inter-
vention may differ by location and circumstance. Our study also
demonstrated the importance of including different facility-
specific details based on real-world data.
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