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Abstract

Development of a Hessian-Free Algorithm for Transition State Searches, Application to
Reactions of Light Alkanes in Zeolite Catalysts, and Extension to Wavefunction Stability

Analysis in the Absence of Analytical Hessians

by

Shaama Mallikarjun Sharada

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Alexis T. Bell, Co-chair

Professor Martin Head-Gordon, Co-chair

The cost of calculating second derivatives of the energy, or nuclear hessians, in the course
of quantum chemical analyses can be prohibitive for systems containing hundreds of atoms.
In particular, when searching for reaction transition states (TSs), only a few eigenvalues and
eigenvectors, and not the full hessian, are required. Here, a method is described that can
eliminate the need for hessian calculations for both TS searches as well as characterization
of stationary points. A finite differences implementation of the Davidson method that uses
only first derivatives of the energy to calculate the lowest eigenvalues and eigenvectors of the
hessian is discussed. When implemented in conjunction with a double-ended interpolation
method for generating TS guesses, such as the freezing string method (FSM), an approx-
imate hessian can be constructed in lieu of the full hessian as input to any quasi-Newton
TS optimization routine. With equal ease, the finite differences Davidson approach can be
implemented at the end of geometry optimization for verifying stationary points on a poten-
tial energy surface. The approach scales one power of system size lower than exact hessian
calculation since the rate of convergence is approximately independent of the size of the
system. Therefore, it achieves significant cost savings relative to exact hessian calculation
when applied to both stationary point characterization as well as TS search, particularly
when analytical hessians are not available or require substantial computational effort.

The TS search approach is a useful tool for reaction kinetics and catalysis studies. Ze-
olite catalysts are employed extensively in industry owing to their high Brønsted acidity
and shape selective properties, which are probed typically using monomolecular cracking
and dehydrogenation reactions of alkanes. The TS search method is combined with hybrid
quantum mechanics/molecular mechanics (QM/MM), and a modified harmonic oscillator
approximation in order to calculate intrinsic activation parameters for monomolecular re-
actions of n-butane. The first study calculates TSs for all cracking and dehydrogenation
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pathways in MFI. Based on an examination of adsorption enthalpies and intrinsic activation
energies for these reactions at active sites located at the channel intersection as well as the
sinusoidal channel in MFI, the analysis concludes that reaction energetics are highly sensi-
tive to the active site location due to varying acidities and non-bonding framework-substrate
interactions.

The second investigation extends the QM/MM approach to examine the sensitivity of
intrinsic reaction kinetics to zeolite pore topology. Monomolecular cracking and dehydro-
genation reactions of n-butane are examined in six zeolite frameworks - TON, SVR, MFI,
MEL, STF and MWW, with active sites located within channels, channel intersections and
cage geometries. By analyzing calculated intrinsic enthalpies and entropies of activation to-
gether with experimental values, the sensitivity of cracking and dehydrogenation pathways
to active site location is examined for all site types. Dehydrogenation exhibits a surprising
preference for the methyl pathway in cages in spite of the higher barrier relative to methy-
lene, which points towards significant entropy compensation occurring at these active sites.
However, although computed enthalpies of activation are in good agreement with experi-
ment, thermochemical approximations that better account for anharmonic contributions are
required to accurately determine entropy differences between these pathways.

The hessian-free finite differences Davidson approach can also be extended to the space
of molecular orbital coefficients. Wavefunction stability analysis is commonly applied to
converged self-consistent field (SCF) solutions to verify whether the electronic energy is a
local minimum with respect to second-order variation in the orbitals, by calculating the
lowest eigenvalue of the electronic hessian. Analytical expressions for the electronic hes-
sian are unavailable for some advanced post-Hartree–Fock (HF) wave function methods and
even certain Kohn–Sham (KS) density functionals. Calculating full finite difference hes-
sians for even small molecules can prove intractable in such cases. To address this issue,
the hessian-vector product within the Davidson scheme is formulated as a finite difference
of the electronic gradient with respect to orbital perturbations. As a model application,
following the lowest eigenvalue of the orbital-optimized second-order Møller–Plesset pertur-
bation theory (OOMP2) hessian during H2 dissociation reveals the surprising stability of
the spin-restricted solution at all separations, with a second independent unrestricted solu-
tion. A single stable solution can be recovered by using the regularized OOMP2 method
(δ-OOMP2), which contains a level shift. Internal and external stability analyses are also
performed for SCF solutions of a recently developed range-separated hybrid density func-
tional, ωB97X-V, for which the analytical hessian is not yet available due to the complexity
of its long-range non-local VV10 correlation functional.
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the cluster model (right) is depicted using ball-and-stick representation. In all
cluster representations, yellow corresponds to Si atoms, red to O, green to Al,
white to H, and cyan to C atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Type 1 - SVR with acidic proton in sinusoidal channel (5.7Å) . . . . . . . . . . 70
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Chapter 1

Introduction

1.1 Computational tools for catalysis and quantum

chemistry

One of the key components of computational reaction kinetics studies is the calculation
of transition states (TSs). A TS is a first order saddle point, and a maximum along the
minimum energy path connecting a reactant and a product on a potential energy surface.
These characteristic points on the potential surface not only shed light on reaction mecha-
nisms but also provide a quantitative estimate of the barriers to chemical reactions and the
impact of catalysts on reaction rates. However, the calculation of TSs, particularly in the
course of quantum chemical analyses, can be tedious owing to the high dimensionality of
most potential energy surfaces and associated computational costs.

Early efforts to develop TS search algorithms were based purely on gradient minimiza-
tion[1]. On a complex potential energy surface, though, one runs the risk of converging to a
stationary point that is not a TS since gradients at all stationary points are identically zero.
However, the eigenvalue spectrum of the matrix of second derivatives of the energy (hessian)
can be employed to distinguish between various stationary points. An important milestone
in the development of TS search methods was the first hessian-based algorithm proposed
by Cerjan and Miller[2], in which the search follows the reaction coordinate uphill from the
minimum to the TS.

These early developments, along with enhanced computing speeds, spurred progress in the
field of TS search algorithms that aimed at reducing guesswork and computational effort[3].
TS search was recognized as a two-step problem: first involved the generation of a reliable
guess structure, and the second step was to optimize or refine this guess. Guesses can be
generated by hand, or by employing a scheme that interpolates between reactant and prod-
uct to generate an approximate reaction path. One of the first, and probably most widely
used double-ended interpolation techniques is the nudged elastic band (NEB)[4] method. TS
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refinement methods include gradient-based methods that calculate the lowest eigenmode on
the fly[5], as well as eigenvector-following methods that require explicit calculation of the
hessian matrix as input[6, 7]. Although hessian-based methods are robust, they scale poorly
with size owing to approximately cubic scaling of hessian calculation and storage costs.
Since this poses a severe bottleneck to kinetics studies on large, complex catalytic systems,
there is a need for TS search methods that are not only efficient but also avoid full hessian
calculations, and can therefore be applied to larger systems at reasonable computational cost.

A crystalline zeolite framework consisting of Brønsted acid sites is a classic example of
a large, complex catalytic system. Zeolites are important cracking catalysts in the petro-
chemical industry due to their high acidity, shape-selective behavior and thermal stability[8,
9]. Since zeolite pores are typically of molecular dimensions, the extended framework sur-
rounding active sites also has an important role to play in reaction kinetics. The framework
can not only stabilize adsorbates and reaction intermediates via non-bonding dispersion and
electrostatic interactions, but can also restrict the mobility of the adsorbate depending on
both pore size and shape, and substrate geometry. As a result, the pre-exponential factor
comprising the entropy of activation cannot be neglected for reactions occurring at high
temperatures within these zeolites. The design and selection of zeolite catalysts for specific
reactions, therefore, requires knowledge of the distribution and strength of active sites, as
well as confinement effects induced by the zeolite pore topology. The exact locations of ac-
tive sites in most zeolites cannot be directly determined, although it has been demonstrated
that the distribution of active sites is non-random and strongly dependent on conditions of
synthesis[10]. In addition, the results of examining probe reactions such as monomolecular
alkane cracking in various zeolite frameworks has led to conflicting conclusions about the role
of the extended framework. While some studies conclude that confinement effects affect only
adsorption enthalpies and entropies[11], others claim that the framework can also influence
intrinsic rates[12].

Quantum chemistry plays a significant role in developing a better understanding of these
structure-function relationships since it allows the study of reaction kinetics at specific ac-
tive sites. By combining density functionals that can accurately estimate non-bonding in-
teractions such as dispersion[13], and sufficiently large representations of the catalyst via
periodic[14] or hybrid quantum mechanics/molecular mechanics (QM/MM) approaches[15],
it is now possible for theoretical models to achieve the accuracy of experimentally deter-
mined energy changes. However, quantum chemical approaches generally fail to accurately
calculate entropies of adsorption and activation since the standard rigid rotor/harmonic
oscillator (RRHO) approximation for thermodynamic quantities cannot capture restricted
translational and rotational degrees of freedom of an adsorbed molecule within the pores[16].
More recently, both static[17, 18] and more expensive dynamic approaches[19, 20] have been
developed in order to better understand entropy, and consequently free energy effects in
zeolite catalysts.
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The computational bottleneck posed by hessian calculations is not limited to stationary
points on potential energy surfaces. While the nuclear hessian can be expensive, the dimen-
sionality of the hessian is still small enough for calculation and storage to be feasible. On
the other hand, the space of molecular orbital coefficients is significantly higher-dimensional.
Wavefunction stability analysis involves the calculation of the lowest eigenvalue of the hes-
sian with respect to orbital rotations in order to verify whether the variationally determined
electronic energy corresponds to a local minimum. In traditional Hartree-Fock (HF) theory
and density functional theory (DFT) where analytical second derivatives of the exchange-
correlation function are available, the analysis of wavefunction stability is inexpensive[21].
However, suitable hessian-free approaches are required for examining the stability of post-HF
methods or DFT when analytical hessians are not readily available.

1.2 Outline

The goal of this project is to develop a hessian-free strategy that renders TS search viable
for large systems. Eliminating the need for full hessian calculations, which scale approxi-
mately cubically with system size, is an essential component of this strategy. Chapter 2
describes one such procedure for TS search. The first step involves calculation of a reli-
able guess to the TS using a modified implementation of the double-ended Freezing String
Method (FSM). The existing conjugate gradient optimization step in FSM is replaced with
quasi-Newton line search, which reduces the computational effort of finding the TS guess by
about half. FSM not only generates a TS guess starting from reactant and product geome-
tries, but also provides a guess for the reaction coordinate at the TS guess. The coordinate
is employed, along with a single-step estimate of the curvature at the TS guess, to construct
an approximate hessian matrix input to a quasi-Newton-based TS optimization method in
lieu of the exact hessian. In most cases, the optimizer with this approximate hessian input
performs at least as well as with an exact hessian input, thereby demonstrating that FSM
with approximate hessian-based TS search is a viable TS search procedure for large systems
where exact hessians are expensive to compute.

Chapter 3 describes a more reliable eigenvalue finding technique to replace the one-step
interpolated curvature estimate described in chapter 2. Implementation of a finite differences
Davidson method for calculating the lowest eigenvalue(s) and eigenvector(s) of a hessian ma-
trix without actually computing the hessian is discussed. By replacing the hessian-vector
product in the standard Davidson procedure for iterative matrix diagonalization with fi-
nite differences of perturbed gradients, the exact eigenvalue and eigenvector corresponding
to the reaction coordinate can be calculated. Therefore, compared to the interpolation in
Chapter 2, this technique generates a more reliable approximation to the hessian as input to
TS optimization. In addition, it also serves as a post-optimization characterization method
for minima and TSs, thereby avoiding full hessian calculations that are usually required to
verify the nature of stationary points. By using the lowest eigenvectors of the quasi-Newton
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updated hessian matrix from the optimizer as guess vectors to the Davidson method, signif-
icant cost savings can be achieved relative to full hessian calculations for both large systems
as well as in cases where analytical hessians are unavailable. In addition, the end-to-end
process of locating and characterizing TSs beginning from reactants and products becomes
automated with this approach with minimal user intervention.

A key application of the TS search approach is the examination of complex catalytic
systems such as zeolites. Chapter 4 discusses the application of FSM, in conjunction with
hybrid quantum mechanics/molecular mechanics (QM/MM) and dispersion-corrected DFT
to examine the mechanisms and calculate activation energies for monomolecular cracking
and dehydrogenation of n-butane at Brønsted acid sites in the MFI framework. The com-
putational approach is significantly more accurate in estimating activation energies relative
to earlier methods proposed in the literature. In addition, it is demonstrated that different
active sites within the same framework are not kinetically equivalent. Adsorption enthalpies
and intrinsic activation energies for cracking and dehydrogenation vary markedly with active
site location, due to differences in acidity of the proton as well as non-bonding interactions
between the extended framework and the substrate.

Chapter 5 extends the approach described in Chapter 4, along with an improved ther-
mochemical approximation, to examine trends in both intrinsic activation enthalpies as well
as entropies for active sites situated in various pore geometries ranging from narrow one-
dimensional channels to large supercages. In general, enthalpies can be calculated within
experimental accuracy. Unfortunately, the thermochemical approximation can only capture
entropies correctly only when deviations from harmonic behavior are small. Enthalpies of ac-
tivation for both central and terminal cracking are relatively insensitive to the location of the
active site. On the other hand, comparison between experiments and computations reveals
a distinct pathway preference for dehydrogenation. The methylene pathway is preferred for
active sites in both channels as well as channel intersections owing to lower enthalpic barrier
compared to the methyl pathway. Within active sites in cages, however, methyl dehydro-
genation seems to occur almost exclusively, which can be attributed to entropy compensation
occurring in larger, less confined pore geometries.

The hessian-free finite difference Davidson method described in Chapter 3 can be also be
applied to the space of molecular orbital rotations. Chapter 6 outlines the extension of this
approach to wavefunction stability analysis, a procedure that verifies whether variationally
determined electronic energy is a local minimum with respect to second order variation of
molecular orbitals. The finite difference Davidson method is implemented for post-Hartree
Fock methods and density functionals that lack analytical expressions for the electronic hes-
sian. This novel approach to stability analysis is a useful diagnostic tool to examine stability
and dissociation behavior of spin-restricted and unrestricted solutions for post-Hartree Fock
methods such as orbital-optimized Møller–Plesset perturbation theory (OOMP2). It is also
demonstrated to be a low-cost, practical means of examining the stability of metal-containing
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systems such as organometallics using DFT, where multiple spin states of varying energies
are likely to emerge from electronic energy calculations.
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Chapter 2

Automated Transition State Searches
without Evaluating the Hessian

2.1 Abstract

Accurate and speedy determination of transition structures (TSs) is essential for com-
putational studies on reaction pathways, particularly when the process involves expensive
electronic structure calculations. Many search algorithms require a good initial guess of the
TS geometry, as well as a Hessian input that possesses a structure consistent with the desired
saddle point. Among the double-ended interpolation methods for generation of the guess for
the TS, the freezing string method (FSM) is proven to be far less expensive compared to
its predecessor, the growing string method (GSM). In this chapter, it is demonstrated that
the efficiency of this technique can be improved further by replacing the conjugate gradient
optimization step (FSM-CG) with a quasi-Newton line search coupled with a BFGS Hessian
update (FSM-BFGS). A second crucial factor that affects the speed with which convergence
to the TS is achieved is the quality and cost of the Hessian of the energy for the guessed TS.
For electronic structure calculations, the cost of calculating an exact Hessian increases more
rapidly with system size than the energy and gradient. Therefore, to sidestep calculation of
the exact Hessian, an approximate Hessian is constructed, using the tangent direction and
local curvature at the TS guess. It is demonstrated that the partitioned-rational function
optimization algorithm for locating TSs with this approximate Hessian input performs at
least as well as with an exact Hessian input in most test cases. The two techniques, FSM
and approximate Hessian construction, therefore can significantly reduce costs associated
with finding TSs.

2.2 Introduction

The determination of transition structures (TSs), which are first order saddle points be-
tween reactants and products on potential energy surfaces, is a critical step in the analysis
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of reaction pathways and rates. TS searches typically involve two steps. The first step is
determination of a guess for the TS based on the reactant and product configurations, while
the second step is the refinement of the guess to precisely locate the saddle point. Owing
to substantial computational costs associated with electronic structure calculations, tradi-
tionally, the TS guess is determined by hand.[3, 22, 23] The process involves using chemical
intuition such as knowledge of the form of the TS in a system related to the one under study.
If the guess is sufficiently good that it lies in the quadratic basin of the TS, or in other
words has one negative hessian eigenvalue, then it is likely that the TS can be successfully
located. The principal advantage of this homolog-based approach is that it is computation-
ally free and can be successful in systems that are either simple or very closely related to
ones with known TSs. The disadvantage is that a rather large amount of human trial and
error is required in many applications, particularly those where intuition fails and homology
is not available. Unfortunately this encompasses many complex systems, particularly those
involved in catalytic processes, where multiple TSs, as well as intermediates that may not
be observed, exist on intricate pathways between reactants and products[24, 25].

To overcome the limitations of either human or machine-based guessing, there has ac-
cordingly been growing effort to automatically identify a high-quality trial structure for the
TS by characterizing the path(s) connecting a pair of known local minima, typically reactant
and product structures. The result is a discretized path, which may approximate the intrin-
sic reaction coordinate (IRC) corresponding to the zero velocity trajectory linking the TS to
reactants and products. There are a great variety of path searching methods in common use,
most of which employ double-ended techniques such as the nudged elastic band (NEB)[4,
26–29], the string method (SM)[30–34] the searching string method[35], spline methods[36],
the growing string method (GSM)[37–41] or the freezing string method (FSM)[42]. Given
the discretized path, the geometry corresponding to the highest energy intermediate can be
harvested as a high-quality TS guess. The second step involves refining the TS guess using
algorithms such as the Berny optimization algorithm[7], the dimer method[5, 43], partitioned-
rational function optimization (P-RFO)[2, 6, 44] eigenvector following methods[2, 44–47], or
global reaction route mapping (GRRM) combined with microiteration methods for large
molecules[48]. Algorithms have been developed that combine double-ended interpolation
methods with TS refinement[49, 50]. Single-ended methods have also been developed, which
require knowledge of only one local minimum[51]. Extensive reviews are available on TS
finding techniques[3, 22].

Chain-of-states methods, such as the NEB and SM, involve the creation of a string of im-
ages between the reactant and product states, which are then relaxed to the reaction pathway.
In the NEB, the forces on each image are projected along and perpendicular to the tangent
direction and energy is minimized perpendicular to this direction. Spring forces are artifi-
cially introduced between the images to maintain even spacing. String methods, on the other
hand, use splines to calculate tangents and maintain node spacing via re-parameterization.
The main drawback of these methods is that multiple gradient calculations must be per-
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formed on images located far away from the TS. To reduce the computational burden of
such calculations for applications involving electronic structure theory, the GSM was devel-
oped. In this method, the search begins with only the reactant and product configurations,
and the two string segments are grown independently until they join together. Once a new
node is optimized with respect to the gradient in the direction perpendicular to the approx-
imate reaction path, the string is re-parameterized. In order to obtain a reasonable guess
of the TS, the re-parameterization and optimization steps are repeated for the completed
string, or for a substring that contains the guess to the TS.

Very recently, we have introduced the Freezing String method (FSM) as an algorithm
that attempts to avoid the costs associated with both the re-parameterization as well as
the iterative steps of the GSM. In the FSM, the newly created nodes are optimized in a
direction perpendicular to the reaction coordinate with a few conjugate gradient (CG) steps,
and are then irreversibly frozen in place from the path ends going inwards until the ends
meet. The FSM therefore is able to generate a guess for the transition state with significantly
lower cost, quantified by the number of gradient calculations, compared to the GSM, as it
removes the iterative refinement of the fully grown string. As a consequence, the FSM does
not reproduce the IRC, and does not provide any guarantee that the TS guess will have
the appropriate hessian structure. However, in practical applications, the FSM has proved
computationally highly efficient and satisfactorily robust. It is an open question, however,
whether or not further improvements in the efficiency of the FSM are possible by modifying
the perpendicular search protocol. The first purpose of this paper is to explore this question.

Turning to the second stage of a TS search, of the local TS refinement methods, partitioned-
rational functional optimization (P-RFO) is an efficient technique based on separation of the
hessian eigenvalues into modes with negative curvatures along which energy maximization
is carried out, and all other modes along which the energy is minimized. Therefore P-RFO
requires an initial hessian with a single negative eigenvalue along the reaction coordinate
in order to ensure convergence to the near-by TS. The P-RFO search may not lead to the
desired TS if all the hessian eigenvalues are positive, because the smallest positive eigenvalue
is chosen as the mode for energy maximization, which may not correspond to the reaction
coordinate. The same issue arises if the hessian possesses multiple negative eigenvalues of
similar magnitude, where the most negative eigenvalue is followed uphill even if it may not
correspond to the reaction coordinate. Moreover, a P-RFO calculation may fail if the hessian
is not evaluated with high fidelity even if the TS guess is good, because errors in the sign of
eigenvalues lead to the same ambiguity in identifying which mode to follow uphill. In routine
calculations, therefore, the exact second derivative matrix is typically calculated for the TS
guess as an input to the P-RFO algorithm to ensure that the input is reliable.

Just how severe is the requirement of obtaining the exact hessian, or a finite difference
approximation to it? The answer, of course depends on the type of PES that one is exploring:
the answer can be very different for an empirical force field potential versus one based on
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quantum mechanics (QM) such as density functional theory (DFT)[24]. Restricting ourselves
to QM methods, it is well-known that the computational expense associated with evaluation
of the hessian typically scales one power of system size higher than the energy itself or the
gradient[52, 53]. Fundamentally, the scaling differences arise from the fact that responses of
the unknowns are required with respect to each geometric distortion, whose number scales
with the system size. Therefore in practice, analytical hessian or even finite difference hessian
evaluations become exceedingly expensive for systems containing a large number of atoms.
It is highly desirable to remove the need for explicit evaluation of the hessian, and that is
the second purpose of this paper.

We describe here a modified version of the FSM that uses a quasi-Newton line search
method for optimization in place of the existing conjugate gradient method. The enhance-
ment in efficiency is measured in terms of the reduction in number of force calculations
required to generate the string using the two methods. Information generated by the FSM is
then directly incorporated into the construction of an approximate, but entirely appropriate,
hessian, which is utilized as input to the P-RFO method in lieu of an exact hessian. The
performance of the algorithm with the approximate hessian is compared to that with the
exact hessian, in terms of computational time as well as number of optimization cycles. The
overall objective is that, by amalgamating the FSM method with the approximate hessian-
based transition state search, we can obtain a low-cost, automated transition-state search
technique that is particularly useful for studying reactions of large molecules, where exact
hessian calculations are prohibitively expensive.

2.3 Methods

2.3.1 Modified Freezing String Method (FSM-BFGS)

The algorithm for the freezing string method (FSM-CG) has been described in detail by
Behn et al.[42] The string progresses by alternately adding nodes to two growing substrings
that originate respectively from the reactant and product basins on the PES. The FSM ter-
minates when the reactant and product string segments join together. Each node is created
via an interpolation step followed by an optimization step.

The interpolation can either be done by a straight line cartesian or a linear synchronous
transit (LST) method[54]. The latter is much preferred since LST preserves inter-nuclear
distances on interpolation, whereas cartesian interpolation may result in unrealistic bond
stretches or bends, and hence, very high energies[55]. Tangent directions are determined at
the innermost reactant and product nodes by fitting a spline through the images created by
the LST.

In the optimization step, the energy is minimized along the negative perpendicular gra-
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dient to the interpolated geometry using the method of conjugate gradients (CG). When
the convergence criterion is satisfied, or if maximum number of steps, Nsteps, is reached, the
optimization terminates, and the newly created node is frozen into place. The interpolation
and optimization steps are repeated until the reactant and product side strings join.

A modified approach to the FSM is developed here. The original framework of the
method, shown in Figure 2.1, remains unchanged. However, the conjugate gradient opti-
mization step is replaced with a quasi-Newton line search method[56], which, in addition to
gradient information, builds and utilizes approximate hessian information for optimization
of the node in the direction perpendicular to the reaction coordinate. Since the line search is
coupled with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method of updating the hes-
sian, this approach is termed FSM-BFGS.

The quasi-Newton line search procedure incorporated in the FSM is described in Figure
2.2 In this technique, the energy is minimized based on the quadratic approximation

Ek+1 = Ek + ∆xTk g
⊥
k +

1

2
∆xTkHk∆xk (2.1)

Here, ∆xk is the stepsize, g⊥k is the perpendicular gradient, and Hk is the approximate
hessian in the space perpendicular to the reaction coordinate. g⊥k is given by

g⊥k = (I − ttT )gk (2.2)

where t is the tangent direction determined in the interpolation step. This direction is not
updated in the course of an optimization cycle. The quasi-Newton optimization algorithm
consists of the following steps:

1. Determine the search direction, sk , and normalize the direction

sk = − H−1
k g⊥k

|H−1
k g⊥k |

= − Gkg
⊥
k

|Gkg⊥k |
(2.3)

where Gk is the inverse of the approximate hessian

2. Determine the scaling factor for the step, αk

3. Take the minimization step by displacing atoms along the search direction in cartesian
coordinates

xk+1 = xk + αksk (2.4)

4. Update the inverse hessian in the perpendicular direction, using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm[56], which preserves the positive definiteness of the
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Figure 2.1: Algorithm for the freezing string method, where the conjugate gradient optimiza-
tion (FSM-CG) step is replaced with the quasi-Newton line search technique (FSM-BFGS).
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Figure 2.2: Algorithm for quasi-Newton line search optimization in the FSM-BFGS method.
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matrix. At the start of the FSM algorithm, both reactant and product side hessians
are initialized to identity matrices.

γk = g⊥k+1 − g⊥k (2.5a)

δk = xk+1 − xk (2.5b)

Gk+1 = Gk +

(
1 +

γTk Gkγk
δTk γk

)
δkδ

T
k

δTk γk
−

(
δkγ

T
k Gk +Gkγkδ

T
k

δTk γk

)
(2.5c)

In addition to the termination criteria specified by the FSM-CG algorithm, a condition
associated with the stability of the line search is implemented. A line search factor σ ∈ (0, 1)
is introduced[56]. The stability condition, shown below, ensures that in the limit of an exact
line search the gradient is perpendicular to the search direction.

|(g⊥k+1)T sk| ≤ −σ(g⊥k )T sk (2.6)

The line search terminates if this condition is satisfied. If σ is large, the condition is repre-
sentative of a weak line search. In the current line search implementation, the value of σ is
fixed at 0.7 for all test cases.

The scaling factor αk can in principle be determined by minimizing the objective func-
tion for the energy iteratively. This approach, however, is not feasible if expensive electronic
structure calculations are involved. Therefore a simple scaling factor evaluation is imple-
mented. The ceiling value αmax is determined by imposing a constraint of 0.05 Å on the
maximum possible step taken along any coordinate direction[57].

αmax|smaxk | ≤ 0.05 (2.7)

where |smaxk | is the magnitude of the maximum component of the search direction vector.
The FSM-CG algorithm also imposes a maximum step-size constraint of 0.05 Å. The scaling
factor is then evaluated using the following expression[56]

αk = − 2∆E

(g⊥k )T sk
, where ∆E = max(Ek−1 − Ek, ε) (2.8)

Here ε is an approximate lower limit on the desired change in energy, and is a fixed
parameter in the algorithm. The value of ε is set to a fixed value of 2.5 kcal/mol for systems
where the difference in energy between reactant and product structures is of higher order of
magnitude. However, in cases such as particular rotation or isomerization reactions, where
the reactant and product configurations are similar in energy, this value is set to the difference
in energy itself. The scaling factor is further refined by an a priori verification of whether
the stability condition is satisfied. The Taylor series expansion for the gradient iterate is
given by
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gestk+1 = g⊥k + αkG
−1
k sk (2.9)

By substituting the expression for sk and taking the inner product with sk on both sides,

sTk g
est
k+1 = sTk g

⊥
k

(
1− αk
|Gkg⊥k |

)
(2.10)

The expression on the right hand side in parenthesis must be less than σ. The value of
αk is adjusted accordingly. However, if the adjusted value exceeds αmax, the ceiling value
itself is used to determine the step size. This step ensures that the scaling factor is neither
too small nor too large in magnitude. If the search becomes unstable, it is immediately
indicated by a negative value of the scaling factor, and rectified by re-initializing the hessian
to an identity matrix.

2.3.2 Construction of an approximate hessian

The basis for construction of an approximate hessian is that the tangent direction at the
TS guess generated by any interpolation algorithm should be a reasonable approximation to
the reaction coordinate at the TS. The second derivative of the energy with respect to the
tangent direction is a good approximation to the single negative eigenvalue of the hessian.
This is already enough to separate the single maximization direction from the other degrees
of freedom in which minimization is performed. Standard methods for guessing hessians for
minimization[58, 59] can then be employed to yield a better guess for the remainder of the
hessian. For example, it is well-established that a unit hessian constructed in delocalized
internal coordinates[60] is usually substantially superior to a unit diagonal hessian in Carte-
sian coordinates.

Specifically, beginning with an initial unit matrix constructed in delocalized internal coor-
dinates[60], the transformation to Cartesian coordinates is carried out using the B matrix[61,
62] according to

Hcart = BTHintB (2.11)

where the B matrix transforms displacement in Cartesian coordinates to internal coordi-
nates. The product, BBT , generates the matrix in internal coordinates, Hint. The B matrix
itself is constructed from the coordinates of the TS guess. The transformation to cartesian
coordinates is carried out since the tangent direction is available in this coordinate system,
and we can later transform back to delocalized internal coordinates. The eigenvalues of the
matrix in cartesian coordinates are all positive by construction. At this stage, we impose the
correct structure on the approximate hessian with no additional cost, by removing the com-
ponent normal to the reaction coordinate from this matrix, followed by a rank-one update
with the approximate curvature.

H = Hcart − (tTHcartt)tt
T + CttT (2.12)
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The update is carried out such that the curvature, C, is the expectation value of the
resulting hessian along the tangent direction. The value of C is obtained by a three-point
finite difference interpolation between the TS guess and the two nodes closest and on either
side of the guess along the FSM string, say nodes A and B, at distances a and b from the
TS guess, respectively. The expression for curvature is given by[63]

C =
2EA

a(a+ b)
− 2ETS

ab
+

2EB
b(a+ b)

(2.13)

The approximate hessian, therefore, has only one negative eigenvalue, as required. Therefore
it is now compatible with automatic TS refinement via the P-RFO algorithm.

The performance of the P-RFO with the approximate hessian input can be contrasted
with that using an exact hessian in terms of number of optimization cycles as well as the
total CPU time required for convergence. Since the approximate hessian is determined with
no additional electronic structure calculations, the cost of calculating this hessian compared
to the exact hessian is nearly zero.

2.3.3 Computational details

A test suite consisting of 9 reactions was chosen for this study, as summarized in Table
2.1. The broad categories of bond formation or dissociation, rearrangement, ring opening
or formation, and isomerization reactions are encompassed in this test set. The size of the
test system ranges from 4 to 56 atoms. Basis sets ranging from STO-3G to 6-31G** are
used along with either wave function theory (HF) or density functional theory (B3LYP).
The reactions in Table 2.1, listed in order of increasing system size, are used to test both
the efficiency of FSM-BFGS as well as the performance of the transition state search using
the approximate hessian relative to the exact hessian. The efficiency of FSM-BFGS relative
to FSM-CG is evaluated in both the steps of TS search based on several parameters. In
the TS guess generation step, the methods are contrasted based on the number of gradient
calculations required to generate the guess, as well as the number of negative eigenvalues
of the exact hessian at the guess, which indicates the quality of the guess structure. In the
TS refinement step, the performance of the P-RFO method with the approximate and exact
hessians at the TS guess are contrasted for the guess structures generated by both FSM-CG
and FSM-BFGS. The two FSM methods are compared based on the number of optimization
cycles required by the P-RFO to converge to the true TS structure. The efficiency of the
approximate hessian is evaluated based on the computational time saved by sidestepping the
exact hessian computation.

All calculations were performed with a developmental version of Q-Chem[65]. The FSM
requires optimized reactant and product structures as input. In addition, the user can specify
both the desired number of maximum steps per optimization, given by ngrads, and the node
spacing, given by nnodes. The node spacing is determined by dividing the distance between
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Reaction Description
Number
of atoms

Basis
set

Theory

formaldehyde
decomposition

H2CO ↔ H2 + CO 4 6-31G B3LYP

silane
formation

SiH2 +H2 ↔ SiH4 5 6-31G B3LYP

ethanal
rearrangement

CH3CHO ↔ CH2CHOH 7 STO-3G HF

ethane
dehydrogenation

CH3CH3 ↔ CH2CH2 +H2 8 6-31G** B3LYP

bicyclobutane ring
opening

bicyclobutane↔
CH2CHCHCH2

10 STO-3G HF

hexadiene ring
formation

cis,cis-2,4-hexadiene↔
3, 4− dimethylcyclobutene

16 STO-3G HF

Diels Alder reaction
CH2CHCHCH2 +
CH2CH2 ↔ cyclohexene

16 6-31G B3LYP

alanine dipeptide
rearrangement

C5 ↔ C7AX 22 6-31G B3LYP

Ireland Claisen
rearrangement[64]

silyl ketene acetal ↔ silyl
ester

56 3-21G B3LYP

Table 2.1: Test suite of reactions used for both comparison between FSM-BFGS and FSM-
CG, and to contrast between TS search with an approximate hessian and that with an exact
hessian.

reactant and product structures by this number. For all the reactions studied, ngrads is set
to 3 and nnodes is set to 18. These values are chosen such that a sufficiently smooth string
and a reasonable guess structure are generated with minimal computational expense for
all the systems under investigation. The inputs to the P-RFO algorithm for TS refinement
consist of the TS guess structure, the exact or approximate hessian, and a user-defined ceiling
on the optimization step-size, which is set to 0.05a0 for all reactions.

2.4 Results and Discussion

2.4.1 Modified Freezing String Method

The efficiency of FSM-BFGS is measured based on the number of gradients required to
obtain a string similar to that generated by FSM-CG. The quality of the guess generated,
indicated by the number and magnitude of negative eigenvalues in the exact hessian, is also
contrasted for the two methods. The results are shown in Table 2.2. Irrespective of the size
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of the system, level of theory, or reaction involved, both techniques require less than 100 gra-
dient calculations to produce a complete string. This is already a substantial improvement
over iterative NEB or string methods[37]. Barring the exception of ethane dehydrogenation
where the FSM-CG hessian has three negative eigenvalues and the FSM-BFGS hessian has
two, both methods generate guess structures whose hessians have single negative eigenval-
ues. As already discussed, this is highly desirable to ensure that the subsequent P-RFO
refinement of the TS is successful. The magnitudes of the eigenvalues corresponding to the
reaction coordinate are similar in most cases, indicating the similarity of the TS guesses
generated by the two methods. From Table 2.2, it can also be observed that the FSM-BFGS
method requires far fewer gradient calculations than the FSM-CG technique to generate a
similar guess structure using identical input parameters. For the reactions in the test set,
the existing FSM-CG method requires 50% more gradients on average compared to the new
FSM-BFGS variant.

The quasi-Newton optimization method can determine step sizes more effectively than
the conjugate gradient method since approximate hessian information is also incorporated
in the line search in addition to gradient information. A moderate line search stability con-
dition, that uses a default value of 0.7 for σ, is sufficient to generate a smooth string in
all cases. As a result, the termination condition for the line search is usually satisfied in
fewer steps than the enforced upper limit. The FSM-BFGS technique, therefore, reduces
computational effort relative to the FSM-CG method for identical input conditions.

The FSM-BFGS method is able to generate a guess for the TS at significantly reduced
cost compared to the FSM-CG method. The quality of the TS guess generated by each
method is also examined by testing the performance of the approximate hessian for TS
refinement.

2.4.2 Transition state search with an approximate hessian

The quality of the approximate hessian is tested based on the total time required for the
algorithm to converge to the correct transition state. For the TS search conducted with an
exact hessian, the total time includes the time required to evaluate the hessian itself. In
addition, the most negative eigenvalue, which indicates the reaction coordinate, is compared
between the approximate and exact hessian. The overlap of the approximate and exact
eigenvectors corresponding to the reaction coordinate, given by their scalar product, is also
calculated. The efficiency of the P-RFO search algorithm with these hessians is compared
in delocalized internal coordinates.

The contrast between searches carried out with the exact and approximate hessians with
the TS guess generated by the FSM-BFGS algorithm is reported in Table 2.3. The best
possible input for a P-RFO search should be the exact hessian. The expectations for rel-
ative efficiency of searches performed with an approximate hessian therefore should not be
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Reaction
FSM-CG FSM-BFGS

% increase
from BFGS
to CG

Gradients
Negative

eigenvalue
Gradients

Negative
eigenvalue

formaldehyde
decomposition

94 -0.05 53 -0.27 77

silane
formation

73 -0.24 41 -0.23 78

ethanal
rearrangement

78 -0.48 61 -0.55 28

ethane
dehydrogenation

74 -0.16 58 -0.05 28

bicyclobutane ring
opening

70 -0.10 47 -0.07 49

hexadiene ring
formation

78 -1.10 55 -1.00 42

Diels Alder
reaction

72 -0.05 57 -0.04 26

alanine dipeptide
rearrangement

94 -0.003 53 -0.003 77

Ireland Claisen
rearrangement[64]

78 -0.25 53 -0.06 47

Table 2.2: Comparison between FSM-CG and FSM-BFGS for generating TS guesses, using
identical input parameters (ngrads = 3, nnodes = 18), based on total number of gradi-
ent calculations required to obtain the string, as well as the magnitude of the eigenvalue
corresponding to the reaction coordinate (Ha/Bo2).

too high since the primary purpose of the approximate hessian is to avoid expensive exact
hessian evaluations in large systems. The trends are not uniform since the quality of both
hessians depends on the nature of the TS guess. In addition, the constructed hessian is based
on an approximate reaction coordinate and an interpolated curvature. However, the overall
results are promising.

One measure of the quality of the approximate hessian is the overlap between the eigen-
vector corresponding to the reaction coordinate in the exact hessian with the corresponding
vector in the approximate hessian, which can be evaluated as a scalar product of these two
vectors. This overlap is greater than 0.5 in most of the test reactions studied, with a fair
match between the eigenvalues as well. In general, with the exception of ethane dehydro-
genation, the transition-state search performs remarkably well with an approximate hessian
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Reaction
Exact hessian Approximate hessian

CPU
time
reduced
(%)

-ve
eval

Cycles
CPU
time
(s)

d.p.
-ve
eval

Cycles
CPU
time
(s)

formaldehyde
decomposition

-0.27 50 56 0.7 -0.29 44 44 22

silane
formation

-0.23 5 14 0.6 -0.45 12 14 -4

ethanal
rearrangement

-0.55 74 16 0.0 -2.63 54 11 30

ethane
dehydrogenation

-0.05 63 460 0.5 -0.26 148 906 -97

bicyclobutane
ring opening

-0.07 129 38 0.7 -0.30 147 41 -10

hexadiene ring
formation

-1.00 61 45 0.8 -1.68 67 44 2

Diels Alder
reaction

-0.04 63 1367 0.6 -0.23 63 1034 24

alanine dipeptide
rearrangement

-0.003 43 2538 0.7 -0.02 51 1890 26

Ireland Claisen
rearrangement[64]

-0.06 88 13567 0.3 -2.65 153 12980 4

Table 2.3: Performance of P-RFO with exact and approximate hessian, using the TS guess
and hessian generated using FSM-BFGS . ”-ve eval” represents the eigenvalue corresponding
to the reaction coordinate. ”d.p.” denotes the scalar product between the eigenvectors
corresponding to the reaction coordinate in the exact and approximate hessians.

input, both in terms of number of optimization cycles as well as the total CPU time required
for convergence. In the case of ethane dehydrogenation, it is observed that the exact hessian
has two negative eigenvalues of similar magnitude. This indicates that the TS guess is not
close to the region of the true saddle point, and therefore, the approximate tangent direction
may not be effective in guiding the P-RFO. However, the algorithm does converge to the
true TS within 150 optimization cycles since the approximate hessian possesses the desired
structure of a single negative eigenvalue. The utility of an approximate hessian in saving
computational time, however, is distinctly visible for large systems. For systems containing
16 atoms or higher, the exact hessian calculation costs between 10% of the total CPU time
in the case of hexadiene ring formation to 45% in the case of Ireland-Claisen rearrangement.
In these cases, the reduction in cost associated with sidestepping the exact hessian clearly
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outweighs the increase in cost of gradients associated with the use of an approximate hessian.

On similar lines, the performance of the approximate hessian using the TS guess gen-
erated by the FSM-CG method is also evaluated. The results are shown in Table 2.4. In
most cases, the approximate hessian generated using the FSM-CG algorithm performs just
as effectively as that using the FSM-BFGS algorithm, demonstrating the transferability of
the approximate hessian construction procedure to any interpolation algorithm. The over-
lap between the exact and approximate reaction coordinates, however, is slightly poorer on
average compared to the FSM-BFGS method. Particularly, in the instances of ethane de-
hydrogenation and Ireland-Claisen rearrangements, the TS searches with the approximate
hessian converge to first order saddle points, which do not lead to the correct reactant and
product structures. The TS guesses converge to the true TS with the exact hessian input for
these reactions, indicating that the FSM-CG generates a good structure for the TS guess.
However, for the same input parameters, the approximate reaction coordinate generated by
the BFGS method is better than the CG direction for these reactions.

The approximate hessian calculated using the information generated by the FSM algo-
rithm, therefore, effectively eliminates the need for computation of an exact hessian for TS
search. The requirement of an exact hessian for accurate transition state search has been
a massive obstacle to determining TSs for systems consisting of hundreds of atoms. While
the largest system in this study, the Ireland-Claisen rearrangement, has only 56 atoms, the
impact of exact hessian evaluation in that case is already significant. The exact hessian
calculation constitutes about 45% of the entire job time when the search is carried out in
internal coordinates. If one then doubles the system size, the energy and gradient calcula-
tions will scale up by approximately a factor of 4 for these DFT calculations, while the exact
hessian calculation will increase by approximately a factor of 8[52, 53]. This illustrates how
exact hessian evaluation progresses from being computationally insignificant in the small
reactions towards being a severe bottleneck in large systems. The virtue of the approximate
hessian approach is the removal of this bottleneck without unduly affecting the convergence
of the TS refinement by the P-RFO algorithm.

The overall performance of the combined FSM and approximate hessian-based method,
described by the total gradient calculations required for both steps of TS finding, is shown
in Figure 2.3. It can be observed that the FSM-BFGS performs better both in terms of
accuracy as well as efficiency of finding the TS. Most of the improvement in efficiency arises
from the improvement in the string method itself, since the TS guesses generated, and the
constructed approximate hessians are similar.
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Reaction
Exact hessian Approximate hessian

CPU
time
reduced
(%)

-ve
eval

Cycles
CPU
time
(s)

d.p.
-ve
eval

Cycles
CPU
time
(s)

formaldehyde
decomposition

-0.05 59 65 0.6 -0.15 64 64 2

silane
formation

-0.24 5 14 0.7 -0.48 12 14 -4

ethanal
rearrangement

-0.48 66 14 0.8 -0.22 65 13 6

ethane
dehydrogenation

-0.16 193 1256 0.1 -1.20

bicyclobutane
ring opening

-0.1 114 33 0.6 -0.31 117 33 2

hexadiene ring
formation

-1.1 54 40 0.5 -1.85 77 51 -25

Diels Alder
reaction

-0.05 83 1695 0.4 -0.20 85 1395 18

alanine dipeptide
rearrangement

-0.003 36 2279 0.4 -0.007 51 1890 17

Ireland Claisen
rearrangement

-0.25 364 36983 0.1 -0.27

Table 2.4: Comparison between performance of P-RFO with exact and approximate hessian,
using the TS guess and hessian generated using FSM-CG. For ethane dehydrogenation, TS
search with the exact hessian required a smaller step to converge to the correct TS (0.025Bo).

2.5 Conclusions

The aim of this study is to develop a set of computational techniques that determines
transition structures rapidly and accurately, given only reactant and product structures. We
have made progress in addressing two of the key bottlenecks in finding transition states:
generating the guess to the transition state, and calculating the exact hessian.

The cost of automatically generating an initial guess is reduced by replacing the conju-
gate gradient technique used in the optimization step of the freezing string method (FSM)
with a quasi-Newton line search coupled with a BFGS hessian update. This approach en-
hances the computational efficiency of the FSM by about 50 % on average for the test suite
consisting of a diverse range of reaction types and system sizes without altering the quality
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Figure 2.3: Performance of the combination of a string method (FSM-CG and FSM-BFGS)
with an approximate hessian-based TS search, based on total gradients to achieve conver-
gence beginning with reactant and product configurations.

of the guess generated. It must be noted, however, that interpolation methods do not follow
the reaction path exactly. Therefore, convergence to the correct TS cannot be rigorously
guaranteed. The FSM-BFGS method with the current set of parameters may fail in systems
more complex than the current test set. In such cases, however, it is possible to tighten the
line search using a lower value of , in order to follow the true reaction path more accurately.

The second bottleneck, the exact hessian calculation, is addressed by constructing an
approximate hessian using the output of the FSM-BFGS or FSM-CG method, which is then
used as an input to the P-RFO algorithm instead of the exact hessian. In addition to the
computational benefit of avoiding an expensive exact hessian calculation, the approximate
hessian by design possesses the desirable property of a single negative eigenvalue. This
means that it can in fact be more appropriate than the exact hessian in cases where the
latter does not initially have the correct structure. Despite being approximate, the numerical
performance of P-RFO refinements is not degraded by its use. Furthermore, an approximate
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hessian-based search in delocalized internal coordinates helps to make the study of reactions
of large molecules more computationally viable using electronic structure methods.

2.6 Acknowledgements

Dr. Paul Zimmerman was a collaborator on this project. This work was supported by a
grant from Chevron Energy Technology Co.



24

Chapter 3

A Finite Difference Davidson
Procedure to Sidestep Full Ab Initio
Hessian Calculation: Application to
Characterization of Stationary Points
and Transition State Searches

3.1 Abstract

The cost of calculating nuclear hessians, either analytically or by finite difference methods,
during the course of quantum chemical analyses can be prohibitive for systems containing
hundreds of atoms. In many applications, though, only a few eigenvalues and eigenvectors,
and not the full hessian, are required. For instance, the lowest one or two eigenvalues of the
full hessian are sufficient to characterize a stationary point as a minimum or a transition
state (TS), respectively. In this chapter, we describe a method that can eliminate the need
for hessian calculations for both the characterization of stationary points as well as searches
for saddle points. A finite differences implementation of the Davidson method that uses
only first derivatives of the energy to calculate the lowest eigenvalues and eigenvectors of
the hessian is discussed. This method can be implemented in conjunction with geometry
optimization methods such as partitioned-rational function optimization (P-RFO) to charac-
terize stationary points on the potential energy surface. With equal ease, it can be combined
with interpolation methods that determine TS guess structures, such as the freezing string
method, to generate approximate hessian matrices in lieu of full hessians as input to P-RFO
for TS optimization. This approach is shown to achieve significant cost savings relative to
exact hessian calculation when applied to both stationary point characterization as well as
TS optimization. The basic reason is that the present approach scales one power of system
size lower since the rate of convergence is approximately independent of the size of the sys-



25

tem. Therefore, the finite-difference Davidson method is a viable alternative to full hessian
calculation for stationary point characterization and TS search particularly when analytical
hessians are not available or require substantial computational effort.

3.2 Introduction

The feasibility of applying quantum chemical tools to reaction kinetics studies is severely
limited by the size of the system under examination. In particular, the cost of calculating
analytical second derivatives, or the nuclear hessian, scales about one power of system size
greater than the energy or gradient[52, 53]. In situations where analytical second deriva-
tives are not available, one is forced to use finite differences to evaluate the hessian, which
is even more expensive[52, 53]. Although its calculation is costly, the hessian matrix is es-
sential for several reasons. From an analysis of the hessian one can determine whether a
stationary point on a potential energy surface corresponds to a minimum or saddle point.
Some eigenvector-following optimization techniques, such as the partitioned-rational func-
tion optimization (P-RFO) method[2, 6, 44] also rely on an initial hessian input for robust
performance and faster convergence. Reaction path searches initiated at the transition state
(TS) also require an exact hessian input[66–71].

In most applications, however, it is not the full hessian but only a few eigenvalues or
eigenvectors that are necessary. When characterizing stationary points, if the exact hessian
matrix has all non-negative eigenvalues, the geometry is classified as a minimum on the
potential energy surface. If the hessian has exactly one negative eigenvalue, the geometry
corresponds to a TS, with the negative mode representative of the reaction coordinate. In
order to verify whether a given geometry corresponds to a minimum or a TS, one only needs
to calculate the lowest one or two eigenvalues, respectively. The same principle can be ap-
plied to TS search methods that require an initial hessian input. The P-RFO, for example,
is more reliable if the hessian input has exactly one negative eigenvalue that resembles the
reaction coordinate[3]. Instead of calculating the full hessian, therefore, the lowest eigenvalue
and eigenvector are sufficient to generate a matrix input with the correct eigenvalue structure.

Some efforts have been made in this direction, particularly to generate approximate hes-
sians for initiating geometry optimization. Lindh et al.[59] have developed a method in
which a model hessian, constructed as a function of force constant parameters, improved
the efficiency of geometry optimization via the quasi-Newton-Raphson method. However,
the efficiency was tested for only a small basis set and at the Hartree-Fock level of the-
ory, and the model hessian was limited to systems involving atoms in the first three rows
of the periodic table. A variational method implemented by Kumeda et al.[72] minimizes
the finite-difference formulation of the Rayleigh-Ritz ratio using conjugate gradients. The
crudely converged eigenvalue and eigenvector corresponding to the reaction coordinate are
then used to initiate eigenvector following methods for TS search. More recently, an eigen-
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vector following method that uses the eigensolutions of a finite-difference based Davidson
approach has been proposed[73]. The approach uses all the eigensolutions generated by the
Davidson method, even if they havent fully converged. As a consequence, the reliability
of the saddle-point search based on this approximate hessian remains questionable. The
Davidson approach has also been used in a hybrid quantum mechanics/molecular mechanics
(QM/MM) approach along with RFO, since it can determine the desired eigenvalues without
requiring the storage or calculation of the full hessian[74]. Olsen et al. have also reported
the use of a Lanczos scheme for iteratively determining the lowest hessian mode for saddle
point search[75]. Reiher and Neugebauer developed a mode-tracking algorithm using the
Davidson method for calculating only the modes relevant for vibrational analysis[76]. Simi-
larly, a block-Davidson approach via finite differentiation of the gradient was implemented
for calculating hessian-vector products for normal mode analysis[77]. Deglmann and Furche
developed a method for stationary point characterization with density functional theory
where coupled-perturbed Kohn-Sham equations, the bottleneck in hessian calculation, could
be avoided through iterative calculation of hessian-vector products to determine only the
lowest eigenvalues[78].

We have previously reported a method that constructs the approximate hessian based
on an interpolated curvature obtained from the freezing string method (FSM)[42, 79]. The
technique shows promising results when the approximate hessian input is used with P-RFO.
However, since the curvature is not optimized, the accuracy of the interpolated curvature
and hence the efficiency of optimization relies heavily on the quality of the reaction path
generated by FSM, which is not desirable.

The goal of our research is to develop a low-cost alternative to exact or finite difference
hessians for applications where only the lowest eigenvalues are required. This paper describes
an approach that employs a finite differences form of the Davidson method[80] in conjunction
with the P-RFO, which can be applied to both stationary point characterizations as well as
TS searches. The Davidson method calculates one or more lowest eigenvalues of a matrix
without diagonalizing the full matrix. It does so by diagonalizing a matrix constructed using
an orthonormal subspace of size smaller than that of the original matrix, and subsequently
minimizing the error between the true and subspace eigensolutions. Any other iterative di-
agonalization method can also be used instead of the Davidson method for calculating the
lowest eigenvalues[81–83].

The P-RFO approach uses quasi-Newton hessian update methods in order to revise the
(exact or approximate) hessian input at every step. For stationary point characterization,
therefore, the lowest eigenvectors of this matrix at the end of geometry optimization consti-
tute the initial subspace for the Davidson method. Depending on whether the optimization
is searching for a minimum or TS, this approach determines the lowest one or two hessian
eigenvalues and eigenvectors, respectively, without calculating the exact hessian itself. The
Davidson approach is also extended to TS search, for which it uses reaction coordinate in-
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formation generated by the FSM to calculate the lowest eigenvalue and eigenvector of the
hessian at the TS guess. This information is then incorporated into a guess matrix that is
employed as input to P-RFO in lieu of the exact hessian for the TS search. The performance
of this method is examined for stationary point characterization and TS search in terms of
accuracy, the cost savings it achieves relative to the full hessian calculation, and its scaling
with respect to system size. Extensive testing shows that this method requires significantly
less computational effort when compared with calculation of the full hessian, and is also
nearly independent of system size, making it a very valuable tool for studying large systems.

3.3 Method

3.3.1 Characterization of minima and transition states

The Davidson method has been employed traditionally in situations where the cost of
full matrix diagonalization is prohibitive, such as configurational interaction (CI) calcula-
tions[84]. However, the original Davidson procedure requires the full matrix in order to
determine its eigenvalues. The method therefore needs to be modified in order to apply to
calculation of nuclear hessian eigenvalues. It can be made hessian-free by recognizing the
fact that the action of the hessian matrix on the subspace vector is desired rather than the
matrix itself. This can be determined approximately using finite differences[73].

Hexb1 = y1 ≈
∇E(X0 + ξb1)−∇E(X0 − ξb1)

2ξ
(3.1)

where X0 is the converged geometry, b1 is the first component of the orthonormal subspace,
Hex is the exact hessian, ξ is the finite difference stepsize taken to be 0.01 a0[43], and ∇E
represents gradient of the energy.

The vectors comprising the initial orthonormal subspace, {bi}, typically span the dom-
inant components of the desired eigenvalue(s). Depending on whether P-RFO is searching
for a minimum or a TS, the subspace can be constructed using the lowest one or two eigen-
vectors of the updated hessian at convergence, respectively. This choice may not be reliable
when the system possesses symmetry, since the initial subspace can be orthogonal to the
corresponding lowest eigenvector(s). For systems with symmetry, therefore, we choose the
initial guess as a linear combination of the lowest few eigenvectors of the updated hessian at
convergence, with randomly determined scalar coefficients. The action of the hessian on the
subspace vector(s) is determined from equation 3.1.

For characterization of minima, the first eigenvalue is given by

λ
(1)
1 = yT1 b1 (3.2)
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where the superscript corresponds to the current iteration. The residual for the first iteration,
therefore is

q
(1)
i = yi,1 − λ(1)

1 b1, i = 1, 2, .., 3N (3.3)

where N is the number of atoms. Subsequent iterations can be carried out using the standard
Davidson procedure[80]. The diagonal elements of the P-RFO updated matrix, H, are used
in the preconditioner in order to accelerate convergence towards the desired eigenvalue.

w
(M+1)
i = (λ

(M)
1 −Hi,i)

−1q
(M)
i , i = 1, 2, ..., 3N (3.4)

The vector, w(M+1), is then orthonormalized against previous vectors in the subspace to
generate the new subspace vector, bM+1, in the M th cycle. If P-RFO has found the minimum
correctly, the Davidson approach should converge to an eigenvalue that is greater than or
equal to zero. The iterations terminate when one of the following convergence criteria is
satisfied:

(λ
(M)
k − λ(M−1)

k )

λ
(M−1)
k

≤ ξ, or (3.5a)

|qk| ≤ ξ (3.5b)

where superscript denotes the iteration, λk corresponds to the eigenvalue (k = 1 for minima),
and qk is the residual corresponding to the kth eigenvalue. When the system has symmetry,
only condition (ii) is imposed, with tighter tolerance, ξ2, in order to ensure that the proce-
dure that begins with a random guess locates the correct eigenvalue.

A subspace consisting initially of two orthonormal vectors is used to characterize TSs.
The finite difference expression in equation 3.1 is used to determine the action of the hessian
on both b1 and b2. The two sets of vectors, (b1, b2) and (y1, y2), are used to construct
the smaller matrix that is then diagonalized. The original Davidson procedure is followed
subsequently to obtain the lowest eigenvalue. The search for the second eigenvalue begins
with the augmented subspace obtained upon convergence of the first eigenvalue. Convergence
of the second eigenvalue is assumed when one of the two conditions in equation 3.5 are
satisfied. A more rigorous condition is imposed on the first eigenvalue, requiring both criteria
in equation 3.5 to be satisfied for convergence. This is found to be essential, particularly in
cases where the P-RFO begins in the absence of any hessian information and as a result,
the updated matrix is not a good approximation to the exact hessian. If the optimizer
finds the TS correctly, then the lowest eigenvalue determined by the Davidson procedure
is negative. The second eigenvalue is zero, since the six eigenvalues following the lowest
mode correspond to translations and rotations in cartesian coordinates. A summary of the
procedure for characterization of minima and transition states is given in Table 3.1.

3.3.2 Transition state search

The speed and reliability of P-RFO for TS search is vastly enhanced when a hessian input
with the correct eigenvalue structure is employed as opposed to a unit-matrix or diagonal-
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Stationary
point

Initial subspace {bi}
from P-RFO updated

hessian, H

Convergence
conditions
(equation 3.5)

Minimum
(no symmetry)

lowest eigenvector (a) or (b)

Minimum
(symmetry)

linear combination of
lowest eigenvectors

|qk| ≤ ξ2

Transition state
1st eigenvalue - lowest

eigenvector
(a) and (b)

Transition state
2nd eigenvalue - second

eigenvector
(a) or (b)

Table 3.1: Summary of the finite difference Davidson procedure for characterization of sta-
tionary points, for systems with and without symmetry. The lowest eigenvalue is calculated
for characterizing minima, and the lowest two eigenvalues for TSs.

matrix input. Although the best input is the exact hessian at the TS guess, it is not always
computationally viable. In such cases, an approximate one can be calculated either from
force fields or by using a lower level of theory[3].

An approximate hessian with exactly one negative eigenvalue can also be constructed
using the finite difference Davidson approach. Any double-ended interpolation method that
calculates the TS guess structure from reactant and product geometries also generates an
approximate reaction coordinate at the guess. In this case, the reaction coordinate gener-
ated by FSM is taken as b1. The remaining steps are similar to the finite-difference Davidson
approach for calculation of the lowest eigenvalue. The criteria for convergence are given by
equation 3.5.

The converged eigenvalue and eigenvector must then be incorporated into a guess matrix.
There are several possible choices for this guess, the simplest being a unit matrix. However,
a better initial guess is one that contains chemical information such as bond stretches, bends,
etc. Therefore, a diagonal matrix in primitive internal coordinates, Hprim, is transformed to
delocalized internal coordinates[60], and subsequently, cartesian coordinates.

Hint = UTHprimU (3.6)

Hcart = BTHintB (3.7)

Hcart is then updated with the eigenvalue and eigenvector obtained from the Davidson
method.

H = Hcart − 0.5
3N∑
j=1

(eTj Hcartt1)(t1e
T
j + ejt

T
1 ) + λ1t1t

T
1 (3.8)
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where ejs are the eigenvectors of Hcart, and t1 and λ1 are the converged eigenvector and
corresponding eigenvalue, respectively. Equation 3.8 removes existing components of the
guess matrix along the lowest eigenvector and replaces them with the correct components.
The resulting matrix has exactly one negative eigenvalue by design, and serves as a substitute
to the exact hessian input to P-RFO.

3.4 Results

3.4.1 Characterization of transition states

The reliability, performance, and scaling of the Davidson method for stationary point
characterization is examined with Test Set 1. This set consists of n-butyl lithium initiated
butadiene oligomerization transition state and product structures. The converged TS and
product geometries for trimerization are shown in Figure 3.1. The TS guesses are generated
from the monomer TS[85] by successively adding 1,3-butadiene to the growing chain. In this
way, TS guesses for the formation of oligomers ranging from the trimer (44 atoms) to the
undecamer (124 atoms) are generated. The guess geometries are then refined to true TS
structures with the P-RFO method using exact hessian inputs. The Davidson procedure is
applied when the optimization converges. In order to examine the benefit of coupling P-RFO
optimization with Davidson characterization, the method is also implemented without using
any information from the updated hessian.

All calculations are carried out using a developmental version of Q-Chem 4.1[65], and
are run in parallel using 8 cores, each containing 4 GB RAM. Structures in Test Set 1 are
treated at the B3LYP/6-31G level of theory[86, 87]. P-RFO searches are carried out in delo-
calized internal coordinates[60] with an upper limit on step-size per iteration of 0.1 a0. The
cost and accuracy of the Davidson method for calculating the lowest two eigenvalues and
thereby characterizing converged TS geometries is compared with the cost of calculating the
full hessian.

The CPU time required to calculate the lowest eigenvalues with the Davidson method
is determined by multiplying the number of force calculations in the finite-difference steps
with the average time to calculate the gradient. This is then compared with the CPU time
required for full analytical hessian calculation. For TS characterization, the eigenvalue and
eigenvector corresponding to the reaction coordinate are also compared with eigensolutions
of the exact hessian in order to verify convergence of the Davidson procedure.

Figure 3.2 compares the cost of full hessian calculation with the Davidson approach for
characterizing oligomerization TS’s. In all cases, the Davidson approach converges to the
lowest eigenvalue within 2% error. The lowest eigenvector is also fully converged as verified
by calculating its scalar product with the corresponding eigenvector of the exact hessian.



31

Figure 3.1: Representative structures, TS(left) and product(right) of trimerization of n-
butyl lithium, for characterization of stationary points in Test set 1 comprising butadiene
oligomers via alkyl lithium initiation. Brown atoms correspond to lithium, cyan represent
carbon and white, hydrogen atoms. TS and product structures correspond to 1-carbon
attack by 1,3-butadiene of the allyl end of the chain[85]. The chain grows linearly, and all
structures correspond to trans isomers.

When the Davidson approach begins with an updated hessian, the initial guess vector is a
good approximation to the true reaction coordinate. In addition, preconditioning with the
diagonal elements of the approximate hessian facilitates rapid convergence. The method is
largely independent of system size, whereas the full hessian scales approximately cubically.
For smaller systems, therefore, the Davidson approach is twice as fast as calculating the full
hessian, and nearly 5 times faster for the largest system in the test set. On the other hand,
if applied independent of the optimizer with no updated hessian information, the Davidson
method is much slower to converge. Although computational effort is still lower than full
hessian calculation, it is clear that the method is practical only when approximate hessian
information, such as the P-RFO update, is available.

Based on these observations, a compromise can be considered that not only guarantees
convergence of the P-RFO but also lowers costs associated with hessian calculations, partic-
ularly for large molecules. The full hessian can be quickly calculated using a very small basis
set prior to TS search. The lowest eigenvalue and eigenvector can then be incorporated into a
guess matrix as discussed earlier. The resulting approximate hessian is used for optimization
using the P-RFO. This will ensure convergence of the P-RFO to the right saddle point and
improve the performance of the Davidson method for characterization by providing a better
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Figure 3.2: Cost comparison between Davidson method and exact hessian calculation for
characterization of TSs for Test Set 1. Oligomer sizes are plotted on the horizontal axis.
Vertical axis represents computational time (min) associated with either full hessian calcu-
lation or Davidson method for finding the two lowest eigenvalues. P-RFO is initiated with
an exact hessian input. ”with updated hessian” corresponds to when Davidson iterations
begin with P-RFO updated hessian. The ”without updated hessian” label represents cost of
Davidson method with no hessian information.

initial guess of the subspace vector.

In order to ensure that this approach does not incorrectly characterize a higher-order
saddle point as a TS, P-RFO optimization is carried out on a decanol molecule with a linear
C-O-H bond. The optimization is carried out in the absence of a hessian input, and the sys-
tem is treated at the B3LYP/6-31G level of theory. The converged structure corresponds to
a second-order saddle point, and the hessian consists of two degenerate negative eigenvalues,
both of which are correctly calculated by the Davidson method. In addition, this approach is
about 1.6 times faster than full hessian calculation. Higher-order saddle points are therefore
accurately detected by this procedure.
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3.4.2 Characterization of minima

The connectivities of the converged oligomerization TS structures in Test Set 1 are man-
ually modified to resemble the product oligomers. These geometries are then refined to the
correct product structure using the P-RFO method. Unlike TS search, all product optimiza-
tions are carried out in the absence of exact hessian inputs. The optimization therefore,
begins with a diagonal matrix as the hessian guess. The optimization parameters are iden-
tical to those for oligomer TS search.

For a minimum on a potential energy surface in cartesian coordinates, the lowest six
modes typically correspond to translational and rotational degrees of freedom. Consequently,
the eigenvalues corresponding to these modes are zero. In Figure 3.3, the CPU time for full
hessian calculation is compared with the time taken by the Davidson approach to converge
to one of these modes. For the largest system consisting of 124 atoms, the cost of calculat-
ing the hessian is nearly 60 times the cost of the gradient. On the other hand, when the
Davidson approach begins with the P-RFO updated hessian, the residual converges in the
first finite-difference step itself, incurring a cost equal to only 2 gradients. As a result, the
Davidson method with the P-RFO input is between 20 and 29 times faster than the full
hessian calculation for this test set. The method is slower to converge without the P-RFO
input, similar to what is observed in TS characterization, but still twice as fast as the full
hessian for the largest system in this test set.

The efficiency of applying the Davidson procedure is also tested in situations where the
analytical hessian is not available. Since finite difference hessians are more expensive than
analytical hessians, calculating second derivatives for even small molecules requires signifi-
cant computational effort. The Davidson approach is tested in one such instance. Geometry
optimization of fluoromethane (CH3F ), in the absence of a hessian input, is carried out
using MP2/6-311G(d,p) level of theory with P-RFO parameters identical to those used in
the oligomer optimizations. The time required to characterize the stationary point using the
Davidson method is then contrasted with that for full finite difference hessian calculation.
Calculation of the finite difference hessian requires 54.49 s of CPU time. The Davidson
procedure can characterize the minimum in 5 iterations with a total CPU time of 7.29 s
nearly 7.5 times faster than the finite difference hessian, a gain that will only increase with
system size. This approach is therefore not only useful for large molecules for which analyti-
cal hessians can become intractable, but also systems that are treated with theory for which
analytical hessians are unavailable.

A triflate anion in its eclipsed conformation is a molecule with Cs symmetry. Geometry
optimization is carried out in parallel (8 cores) at BP86/6-311+G* level of theory[86, 88].
Although the P-RFO searches for a minimum, it converges to a first-order saddle point with
the negative eigenvalue characteristic of a soft mode (54icm−1). If the Davidson approach
begins with a subspace consisting of the lowest eigenvector of the P-RFO updated hessian, it
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Figure 3.3: Cost comparison between Davidson method and exact hessian calculation for
characterization of minima for Test Set 1. P-RFO is initiated without a hessian input, and
the optimization begins with a diagonal matrix as a guess hessian.

rapidly converges to an eigenvector that is orthonormal to the soft mode. When the subspace
guess is a linear combination of the lowest eigenvectors, it converges correctly to within 3% of
the lowest eigenvalue. Although the Davidson approach is more expensive, requiring 39 min
(40 gradients), while the full hessian calculation needs only 24 min, the former is expected
to scale more favorably with system size.

3.4.3 Transition state search

A diverse set of reactions is chosen to evaluate the cost and performance of the P-RFO
with the Davidson-based approximate hessian input relative to that with the full hessian.
The reactions comprising Test Set 2, shown in Table 3.2, are largely similar to those used in
our previous work[79]. The TS guess structures are generated using FSM with a maximum
of three perpendicular steps per iteration and roughly 20 nodes on the string. They are then
refined to the correct TSs using P-RFO with both exact hessian as well as Davidson-based
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approximate hessian inputs. The two approaches are compared in terms of both hessian as
well as optimization costs.

All calculations are carried out using a developmental version of Q-Chem 4.1 on single
cores. For ease of visualization, both the hessian and optimization times are divided by the
time required to calculate one energy and gradient. The resulting hessian cost is compared
to the number of finite-difference steps required in the Davidson procedure. The number of
P-RFO cycles required to converge to the correct TS is compared for the exact and approxi-
mate hessian inputs to determine whether the use of an approximation adversely affects the
performance of P-RFO. TS searches for Test Set 2 are also carried out in delocalized internal
coordinates with an upper limit on step-size per iteration of 0.1 a0. Figure 3.4 shows the
total cost of TS search with exact and approximate hessian inputs. The total cost is broken
down into two components the cost of calculating the exact/approximate hessian input,
and the number of optimization steps required with this input. The results are shown in
increasing order of system size.

Analytical hessians are relatively inexpensive for small systems consisting of fewer than
10 atoms. Therefore, the cost of hessian calculation is only a small fraction of total TS
search cost. In such cases, the Davidson method does not offer any significant cost advan-
tage. Although there is little benefit to using the Davidson-based hessian, it is interesting to
note that the convergence of the optimizer is not adversely affected when an approximation
replaces the exact hessian input, as long as it has the correct eigenvalue structure.

As the size of the system increases, the relative contribution of the hessian calculation
to the total computational effort also rises. The cost of the hessian calculation is in fact
higher than the optimization cost for the largest system in the test set, the dehydration of
cellotriose. It can be inferred that further increase in the system size will result in domina-
tion of the hessian cost in the total cost of TS search. Significant reduction in computational
effort can therefore be achieved by using an approximate hessian that scales more favorably
with system size.

In Test Set 2, the cost of approximate hessian construction with the Davidson method
does not exceed 9 finite-difference steps, or 18 gradients. Significant savings are achieved for
the largest systems, Ireland-Claisen rearrangement and cellotriose dehydration, for which this
method is 3.5 and 7 times less expensive than full hessian calculation, respectively. Again,
the cost penalty associated with using an approximate input for optimization in place of an
exact hessian is small. For cellotriose dehydration, although P-RFO requires 26 more steps
to converge with the approximate hessian input relative to the exact hessian, the total cost
of the TS search is still less with the approximate input.

The combined performance of the Davidson approach in TS search and optimization is
shown in Table 3.3. In addition to the costs associated with hessian construction (labeled
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Reaction Description
Number
of atoms

Basis set Theory

formaldehyde
decomposition

H2CO ↔ H2 + CO 4 6-31G B3LYP

silane
formation

SiH2 +H2 ↔ SiH4 5 6-31G B3LYP

ethanal
rearrangement

CH3CHO ↔ CH2CHOH 7 STO-3G HF

ethane
dehydrogenation

CH3CH3 ↔
CH2CH2 +H2

8 6-31G** B3LYP

bicyclobutane
ring opening

bicyclobutane↔
CH2CHCHCH2

10 STO-3G HF

hexadiene ring
formation

cis,cis-2,4-hexadiene↔
3, 4− dimethylcyclobutene

16 STO-3G HF

Diels Alder
reaction

CH2CHCHCH2 +
CH2CH2 ↔ cyclohexene

16 6-31G B3LYP

alanine dipeptide
rearrangement

C5 ↔ C7AX 22 6-31G B3LYP

Ireland Claisen
rearrangement[64]

silyl ketene acetal ↔ silyl
ester

56 6-31G B3LYP

cellotriose
dehydration[89]

1,2 dehydration 66 6-31G B3LYP

Table 3.2: Test Set 2 for comparing the costs associated with exact and Davidson-based
approximate hessian inputs, and cost of TS optimization with these inputs using P-RFO.
TS guesses are generated using FSM-BFGS with ngrads = 3 and nnodes = 20.

Hess.) and subsequent optimization (labeled Opt.) presented in Figure 3.4, the cost of char-
acterization (labeled Char.) with the Davidson method is also shown. The column labeled
Total also includes, in parentheses, the total cost if the full hessian is used in place of the
Davidson method.

It is interesting to note that characterization costs are relatively insensitive to whether
the P-RFO begins with an exact or an approximate hessian. Therefore, as long as the hes-
sian input to P-RFO has the correct eigenstructure and reaction coordinate information,
the Davidson approach is both speedy and reliable. For smaller molecules, as observed with
approximate hessian construction, the cost of characterization with the Davidson method
is typically higher than that of the full hessian. For the largest systems, however, using
the Davidson approach for both hessian construction and TS characterization can result in
nearly 40% cost reduction relative to using exact hessians.
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Cost (#cycles)
Exact hessian Davidson-based hessian

Hess. Opt. Char. Total Hess. Opt. Char. Total
formaldehyde
decomposition

7 35 12
54

(49)
8 38 14 60

silane
formation

8 4 6
18

(20)
6 7 6 19

ethanal
rearrangement

4 46 20
70

(54)
8 52 20 80

ethane
dehydrogenation

12 34 16
62

(58)
16 39 18 73

bicyclobutane
ring opening

6 73 30
109
(85)

8 83 26 117

hexadiene ring
formation

7 35 22
64

(49)
10 39 20 69

Diels Alder
reaction

20 29 12
61

(69)
10 30 18 58

alanine dipeptide
rearrangement

26 44 34
104
(96)

18 34 34 86

Ireland Claisen
rearrangement

49 42 24
115

(140)
14 48 24 86

cellotriose
dehydration

54 50 22
126

(158)
8 75 16 99

Table 3.3: Costs involved in TS search and chacterization starting with the guess structure,
using P-RFO with an exact hessian input and a Davidson-based hessian input. Costs are
reported in terms of number of cycles obtained by dividing computational time by the time
required to calculate one energy and gradient. Costs for calculation of an exact/approximate
hessian prior to optimization, P-RFO optimization, and characterization using the Davidson
method are labeled ”Hess.”, ”Opt.” and ”Char.”, respectively. ”Total” indicates the sum
of all three components, with the values in parentheses corresponding to the total cost if
characterization is carried out with a full hessian instead of the Davidson method.
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Figure 3.4: Comparison of total costs between TS searches with exact and approximate
hessian inputs using Test Set 2. Vertical axis represents computational cost reported in
terms of number of equivalent gradient calculations (cycles) by dividing computational time
by the time required to calculate one energy and gradient. Total cost is broken down into its
2 components firstly the cost of generating the exact or Davidson-based hessian as inputs
to optimization, and secondly cost of optimization using P-RFO with this hessian input.

The finite difference Davidson approach for search and characterization therefore promises
significant cost reduction for saddle point searches in systems of very high dimensionality.
There is an additional benefit to using a combination of FSM, Davidson-based hessian con-
struction, P-RFO, and subsequent characterization with the Davidson method. The process
of finding a TS from reactant and product structures can be fully automated with minimal
user intervention, as described in our previous work[79]. However, it must be noted that in
situations where the reaction coordinate is strongly coupled to other modes, construction
of an approximate hessian with a single accurate eigenvalue may not be sufficient. In such
cases, one may have to calculate the full hessian from force fields or by using a lower level
of theory[3].
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3.4.4 Applications: Catalysis

DFT calculations for studying reactions involving an organometallic complex can be very
expensive owing to the presence of one or more metal atoms. In such cases, the cost of cal-
culating the full hessian can be prohibitive. Diaryldithiolene complexes of Co with different
aryl substituents have been examined as potential electrocatalysts for proton reduction in
the hydrogen evolution reaction (HER), for the conversion of solar energy to fuels[90]. The
transition states for the H2 evolution step in the catalytic cycle with two such complexes are
chosen in order to examine the cost reduction achieved using the Davidson approach for TS
characterization.

TS optimizations are carried out in parallel (12 cores) using TS guess structures and
exact hessian inputs for protonated bromo- and methoxy- derivatives of Co-diaryldithiolene.
The system is treated at unrestricted BP86/6-31++G** level of theory[86, 88] with the
exception of the Co atom, for which the Wachters+f basis set is used [91]. The structure
of the optimized bromo-derivative TS is shown in Figure 3.5. The cost of calculating the
full hessian is equivalent to 43 and 160 gradients, corresponding to about 4 and 5.4 days of
computational time for the bromo- and methoxy-TS, respectively. On the other hand, the
Davidson method converges within 3 iterations (6 gradients) in both cases. It is therefore 7
times faster than the full hessian calculation for the bromo-TS and nearly 27 times faster for
the methoxy-TS, demonstrating substantial cost reduction in stationary point characteriza-
tions for systems containing metal atoms. It can be argued that since P-RFO begins with
an exact hessian, the updated hessian input to Davidson is close to the true hessian, thereby
leading to rapid convergence. However, one can also construct an approximate hessian input
to P-RFO, using the methods described earlier, without adversely affecting the performance
of the Davidson approach, as demonstrated by the results in Table 3.3.

Studying reaction kinetics in the pores of Brønsted acid catalysts such as zeolites can be
computationally expensive since the role of the extended framework cannot be neglected[92].
The representation of the catalyst must include the non-reactive pore framework in addition
to the active site containing the acidic proton. As a result, TS determination for propane
dehydrogenation in H-MFI with even a small 23 tetrahedral (T) atom cluster model involves
calculations on a system containing 100 atoms. The T5 region containing the active site
and the adsorbate are allowed to relax. Input structures to the FSM consist of reactant and
product geometries for the dehydrogenation of propane to propene and hydrogen adsorbed
propane and adsorbed propene plus H2, respectively. The FSM parameters are identical to
those used in Test Set 2. The P-RFO step size is 0.05 a0 and search is carried out in cartesian
coordinates. The system is treated at B3LYP/6-31G level of theory and optimizations are
run in parallel (12 cores). The optimized TS for propane dehydrogenation in MFI is shown
in Figure 3.6.

The cost of calculating the full hessian is equivalent to about 62 gradients, with an
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Figure 3.5: Anionic transition state for H2 evolution of the bromo-derivative of cobalt-
diaryldithioline. Cobalt is in the center surrounded by sulfur atoms (yellow), and the aryl
groups are para-substituted with bromo groups (violet).
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Figure 3.6: Transition state for propane dehydrogenation in a T23 cluster of H-MFI. Yellow
atoms correspond to Si linked by O atoms in red, and cluster is terminated with H atoms.
The Al atom, shown in green, is representative of the active site where a neighboring O
contains an acidic proton. Ball-and-stick representation is used for active site and substrate,
which are allowed to relax during optimization.
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optimization cost of 263 gradients. The cost of constructing an approximate hessian, on
the other hand, is only 10 gradients, and the optimizer performance is similar to that with
the exact hessian input, costing 271 gradients. Therefore, even for complex reactions the
Davidson method for approximate hessian construction is a viable alternative to full hessian
input for the P-RFO, which can not only cut costs associated with hessian computation, but
also not degrade the performance of the P-RFO.

3.5 Conclusions

The finite-difference implementation of the Davidson method utilizes updated hessian
information generated by P-RFO for stationary point characterization to find the lowest
eigenvalues of the exact hessian matrix without actually calculating the matrix itself. This
approach performs remarkably well, with significant cost savings relative to full hessian
calculation for both minima and saddle point characterization. In addition, the rate of con-
vergence is independent of system size, making this method ideally suited for large molecules.
The cost of characterization of the largest test case, the butyl lithium undecamer TS (124
atoms) with the Davidson method is 5 times faster than the full hessian cost, and that of
the undecamer product is 29 times faster. The efficiency of this approach is also demon-
strated for a small molecule with theory for which analytical hessians are not available
and finite-difference hessians are possibly more expensive. A similar procedure is used to
construct low-cost approximate hessian inputs for TS optimization with P-RFO. For larger
systems where hessian calculation constitutes a large fraction of the total TS search cost, the
Davidson approach can significantly lower the hessian component of cost without adversely
affecting the convergence of the optimizer. Therefore, the finite-difference Davidson method
is a useful tool for both stationary point characterizations as well TS searches, particularly
when the system contains a large number of atoms, or when analytical hessians are not
available.
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Chapter 4

Insights into the Kinetics of Cracking
and Dehydrogenation Reactions of
Light Alkanes in H–MFI

4.1 Abstract

Monomolecular reactions of alkanes in H-MFI are investigated by means of a dispersion-
corrected density functional, ωB97X-D, combined with a hybrid quantum mechanics/molecular
mechanics (QM/MM) method applied to a cluster model of the zeolite.The cluster contains
437 tetrahedral (T) atoms, within which a T5 region containing the acid site along with the
representative alkane is treated quantum mechanically. The influence of active site location
on reaction energetics is examined by studying cracking and dehydrogenation reactions of
n-butane at two regions in H-MFI — T12, where the proton is at the intersection of straight
and sinusoidal channels, and T10, where the proton is within the sinusoidal channel. Tran-
sition states are determined using techniques described in Chapter 2 and Chapter 3. Two
transition states are observed for cracking: one where the proton attacks the C–C bond and
another where it attacks a C atom. Dehydrogenation proceeds via a concerted mechanism,
where the transition state indicates simultaneous H2 formation and proton migration to the
framework. Intrinsic activation energies can be determined accurately with this method,
although heats of adsorption are found to be higher in magnitude relative to experiments,
which is most likely mainly caused by the MM dispersion parameters for the zeolite frame-
work atoms. Intrinsic activation energies calculated for reactions at the T10 site are higher
than those at T12 owing to differences in interaction of the substrate with the acid site as
well as with the zeolite framework, demonstrating that Brønsted acid sites in H-MFI are
not equivalent for these reactions. Apparent activation energies, determined from calculated
intrinsic activation energies and experimentally measured heats of adsorption taken from the
literature, are in excellent agreement with experimental results.
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4.2 Introduction

Zeolites are crystalline microporous aluminosilicates formed by corner-sharing of tetrahe-
dral silicate (SiO4) units and aluminate (AlO4) units. Due to the difference in the valences
of Si and Al, cations such as protons, metal ions or metal-oxo species balance the anionic
charge created by isomorphic substitution of Al for Si in the zeolite framework. When charge-
compensation is by protons, zeolites are strong Brønsted acids. The pores and channels in
zeolites are typically on the order of molecular dimensions, enabling zeolites to differentiate
between molecules of different size and shape. Owing to their high Brønsted acidity and
shape selectivity, zeolites find extensive use as catalysts for a broad variety of chemical re-
actions[8, 9].

An important area of application for zeolites is the cracking of alkanes, a key process
in the conversion of petroleum to transportation fuels. Extensive information about the
effects of zeolite structure, Si/Al ratio, and particle size has been obtained from experimen-
tal studies. Recent advances in the accuracy and efficiency of quantum chemical methods
together with increase in computational power have enabled the use of first principles the-
oretical methods to study the mechanism and kinetics of zeolite-catalyzed alkane cracking.
The most widely used method for this purpose is density functional theory (DFT)[93, 94]
because the computational time required for this method scales with approximately the third
power of the number of atoms, whereas other ab initio methods (e.g. MP2) scale with the
fifth power or higher. Electronic structure calculations using DFT, together with efficient
transition state search techniques, such as the nudged elastic band method[26, 27], growing
string method[37], and freezing string method[42, 79] have made it feasible to carry out
computational studies of complex reactions occurring in zeolites[24].

The model used to represent the catalytically active site and the surrounding portion of
the zeolite framework and the exchange-correlation functional have been found to influence
the accuracy of the heats of alkane adsorption and the activation energies involved in alkane
reactions. Owing to high computational cost associated with large systems, small cluster
representations of the zeolite were used in early studies of alkane cracking[95–97]. However,
recent efforts have revealed that a large part of the zeolite surrounding the Brønsted acid site
must be included in order to properly capture the effects of long-range dispersive and elec-
trostatic interaction between the adsorbate and the zeolite framework[92]. It has also been
demonstrated that the B3LYP density functional[86, 87] does not capture dispersion effects,
leading to inaccurate estimates of both heats of adsorption[98] and activation energies[99].
Therefore, both large cluster models as well as density functionals that correctly describe
non-bonding interactions are crucial for the development of an accurate picture of alkane
chemistry in zeolites. For example, DFT calculations using periodic boundary conditions
can reproduce activation energies and heats of adsorption for light alkanes with reasonable
accuracy[100]. Quantum mechanical calculations performed using a 34 T-atom cluster with a
density functional that includes short-range dispersion effects[101, 102] such as M06-2X[103],



45

can also generate accurate heat of adsorption and activation energies for n-hexane cracking
in H-MFI.

The improvements in accuracy resulting from DFT calculations performed with large
clusters and superior functionals result, however, in a significantly higher computational
burden. This consequence has motivated the search for methods that are accurate but less
costly. Zimmerman et al.[104] have recently demonstrated that very good estimates for heats
of adsorption and intrinsic activation energies can be obtained by using a dispersion-corrected
density functional, a large 356 T-atom cluster, and a hybrid quantum mechanics/molecular
mechanics (QM/MM) technique[105–107]. In the QM/MM method, the active region of the
zeolite along with the adsorbate, is treated quantum mechanically, and the interaction of the
adsorbate with the remaining cluster is treated classically. Various QM/MM techniques have
been applied to the adsorption and reaction of hydrocarbons in zeolites[108–110] since they
allow the use of large and accurate cluster representations of the zeolite with computational
time limited only by the size of the QM region.

We present here the results of a theoretical analysis of monomolecular cracking and dehy-
drogenation of n-butane and other light alkanes in the zeolite H-MFI. We focused first on the
cracking of n-butane because this molecule produces a limited number of cracking products
and experimentally measured activation energies for n-butane reported by different authors
are largely in agreement.[111–113] By contrast, a wide range of activation energies have
been reported experimentally for butane dehydrogenation, with some authors reporting val-
ues that are lower than those for cracking[112], whereas experiments on the zeolite MOR[114]
as well as theoretical studies[96, 97] indicate that activation energies for monomolecular de-
hydrogenation are either similar to or higher than those for cracking. The lack of agreement
on the activation barrier for dehydrogenation suggests that the differences may be due to
the presence of Lewis acid sites[115] or the differences in distribution of Brønsted acid sites
in H-MFI. Experimental studies on the effects of alkane chain length suggest that intrinsic
activation energies are invariant to the length of the alkane chain, and that the observed
increase in activity with increasing chain length is due primarily to a rise in the heat of
alkane adsorption with chain length.[112, 116] Computational literature consists of models
that validate this hypothesis[100], as well as trends of activation energy with respect to chain
length that are highly sensitive to the level of theory used in the calculation[95]. Thus, there
remains the issue of how chain length affects the kinetics of alkane cracking and dehydro-
genation.

The QM/MM method[104] was used to perform DFT calculations on a large cluster rep-
resentation of Brønsted acid centers in H-MFI. A large basis set and a recently developed
density functional, ωB97X-D[117, 118], were used in order to achieve a high accuracy in the
calculated heats of adsorption and the activation processes involved in alkane cracking and
dehydrogenation. The calculated heats of adsorption and activation energies were compared
with experimental results in order to demonstrate the accuracy of the method. The influence
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of acid site location on these reactions was examined by comparing intrinsic activation en-
ergies at two acid sites T12 and T10. Similar calculations were performed for other alkanes
to assess the impact of chain length on intrinsic activation energies. An attempt was also
made to rationalize the wide range of activation energies for dehydrogenation of n-butane in
the light of computational results.

4.3 Computational methods

A cluster containing 437 T atoms was used to represent the Brønsted-acid site and the
surrounding zeolite framework of H-MFI. The Al atom associated with the acid center was
placed at either the T12 or the T10 position in the unit cell. The Brønsted-acidic proton
associated with the Al in the T12 position is located at the intersection of the straight and
sinusoidal channels of H-MFI. It is noted that many previous theoretical studies of alkane
cracking have located Al at the T12 site[95, 97], and comparison with the literature is en-
abled by this choice. The second site for Al, the T10 position, places the Brønsted-acid
proton within the sinusoidal channel and hence in a more confining portion of the zeolite
than that occupied by the proton associated with Al at the T12 position.

The overall cluster was divided into two regions a T5 cluster centered on the Al atom
located at either the T12 or T10 position, and a 432T atom cluster surrounding the T5
cluster. The smaller T5 cluster was treated quantum mechanically, and all atoms except the
vicinal Si atoms were allowed to relax during energy minimization. The larger 432T atom
cluster was described by molecular mechanics and all atoms in this cluster were maintained
at their crystallographic positions. In order to calculate heats of adsorption, a silicalite form
of the same cluster model was employed. The QM/MM method and the MM parameters
reported by Zimmerman et al.citezimmqmmm were used. Previous studies have shown that
this method reproduces the enthalpy of alkene adsorption and the activation barrier for
several elementary steps involving alkanes and alkenes obtained from full QM calculations
performed using large cluster representations of H-MFI[119].

All calculations were performed using a developmental version of the Q-Chem software
package[65]. A triple-ζ polarized basis set, 6-311G** was utilized. Geometry optimizations
were carried out using the dispersion-corrected ωB97X-D functional, followed by single point
dual-basis energy calculations using a basis set, 6-311++G(3df, 3pd) that includes diffuse
functions. A guess for the transition state was obtained using the Freezing String Method
(FSM)[42, 79]. In this method, an approximate reaction pathway is obtained by interpolating
between the reactant and product. At each interpolation step, energy is minimized in the
directions conjugate to the reaction coordinate. The guess obtained is then further refined
using the partitioned rational function optimization (P-RFO) technique[6]. Reactant and
product configurations were verified to be potential energy minima by vibrational analysis



47

Distance
T12 T10

Central Terminal Central Terminal
C1-C2 1.79 1.77 1.81 1.76
C1-H, C2-H 1.39,1.45 1.37, 1.39 1.43,1.43 1.36,1.42
O-H 1.53 1.57 1.50 1.58

Table 4.1: TS bond distances (Å) for cracking of n-butane via TS1 at T12 (Figure 4.1) and
T10 (Figure 4.2) active sites.

that yielded all positive frequencies. Similarly, vibrational analysis on a transition state,
which is a first order saddle point, resulted in a single imaginary frequency. Zero point
energy corrections were added to all ground state electronic energies. Intrinsic activation
energies were calculated for cracking and dehydrogenation reactions of propane, n-butane
and n-hexane at both the T12 and T10 acid sites. The rigid rotor/harmonic oscillator
(RRHO) approximation was applied to the system in order to compute heats of adsorption
at finite temperatures for alkanes ranging from propane to n-hexane.

4.4 Results and discussion

4.4.1 Transition states

Two distinct transition states, designated as TS1 and TS2, were calculated for cracking.
TS1 involves the attack of a Brønsted-acidic proton on a terminal or central C-C bond. The
TS structures calculated for acid centers associated with Al located at T12 site are shown in
Figure 4.1, and those for acid centers associated with Al located at the T10 site are shown
in Figure 4.2. The bond distances at both active sites are given in Table 4.1. The alkane
molecule is aligned such that the C-C bond that undergoes cracking is located directly over
the acidic O-H group. Interatomic distances between the reactive groups are in good agree-
ment with computational literature on alkane cracking for which it is assumed that cracking
occurs via proton attack on the C-C bond of the alkane[101, 104]. Virtually identical bond
distances were obtained for cracking occurring at the T10 site.

The possibility that butane cracking may involve proton attack on a primary or sec-
ondary C atom instead of a C-C bond, suggested by recent theoretical studies, was also
investigated[20, 120]. The structures for this transition state, denoted TS2, calculated for
cracking occurring at the T12 and T10 sites are shown in Figures 4.3 and 4.4, respectively,
and the bond distances are given in Table 4.2. In this case, the substrate is aligned such that
the C atom attacked by the proton, C1, is approximately equidistant between O1 and O2.
The C-C bond is cleaved by H2, and not by the Brønsted acid proton, H1. The separation
between the framework oxygen (O1/O2) and the Brønsted proton is larger by about 0.4Å
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Figure 4.1: Transition states determined for central and terminal cracking of n-butane via
TS1 at the T12 site in H-MFI

Figure 4.2: Transition states determined for central and terminal cracking of n-butane via
TS1 at the T10 site in H-MFI
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Figure 4.3: Transition states determined for central and terminal cracking of n-butane via
TS2 at the T12 site in H-MFI

Distance
T12 T10

Central Terminal Central Terminal
C1-C2 1.70 1.73 1.72 1.75
C1-H1 1.13 1.13 1.12 1.13
C1-H2, C2-H2 1.21,1.48 1.18,1.49 1.21, 1.47 1.18, 1.44
O1-H1 1.98 1.89 2.02 1.88
O2-H2 1.93 2.08 1.87 2.18

Table 4.2: TS bond distances (Å) for cracking of n-butane via TS2 at T12 (Figure 4.3) and
T10 (Figure 4.4) active sites.

in TS2 compared to TS1, indicating that the TS2 is a looser transition state compared to TS1.

In the case of dehydrogenation, proton attack occurs at a C-H bond, resulting in the
formation of an H2 molecule and an alkene. The transition states for methyl and methylene
dehydrogenation at T12 and T10 sites are shown in Figures 4.5 and 4.6, respectively, with
the corresponding bond distances in Table 4.3. The methyl TS results from proton attack
on the terminal methyl group, while the methylene TS results from a proton attack on the
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Figure 4.4: Transition states determined for central and terminal cracking of n-butane via
TS2 at the T10 site in H-MFI

internal methylene group. The separation between the framework oxygen (O1/O2) and the
Brønsted-acid proton is similar to that for cracking via TS2, indicating that dehydrogenation
also involves a loose transition state. Table 4.3 shows that the H-H bond distance, 0.77Å
(methylene) and 0.78Å (methyl), is very close to the value of 0.74Å for H2. This indicates
that H2 is close to being fully formed in the transition state. A reduction in the C1-C2
bond length signals the initiation of alkene formation. A natural bond orbital (NBO)[121,
122] analysis of the reactant and transition states showed that the natural charge on H3 is
about 67% of the total charge on a Brønsted acid proton. The magnitude of the charge on
H3 shows small variations with acid site and pathway, which are reported in Appendix A.
Intrinsic reaction coordinate (IRC) calculations were also performed for all dehydrogenation
transition states, which confirmed the migration of H3 to the acid site and formation of the
alkene. Taken together, these observations indicate that n-butane dehydrogenation proceeds
via a concerted mechanism with simultaneous protonation and alkene formation coupled with
proton migration to the framework. This mechanism has not been reported in the literature
for dehydrogenation of linear alkanes in H-MFI. Previous theoretical studies on propane[96]
and n-butane[97] dehydrogenation indicate a multi-step mechanism, with the transition state
of the rate-determining step characterized only by the C-H bond cleavage and H2 formation.
The effects of the framework were absent in these studies since they were carried out using
T3 and T5 clusters, which may have led to a difference in the mechanism. However, a
concerted mechanism has been previously reported for isobutane dehydrogenation on a T5
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Figure 4.5: Transition states determined for dehydrogenation of n-butane at the T12 site in
H-MFI via methylene and methyl routes, respectively.

cluster[123], and for linear alkanes in MFI containing nonframework Ga[124]. In addition
to influence of the cluster model and presence of non-framework atoms, the mechanism is
also sensitive to pore size. In the case of small-pore zeolites such as chabazite, transition
state decay to alkene and H2 via H-shift has been observed for methyl dehydrogenation of
propane using a periodic model[125]. As with cracking, interatomic distances do not vary
significantly with acid site location. All transition states were calculated on a potential
energy surface at 0 K. However, dynamic effects arising from high reaction temperatures[20,
120, 125] can be quite significant in determining reaction pathways and product selectivity.
Although temperature-induced dynamic effects were beyond the scope of this study, it is a
potential area for future research.

4.4.2 Intrinsic activation energy

Table 4.4 lists the intrinsic activation energies for butane cracking (TS1) and dehydro-
genation determined at the T12 acid site. Activation energies based on calculations per-
formed in the absence of the MM region are reported in parentheses, which are compared with
the results reported by Ding et al.[97] done using a T5 cluster to represent the Brønsted-acid
center in H-MFI. In general, the activation energies calculated using the B3LYP functional
are lower than those calculated using the ωB97X-D functional because the B3LYP functional
suffers from a significant amount of self-interaction error[126]. The ωB97X-D functional re-
duces self-interaction error by introducing a range separation parameter in order to treat
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Figure 4.6: Transition states determined for dehydrogenation of n-butane at the T10 site in
H-MFI via methylene and methyl routes, respectively.

Distance
T12 T10

Methylene Methyl Methylene Methyl
C1-C2 1.45 1.42 1.46 1.42
C1-H2 1.91 1.84 1.80 1.83
C2-H3 1.12 1.14 1.11 1.14
H1-H2 0.77 0.78 0.77 0.78
O1-H1 1.89 1.96 2.07 2.02
O2-H3 1.97 1.76 1.96 1.97

Table 4.3: TS bond distances (Å) for methylene and methyl dehydrogenation at T12 (Figure
4.5) and T10 (Figure 4.6) active sites.
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Source QM/MM
Tranca et
al.[100]

Swisher et
al.[95]

Ding et
al.[97]

Cluster size
T5 QM/

T432 MM
Periodic T23 QM T5 QM

Theory
ωB97X-D/
6-311G**

RPBE
B3LYP/
SV(P)

B3LYP/ 6-
311+G(3df,2p)

Central
cracking

42.5 (54.9) - 47.8 51.9

Terminal
cracking

45.3 (55.2) 47.2 48.8 56.9

Methylene
dehydrogenation

45.4 (63.2) - - 57.8

Methyl
dehydrogenation

60.2 (73.0) - - 70.8

Table 4.4: Intrinsic activation energies (kcal/mol) for n-butane cracking (TS1) and dehydro-
genation at the T12 site compared with values reported in computational literature.

short-range and long-range exchange interactions independently. It also includes an empiri-
cal dispersion correction that accounts for long-range attractive interactions, which are not
taken into account in the B3LYP functional. These differences in functionals manifest them-
selves not only in the absolute values of the activation energies, but also in the differences in
the activation energies between the alternative pathways for cracking and dehydrogenation.
The differences in the observed mechanisms for dehydrogenation may also be a contributing
factor to dissimilarities in activation energy. The QM/MM cracking activation energies are
also compared with QM calculations carried out using a T23 cluster and the B3LYP func-
tional by Swisher et al.[95] The values reported by these authors are higher by 3-5 kcal/mol
than those reported here. In addition to the differences in cluster size and density functional,
this deviation can be ascribed to the use a smaller basis set, SV(P). Within error, the calcu-
lated activation energy for terminal cracking is in agreement with more recent calculations
on a periodic model using the RPBE functional by Tranca et al.[100] In summary, the data
presented in Table 4.4 emphasizes the importance of using sufficiently large zeolite represen-
tations, an exchange-correlation functional that properly accounts for effects of dispersion
and long-range interaction errors in the QM region, as well as the importance of accounting
for long-range effects of dispersive and electrostatic interactions of adsorbed species with
the zeolite framework. The latter effects can lower the activation barrier by as much as 17
kcal/mol and therefore, cannot be neglected.
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4.4.3 Influence of acid site location

A recent computational study indicated that activation energies for cracking in MFI are
a strong function of the location of the acid site[104]. The influence of acid site location on
reaction energetics, therefore, was investigated by comparing intrinsic activation energies for
butane cracking and dehydrogenation at two distinct acid sites. Results for the T12 and
T10 sites are shown in Table 4.5. The ”QM/MM” values denote results obtained for the full
cluster model. The ”QM/MM-partial” values were obtained by calculating electronic ener-
gies and zero-point corrections for the QM/MM-optimized transition states in the absence
of non-bonding interactions (electrostatic and dispersive) between the framework and sub-
strate. An approximation to the activation energy lowering due to non-bonding interactions
of the substrate with the zeolite framework can be obtained by the difference between these
two values. In the absence of these interactions, the activation energies for all cracking path-
ways do not vary significantly (less than 2.2 kcal/mol) with acid site location. The observed
difference between T12 and T10, therefore, arise from the orientation of the transition state
with respect to the channels in the zeolite, which are shown in Figures 4.7 and 4.8 for central
cracking, and Figures 4.9 and 4.10 for terminal cracking. Since the framework contribution
to activation energy lowering is larger at the T12 site than the T10 site (2.6 to 3 kcal/mol
for central, 1.9 to 2.2 kcal/mol for terminal cracking), the cracking activation energies are
lower at the T12 site. Unlike cracking, the activation energies determined in the absence of
non-bonding forces for both dehydrogenation mechanisms are higher at the T10 site by about
3 kcal/mol relative to the T12 site. Although there are differences in orientation of the TS,
as shown in Figures 4.11 and 4.12, the contribution of the framework is similar at both the
acid sites. Dehydrogenation transition states, therefore, vary in the nature of the interaction
of the substrate with the acid site but not so much with the framework environment. The
difference in QM/MM activation energies between the two acid sites for dehydrogenation
translates to approximately an order of magnitude difference in rate coefficients at 773 K,
assuming that the pre-exponential factors are identical.

From these results, it can also be seen that the contribution of the framework in lowering
the activation energy is generally greater in the case of looser transition states, i.e. cracking
via TS2 and dehydrogenation reactions. It is therefore hypothesized that a looser transition
state can orient itself more readily so as to maximize its stabilization through non-bonding
interactions with the framework. It is also shown, as reported in Appendix A, that the con-
tribution of dispersion interactions is negligible compared to electrostatic forces in lowering
the activation energy for all the reactions studied.

Intrinsic activation energies were calculated for cracking (TS1) and dehydrogenation re-
actions of propane and n-hexane in order to capture trends with respect to chain length.
The trends in activation energies at the T12 and T10 site are shown in Figures 4.13 and
4.14, respectively. Activation energies for propane and n-hexane are comparable to those
calculated for n-butane within computational error, demonstrating the invariance of intrinsic
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Figure 4.7: Alignment of the central cracking transition state (TS1) within the zeolite frame-
work at the (a) T12, and (b) T10 acid site.

Figure 4.8: Alignment of the central cracking transition state (TS2) within the zeolite frame-
work at the (a) T12, and (b) T10 acid site.
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Figure 4.9: Alignment of the terminal cracking transition state (TS1) within the zeolite
framework at the (a) T12, and (b) T10 acid site.

Figure 4.10: Alignment of the terminal cracking transition state (TS2) within the zeolite
framework at the (a) T12, and (b) T10 acid site.
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Figure 4.11: Alignment of the methylene dehydrogenation transition state within the zeolite
framework at the (a) T12, and (b) T10 acid site.

Figure 4.12: Alignment of the methyl dehydrogenation transition state within the zeolite
framework at the (a) T12, and (b) T10 acid site.
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Acid site T12 T10

Model QM/MM
partial

QM/MM
Differ-
ence

QM/MM
partial

QM/MM
Differ-
ence

Central cracking
(TS1)

54.9 42.5 12.4 57.0 47.6 9.4

Central cracking
(TS2)

50.1 36.1 14.0 52.6 41.2 11.4

Terminal
cracking (TS1)

55.1 45.3 9.8 53.8 46.2 7.6

Terminal
cracking (TS2)

55.6 40.2 15.4 57.8 44.3 13.5

Methylene
dehydrogenation

63.2 45.4 17.8 66.7 49.7 17.0

Methyl
dehydrogenation

72.9 60.2 12.7 76.3 63.5 12.8

Table 4.5: Comparison of intrinsic activation energies (kcal/mol) between T12 and T10 sites.
”QM/MM” contains activation energies calculated taking into account all possible interac-
tions occurring in the model. ”QM/MM-partial” contains activation energies calculated in
the absence of non-bonding framework-substrate interactions. Difference between the two is
an indicator of the framework contribution to energy lowering.

barriers with alkane chain length. This supports the claim in experimental literature that the
decrease in apparent activation energy with increase in alkane chain length is primarily due
to a corresponding increase in the enthalpy of adsorption of the alkane[111]. The differences
in activation energies between T12 and T10 sites are also invariant with alkane chain length.

4.4.4 Heats of adsorption

Heats of adsorption were calculated at 773 K for light alkanes ranging from propane to
n-hexane and the results are shown in Figure 4.15. They are higher for adsorption near a
T10 site located in the sinusoidal channel than near a T12 site located in the intersection
between straight and sinusoidal channels. The difference between the two sites is relatively
large for propane, but decreases steadily with increase in C number until hexane. At both
locations, the hexane molecule is located in the center of the channel and aligned almost
parallel to it, resulting in similar interactions with the framework at both sites, unlike smaller
alkanes. Figure 4.15 also reports the heats of alkane adsorption determined experimentally.
Since the measurements of alkane adsorption are carried out at temperatures below those
at which cracking and dehydrogenation occur, it is important to assess the sensitivity of
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Figure 4.13: Intrinsic activation energies (kcal/mol) for propane, n-butane and n-hexane
reactions in H-MFI at the T12 acid site.

∆Hads to temperature. Heats of alkane adsorption in MFI measured by de Moor et al.[127]
for temperatures ranging from 301–400 K show little dependence on temperature. ∆Hads

values calculated using QM/MM also vary by less than 2 kcal/mol over the temperature
range of 400–773 K. The calculated values, however, are much higher in magnitude than
experimentally measured heats of adsorption. The magnitude of over-binding increases with
alkane chain length, as indicated by the slopes of the fitted curves. The magnitudes of the
slope: 4.7 kcal/mol/CH2 unit at the T12 site and 3.6 kcal/mol/CH2 unit at the T10 site
are much larger than the experimental value, 2.5 kcal/mol/CH2 unit. However, at finite
temperatures, the alkane is very weakly bound to any particular acid site, as demonstrated
using molecular dynamics simulations by Goltl et al[128]. An experimental value of heat of
adsorption therefore represents an ensemble average over all possible locations of the adsor-
bate. Hence, purely quantum calculations at a few representative acid sites may not generate
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Figure 4.14: Intrinsic activation energies (kcal/mol) for propane, n-butane and n-hexane
reactions in H-MFI at the T10 acid site.

an accurate picture of adsorption behavior. Averaged values, such as those calculated using
Monte Carlo simulations by Swisher et al.[95], are much closer to experiment, as shown in
Figure 4.15.

Although the current analysis is restricted to the study of two sites, and therefore cannot
produce an accurate estimate of heat of adsorption, the QM/MM model clearly overbinds
the alkane to the zeolite framework. A recent study by Tranca et al.[100] demonstrated that
by using a periodic model and the PBE functional with a dispersion correction identical to
the one employed in this study, heats of adsorption can be estimated to within 10% of the
experimental values. The optimized MM dispersion parameters for the framework, there-
fore, are largely responsible for the overbinding, which was verified via pure MM energy
calculations. The parameters result in higher heats of adsorption since they were optimized
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Figure 4.15: Heats of adsorption (−∆Hads) (kcal/mol) of C3 − C6 alkanes calculated at the
T12 and T10 sites for silicalite at 773K, and comparison with experimental[127] as well as
computational[95] literature using configurational bias Monte Carlo (CBMC).

for a small 23 T–atom MFI cluster using a smaller basis set, 6-31+G**. In addition, al-
though the dual basis correction brings the result closer to the complete basis set limit, it
only increases the overbinding of the alkane to the zeolite. The dual-basis corrected values
are reported in Appendix A. These overbinding errors, however, are cancelled out in in-
trinsic activation energy calculations since both the transition state and the reactant are in
the adsorbed state, and electrostatic interactions dominate over dispersion in cracking and
dehydrogenation transition states.

4.4.5 Apparent activation energy

The apparent activation energy is given by the sum of the enthalpy of adsorption and the
intrinsic activation energy. Since the calculated enthalpy of butane adsorption is significantly
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Reaction
Calculated Experiment

T12 T10
Narbeshuber

et al.[112]
Kranilla et

al. [113]
Central cracking (TS1) 30.1 35.2

32.3
32.0

Central cracking (TS2) 23.7 28.8
Terminal cracking (TS1) 32.9 33.8

33.9
Terminal cracking (TS2) 27.8 31.9
Methylene dehydrogenation 33.0 37.3

27.5 35.6
Methyl dehydrogenation 47.8 51.1

Table 4.6: Apparent activation energies (kcal/mol) for reactions of n-butane at both T12
and T10 acid sites compared with experimental data.

higher than the experimental value (see Figure 4.15), we used the experimental value of -12.4
kcal/mol, reported by de Moor et al[127]. The apparent activation energies, thus obtained,
are not entirely accurate since they do not include the influence of adsorption specific to the
acid site. From adsorption calculations, this difference between the acid sites is known to be
about 2.7 kcal/mol. Moreover, since the heat of adsorption at the T10 site is higher than
at T12, the differences in apparent activation energies at the two sites is likely to be smaller
than differences in intrinsic activation energies.

Apparent activation energies for n-butane cracking and dehydrogenation are compared
with experimental values in Table 4.6. There is a general agreement in the experimental
literature regarding the activation energies for both terminal and central cracking. Based
on a comparison between calculated and experimental activation energies for cracking, it is
likely that the T10 site is more favorable to cracking, and the reaction preferentially occurs
via both TS1 and TS2 mechanisms at T10. It is also likely that cracking is favorable at
both acid sites, but the TS2 mechanism is not, in spite of lower activation barrier com-
pared to TS1. Calculation of the pre-exponential factor is essential for further insight into
the preferred mechanism as well as preferred acid site for cracking, but it was beyond the
scope of this investigation. In general, the calculated energies for cracking are consistent
with experimental results, thereby validating the accuracy of the QM/MM cluster model
in determining intrinsic activation energies. Under the assumption that intrinsic activation
energies are insensitive to alkane chain length, intrinsic barriers for n-butane cracking were
added to experimental heats of adsorption reported for C3-C6 alkanes by de Moor et al[127].
The apparent barriers thus obtained are in good agreement with experimental data, as can
be seen in Table 4.7, thereby suggesting that cracking via TS1 at both acid sites (or via both
TS1 and TS2 at the T10 site) is preferred under experimental conditions.

In contrast to cracking, the experimentally determined activation energies for butane de-
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Alkane
Calculated

Experiment
T12 (TS1) T12 (TS2) T10 (TS1) T10 (TS2)

propane 35.5 30.4 36.4 34.5 37.0
n-butane 30.1, 32.9 23.7, 27.8 35.2, 33.8 28.8, 31.9 32.3
n-pentane 27.6, 30.4 21.2, 25.3 32.7, 31.3 26.3, 29.4 28.7
n-hexane 25.3, 28.1 18.9, 23.0 30.4, 29.0 24.0, 27.1 25.1

Table 4.7: Apparent activation energies (kcal/mol) for cracking (central, terminal) of C3-C6
alkanes compared with experimental values reported by Narbeshuber et al[112].

hydrogenation show significant variation. Since the product alkenes from dehydrogenation
rapidly isomerize, experiments cannot determine the reaction pathway from the product dis-
tribution. Only the work of Narbeshuber et al. (Si/Al = 35)[112] reports activation barriers
for dehydrogenation which are lower than those for cracking, a consequence possibly of the
presence of Lewis acid sites in the zeolite.[115] Therefore, the activation energies were com-
pared with the value reported at zero conversion values by Kranilla et al. (Si/Al = 35)[113].
This value corresponds well with the calculated values for methylene dehydrogenation at
both acid sites. Based on these observations, it can be concluded that dehydrogenation
prefers the energetically favorable methylene pathway, with little preference for acid site
location. Although the activation energy for the methyl pathway is significantly higher than
any experimental value, the difference between the methyl and methylene pathways is in
agreement with theoretical calculations on both MFI[97] and chabazite[125].

4.5 Conclusions

Energetics of alkane reactions in zeolites can be captured accurately and at reasonable
cost using a hybrid QM/MM method and dispersion-corrected density functional theory.
The method was applied to a large cluster model of H-MFI in order to study the cracking
and dehydrogenation of n-butane. Two transition states were found for terminal and central
cracking of butane one involving proton attack at a C-C bond and the second involving direct
attack on a C atom. The activation barriers for both terminal and central cracking of C-C
bonds depend on the mode of proton attack. A single transition state was observed in the
case of both methyl and methylene dehydrogenation. The structure of these transition states
indicates that dehydrogenation occurs towards the product side of the reaction trajectory
via a concerted mechanism involving simultaneous protonation and alkene formation. The
non-equivalence of different acid sites in H-MFI was demonstrated through a comparison of
intrinsic activation energies as well as heats of adsorption at two distinct sites one located at
the channel intersection, and the other within the sinusoidal channel. Heats of adsorption,
calculated for C3 to C6 linear alkanes, are higher than those measured experimentally, with
a large fraction of the error occurring due to the MM dispersion parameters employed for
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the framework Si and O atoms. Calculations of the apparent activation energies for butane
cracking and dehydrogenation and for the terminal cracking of C3-C6 linear alkanes were
compared with experimentally determined values. These calculations used experimental
values for the heat of alkane adsorption. The apparent activation energies calculated in this
manner for butane agree very well with those determined from experiments, from which is
concluded that the intrinsic activation energies determined using the QM/MM method are
accurate. The calculated activation energies for cracking of C3-C6 alkanes also compare well
with values reported from experiments, and confirm that the decrease in the magnitude of
the barrier with increasing carbon number is due to the increase in the heat of adsorption
with carbon number.
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Chapter 5

Computational Examination of the
Influence of Pore Geometry on
Monomolecular Reactions of
n-Butane in Brønsted Acid Zeolites

5.1 Abstract

The computational approach described in Chapter 4 is extended to examine sensitiv-
ity of intrinsic kinetics of monomolecular reactions of n-butane to zeolite pore topology.
Monomolecular cracking and dehydrogenation reactions of n-butane are examined in six
zeolite frameworks - TON, SVR, MFI, MEL, STF and MWW, with active sites located
within channels, channel intersections and cage geometries. A hybrid quantum mechan-
ics/molecular mechanics (QM/MM) approach is employed to treat cluster models of these
frameworks, along with dispersion-corrected density functional theory (DFT), and a quasi-
rigid rotor harmonic oscillator (quasi-RRHO) for thermochemical corrections. Calculated
intrinsic enthalpies and entropies of activation are then compared with experiments in order
to examine the accuracy of this approach, gain insights into preferred active site locations,
and examine the influence of pore geometry on reaction pathways and rate parameters. In
general, enthalpies of activation are estimated accurately with this procedure. Entropies of
activation are in good agreement with experiments only for active sites located in narrow
channels, since the thermodynamic approximation is unable to capture anharmonic contri-
butions arising from adsorbates within less confined pore spaces or loose transition states
(TSs). Cracking enthalpies are relatively uniform across pore geometries. However, since
the reactant is far less confined relative to the TS in larger pores, entropies of activation
for central cracking in intersections and cages are markedly lower than in channels. We also
find what may be the first evidence of pathway selectivity with varying pore geometry for
alkane dehydrogenation. Based on a comparison between experiment and calculated intrin-
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sic enthalpies, the methylene route for dehydrogenation is preferred in most channels and
channel intersections. Within active sites in cages, however, methyl dehydrogenation seems
to occur almost exclusively, which can be attributed to entropy compensation occurring in
larger, less confined pore geometries.

5.2 Introduction

Zeolites find extensive applications in industry as solid acid catalysts for petrochemicals
and refining owing to their high acid strength and thermal stability[8, 9]. Rational design of
zeolite catalysts requires knowledge of the number and distribution of active sites, the differ-
ences in acid strengths of each Brønsted proton, as well as the role played by the extended
framework in adsorption and reaction kinetics.

Although it is difficult to experimentally determine the exact location of protons in most
frameworks, there is sufficient evidence to prove that the siting is non-random, and depen-
dent on the synthesis route[10]. Recent reviews [129, 130] discuss various experimental and
computational attempts to quantify acidity and understand the relationship between acidity
and catalytic activity. They conclude that description of activity is far more complex, and
that reaction rates are governed not only by acidity, but also confinement effects resulting
from varying pore sizes and geometries. Therefore, researchers employ probe reactions to di-
rectly examine the role of acidity and framework effects on adsorption and reaction kinetics.
Monomolecular cracking and dehydrogenation reactions of small alkanes such as propane
and butane are useful probe reactions owing to their prevalence at high temperatures and
low pressures [111], and the relatively simple product distributions.

Owing to its complexity, the effect of pore topology on adsorption and intrinsic reaction
kinetics has been debated extensively in the literature. Experimental studies of alkane crack-
ing demonstrated the invariance of activation enthalpies across various zeolite frameworks,
and concluded that either confinement tends to affect only adsorption equilibria[11], or that
similar intrinsic rates result from a cancellation of Brønsted acidity and interactions between
the transition state (TS) and extended framework[131]. More recent studies showed that ad-
sorption alone may be insufficient to explain reaction rate differences[12], and that entropy
changes govern trends in intrinsic rates of cracking with respect to framework topology and
alkane chain length.

By varying active site distributions in MOR, Gounder and Iglesia[114] showed that crack-
ing and dehydrogenation reactions of propane preferably occur in the 8-MR side pockets
relative to the larger 12-MR main channels. Since enthalpies were invariant with active site
distribution, they attributed this preference to partial confinement in the side pockets that
leads to higher entropies of activation. A recent molecular dynamics study by Buc̆ko and
Hafner[132] demonstrated that this difference is a consequence of alkane confinement and
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not of the TS. The intrinsic entropies of activation are lower in the 12-MR channels rela-
tive to the side pockets because the reactant state is far less confined, and the alkane loses
translational and rotational freedom upon activation. Since the reactant is already highly
confined in the 8-MR side pockets, the entropy loss on activation is also lower.

The critical role played by entropy has also been examined for other zeolite frameworks.
Janda and Bell [133] demonstrated that variations in the locations of Brønsted acid sites
caused by changes in Al concentration affect the kinetics of n-butane cracking and dehydro-
genation in MFI. Higher Al content results in increased selectivity towards terminal cracking
and dehydrogenation relative to central cracking. These changes were attributed to preferen-
tial Al siting in the channel intersection, where lower confinement results in higher entropies
of activation for reactions that occur via loose TSs such as dehydrogenation.

Intrinsic enthalpies of activation were also found to be sensitive to active site location
in MFI. In an earlier computational study, we calculated enthalpies of adsorption and acti-
vation for monomolecular cracking and dehydrogenation of n-butane at two distinct active
sites[134]. Reaction energetics are highly sensitive to whether the active site is located at
the channel intersection or sinusoidal channel owing to differences in acid site strength and
electrostatic stabilization of the TS by the extended framework. However, this is an incom-
plete picture of reaction kinetics since limited active sites were examined, and an analysis of
entropies of activation was not carried out.

The goal of this work, therefore, is to investigate how pore shapes and sizes affect reac-
tion pathways and kinetics. We extend the previous QM/MM approach to calculate both
intrinsic enthalpies as well as entropies of activation for monomolecular reactions of n-butane
in six zeolite frameworks with the active sites located in pore geometries varying from nar-
row channels to large supercages. Distinct trends emerge for cracking and dehydrogenation
when calculated activation parameters are analyzed along with experiment. In particular,
dehydrogenation exhibits a preference for the energetically unfavorable methyl pathway in
cage structures, which we propose is a consequence of a strong entropy compensation effect.

5.3 Methods

5.3.1 Computational procedure

The computational approach adopted in this study is largely similar to previous work on
reaction kinetics in the MFI framework [134, 135]. All calculations were performed using hy-
brid quantum mechanics/molecular mechanics (QM/MM)[104, 136]. For each framework, a
large cluster containing the active site of interest was chosen, and terminated with H atoms.
The smaller five tetrahedral atom (T5) cluster containing the active site, along with the
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substrate, was treated quantum mechanically, and MM was used to represent the rest of the
framework. The cluster model and active site for each zeolite framework is described in the
following section. TS guesses were calculated using the freezing string method (FSM)[42,
79] and optimized using the partitioned-rational function optimization (P-RFO) technique[6].
TSs for cracking correspond to the TS1 geometry described in our previous work[134] since
TS2 significantly underestimates activation enthalpies, and therefore may not correspond to
the true rate-limiting step for cracking. Apart from minor differences in bond distances, the
TSs and therefore the mechanism for each cracking or dehydrogenation pathway remained
largely invariant with active site location.

All calculations were performed using a developmental version of Q-Chem 3.2[65]. Ge-
ometry optimizations as well as vibrational analyses were carried out using ωB97X-D/6-
311G** level of theory[117, 118] to describe the QM region. The vibrational spectrum of an
adsorbed molecule in a zeolite typically consists of several low-lying frequencies that corre-
spond to restricted translational and rotational movement of the adsorbate. By erroneously
treating these modes as vibrations under the rigid rotor-harmonic oscillator approximation
(RRHO), the loss in entropy associated with adsorption is typically overestimated[16, 127].
In order offset some of these errors in the estimation of thermochemical corrections from
vibrational frequencies, a quasi-RRHO approach[17, 136], was employed instead. By inter-
polating between a one-dimensional free rotor at low frequencies to a harmonic oscillator at
high frequencies, this method attempts to capture the thermochemical contributions from
low-lying modes more accurately. In a previous study, we were able to estimate intrinsic
activation enthalpies and entropies for central and terminal cracking of n-butane in MFI
using this technique[135] within experimental accuracy. Therefore, we applied this approach
to calculate intrinsic enthalpies (∆Hint) and entropies (∆Sint) of activation for cracking and
dehydrogenation of n-butane across active sites in six zeolite frameworks at 773K. The influ-
ence of pore topology on activation parameters was examined using these results, taken along
with intrinsic parameters determined from combined experimental and Configurational Bias
Monte Carlo (CBMC) studies, described in a later section.

5.3.2 Zeolite cluster models

In order to examine the influence of the extended framework on intrinsic kinetics, six
zeolite frameworks were chosen, and classified into three categories based on location of the
active site in the QM/MM cluster model. Both the framework topologies (left)[137] as well
as active site locations (right) are described in Figures 5.1 - 5.6. In the pore topology rep-
resentations, channels/cages are labeled by color based on their sizes - yellow corresponds
to medium channels (4–6Å), orange to large channels (>6Å), cyan to medium pores or in-
tersections (6–8Å), and purple to large cages (>8Å). The largest cavity diameter for the
framework is also given in each figure caption in parentheses[137]. The sizes of the cluster
models, given by the number of T-atoms, are listed in Table 5.1.
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Type Framework T-atoms

1
TON 280
SVR 348

2
MFI 437
MEL 264

3
STF 398

MWW 292

Table 5.1: Number of T-atoms in each zeolite cluster model. Sizes were chosen based on
QM/MM benchmark studies[119]. Subtracting 5 from the total T-atoms yields the size of
the MM region.

The first category, labeled Type 1, consists of active sites located within straight or
sinusoidal channels. Two frameworks with similar cavity diameters but different channel
geometries, TON and SVR, were chosen. In TON, which consists of one-dimensional 10-MR
straight channels and 4 distinct tetrahedral (T) sites, the Al atom was located at the T2 site,
based on siting probabilities estimated in a combined NMR and QM/MM study[138]. Both
the framework topology as well as the active site location is described in Figure 5.1. The
SVR framework is three-dimensional, consisting of 10-MR sinusoidal channels and smaller
side pockets[139]. The structured vacancies terminated by oxygen were replaced with silanol
groups[140], and the Al atom was located such that the acidic proton is located in the sinu-
soidal channel, as shown in Figure 5.2.

The second category, labeled Type 2, consists of active sites located at channel intersec-
tions of MFI and MEL frameworks. MFI is a three-dimensional framework consisting of 12
distinct T-sites, of which T12 was chosen so that the acidic proton is located at the intersec-
tion of 10-MR straight and sinusoidal channels, as shown in Figure 5.3. Both MFI and MEL
consist of intersecting channels of similar diameters. The key features that distinguish MEL
are the presence of only straight channels[141], and a larger cavity. The Al atom was chosen
such that the acidic proton is situated at the intersection of straight channels, as shown in
Figure 5.4.

The third category, labeled Type 3, consists of active sites located in cages larger than
8Å within the MWW and STF frameworks. STF consists of one-dimensional 10-MR portals
connecting large 18-MR pores[142]. The acidic proton was located within the larger pore,
as shown in Figure 5.5. MWW consists of two independent pore networks, one consisting
of 10-MR sinusoidal channels, and the other consisting of 12-MR supercages accessible via
10-MR openings[143]. Out of 8 possible distinct T sites, the active site was located within
the supercage at the T4 site, as shown in Figure 5.6. The active site was chosen based on
the results of computational studies that determined the most energetically stable T-sites
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Figure 5.1: Type 1 - TON with acidic proton in straight channel (5.7Å). The QM region
in the cluster model (right) is depicted using ball-and-stick representation. In all cluster
representations, yellow corresponds to Si atoms, red to O, green to Al, white to H, and cyan
to C atoms.

Figure 5.2: Type 1 - SVR with acidic proton in sinusoidal channel (5.7Å)
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Figure 5.3: Type 2 - MFI with acidic proton in intersection of straight and sinusoidal channels
(7.0Å)

Figure 5.4: Type 2 - MEL with acidic proton in intersection of two straight channels (8.4Å)
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Figure 5.5: Type 3 - STF with acidic proton in the cage (8.3Å)

Figure 5.6: Type 3 - MWW with acidic proton in the supercage (10.3Å)

for Al substitution[144, 145].

Theoretical studies on alkane adsorption justify the choice of active site placement within
the largest pore openings in Type 2 and 3 zeolite frameworks. Ab initio molecular dynam-
ics[132] and CBMC[146] adsorption studies have demonstrated that, although adsorption is
favored in narrow pores at lower temperatures owing to energetically favorable dispersion
interactions between the framework and adsorbate, large pores are entropically favorable,
and are therefore preferred sites for adsorption at reaction temperatures.
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Framework Si/Al ratio
TON 49
SVR 71, 84
MFI 44, 142
MEL 29
STF 18

MWW 14, 16, 18

Table 5.2: Si/Al ratios of zeolite samples employed in experiments[146]. In cases where
multiple samples were used for the same framework, the average parameters were calculated
for comparison with computations.

5.3.3 Experiments: Intrinsic activation parameters

Previous studies on alkane adsorption concluded that adsorption enthalpies and entropies
are relatively insensitive to temperature changes, based on observed invariance of these pa-
rameters between 300 and 400K [127]. However, a recent investigation using CBMC simu-
lations for MFI by Janda et al.[135] demonstrated that the distribution of adsorbate across
T-sites, and adsorption parameters as a consequence, vary significantly with temperature.
At cracking temperatures, the authors reported a preference for adsorption at the channel
intersection since the entropy loss is lower relative to that for adsorption at active sites
located within channels. By calculating a Boltzmann average over adsorption parameters
across all T-sites at 773K, and adding those to experimentally determined apparent acti-
vation enthalpies and entropies, they were able to rigorously calculate intrinsic activation
enthalpies and entropies for a range of zeolite frameworks[146]. The adsorbed alkane con-
figurations at all active sites calculated using QM/MM satisfy the cut-off radius criterion
specified by Janda et al[135]. Therefore, a direct comparison is possible between calculated
and experimentally derived[146] intrinsic activation parameters. The Si/Al ratios for the
zeolite samples used in experiments are shown in Table 5.2. In cases where multiple experi-
mental values were available for the same framework, the averaged intrinsic parameters were
compared with calculated results.

The reported error bars in experiments correspond to measurement errors associated
with apparent activation parameters only. Errors in estimation of adsorption parameters
arise from the choice of cut-off radius, and were estimated to be about 2 kJ/mol for the
enthalpy, and 10 J/mol-K for the entropy of adsorption at an active site.
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5.4 Results and discussion

5.4.1 Central cracking

Figure 5.7 shows experimental as well as calculated intrinsic enthalpies of activation
(∆Hint) for central cracking of n-butane at 773 K in all frameworks. In Figure 5.7 and all
subsequent figures, the frameworks are arranged in order of types 1 through 3 from left to
right. Although the comparison between experiment and theory is based on assumptions
regarding the preferred location of the active site, calculated results are generally in good
agreement with experiments. The small deviation observed in SVR is probably a consequence
of the choice of MM charge parameters for the silanol hydroxyl groups in the vacancy sites.
Rather than re-optimizing the parameters to reproduce energies calculated using pure QM
on large clusters[104], we utilized the same parameters as those for the other frameworks,
and adjusted the charges on the silanol groups to maintain charge neutrality of the entire
cluster.

There is no discernible influence of the pore topology on experimental or calculated intrin-
sic enthalpies. The results are consistent with earlier cracking studies with MFI, BEA, MOR,
and FAU[11], which concluded that intrinsic kinetics are similar across frameworks, and the
differences in framework shape and size are reflected in adsorption parameters. Maihom
et al.[102] arrived at similar conclusions based on a computational study of cracking using
large cluster models of MFI and FAU. These observations are also consistent with the early
character of the central cracking TS[134], in which the substrate is tightly bound to the ac-
tive site, and is therefore less influenced by the size and geometry of the extended framework.

However, ∆Hint alone is insufficient to examine the variation of intrinsic kinetics with
pore topology. Unlike enthalpies of activation, entropies are highly sensitive to the location
of the active site. Experimental and calculated intrinsic entropies of activation (∆Sint) for
central cracking are shown in Figure 5.8. Entropy changes calculated using the quasi-RRHO
approach are in good agreement with experiments for Type 1 active sites. Experimental
entropies of activation in Type 2 and Type 3 frameworks are typically lower than in Type
1. Buc̆ko and Hafner[132] observed that in the larger main channels in MOR, the adsorbed
alkane has greater freedom to rotate and translate relative to the narrow side pockets. En-
tropy loss associated with the transformation from adsorbate to bound TS, therefore, is
higher in the main channels than in the side pockets. A similar situation is conceivable for
adsorbates in Type 2 and 3 active sites, where the entropy loss from a relatively free adsor-
bate to highly bound central cracking TS is higher than in Type 1 sites. The quasi-RRHO
approach is unable to completely capture the entropy contributions from the free adsorbate
modes, and therefore overestimates the entropy of activation in Type 2 and Type 3 active
sites. Better agreement with experiment is achieved in the narrow Type 1 active sites since
both the reactant and the TS are less free to translate or rotate, and entropy contributions
from these modes are either small or similar in magnitude.
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Figure 5.7: Intrinsic enthalpies of activation (∆Hint) in kJ/mol for central cracking of n-
butane from experiment and theory.

The exception to low entropies of activation for active sites in larger intersections and
cages is MWW, for which ∆Sint is comparable to active sites in channels. It is possible
that experimental results correspond to active sites in the sinusoidal channel in MWW, or
the average over active sites in both channels and supercages. This can be verified via
calculations for an active site located in the sinusoidal channel. The calculated value of
∆Hint for central cracking over an active site in the sinusoidal channel (T3) is 183 kJ/mol,
which is comparable to the value of ∆Hint calculated for a site in both a supercage (175
kJ/mol) as well as the averaged experimental value of 176 kJ/mol. Entropies of activation
in the sinusoidal channel also corroborate this hypothesis; the calculated value of ∆Sint is
-13 J/mol-K, which is in good agreement with the experimental average of -20 J/mol-K.

5.4.2 Terminal cracking

Intrinsic enthalpies and entropies of activation for terminal cracking are shown in Fig-
ures 5.9 and 5.10, respectively. Higher enthalpies for terminal cracking relative to central
have also been observed in previous experimental studies[133, 147] and are a consequence
of lower proton affinity of the terminal C-C bond[148]. Calculated values of ∆Hint are in
good agreement with experimentally observed values with the exception of Type 3 active
sites. In STF, calculation for an active site along the 10-MR portal yields a value for ∆Hint
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Figure 5.8: Intrinsic entropies of activation (∆Sint) in J/mol-K for central cracking of n-
butane from experiment and theory.

of 200 kJ/mol, which is lower than that for the supercage, 229 kJ/mol. The experimen-
tal value of ∆Hint lies in between the two calculated values (215 kJ/mol), indicating that
terminal cracking may occur at both active sites. In MWW, experimental enthalpies range
from 196 to 225 kJ/mol, whereas calculated values in the supercage and sinusoidal channel
correspond to 184 and 173 kJ/mol respectively. The lower limit of experimental data is
in agreement with calculated enthalpy for the supercage, consistent with preferential ad-
sorption in less confined spaces at high temperatures. However, based on the experimental
and calculated results, it is clear that more active sites, and not just T3 and T4, need to be
examined in order to obtain an accurate picture of intrinsic kinetics in the MWW framework.

In general, the experimental values of ∆Sint for terminal cracking are higher than those
for central cracking due to the presence of a dangling ethyl group in the TS that possesses
rotational degrees of freedom[147]. In less confined pore geometries, the entropy gain of the
TS compensates for the loss from a relatively mobile adsorbate. Since larger pores provide
more rotational freedom, ∆Sint is highest at active sites located in the larger intersection
and cages. In contrast to the case for central cracking, calculated values of ∆Sint are in good
agreement with experiments, although slightly underestimated for MEL and Type 3 sites.
However, the accurate estimation of ∆Sint for terminal cracking across active sites is most
likely the result of fortunate cancellation of errors, because the quasi-RRHO approximation
tends to underestimate both adsorbate as well as TS entropies.
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Figure 5.9: Intrinsic enthalpies of activation (∆Hint) in kJ/mol for terminal cracking of
n-butane from experiment and theory.

Figure 5.10: Intrinsic entropies of activation (∆Sint) in J/mol-K for terminal cracking of
n-butane from experiment and theory.
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5.4.3 Dehydrogenation

Since butene isomers, the products of monomolecular dehydrogenation of n-butane,
rapidly equilibrate at reaction temperatures, experiments cannot distinguish reaction path-
ways based on product distributions. Therefore, computed intrinsic activation parameters
for both pathways must be contrasted with experiment to gain mechanistic insights. Fig-
ures 5.11 and 5.12 compare experimentally observed and calculated values of ∆Hint for the
methylene and methyl pathway, respectively.

For active sites in narrow channels of TON and SVR, experimental values of ∆Hint are in
close agreement with those determined for the methylene pathway. Since ∆Hint for methyl
C-H activation is significantly higher than methylene C-H at all active sites, the preference
for the energetically favorable methylene pathway is not surprising. The methylene pathway
is also preferred in MEL, but not in MFI. It is possible that experimental data for MFI is
based on an active site distribution with fewer sites at the channel intersection. Therefore,
calculations were also carried out for an active site located within the sinusoidal channel
of MFI, corresponding to Al siting at the T10 position[134]. ∆Hint for methylene dehy-
drogenation at the sinusoidal channel is 221 kJ/mol. The result is in agreement with the
experimental value of 232 kJ/mol reported for a Si/Al ratio of 142. ∆Hint for the sample
with higher Al content (Si/Al = 44) is 250 kJ/mol, equal to the calculated value of 250

Figure 5.11: Intrinsic enthalpies of activation (∆Hint) in kJ/mol for dehydrogenation (ex-
periment) and methylene dehydrogenation (theory) of n-butane.
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Figure 5.12: Intrinsic enthalpies of activation (∆Hint) in kJ/mol for dehydrogenation (ex-
periment) and methyl dehydrogenation (theory) of n-butane.

Figure 5.13: Intrinsic entropies of activation (∆Sint) in J/mol-K for dehydrogenation (ex-
periment) and methylene dehydrogenation (theory) of n-butane.
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kJ/mol for the methyl pathway occurring at the channel intersection. This agreement be-
tween experiment and an intersection site is consistent with a recent study that concluded
that increasing Al content in MFI resulted in a larger fraction of protons at the channel in-
tersection[133]. However, in order to explain the preference for the energetically unfavorable
methyl pathway, an investigation of activation entropies is necessary. Unlike the case for
MFI, ∆Hint for methylene dehydrogenation at an active site located in the straight channel
of MEL is very close to that for a site located at the intersection.

The results for dehydrogenation on Type 3 active sites are most intriguing. Enthalpies of
activation for the methyl pathway are in excellent agreement with experiments, even though
the values of ∆Hint are about 36 kJ/mol and 68 kJ/mol higher than the methylene barrier
for the cage sites of MWW and STF, respectively. In an experimental study of propane
dehydrogenation in MOR, FAU, MFI, and BEA, Xu et al.[149] reported similar enthalpies
of adsorption across these frameworks, and a wide range in apparent activation energies
(123-178 kJ/mol) but did not observe any trend with respect to pore size. Although they
attribute these differences to varying stability of the alkoxide intermediate, the results can
also be explained by preference for methylene or methyl dehydrogenation pathway depending
on the active site distribution in each framework. The preference for the methyl pathway in
cages may be a consequence of entropy compensation, and ∆Sint is high enough to surmount
the enthalpy barrier only in large cage-like geometries, where the TS is far less confined

Figure 5.14: Intrinsic entropies of activation (∆Sint) in J/mol-K for dehydrogenation (ex-
periment) and methyl dehydrogenation (theory) of n-butane.
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relative to narrow channels. Just as the terminal cracking TS is higher in entropy relative to
central cracking, the methyl pathway may be more entropically favorable than the methylene
pathway.

To test this hypothesis, values of ∆Sint were calculated for the methyl and methylene
pathways. Figures 5.13 and 5.14 compare these values with those observed experimentally.
Experimental and calculated values of ∆Sint for dehydrogenation are higher than those for
cracking and are positive, consistent with the late and loose nature of the dehydrogenation
TS, in which the H2 molecule is nearly fully formed[125, 134]. Previous experimental studies
on multiple frameworks have also reported higher activation entropies of dehydrogenation
relative to cracking[114, 150].

Unfortunately, the computational approach used in this study not only underestimates
activation entropies for dehydrogenation, but in addition, unlike the case for cracking, is
unable to capture entropy differences between the two dehydrogenation pathways. Dehydro-
genation is characterized by a loose TS much like terminal cracking. However, the favorable
cancellation of errors that occurred during entropy estimation for terminal cracking is insuf-
ficient in the case of dehydrogenation. A closer examination of the vibrational spectrum of
the dehydrogenation TS reveals the presence of certain frequencies, typically much higher
than the cut-off frequency specified by quasi-RRHO (100cm−1), which correspond to rela-
tive translation and rotation of the nascent H2 molecule, strongly coupled with vibrations.
Simple thermodynamic calculations can be carried out to show that a lone H2 molecule in
the channel intersection of MFI can contribute up to 61 J/mol-K in 2-D translational en-
tropy. Therefore, by treating the relative translational and rotational modes of H2 in the
TS as harmonic or quasi-harmonic vibrational frequencies, ∆Sint values are being severely
underestimated. The quasi-RRHO approximation, as a result, is not applicable to late TSs
(such as dehydrogenation) that possess highly anharmonic modes.

It is also interesting to note that experimental ∆Sint in MWW is significantly lower than
that in STF, and similar to entropies in Type 2 active sites. This further strengthens our
proposition that, in addition to the supercage, the independent sinusoidal channel in MWW
may also be involved in reaction kinetics, in which case the averaged entropy of activation
will be lower than if only the T4 site in the supercage was the active center.

5.5 Conclusions

Intrinsic enthalpies of activation for monomolecular cracking and dehydrogenation of n-
butane can be accurately estimated for various zeolite frameworks using the QM/MM model
together with dispersion-corrected DFT and a quasi-RRHO approximation. Although it is
difficult to deduce active centers from experimental data, an examination of representative
active sites using computations can shed light on the preferred sites and pore geometries
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for each reaction pathway. Enthalpies of activation for both central and terminal cracking
are relatively insensitive to the location of the active site. On the other hand, comparison
between experiments and computations reveals a distinct pathway preference for dehydro-
genation. In general, the methylene pathway is preferred for active sites in both channels
as well as channel intersections owing to lower enthalpic barrier that occurs there than for
the methyl pathway. Within active sites in cages, however, methyl dehydrogenation seems
to be occur almost exclusively, which can be attributed to entropy compensation occurring
in larger, less confined cavities.

However, it is difficult to evaluate entropy compensation effects owing to the limited
accuracy of the quasi-RRHO approach in the presence of soft degrees of freedom and anhar-
monicities. As a result, application of the quasi-RRHO approach is limited to active sites in
the narrow channels of 10-MR zeolite frameworks where both the reactant and TS are highly
confined relative to intersections and cages. For more accurate entropies of activation, there-
fore, there is a need for superior methods to handle anharmonic vibrations[18, 151], which
utilize anharmonic potential functions to calculate diagonal corrections to harmonic vibra-
tional frequencies. Future work will involve the application of such computational tools,
which can calculate both enthalpies and entropies accurately, to the detailed examination of
the impact of active site location and pore geometry on reaction selectivity.
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Chapter 6

Wavefunction Stability Analysis
without Analytical Electronic
Hessians: Application to
Orbital-Optimized Second Order
Møller–Plesset Theory and
VV10-containing Density Functionals

6.1 Abstract

Wavefunction stability analysis is commonly applied to converged self-consistent field
(SCF) solutions to verify whether the electronic energy is a local minimum with respect to
second order variations in the orbitals. By iterative diagonalization, the procedure calcu-
lates the lowest eigenvalue of the stability matrix or electronic hessian. However, analytical
expressions for the electronic hessian are unavailable for most advanced post-Hartree Fock
(HF) wave function methods and even some Kohn-Sham (KS) density functionals. To ad-
dress such cases, we formulate the hessian-vector product within the iterative diagonalization
procedure as a finite difference of the electronic gradient with respect to orbital perturbations
in the direction of the vector. As a model application, following the lowest eigenvalue of the
orbital-optimized second order Møller–Plesset perturbation theory (OOMP2) hessian during
H2 dissociation reveals the surprising stability of the spin-restricted solution at all separa-
tions, with a second independent unrestricted solution. We show that a single stable solution
can be recovered by using the regularized OOMP2 method (δ-OOMP2), which contains a
level shift. Internal and external stability analyses are also performed for SCF solutions
of a recently developed range-separated hybrid density functional, ωB97X-V, for which the
analytical hessian is not yet available due to the complexity of its long-range non-local VV10
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correlation functional.

6.2 Introduction

Self-consistent field (SCF) solutions to wavefunction theory and Kohn-Sham (KS)[93,
94] formalism of density functional theory (DFT) are typically determined by imposing con-
straints on the spin orbitals. These constraints not only lower SCF costs, but also allow the
approximate wavefunction to share some properties in common with the exact wavefunction
such as spin or spatial symmetry. Variational minimization ensures that the energy is sta-
tionary with respect to first order changes in the spin orbitals. Therefore, second derivatives
with respect to spin orbital coefficients must be positive for the energy to be a true local
minimum, and the procedure to verify this condition is termed stability analysis.

Thouless originally derived the conditions for stability of HF wavefunctions from second
quantization[152]. This was followed by a density matrix-based approach[153], and a refor-
mulation of the Thouless conditions to treat both closed and open-shell systems[154, 155].
Seeger and Pople[21] devised a systematic approach to treat HF instability beginning with
real spin-restricted HF orbitals, and progressively removing each of these constraints. For
each case, they obtained the conditions for internal stability, where spin orbitals are varied
within the space of defined constraints, as well as external stability where one constraint is
removed at a time. Stability analysis for HF involves the calculation of the lowest eigen-
value of a stability matrix (or electronic hessian). Since diagonalization of the large stability
matrix (whose elements form a fourth rank tensor) may be prohibitive, stability analysis em-
ploys iterative diagonalization techniques such as the Davidson method[80]. Fortunately, the
critical step in iterative diagonalization, which involves contraction of the stability matrix
with a trial vector, can be performed in a manner very similar to forming a Fock matrix.
Therefore the cost of SCF stability analysis is comparable to SCF costs.

The HF solution is typically used as a reference for advanced methods that incorpo-
rate correlation such as second order Møller–Plesset perturbation theory (MP2) and cou-
pled cluster (CC) theory, although HF orbitals quite commonly suffer from spatial or spin
symmetry-breaking. To address these problems, orbital-optimized second-order perturba-
tion theory (OOMP2)[156] distinguishes itself from standard MP2 by optimizing the zeroth
order orbitals in the presence of correlation in an approach based on approximate Brueck-
ner orbitals[157]. By optimizing the single reference, artificial spin contamination can be
removed[156–159] and energies as well as properties of open shell molecules can be signifi-
cantly improved[156–158, 160–162]. Because the energy is made stationary to changes in the
orbitals, a Hellman-Feynman condition applies and all first order properties will be contin-
uous as the orbitals change continuously[163]. Recently, δ-OOMP2 has been developed as a
simple way to regularize the method against small HOMO-LUMO gaps as well as removing
systematic errors in the method[164]. While approximate forms have been applied in previous
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studies[158], full analytical expressions for the electronic hessian are unavailable and finite
difference electronic hessians are intractable. As a result, the stability of spin-restricted and
unrestricted formalisms of OOMP2 has not been properly investigated. For the same reason,
stability analysis is not available for size-consistent, Brueckner orbital-based coupled cluster
techniques such as Brueckner theory doubles (BD)[165] and optimized-orbital coupled clus-
ter doubles (OD)[157, 160, 166].

The stability conditions for density functionals are essentially analogous to HF, and have
been derived by Bauernschmitt and Ahlrichs for internal (singlet) and external (triplet)
stability of restricted KS-DFT [167]. The formalism, however, requires calculation of sec-
ond derivatives of the exchange-correlation energy. Analytical expressions for the second
derivative of the exchange correlation term in KS-DFT are not available for all functionals.
ωB97X-V, for instance, is a minimally parameterized range-separated hybrid functional that
can accurately capture both non-covalent interactions as well as thermochemistry[168]. The
functional includes non-local correlation described by VV10[169], for which an analytical
form of the hessian has not yet been derived. In such cases, stability analysis can prove in-
tractable since calculation and diagonalization of the full finite difference electronic hessian
is not feasible.

Our aim is to establish a technique for stability analysis that is readily applicable to any
post-HF or KS-DFT method, regardless of the availability of analytical second derivatives
of electronic energy. We have previously reported a finite differences implementation of the
Davidson method to calculate the lowest eigenvalue of a nuclear hessian, which can determine
whether a stationary point calculated using geometry optimization is a minimum or saddle
point. The same approach can be extended to wavefunction space, where the finite differences
Davidson method is applied to perturbations in the molecular orbitals in order to calculate
the lowest eigenvalue of the electronic hessian[170]. Potential curves for dissociation of H2

are calculated to analyze the stability of SCF solutions for OOMP2 and δ-OOMP2 theory,
with some interesting and in some ways remarkable results. Additionally, finite-difference
based stability analysis is applied to the ωB97X-V functional in order to demonstrate the
utility of this technique when second derivatives are unavailable.

6.3 Method

The Davidson method is an iterative diagonalization procedure to determine a few ex-
treme eigenvalues of large symmetric matrices when full diagonalization is prohibitive. The
algorithm is described in detail elsewhere[80, 171]. Briefly, the procedure employs a small
orthonormal subspace of vectors, Bk = [bi] at each iteration k, consisting of dominant com-
ponents of the desired eigenvector of a matrix, A. A smaller interaction matrix, BT

k ABk,
is constructed and diagonalized to obtain the lowest/highest eigenpair, (λk, yk). The Ritz
vector, xk = Bkyk, is then used to estimate the residual error between the exact and approx-
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imate eigenvector, rk = −(λkI −A)xk. The initial subspace is augmented with a new vector
that contains this information, and the procedure is iterated until convergence.

The Davidson method was originally applied to large-scale configurational interaction
(CI) treatment of wavefunctions[80, 172]. The finite difference implementation of the David-
son method can be used when the matrix calculation itself is intractable. For instance, if
the matrix A corresponds to the hessian of the energy with respect to nuclear displacements,
the exact matrix-vector product, Ab1, is replaced with a finite difference approximation in
terms of the gradient of the energy (∇E)

Ab1 ≈
∇E(X0 + ξb1)−∇E(X0 − ξb1)

2ξ
(6.1)

where b1 is the subspace guess, X0 corresponds to nuclear coordinates of a system, and ξ is
the finite difference step. This expression can be used to calculate a few key eigenvectors as
inputs to mode-following methods for transition state searches on nuclear potential energy
surfaces[73–75]. The same principle can also be applied to selective mode tracking in vibra-
tional analysis[76, 77], and characterization of stationary points[78, 170], where the lowest
one or two eigenvalues of the nuclear hessian are sufficient to verify whether a geometry
corresponds to a minimum or transition state, respectively.

Wavefunction stability analysis also requires only the lowest eigenvalue of the electronic
hessian. Therefore, the finite difference Davidson approach can be extended to stability
analysis in cases where analytical hessians are either expensive or unavailable. Since rota-
tions between occupied-occupied or virtual-virtual orbitals do not affect the total energy,
stability analysis is carried out in the space of occupied-virtual rotations. The most obvious
choice for the initial subspace guess, therefore, corresponds to a HOMO-LUMO rotation. To
avoid possible orthogonality between the guess and the exact eigenvector, a small amount of
randomness is added in to the subspace guess.

Orbital perturbation in the occupied-virtual space along the subspace guess closely follows
the procedure outlined by Van Voorhis and Head-Gordon[173]. A skew-symmetric unitary
transformation matrix,U1± , is determined by first scaling the guess,

∆1± = ±ξb1 (6.2)

where b1 is the subspace guess corresponding to HOMO-LUMO rotation, ξ(= 0.01) is the
finite difference step, and the number in the subscript corresponds to the iteration. The
transformation matrix is then given by

U1± = e∆1± (6.3)

The off-diagonal elements of this matrix correspond to rotations in the occupied-virtual
space. The rotated orbitals are given by a unitary transformation of the converged SCF
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orbital coefficients, Cσ
0 , where corresponds to α- or β-spin.

Rotations of α-spin and β-spin orbital coefficients are identical during internal stability
analysis of restricted or unrestricted spin orbitals. In order to examine external stability of
restricted spin orbitals, on the other hand, spin symmetry needs to be broken. Therefore,
α-spin and β-spin orbital coefficients are rotated in opposite directions.

Cβ
1+ = −Cα

1+ and Cβ
1− = −Cα

1− (6.4)

The hessian-vector product Davidson iterations is then calculated similar to equation 6.1
using finite differences of gradients with respect to the rotated coefficients

Ab1 ≈

[
∇E(Cα

1+)−∇E(Cα
1−)

2ξ
,
∇E(Cβ

1+)−∇E(Cβ
1−)

2ξ

]T
(6.5)

where A corresponds to the electronic hessian. The Davidson algorithm proposed by Sleijpen
and van der Vorst[174] is then employed to iteratively calculate the lowest eigenvalue.

Convergence can be accelerated using a good preconditioner for the residual. In the
original Davidson algorithm, the preconditioner at the kth iteration, Ξk, is given by

Ξk = (λkI −D)−1 (6.6)

where D is a matrix consisting of the diagonal elements of A. A reasonable guess for the
diagonal hessian is the difference between orbital eigenvalues, ε, in the occupied-virtual
space[173],

Dia,jb = (εa − εi)δijδab (6.7)

where subscripts (i, j) correspond to occupied orbitals and (a, b) to virtual orbitals. In order
to ensure the convergence of the method to the lowest eigenvalue, the preconditioner must
be negative definite[171]. In cases where preconditioning exceeds a certain cutoff, the cut-
off value replaces the difference between the eigenvalue and diagonal element. The chosen
value, ∆E = −0.1Eh, is determined using simple benchmarking of the H2 molecule at equi-
librium separation with B3LYP[86, 87], and correlation-consistent basis sets. The technique
is implemented in a developmental version of Q-Chem 4.2[175], in order to examine internal
stability of real restricted or unrestricted orbitals, as well as external stability of restricted
orbitals for OOMP2 theory and any KS-DFT.

6.4 Results

6.4.1 HF vs. orbital-optimized MP2 for bond dissociation

Bond dissociation problems are an important application of stability analysis. The reason
is that many orbital optimization methods will not automatically change the character of
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Figure 6.1: Potential curves (green for unrestricted and red for restricted, where it differs
from unrestricted) for the dissociation of H2 and the associated lowest eigenvalues of the
stability matrix (purple for internal stability of the unrestricted solution, blue for external
stability of the restricted solution, where it differs from unrestricted) at the Hartree-Fock
(HF) level. The lowest energy solution changes character from restricted to unrestricted
when the former becomes unstable.

the orbitals from restricted to unrestricted as the bond is stretched, and therefore stability
analysis is needed to detect such a change. Figure 6.1 illustrates the standard result seen for
Hartree-Fock theory for the toy problem of H2 dissociation. The RHF to UHF instability
is detected by a sign change of the smallest eigenvalue, which occurs at a bond-length of
about 1.2Å. Beyond this distance, the UHF solution exhibits an increasing positive smallest
eigenvalue and becomes a distinct, lower energy solution, whilst the smallest eigenvalue of
the RHF solution becomes steadily more negative.

How does the inclusion of electron correlation in the OOMP2 method affect this picture?
The results are shown in Figure 6.2, and at first glance the ROOMP2 and UOOMP2 energy
curves look qualitatively similar to the RHF and UHF ones. However the ROOMP2 en-
ergy reaches a maximum value around 2.8Å and then begins to turn over, as a result of the
HOMO-LUMO gap decreasing. The ROOMP2 and UOOMP2 curves actually cross again at
still larger separations than are shown on the figure. What are the implications for orbital
stability analysis? Using the finite difference stability analysis code yields very interesting
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Figure 6.2: Potential curves for the dissociation of H2 and the associated lowest eigenvalues
of the stability matrix using orbital optimized MP2 (OOMP2) in the cc-pVDZ basis. The
format follows Figure 6.1. OOMP2 behaves qualitatively differently from HF (see Figure 6.1).
Restricted solution is stable (positive eigenvalue) to spin-polarization at all bond-lengths, and
a distinct stable unrestricted solution appears at partially stretched bondlengths.

results. The ROOMP2 and UOOMP2 solutions are in fact both stable when they are distinct
solutions. They apparently do not coalesce upon going to shorter bond-lengths.

As a surprising consequence, despite the Hellman-Feynman condition for OOMP2, there
are still first derivative discontinuities in the dissociation curve for single bond dissociations
such as H2. It is scarcely visible in Figure 6.2, but this is nonetheless a real effect. As a
result of the ROOMP2 solution always being a true minimum in orbital space, the UOOMP2
solution must cross it in the energy coordinate without crossing in orbital space.

To better understand the topography of the solutions we look at the UOOMP2 energy
for H2 as a function of spin-polarization from the ROOMP2 solution in the minimal basis
case where there is only a single orbital rotation angle (θα and θβ) in each of the α and β
spaces. A spin polarization angle, φ, can therefore be defined such that θα = φ and θβ = −φ.
Figure 6.3 shows the OOMP2 energy as a function of φ for a number of bond lengths close
to the crossing, from ROOMP2 being lowest energy to UOOMP2 being lowest. The key
observation from Figure 6.3 is the appearance of a second minimum at non-zero φ as the
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Figure 6.3: The dependence of the OOMP2 energy of H2 in a minimal basis on the spin
polarization angle (see text for definition) at a series of bond-lengths around the critical
value at which the character of the lowest energy solution changes. There are two local
minima, one restricted and one unrestricted, at these bond-lengths, and at the critical bond-
length the nature of the lowest energy solution switches discontinuously.

bond is stretched, whilst the first stationary point (φ = 0) remains a minimum. As the
bond-length increases, the second solution eventually becomes the global minimum leading
to the discontinuous change in orbitals as we follow the lowest energy orbitals.

While there is no reason to assume that the global minimum of a nonlinear problem will
not jump between multiple minima as parameters change, it is still surprising to see it here
due to our experience with HF (as exemplified by Figure 6.1). HF is a diagonalization-based
approach, and so two states with the same energy that can couple through the Hamiltonian
should split in energy. OOMP2 on the other hand adds a perturbative correction, which
in this case preferentially stabilizes the restricted solution and lowers its energy relative to
the unrestricted orbitals bringing their energies to coalescence. Similar observations have
been made in the context of orbital optimization in active space methods[176, 177]. In cases
such as these, as a consequence of the discontinuous change in orbitals, the potential energy
surface exhibits a first derivative discontinuity at the point of the jump in orbital solutions
(here, the ROOMP2 to UOOMP2 transition).
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Figure 6.4: Potential curves for the dissociation of H2 and the associated lowest eigenvalues
of the stability matrix using regularized orbital optimized MP2 (δ-OOMP2) in the cc-pVDZ
basis. The format follows Figure 6.1. δ-OOMP2 behaves qualitatively differently from
OOMP2 (see Figure 6.2), but is similar to HF (see Figure 6.1). The restricted solution
becomes unstable at a critical bond-length, beyond which the unrestricted solution is lowest
in energy.

How might one overcome this unphysical behavior of OOMP2, and recover smoother po-
tential energy surfaces? We cannot give a complete answer here, but we can apply stability
analysis to a modified form of OOMP2 that includes a fixed level shift of 0.4 a.u., termed
δ-OOMP2. δ-OOMP2 has been shown to yield systematic improvements relative to OOMP2
across a broad range of properties while being robust to divergences during orbital optimiza-
tion[164]. The performance of δ-OOMP2 for the dissociation of H2 is shown in Figure 6.4,
and presents a striking contrast with OOMP2 shown in Figure 6.2. δ-OOMP2 shows only
one stable solution at any geometry, like HF, and unlike OOMP2. As a consequence, as
shown in Figure 6.5 for minimal basis H2, the optimized orbitals for the global minimum
do not change discontinuously as the bond is stretched, and thus the potential energy sur-
face is continuous through first derivatives. Further calculations on a much larger range of
molecules are required to test the generality of the present positive result, and the stability
analysis method introduced here is a crucial tool for this purpose.
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Figure 6.5: The dependence of the δ-OOMP2 energy of H2 in a minimal basis on the spin
polarization angle (see text for definition) at a series of bond-lengths around the critical value
at which the character of the lowest energy solution changes. For any given bond-length there
is only one local minimum, which changes character from restricted to unrestricted at the
critical bond-length.

6.4.2 Density functional theory

Using their formulation of stability analysis for KS-DFT, Bauernschmitt and Ahlrichs[167]
calculate critical distances for the onset of external instability in dissociating systems. Along
similar lines, dissociation calculations are performed on H2, and results are compared for
restricted HF, B3LYP, and ωB97X-V, and the finite difference Davidson approach is em-
ployed to calculate the lowest eigenvalue for the latter. Since ωB97X-V is trained using very
large basis sets in the absence of counterpoise corrections[168], the aug-cc-pVTZ[178] basis
set is employed. The critical distances determined with HF, B3LYP and ωB97X-V are 1.21,
1.49 and 1.53Å, respectively, consistent with the fact that onset of external instability occurs
later in density functionals owing to the inclusion of approximate correlation.

In addition to external stability of restricted ωB97X-V, internal stability analysis of
the unrestricted formalism is also a useful diagnostic tool since the SCF solution can de-
pend heavily on the quality of the initial guess. For instance, SCF minimization of singlet
methylene[179] (C-H bond distance = 1.11Å, H-C-H angle = 101.8960) with unrestricted
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Figure 6.6: Structure of dimeric cobalt-diaryldithiolene complex, a potential catalyst for
electrocatalytic proton reduction in nonaqueous media. Cobalt is in the center surrounded
by sulfur atoms (yellow), and the aryl groups are para-substituted with methoxy groups
(oxygen atoms in red).

ωB97X-V/aug-cc-PVQZ converges to an unstable solution if the initial SCF guess consists
of superposition of atomic densities. The lowest eigenvector corresponding to the unsta-
ble solution, calculated either with ωB97X-V or a lower level of theory, can then be used to
search for a lower energy solution with ωB97X-V. The resulting orbital coefficients constitute
a significantly better SCF guess that converges to the correct singlet ground state, which is
0.004 Eh lower in energy than the unstable solution.

Stability analysis is also essential for molecules containing transition metals, where mul-
tiple spin states can emerge from SCF calculations. To illustrate, we examine the stability
of an organometallic electrocatalyst for cathodic hydrogen evolution reaction (HER), with
potential application in the conversion of solar energy to fuels. The catalyst, shown in Figure
6.6, is a dimeric cobalt-diaryldithiolene complex with methoxy groups substituted in the aryl
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para positions[90]. The structure is optimized at the BP86/6-31G* level of theory[86, 88]. If
the SCF cycles in the subsequent unrestricted single point energy calculation at ωB97X-V/6-
31G* converge to a spin singlet, finite difference stability analysis shows that the solution
is internally unstable. The stable solution, with 〈S2〉 of 0.94, is 0.023 Eh lower in energy.
While calculation and diagonalization of the full finite difference hessian within the original
stability analysis framework can be prohibitive for systems of this size, applying the finite
difference Davidson method to the stable solution costs only about 44 SCF steps. This pro-
cedure is therefore not only useful to study bond dissociation characteristics in the absence
of analytical electronic hessians, but is also a practical tool for examining the stability of
large, complex systems.

6.5 Conclusions

Stability analysis has thus far been limited to formalisms for which analytical second
derivatives are available since the cost of full finite difference hessian calculation is prohibitive.
We describe a hessian-free approach in which the hessian-vector product required for iterative
diagonalization within the Davidson method is approximated by finite differences of the
gradients with respect to rotation of molecular orbital coefficients in the occupied-virtual
space. The procedure is implemented for both orbital-optimized post-HF methods such as
OOMP2 as well as DFT, and can successfully examine internal and external stability with
respect to spin symmetry constraints. In future, the implementation will also include internal
and external stability analysis for complex as well as general spin orbitals. The technique
will also be made available for other orbital-optimized methods such as coupled cluster-based
BD and OD, for which stability analysis has hitherto not been performed.
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Appendix A

Insights into the Kinetics of Cracking
and Dehydrogenation Reactions of
Light Alkanes in H-MFI

A.1 Contribution of non-bonding interactions

The relative contributions of dispersion and electrostatic interactions to the lowering of in-
trinsic activation energy were calculated using the QM/MM model, by removing one or both
of these components from the model system. The results for the T12 site are shown in Figure
A.1. The difference between activation energies with and without these interactions ranges
from 10 to 18 kcal/mol, demonstrating conclusively that the presence of substrate-framework
interactions is essential for modeling zeolite-based kinetics. Moreover, the activation energy
lowering is almost entirely due to electrostatic interactions, with negligible contribution from
dispersion.

A.2 Validation of the cluster model

In order to demonstrate that calculated intrinsic activation energies show low sensitivity
to the size of the QM region, a larger T33 QM region is considered. Without re-optimizing
the previously calculated transition states, single point electronic energies were calculated
for cracking reactions at the T12 site with the T33 QM model. The resulting activation
energies are compared with the T5 QM model in Table A.1. The difference between T33
and T5 ranges from 2.5 kcal/mol to 3 kcal/mol, which is higher than the computational
error margin of 2 kcal/mol. However, the differences in activation energies between various
cracking pathways are preserved with respect to the QM cluster size. The QM/MM cluster
model containing a small T5 region and a large T432 MM region, therefore, is a reasonable
representation of an acid site in the H-MFI framework.
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Figure A.1: Intrinsic activation energies (kcal/mol) for reactions of n-butane at the T12 site.
”None” corresponds to the absence of dispersion and electrostatics. Dispersion is added in
the next stage with little reduction in activation energy. ”All” corresponds to QM/MM
energy obtained on including all long-range interactions.

Cracking
pathway

T33 T5 Difference

Central (TS1) 47.3 44.5 2.8
Central (TS2) 41.7 39.1 2.6
Terminal (TS1) 49.8 47.3 2.5
Terminal (TS2) 45.3 42.2 3.1

Table A.1: Intrinsic activation energies (kcal/mol) for n-butane cracking at the T12 site
(excluding zero point corrections) calculated with QM region consisting of 33 and 5 T-atoms,
respectively.
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Charge on Brønsted acid
proton

T12 T10

Adsorbed n-butane 0.56 0.56
Methyl dehydrogenation TS 0.40 0.40
Methylene dehydrogenation TS 0.36 0.35

Table A.2: Natural charges on the Brønsted acid proton when n-butane is adsorbed near the
acid site, compared to charges on the leaving H atoms in the transition states for dehydro-
genation.

A.3 Natural bond orbital (NBO) analysis for the

dehydrogenation transition state

In order to verify that dehydrogenation proceeds via simultaneous H2 formation and
proton migration to the acid site, natural bond orbital analysis is carried out to determine
the charge on the leaving H relative to that of a Brønsted acid proton. The results of
the analysis are shown in Table A.2. The leaving H attains about 60% and 70% Brønsted
acid character for methylene and methyl dehydrogenation, respectively, confirming that the
mechanism for dehydrogenation is concerted. For the reactant and transition states, the
natural charges on primary and secondary H atoms other than the leaving H range from
0.19 to 0.25, which are distinctly lower than the charge on an acid proton.

A.4 Heats of adsorption

Although dual-basis correction shifts the heat of adsorption value closer to the complete
basis set limit, the corrected value represents more overbinding relative to the uncorrected
value, which can be as high as 1 kcal/mol. The uncorrected values, therefore, were plotted in
Figure 4.15. These values, along with the dual-basis corrections are reported in Table A.3.
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Alkane
T12 site T10 site

Uncor-
rected

Dual basis
corrected

Difference
Uncor-
rected

Dual basis
corrected

Difference

propane -10.5 -11.1 -0.6 -14.7 -15.0 -0.3
n-butane -15.5 -16.3 -0.8 -17.3 -17.8 -0.5
n-pentane -20.5 -21.4 -0.9 -23.8 -24.5 -0.7
n-hexane -24.5 -25.4 -1.0 -24.5 -25.6 -1.0

Table A.3: Heats of adsorption (kcal/mol) for alkanes in silicalite at 773 K, calculated
both with 6-311G** (uncorrected), as well as by applying dual basis correction with 6-
311++G(3df,3pd).




