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1 Introduction

The dominant feature of high-energy proton-proton (pp) collisions at the Large Hadron

Collider (LHC) is the production of highly collimated sprays of energetic hadrons, called

jets, that originate from the quarks and gluons in the primary collisions. The large centre-

of-mass energy at the LHC enables the production of Lorentz-boosted heavy particles,

whose decay products can be reconstructed as one large-area jet. The study of the internal

structure of jets goes beyond the four-momentum description of a single parton and yields

new approaches for testing Quantum Chromodynamics (QCD) and for searching for new

physics in hadronic final states. However, many of the new tools developed for the study of

jet substructure at the LHC have only recently been validated with data in a hadron-hadron

collider environment. For example, the effect of multiple pp interactions on large-area jet

measurements has not been extensively studied experimentally.

This paper presents a comprehensive set of studies designed to establish the efficacy,

accuracy, and precision of several of the tools available for determining and analysing

the internal structure of jets at the LHC. New jet algorithms and strategies, referred to

as jet grooming, that refine the definition of a jet in a high-luminosity environment, are

studied using data taken at a centre-of-mass energy of
√
s = 7 TeV during 2011. A

variety of techniques and tagging algorithms intended to improve the mass resolution in

the reconstruction of boosted objects that decay hadronically are studied in the data both

in inclusive jet samples and in samples enriched in events containing boosted W/Z bosons

and top quarks. Evaluations of the systematic uncertainties for jet mass measurements

are presented for a variety of jet algorithms. Comparisons of the discrimination between

signal and background provided by various observables are also evaluated for a selection of

models of new physics containing boosted hadronic particle decays.

The organization of the paper is as follows. In this section, motivation for the use

of new jet reconstruction techniques for Lorentz-boosted particles is given and the jet

algorithms and jet substructure variables that are used in the analyses presented here

are defined. Section 2 provides descriptions of the ATLAS detector and the Monte Carlo

simulations, and section 3 defines the jet reconstruction and calibration procedures that

are used throughout. The latter section includes a discussion of the jet mass scale and

the subjet energy scale, which are important ingredients in the jet grooming algorithms.

Section 4 describes studies of the effect of jet grooming on jet properties in the presence

of pile-up, which represents a major experimental challenge at the present and future

LHC machine.

Studies of the performance of the various jet algorithms are conducted with three

classes of event samples in both data and Monte Carlo simulation in section 5: inclusive

jet events, which are dominated by light-quark or gluon jets whose properties are defined

primarily by soft gluon emission; boosted hadronically decaying W and Z bosons, which

form jets that are dominated by two high-pT components; and top-quark decays, where

the W boson decays hadronically, which form jets that have three prominent components

(due to the b-quark in addition to the W ). In section 5.1, the effect on jet resolution of

the various jet grooming algorithms is compared in simulated events separately for signal
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(W , Z, and top jets) and background from light-quark and gluon jets. The discrimination

between background and signal is then studied using a number of grooming configurations

by comparing jet properties for the different types of events before and after grooming. This

is followed in section 5.2 by a direct comparison of multiple Monte Carlo predictions and

inclusive jet data. Lastly, section 5.3 presents jet grooming studies on boosted top-quark

events. Finally, conclusions are drawn in section 6.

1.1 Motivation

The centre-of-mass energy of the LHC has opened new kinematic regimes to experimental

study. The new phase space available for the production of Standard Model (SM) par-

ticles with significant Lorentz boosts, or even new massive particles that decay to highly

boosted SM particles, necessitates new techniques to conduct measurements in novel final

states. For example, when sufficiently boosted, the decay products of W bosons [1–5], top

quarks [6–8], and Higgs bosons [9] can become collimated to the point that standard re-

construction techniques begin to fail. When the separation of the quarks in these boosted

topologies becomes smaller than the radius parameter of the jets, they often fail to be

individually resolved by standard jet algorithms and configurations. Moreover, the high-

luminosity conditions at the LHC can further degrade even the most complex procedures

for reconstructing decays of boosted hadronic objects. Multiple pp interactions per bunch

crossing (pile-up) produce soft particles unrelated to the hard scattering that can con-

taminate jets in the detector considerably more than at previous hadron-hadron colliders.

In events where boosted particle decays are fully contained within individual large-radius

jets, a diminished mass resolution due to pile-up may dramatically weaken sensitivity to

new physics processes. It is crucial that the above issues be addressed together, as the

efficacy of a given technique for boosted object reconstruction may depend critically on its

vulnerability to experimental conditions.

One example of a new physics process that may produce heavy objects with a sig-

nificant Lorentz boost is the decay of a new heavy gauge boson, the Z ′, to top-quark

pairs. Figure 1 shows the angular separation between the W and b decay products of a top

quark in simulated Z ′ → tt̄ (mZ′ = 1.6 TeV) events, as well as the separation between the

light quarks of the subsequent hadronic decay of the W boson. In each case, the angular

separation of the decay products is approximately

∆R ≈ 2m

pT
, (1.1)

where ∆R =
√

(∆y)2 + (∆φ)2, and pT and m are the transverse momentum and the mass,

respectively, of the decaying particle.1 For pWT > 200 GeV, the ability to resolve the

1The ATLAS coordinate system is a right-handed system with the x-axis pointing to the centre of

the LHC ring and the y-axis pointing upwards. The polar angle θ is measured with respect to the LHC

beam-line. The azimuthal angle φ is measured with respect to the x-axis. The rapidity is defined as

y = 0.5 × ln[(E + pz)/(E − pz)], where E denotes the energy and pz is the component of the momentum

along the beam direction. The pseudorapidity η is an approximation for rapidity y in the high-energy limit,

and it is related to the polar angle θ by η = − ln tan(θ/2). Transverse momentum and energy are defined

as pT = p× sin θ and ET = E × sin θ, respectively.
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Figure 1. (a) The angular separation between the W boson and b-quark in top decays, t → Wb,

as a function of the top-quark transverse momentum (ptT) in simulated PYTHIA [10] Z ′ → tt̄

(mZ′ = 1.6 TeV) events. (b) The angular distance between the light quark and anti-quark from

t→Wb decays as a function of the pT of the W boson (pWT ). Both distributions are at the generator

level and do not include effects due to initial and final-state radiation, or the underlying event.

individual hadronic decay products using standard narrow-radius jet algorithms begins to

degrade, and when pt
T is greater than 300 GeV, the decay products of the top quark tend

to have a separation ∆R < 1.0. Techniques designed to recover sensitivity in such cases

focus on large-R jets in order to maximize efficiency. In this paper, large-R refers to jets

with a radius parameter R ≥ 1.0. At
√
s = 7 TeV, nearly one thousand SM tt̄ events per

fb−1 are expected with pt
T greater than 300 GeV. New physics may appear in this region of

phase space, the study of which was limited by integrated luminosity and available energy

at previous colliders.

A single jet that contains all of the decay products of a massive particle has signifi-

cantly different properties than a jet of the same pT originating from a light quark. The

characteristic two-body or three-body decays of a high pT vector boson or top quark result

in a hard substructure that is absent from typical high pT jets formed from gluons and light

quarks. These subtle differences in substructure can be resolved more clearly by removing

soft QCD radiation from jets. Such adaptive modification of the jet algorithm or selective

removal of soft radiation during the process of iterative recombination in jet reconstruction

is generally referred to as jet grooming [9, 11, 12].

Recently many jet grooming algorithms have been designed to remove contributions

to a given jet that are irrelevant or detrimental to resolving the hard decay products from

a boosted object (for recent reviews and comparisons of these techniques, see for example

refs. [13, 14]). The structural differences between jets formed from gluons or light quarks

and individual jets originating from the decay of a boosted hadronic particle form the basis

for these tools. The former are characterized primarily by a single dense core of energy

surrounded by soft radiation from the parton shower, hadronization, and underlying event

(UE) remnants [15–17]. Jets containing the decay products of single massive particles,
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Figure 2. Single-jet invariant mass distribution for Cambridge–Aachen (C/A) R = 1.2 jets in

simulated events containing highly boosted hadronically decaying Z bosons before and after the

application of a grooming procedure referred to as mass-drop filtering. The technical details of this

figure are explained in section 1.2. The normalization of the groomed distribution includes the

efficiency of mass-drop filtering with respect to the ungroomed large-R jets for comparison. The

local cluster weighting (LCW) calibration scheme is described in section 3.3.1.

on the other hand, can be distinguished by hard, wide-angle components representative

of the individual decay products that result in a large reconstructed jet mass, as well as

typical kinematic relationships among the hard components of the jet [4, 7, 9, 18–23].

Grooming algorithms are designed to retain the characteristic substructure within such a

jet while reducing the impact of the fluctuations of the parton shower and the UE, thereby

improving the mass resolution and mitigating the influence of pile-up. These features

have only recently begun to be studied experimentally [24–31] and have been exploited

heavily in recent studies of the phenomenological implications of such tools in searches

for new physics [9, 32–42]. A groomed jet can also be a powerful tool to discriminate

between the often dominant multi-jet background and the heavy-particle decay, which

increases signal sensitivity. Figure 2 demonstrates this by comparing the invariant mass

distribution of single jets in events containing highly boosted hadronically decaying Z

bosons before and after the application of a grooming procedure referred to as mass-drop

filtering. In this simulated Z → qq̄ sample described in section 2.2, pile-up events are also

included. Prior to the application of this procedure, no distinct features are present in the

jet mass distribution, whereas afterwards, a clear mass peak that corresponds to the Z

boson is evident.

1.2 Definitions

1.2.1 Jet algorithms

In this paper, three jet algorithms are studied: the anti-kt algorithm [43], the Cambridge–

Aachen (C/A) algorithm [44, 45], and the kt algorithm [46–48]. These are implemented

within the framework of the FastJet software [49, 50]. They represent the most widely

– 5 –
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used infrared and collinear-safe jet algorithms available for hadron-hadron collider physics

today. Furthermore, in the case of the kt and C/A algorithms, the clustering history of

the algorithm — that is, the ordering and structure of the pair-wise subjet recombinations

made during jet reconstruction — provides spatial and kinematic information about the

substructure of that jet. The anti-kt algorithm provides jets that are defined primarily

by the highest-pT constituent, yielding stable, circular jets. The compromise is that the

structure of the jet as defined by the successive recombinations carried out by the anti-kt
algorithm carries little or no information about the pT ordering of the shower or wide

angular-scale structure. It is, however, possible to exploit the stability of the anti-kt al-

gorithm and recover meaningful information about the jet substructure: anti-kt jets are

selected for analysis based on their kinematics (η and pT), and then the jet constituents are

reclustered with the kt algorithm to enable use of the kt-ordered splitting scales described

in section 1.2.2. The four-momentum recombination scheme is used in all cases and the

jet finding is performed in rapidity-azimuthal angle (y–φ) coordinates. Jet selections and

corrections are made in pseudorapidity-azimuthal angle (η–φ) coordinates.

1.2.2 Jet properties and substructure observables

Three observables are used throughout these studies to characterize jet substructure and

distinguish massive boosted objects from gluons or light quarks: mass, kt splitting scales,

and N -subjettiness.

Jet mass: the jet mass is defined as the mass deduced from the four-momentum sum

of all jet constituents. Depending on the input to the jet algorithm (see section 3.1), the

constituents may be considered as either massive or massless four-momenta.

kt splitting scales: the kt splitting scales [2] are defined by reclustering the constituents

of a jet with the kt recombination algorithm, which tends to combine the harder constituents

last. At the final step of the jet recombination procedure, the kt distance measure, dij ,

for the two remaining proto-jets (intermediate jet-like objects at each stage of clustering),

referred to as subjets in this case, can be used to define a splitting scale variable as:√
dij = min(pTi, pTj)×∆Rij , (1.2)

where ∆Rij is the distance between the two subjets in η−φ space. With this definition, the

subjets identified at the last step of the reclustering in the kt algorithm provide the
√
d12

observable. Similarly,
√
d23 characterizes the splitting scale in the second-to-last step of

the reclustering. The parameters
√
d12 and

√
d23 can be used to distinguish heavy-particle

decays, which tend to be reasonably symmetric when the decay is to like-mass particles,

from the largely asymmetric splittings that originate from QCD radiation in light-quark

or gluon jets. The expected value for a two-body heavy-particle decay is approximately√
d12 ≈ mparticle/2, whereas jets from the parton shower of gluons and light quarks tend

to have smaller values of the splitting scales and to exhibit a steeply falling spectrum for

both
√
d12 and

√
d23 (see for example figure 30).
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N-subjettiness: the N -subjettiness variables τN [18, 51] are observables related to the

subjet multiplicity. The τN variable is calculated by clustering the constituents of the jet

with the kt algorithm and requiring that exactly N subjets be found. This is done using the

exclusive version of the kt algorithm [48] and is based on reconstructing clusters of particles

in the jet using all of the jet constituents. These N final subjets define axes within the jet.

The variables τN are then defined in eq. (1.3) as the sum over all constituents k of the jet,

such that

τN =
1

d0

∑
k

pTk ×min(δR1k, δR2k, . . . , δRNk) , with d0 ≡
∑
k

pTk ×R (1.3)

where R is the jet radius parameter in the jet algorithm, pTk is the pT of constituent k

and δRik is the distance from subjet i to constituent k. Using this definition, τN describes

how well jets can be described as containing N or fewer kt subjets by assessing the degree

to which constituents are aligned with the axes of these subjets for a given hypothesis

N . The ratios τ2/τ1 and τ3/τ2 can be used to provide discrimination between jets formed

from the parton shower of initial-state gluons or light-quarks and jets formed from two

hadronic decay products (from Z-bosons, for example) or three hadronic decay products

from boosted top quarks. These ratios are herein referred to as τ21 and τ32 respectively.

For example, τ21 ' 1 corresponds to a jet that is very well described by a single subjet

whereas a lower value implies a jet that is much better described by two subjets than one.

1.2.3 Jet grooming algorithms

Three jet grooming procedures are studied in this paper. Mass-drop filtering, trimming,

and pruning are described, and performance measures related to each are defined. The

different configurations of the grooming algorithms described in this section are summarized

in table 1. Additionally, a technique to tag boosted top quarks using the mass-drop filtering

method is introduced. Unless otherwise specified, the jet pT reported for a groomed jet is

that which is calculated after the grooming algorithm is applied to the original jet.

Mass-drop filtering: the mass-drop filtering procedure2 seeks to isolate concentrations

of energy within a jet by identifying relatively symmetric subjets, each with a significantly

smaller mass than that of the original jet. This technique was developed and optimized

using C/A jets in the search for a Higgs boson decaying to two b-quarks: H → bb̄ [9]. The

C/A algorithm is used because it provides an angular-ordered shower history that begins

with the widest combinations when reversing the cluster sequence. This provides useful

information regarding the presence of potentially large splittings within a jet (see section 4

and section 5). Although the mass-drop criterion and subsequent filtering procedure are

not based specifically on soft-pT or wide-angle selection criteria, the algorithm does retain

the hard components of the jet through the requirements placed on its internal structure.

The first measurements of the jet mass of these filtered jets was performed using 35 pb−1 of

data collected in 2010 by the ATLAS experiment [25]. The mass-drop filtering procedure

has two stages:

2In this paper, mass-drop filtering is often shortened to only filtering in figures and captions.
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• Mass-drop and symmetry. The last stage of the C/A clustering is undone. The

jet “splits” into two subjets, j1 and j2, ordered such that the mass of j1 is larger:

mj1 > mj2 . The mass-drop criterion requires that there be a significant difference

between the original jet mass (mjet) and mj1 after the splitting:

mj1/mjet < µfrac, (1.4)

where µfrac is a parameter of the algorithm. The splitting is also required to be

relatively symmetric, which is approximated by the requirement that

min[(pj1T )2, (pj2T )2]

(mjet)2
×∆R2

j1,j2 > ycut, (1.5)

where ∆Rj1,j2 is a measure of the opening angle between j2 and j1, and ycut defines the

energy sharing between the two subjets in the original jet. For the analyses presented

here, ycut is set to 0.09, the optimal value for identifying two-body decays, obtained

in previous studies [9]. To give a sense of the kinematic requirements that this places

on a given decay, consider a hadronically decaying W boson with pWT ≈ 200 GeV.

According to the approximation given by eq. (1.1), the average angular separation of

the two daughter quarks is ∆Rj1,j2 ∼ 0.8. The symmetry requirement determined by

ycut in eq. (1.5) thereby implies that the transverse momentum of the softer (in pT)

of the two subjets is greater than approximately 30 GeV. Generally, this requirement

entails a minimum pT of the softer subjet of psubjet
T /pjet

T > 0.15, thus forcing both

subjets to carry some significant fraction of the momentum of the original jet. This

procedure is illustrated in figure 3(a). If the mass-drop and symmetry criteria are

not satisfied, the jet is discarded.

• Filtering. The constituents of j1 and j2 are reclustered using the C/A algorithm with

radius parameter Rfilt = min[0.3,∆Rj1,j2/2], where Rfilt < ∆Rj1,j2 . The jet is then

filtered; all constituents outside the three hardest subjets are discarded. The choice

of three allows one additional radiation from a two-body decay to be captured. In

isolating j1 and j2 with the C/A algorithm, the angular scale of any potential massive

particle decay is known. By dynamically reclustering the jet at an appropriate angular

scale able to resolve that structure, the sensitivity to highly collimated decays is

maximized. This is illustrated in figure 3(b).

In this paper, three values of the mass-drop parameter µfrac are studied, as summa-

rized in table 1. The values chosen for µfrac are based on a previous study [9] which has

shown that µfrac = 0.67 is optimal in discriminating H → bb̄ from background. A subse-

quent study regarding the factorization properties of several groomed jet algorithms [52]

found that smaller values of µfrac (0.20 and 0.33) are similarly effective at reducing back-

grounds, and yet they remain factorizable within the soft collinear effective theory studied

in that analysis.
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(a) The mass-drop and symmetric splitting criteria.

(b) Filtering.

Figure 3. Diagram depicting the two stages of the mass-drop filtering procedure.

Trimming: the trimming algorithm [12] takes advantage of the fact that contamination

from pile-up, multiple parton interactions (MPI) and initial-state radiation (ISR) in the

reconstructed jet is often much softer than the outgoing partons associated with the hard-

scatter and their final-state radiation (FSR). The ratio of the pT of the constituents to that

of the jet is used as a selection criterion. Although there is some spatial overlap, removing

the softer components from the final jet preferentially removes radiation from pile-up,

MPI, and ISR while discarding only a small part of the hard-scatter decay products and

FSR. Since the primary effect of pile-up in the detector is additional low-energy deposits

in clusters of calorimeter cells, as opposed to additional energy being added to already

existing clusters produced by particles originating from the hard scattering process, this

allows a relatively simple jet energy offset correction for smaller radius jets (R = 0.4, 0.6)

as a function of the number of primary reconstructed vertices [53].

The trimming procedure uses a kt algorithm to create subjets of size Rsub from the

constituents of a jet. Any subjets with pTi/p
jet
T < fcut are removed, where pTi is the

transverse momentum of the ith subjet, and fcut is a parameter of the method, which is

typically a few percent. The remaining constituents form the trimmed jet. This procedure

is illustrated in figure 4. Low-mass jets (mjet < 100 GeV) from a light-quark or gluon lose

typically 30–50% of their mass in the trimming procedure, while jets containing the decay

products of a boosted object lose less of their mass, with most of the reduction due to

the removal of pile-up or UE (see, for example, figures 29 and 32). The fraction removed

increases with the number of pp interactions in the event.

– 9 –
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Figure 4. Diagram depicting the jet trimming procedure.

Figure 5. Diagram illustrating the pruning procedure.

Six configurations of trimmed jets are studied here, arising from combinations of fcut

and Rsub, given in table 1. They are based on the optimized parameters in ref. [12]

(fcut = 0.03, Rsub = 0.2) and variations suggested by the authors of the algorithm. This

set represents a wide range of phase space for trimming and is somewhat broader than

considered in ref. [12].

Pruning: the pruning algorithm [3, 11] is similar to trimming in that it removes con-

stituents with a small relative pT, but it additionally applies a veto on wide-angle radiation.

The pruning procedure is invoked at each successive recombination step of the jet algo-

rithm (either C/A or kt). It is based on a decision at each step of the jet reconstruction

whether or not to add the constituent being considered. As such, it does not require the

reconstruction of subjets. For all studies performed for this paper, the kt algorithm is used

in the pruning procedure. This results in definitions of the terms wide-angle or soft that

are not directly related to the original jet but rather to the proto-jets formed in the process

of rebuilding the pruned jet.

The procedure is as follows:

• The C/A or kt recombination jet algorithm is run on the constituents, which were

found by any jet finding algorithm.

• At each recombination step of constituents j1 and j2 (where pj1T > pj2T ), either

pj2T /p
j1+j2
T > zcut or ∆Rj1,j2 < Rcut × (2mjet/pjet

T ) must be satisfied. Here, zcut

and Rcut are parameters of the algorithm which are studied in this paper.
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Jet finding algorithms used Grooming algorithm Configurations considered

C/A Mass-Drop Filtering µfrac = 0.20, 0.33, 0.67

Anti-kt and C/A Trimming
fcut = 0.01, 0.03, 0.05

Rsub = 0.2, 0.3

Anti-kt and C/A Pruning
Rcut = 0.1, 0.2, 0.3

zcut = 0.05, 0.1

C/A HEPTopTagger (see table 2)

Table 1. Summary of the grooming configurations considered in this study. Values in boldface are

optimized configurations reported in ref. [9] and ref. [12] for filtering and trimming, respectively.

Default Tight Loose

R 1.5 or 1.8 1.5 1.5

mcut[GeV] 30 30 70

Rjet 0.3 0.2 0.5

Nsubjet 5 4 7

fW [%] 15 10 20

Table 2. The settings used for studying the performance of the HEPTopTagger.

• j2 with j1 are merged if one or both of the above criteria are met, otherwise, j2 is

discarded and the algorithm continues.

The pruning procedure is illustrated in figure 5. Six configurations, given in table 1,

based on combinations of zcut and Rcut are studied here. This set of parameters also

represents a relatively wide range of possible configurations.

1.2.4 HEPTopTagger

The HEPTopTagger algorithm [32, 54] is designed to identify a top quark with a hadron-

ically decaying W boson daughter over a large multi-jet background. The method uses

the C/A jet algorithm and a variant of the mass-drop filtering technique described in sec-

tion 1.2.3 in order to exploit information about the recombination history of the jet. This

information is used to search for evidence within the jet of the presence of W decay prod-

ucts as well as an additional energy deposition — the b-quark — that are consistent with

the W and top masses and the expected angular distribution of the final-state quarks.

The HEPTopTagger algorithm is optimized for top-quark transverse momentum as low as

200 GeV and therefore uses a correspondingly large jet radius parameter. The algorithm

proceeds as follows and is illustrated in figure 6.

Decomposition into substructure objects: The mass-drop criterion defined in

eq. (1.4) is applied to a large-R C/A jet, where j1 and j2 are the two subjets from the last
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stage of clustering, with mj1 > mj2 . If the criterion is satisfied, the same prescription is

followed to split both j1 and j2 further. The iterative splitting continues until the subjets

either have masses mi less than a tunable parameter mcut, or represent individual con-

stituents, such as calorimeter energy deposits, tracks, or generator-level particles (i.e. no

clustering history); see section 3.1 for definitions. This procedure results in Ni subjets. If

at any stage mj1 > (mjet × µfrac), the mass-drop criterion and subsequent iterative declus-

tering is not applied to j2. The values of mcut and R studied are summarized in table 2.

R values of 1.5 and 1.8, somewhat larger than used generally in mass-drop filtering, are

chosen based on previous studies [32, 55]. When the iterative process of declustering the jet

is complete, there must exist at least three subjets (Ni ≥ 3), otherwise the jet is discarded.

Filtering: all possible combinations of three subjets are formed, and each triplet is fil-

tered one at a time. The constituents of the subjets in a given triplet are reclustered into

Nj new subjets using the C/A algorithm with a size parameter Rfilt = min[0.3,∆Rj1,j2/2],

where ∆Rj1,j2 is the minimum separation between all possible pairs in the current triplet.

It is therefore possible that Nj > 3 after the reclustering step. All energy deposits not in

the Nj subjets are discarded.

Top mass window requirement: if the invariant mass of the four-momentum deter-

mined by summing the constituents of the Nj subjets is not in the range 140 GeV ≤ mjet <

200 GeV, the triplet combination is ignored. If more than one triplet satisfies the criterion,

only the one with mass closest to the top-quark mass, mt, is used. This triplet (which

consists of Nj ≥ 3 subjets) is thus identified as the top-candidate triplet.

Reclustering of subjets: from the Nj subjets of the top-candidate triplet, Nsubjet

leading-pT subjets are chosen, where Nsubjet is a parameter satisfying 3 ≤ Nsubjet ≤ Nj .

From this set of subjets, exactly three jets are built by re-applying the C/A algorithm

to the constituents of the Nsubjet subjets, which are exclusively clustered using a distance

parameter Rjet listed in table 2. This latter step reflects the hypothesis that this is likely

to be a top-jet candidate. These subjets are calibrated as described in section 3.5.

W boson mass requirements: relations listed in eqs. (A.1) of ref. [32] are defined using

the total invariant mass of the three subjets (m123) and the invariant mass mij formed from

combinations of two of the three subjets ordered in pT. These conditions include:

R− <
m23

m123
< R+ (1.6)

0.2 < arctan
m13

m12
< 1.3. (1.7)

Here, R± = (1 ± fW )(mW /mt), fW is a resolution variable (given in table 2), and the

quantities mW and mt denote the W boson and top-quark masses, respectively. If at least

one of the criteria in eqs. (A.1) of [32] is met, the four-momentum addition of the three

subjets is considered a candidate top quark.
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(a) Every object encountered in the declustering

process is considered a ‘substructure object’ if it is

of sufficiently low mass or has no clustering history.

(b) The mass-drop criterion is applied iteratively,

following the highest subjet-mass line through the

clustering history, resulting in Ni substructure

objects.

(c) For every triplet-wise combination of the

substructure objects found in (b), recluster the

constituents into subjets and select the Nsubjet

leading-pT subjets, with 3 ≤ Nsubjet ≤ Ni (here,

Nsubjet = 5).

(d) Recluster the constituents of the Nsubjet sub-

jets into exactly three subjets to make the top

candidate for this triplet-wise combination of sub-

structure objects.

Figure 6. The HEPTopTagger procedure.

2 The ATLAS detector and data samples

2.1 The ATLAS detector

The ATLAS detector [56, 57] provides nearly full solid angle coverage around the collision

point with an inner tracking system covering |η| < 2.5, electromagnetic and hadronic

calorimeters covering |η| < 4.9, and a muon spectrometer covering |η| < 2.7. Of the

multiple ATLAS subsystems, the most relevant to this analysis are the barrel and endcap

calorimeters [58, 59] and the trigger [60].

The calorimeter comprises multiple sub-detectors of various designs, spanning the pseu-

dorapidity range up to |η| = 4.9. The measurements presented here are performed using

data predominantly from the central calorimeters, comprising the liquid argon (LAr) bar-

rel electromagnetic calorimeter (|η| < 1.475) and the tile hadronic calorimeter (|η| < 1.7).

Three additional calorimeter subsystems are located in the higher-η regions of the detector:

the LAr electromagnetic endcap calorimeter, the LAr hadronic endcap calorimeter, and the

forward calorimeter with separate components for electromagnetic and hadronic showers.

Dedicated trigger and data acquisition systems are responsible for the online event

selection, which is performed in three stages: Level 1, Level 2, and the Event Filter. The

measurements presented in this paper rely primarily on the single-jet and multi-jet triggers

implemented at the Event Filter level, which has access to the full detector granularity, and

finds multi-jet events with high efficiency. The intermediate trigger levels provide coarser jet

finding and sufficient rate reduction to satisfy the trigger and offline selection requirements.
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2.2 Data and Monte Carlo samples

Data from the entire 2011 ATLAS data-taking period are used, corresponding to 4.7 ±
0.1 fb−1 of integrated luminosity [61]. All data are required to have met baseline qual-

ity criteria and were taken during periods in which almost all of the detector was fully

functional. Data quality criteria reject events with significant contamination from detector

noise or with issues in the read-out, and are based on assessments for each subdetector

individually. Multiple proton-proton collisions, or pile-up, result in several reconstructed

primary vertices per event. The inclusive jet sample that is used for many studies in

this paper is selected from the data using a single high-pT jet trigger that requires the

leading jet in the event to have pjet
T > 350 GeV. This trigger threshold was used for the

entire 2011 data-taking period and thus represents the full integrated luminosity with

negligible inefficiency.

These data are compared to inclusive jet events, which are dominated by light-

quark or gluon jets whose properties are defined primarily by soft gluon emission, that

are generated by three Monte Carlo (MC) simulation programs: PYTHIA 6.425 [10],

HERWIG++ [62], and POWHEG-BOX 1.0 [63–65] (patch 4) interfaced to PYTHIA

6.425 for the parton shower, hadronization, and UE models. Both PYTHIA and HER-

WIG++ use the modified-LO parton distribution function (PDF) set MRST LO* [66].

POWHEG+PYTHIA uses the CT10 NLO PDF [67] in the matrix element and CTEQ6L1

PDF set [68] for the PYTHIA parton shower. For both cases, PYTHIA is used with the

corresponding ATLAS AUET2B tune [69, 70] and HERWIG++ uses the so-called UE7-2

tune [71], which is tuned to UE data from the LHC experiments. PYTHIA or HER-

WIG++ with POWHEG+PYTHIA provide an important comparison, at least at the

matrix-element level, between leading-order (LO) (PYTHIA and HERWIG++) and next-

to-leading-order (NLO) (POWHEG) calculations. Furthermore, PYTHIA and HER-

WIG++ offer distinct approaches to the modelling of the parton shower, hadronization,

and the UE.

Samples of tt̄ events are generated with MC@NLO v4.01 [72] using the CT10 NLO

PDF, interfaced to HERWIG v6.520 [73] and JIMMY v4.31 [74]. Alternative samples

for the study of systematic uncertainties are generated with POWHEG, with showering

provided by either HERWIG or PYTHIA. Samples generated with the AcerMC v3.8 [75]

package, using CTEQ6L1 PDFs, with showering provided by PYTHIA are also used. In

these samples PYTHIA parameters have been tuned to increase or decrease the amount of

initial- and final-state radiation. Single-top-quark events in the s-channel and Wt processes

are also generated with MC@NLO using the CT10 NLO PDF set, with only leptonically

decaying W bosons allowed in the final state. Single-top-quark events in the t-channel,

where all W boson decay channels are produced, are generated with AcerMC using the

CTEQ6L1 PDF set, and are showered using PYTHIA with the AUET2B tune.

Samples of W+jets and Z+jets events are produced with the ALPGEN v2.13 [76]

generator, using CTEQ6L1 PDFs, interfaced to HERWIG for parton showering and

hadronization. Samples of diboson production processes (WW , WZ and ZZ) are pro-

duced with the HERWIG generator.
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After simulation of the parton shower and hadronization, as well as of the UE, events

are passed through the full Geant4 [77] detector simulation [78]. Following this, the same

trigger, event, data quality, jet, and track selection criteria are applied to the Monte Carlo

simulation events as are applied to the data.

Boosted particles decaying to hadrons are used for direct comparisons of the perfor-

mance of the various reconstruction and jet substructure techniques. For two-pronged

decays, a sample of hadronically decaying Z bosons is generated using the HERWIG

v6.510 [73] event generator interfaced with JIMMY v4.31 [74] for the UE. A sample of

hadronically decaying W bosons produced using the same configuration as for the Z boson

sample is also used for comparisons of the HEPTopTagger performance in section 5.3.3. In

order to test the performance of techniques designed for three-pronged decays, tt̄ events

from a non-Standard-Model heavy gauge boson (Z ′ with mZ′ = 1.6 TeV) are generated

using the same PYTHIA 6.425 tune as above. This model provides a relatively narrow tt̄

resonance and top quarks with pT ' 800 GeV.

Pile-up is simulated by overlaying additional soft pp collisions, or minimum bias events,

which are generated with PYTHIA 6.425 using the ATLAS AUET2B tune [70] and the

CTEQ6L1 PDF set. The minimum bias events are overlaid onto the hard scattering events

according to the measured distribution of the average number 〈µ〉 of pp interactions. The

proton bunches were organized in trains of 36 bunches with a 50 ns spacing between

the bunches. Therefore, the simulation also contains effects from out-of-time pile-up, i.e.

contributions from the collision of bunches neighbouring those where the events of interest

occurred. Simulated events are reweighted such that the MC distribution of 〈µ〉 agrees

with the data, as measured by the luminosity detectors in ATLAS [61].

3 Jet reconstruction and calibration

3.1 Inputs to jet reconstruction

The inputs to jet reconstruction are either stable particles with a lifetime of at least

10 ps (excluding muons and neutrinos) in the case of MC generator-level jets (also re-

ferred to as particle jets), charged particle tracks in the case of so-called track-jets [53],

or three-dimensional topological clusters (topo-clusters) in the case of fully reconstructed

calorimeter-jets. Stable particles, such as pions or protons in the simulation, retain their

respective masses when input to the jet reconstruction algorithm. Tracks are assigned the

pion mass when used as input to the jet algorithm. Quality selections are applied in order

to ensure that good quality tracks that originate from the reconstructed hard scattering

vertex are used to build track-jets. The hard scattering vertex is selected as the primary

vertex that has the largest
∑

(p track
T )2 in the event and that contains at least two tracks.

The selection criteria are:

• transverse momentum: ptrack
T > 0.5 GeV;

• transverse impact parameter: |d0| < 1.0 mm;

• longitudinal impact parameter: |z0| × sin(θ) < 1.0 mm;
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• silicon detector hits on tracks: hits in pixel detector ≥ 1 and in the silicon strip

detector ≥ 6;

where the impact parameters are computed with respect to the hard scattering vertex, and

θ is the angle between the track and the beam. In the reconstruction of calorimeter jets,

calorimeter cells are clustered together using a three-dimensional topological clustering

algorithm that includes noise suppression [79]. The resulting topo-clusters are considered

as massless four-momenta, such that E = |~p |. They are classified as either electromagnetic

or hadronic based on their shape, depth and energy density. In the calibration procedure,

corrections are applied to the energy in order to calibrate the clusters to the hadronic scale.

3.2 Jet quality criteria and selection

All jets in the event reconstructed with the anti-kt algorithm with R = 0.4 and a measured

pjet
T > 20 GeV are required to satisfy the looser requirements discussed in detail in ref. [80].

These selections are designed to retain good quality jets while rejecting as large a fraction

as possible of those from non-collision beam background and calorimeter noise. Jets are

required to deposit at least 5% of their measured total energy in the electromagnetic (EM)

calorimeter as well as not more than 99% of their energy in a single calorimeter layer.

To prevent contamination from detector noise, these jet quality criteria are extended

by several requirements applied in a specific detector region. Any event with an anti-kt
R = 0.4 jet with pjet

T > 20 GeV that fails the above non-collision beam background or noise

rejection requirements is removed from the analysis.

3.3 Jet calibration and systematic uncertainties

The precision and accuracy of energy measurements made by the calorimeter system are

integral to every physics analysis, and the procedures to calibrate jets are described in

ref. [53]. The baseline energy scale of the calorimeters derives from the calibration of the

electronic signal arising from the energy deposited by electromagnetic showers measured

in beam tests, known as the electromagnetic scale. The hadronic calorimeter has been

calibrated with electrons, pions, and muons in beam tests and the energy scale has been

validated using muons produced by cosmic rays with the detector in situ in the experimental

hall [59]. The invariant mass of the Z boson in Z → ee events measured in situ in the

same data sample studied here is used to adjust the calibration for the EM calorimeters.

3.3.1 Monte Carlo based calibration

The MC hadronic calibration scheme starts from the measured calorimeter energy at the

electromagnetic (EM) energy scale [81–89], which correctly measures the energy deposited

by electromagnetic showers. A local cluster weighting (LCW) calibration method classifies

topological clusters along a continuous scale as being electromagnetic or hadronic, using

shower shapes and energy densities. Energy corrections are applied to hadronic clusters

based on this classification scheme, which is derived from single pion MC simulations

and tested in situ using beam tests. These corrections account for the effects of non-

compensation, signal losses due to noise suppression and out-of-cluster effects in building
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topo-clusters, and energy lost in non-instrumented regions of the calorimeters. The results

shown here use LCW clusters as input to the jet algorithm.

The final jet energy scale (JES) calibration is derived as a correction relating the

calorimeter’s response to the true jet energy. The jet energy response is defined as the ratio

of the reconstructed calorimeter jet energy (or transverse energy) to that of its matched

truth particle jet energy. The inverse of this response ratio defines the multiplicative jet

energy scale factor that is dependent on the jet energy and pseudorapidity. This JES factor

is then applied to the full jet four-momentum. It can be applied to EM scale jets, with

the resulting calibrated jets referred to as EM+JES, or to LCW calibrated jets, with the

resulting jets referred to as LCW+JES jets. More details regarding the evaluation and

validation of this approach for standard anti-kt R = 0.4, 0.6 jets can be found in ref. [53].

The JES correction used here for large-R jets is derived from a PYTHIA MC sample

including pile-up events. There is no explicit offset correction for pile-up contributions, as

in the standard JES procedure [53]. For standard jet algorithms, the dependence of the jet

response on the number of primary vertices (NPV) and the average number of interactions

(〈µ〉) is removed by applying a pile-up offset correction to the EM or LCW scale before

applying the JES correction. However, no explicit pile-up correction is applied to large-R

jets or to jets with the various grooming algorithms applied.

Since one of the primary goals of the use of large-R and groomed jet algorithms is

to reconstruct the masses of jets accurately and precisely, a last step is added to the

calibration procedure of large-R jets wherein the mass of the jet is calibrated based on the

MC simulation of dijet events. An explicit jet mass calibration is important when using the

individual invariant jet mass in physics analyses since it is particularly susceptible to soft,

wide-angle contributions that do not otherwise significantly impact the jet energy scale.

The procedure measures the jet mass response for jets built from LCW clusters after the

standard JES calibration. The mass response is determined from the mean of a Gaussian

fit to the core of the distribution of the reconstructed jet mass divided by the corresponding

generator-level jet mass.

Figure 7 shows the jet mass response (mreco/mtrue) for several values of jet energy

as a function of η for anti-kt, R = 1.0 jets, before and after calibration to the true jet

mass and without jet grooming. In each case, the jet energy itself has been calibrated by

applying the JES correction. One can see from this figure that even very high-energy jets

near the central part of the detector can have a mean mass scale (or JMS) differing by up

to 20% from the particle level true jet mass. In particular, the reconstructed mass is, on

average, greater than that of the particle-level jet due in part to noise and pile-up in the

detectors. Furthermore, the finite resolution of the detector has a differential impact on

the mass response as a function of η. Following the jet mass calibration, performed also as

a function of η, a uniform mass response can be restored within 3% across the full energy

and η range. Results for C/A jets with R = 1.2 are similar, but with an additional ∼ 1%

non-closure due to the increased contamination from pile-up, as these jets have a larger

distance parameter compared to the anti-kt, R = 1.0 jets. After applying grooming to the

C/A jets, such as the mass-drop filtering procedure, the pile-up contamination is reduced

and the jet mass response variation is reduced to less than 3%.
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Figure 7. Mass response (mreco/mtrue) (a) before and (b) after mass calibration for ungroomed

anti-kt, R = 1.0 jets. The dotted lines shown in (b) represent a ±3% envelope on the precision

of the final jet mass scale calibration. In each case, the jet energy itself has been calibrated by

applying the JES correction.

3.3.2 Jet mass scale validation in inclusive jet events using track-jets

In order to validate the jet mass measurement made by the calorimeter, calorimeter-jets

are compared to track-jets. Track-jets have a different set of systematic uncertainties and

allow a reliable determination of the relative systematic uncertainties associated with the

calorimeter-based measurement. Performance studies [90] have shown that there is excel-

lent agreement between the measured positions of clusters and tracks in data, indicating

no systematic misalignment between the calorimeter and the inner detector.

The use of track-jets reduces or eliminates the impact of additional pp collisions by

requiring the jet inputs (tracks) to come from the hard-scattering vertex. The inner detector

and the calorimeter have largely uncorrelated instrumental systematic effects, and so a

comparison of variables such as jet mass and energy between the two systems allows a

separation of physics (correlated) and detector (uncorrelated) effects. It is therefore possible

to validate the JES and JMS, and also to estimate directly the pile-up energy contribution

to jets. This approach was used extensively in the measurement of the jet mass and

substructure properties of jets in the 2010 data [25] where pile-up was significantly less

important and the statistical reach of the measurement was smaller than with the full

integrated luminosity of 4.7 fb−1 for the 2011 dataset.

The relative uncertainty is determined using the ratio of the transverse momentum of

the calorimeter jet, pjet
T , to that of the track-jet, ptrack jet

T . The same procedure is repeated

for the jet mass, mjet, by using the track-jet mass, mtrack jet. The ratios are defined as

rpTtrack jet =
pjet

T

ptrack jet
T

, rmtrack jet =
mjet

mtrack jet
, (3.1)

where the matching between calorimeter and track-jets is performed using a matching

criterion of ∆R < 0.3. The mean values of these ratios are expected to be well described
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Figure 8. rmtrack jet distributions for (a) C/A, R = 1.2 jets, (b) anti-kt, R = 1.0 trimmed jets

(fcut = 0.05, Rsub = 0.3) in the range 500 GeV ≤ pjetT < 600 GeV and in the central calorimeter,

|η| < 0.8. The ratios between data and MC distributions are shown in the lower section of each

figure. The error bars and bands represent the statistical uncertainty only.

by the detector simulation if detector effects are well modelled. That is to say, even if some

underlying physics process is unaccounted for in the simulation, as long as this process

affects both the track-jet and calorimeter-jet pT or masses in a similar way, then the ratio

of data to simulation should be relatively unaffected when averaged over many events.

Double ratios of rmtrack jet and rpTtrack jet are constructed in order to evaluate this agree-

ment. These double ratios, RpT
r track jet and Rm

r track jet, are defined as:

RpT
r track jet =

rpT,data
track jet

rpT,MC
track jet

, Rm
r track jet =

rm,data
track jet

rm,MC
track jet

. (3.2)

The dependence of RpT
r track jet and Rm

r track jet on pjet
T and mjet provides a test of the

deviation of simulation from data, thus allowing an estimate of the uncertainty associated

with the Monte Carlo derived calibration.

Figure 8 shows the distribution of rmtrack jet for two jet algorithms and for jets in the

range 500 GeV ≤ pjet
T < 600 GeV in the central calorimeter region, |η| < 0.8. Compar-

isons between MC simulation and the data are made using PYTHIA, HERWIG++, and

POWHEG+PYTHIA, where the distributions are normalized to the number of events

observed in the data. This pjet
T range is chosen for illustrative purposes and because of

its relevance to searches for boosted vector bosons and top quarks, as the decay products

of both are expected to be fully merged into a large-R jet in this transverse momentum

range. The peak near rmtrack jet ≈ 2 and the shape of the distribution are both generally well

described by the Monte Carlo simulations. Both the ungroomed and the trimmed anti-kt,

R = 1.0 distributions show some discrepancies at very low rmtrack jet, where the description

of very soft radiation and hadronization is important, and at high values of rmtrack jet, above

rmtrack jet & 4. The differences are approximately 20%. However, these spectra are used
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Figure 9. Mean values of rmtrack jet as a function of jet mass for (a) C/A, R = 1.2 jets and (b)

anti-kt, R = 1.0 trimmed jets (fcut = 0.05, Rsub = 0.3) in the range 500 GeV ≤ pjetT < 600 GeV and

in the central calorimeter, |η| < 0.8. The mean ratios between the data and MC distributions (the

double ratios Rm
r track jet) are shown in the lower section of each figure. The error bars and bands

represent the statistical uncertainty only.

primarily to test the overall scale, so that the important comparison is of the mean values

of the distributions, which are quite well described.

The relative systematic uncertainty is first estimated for each MC generator sample as

the weighted average absolute deviation of the double ratio, Rm
r track jet, from unity. Mea-

surements of Rm
r track jet are performed in exclusive pjet

T and η ranges. The statistical uncer-

tainty is used as the weight in this case. The final relative uncertainty is then determined

by the maximum of the weighted average deviation among the MC samples considered.

Comparisons are made using PYTHIA, HERWIG++, and POWHEG+PYTHIA.

Figure 9 presents the distributions of both 〈rmtrack jet〉 and the double ratio with re-

spect to MC simulation, 〈Rm
r track jet〉, for the same algorithms and grooming configurations

as shown in figure 8. In the peak of the jet mass distribution, logarithmic soft terms

dominate [8] and lower-pT particles constitute a large fraction of the calorimeter-jet mass.

These particles are bent more by the magnetic field than higher-pT particles, or are not

reconstructed as charged-particle tracks, and thus contribute more to the calorimeter-jet

mass than the track-jet mass. At much lower calorimeter-jet masses, charged particles can

be completely bent out of the jet acceptance, thus reducing the calorimeter-jet mass for

a fixed track-jet mass. These effects result in the shape observed in the rmtrack jet distribu-

tion in this region. Higher-mass jets tend to be composed of multiple higher-pT particles

that are less affected by the magnetic field and therefore contribute more similarly to the

calorimeter-based and track-based mass reconstruction. This results in a flatter and fairly

stable rmtrack jet ratio. This flat rmtrack jet distribution is present across the mass range for

trimmed and mass-drop filtered (not shown) jet masses, as both these algorithms are de-

signed to remove softer particles. Although there is a difference in the phase space of
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Figure 10. Summary of the jet mass scale (JMS) relative systematic uncertainties as a function

of pjetT . These uncertainties are determined from track-jet double ratios. For each jet algorithm (a)

anti-kt, R = 1.0 without trimming, (b) anti-kt, R = 1.0 with trimming (fcut = 0.05, Rsub = 0.3), (c)

C/A, R = 1.2 without filtering, and (d) C/A, R = 1.2 with filtering, the two lines shown represent

the uncertainty evaluated at |η| = 0.0 (solid) and |η| = 1.0 (dashed). These estimates include

a 3% relative non-closure uncertainty on the MC-based mass scale calibration factors, as well as

systematic uncertainties on the impact of the tracking efficiency on the track measurements.

emissions probed at low and high mass, the mean calorimeter response relative to the

tracker response is well modelled by each of the three MC simulations.

The weighted average deviation of Rm
r track jet from unity ranges from approximately

2% to 4% for the set of jet algorithms and grooming configurations tested for jets in the

range 500 GeV ≤ pjet
T < 600 GeV and in the central calorimeter, |η| < 0.8. The results are

fairly stable for the slightly less central η range 0.8 ≤ |η| < 1.2.

Figure 10 presents the full set of jet mass scale systematic uncertainties for various jet

algorithms estimated using the calorimeter-to-track-jet double ratios. The total relative
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uncertainty includes the 3% uncertainty on the precision of the jet mass scale calibration

(see figure 7(b)) as well as the uncertainty on the track measurements themselves. The

latter uncertainty takes into account the knowledge of tracking inefficiencies and their

impact on the pjet
T and mjet measurements using track-jets. Each of these two additional

components is assumed to be uncorrelated and added in quadrature with the uncertainty

determined solely from the calorimeter-to-track-jet double ratios. The uncertainties are

smoothly interpolated between the multiple discrete η ranges in which they are estimated.

Figure 10 shows the uncertainty evaluated at two points |η| = 0.0 (solid) and |η| = 1.0

(dashed) as a function of pjet
T .

The impact of the tracking efficiency systematic uncertainty on rmtrack jet is evaluated

by randomly rejecting tracks used to construct track-jets according to the efficiency uncer-

tainty. This is evaluated as a function of η and mjet for various pjet
T ranges. Typically, this

results in a 2–3% shift in the measured track-jet kinematics (both pT and mass) and thus

a roughly 1% contribution to the resulting total uncertainty, since the tracking uncertainty

is taken to be uncorrelated to that determined from the double ratios directly.

The total systematic uncertainty on the jet mass scale is fairly stable near 4–5% for all

jet algorithms up to pjet
T ≈ 800 GeV. At low pjet

T , in the range 200 GeV ≤ pjet
T < 300 GeV, the

average uncertainty for some jet algorithms rises to approximately 5–7%. The estimated

uncertainty is similar for both the ungroomed and the trimmed or mass-drop filtered jets,

except for trimmed anti-kt jets (see figure 10(b)) for which the uncertainty in the range

900 GeV ≤ pjet
T < 1000 GeV and |η| = 1.0 is approximately 8%.

3.3.3 Jet mass scale validation using hadronic W decays in tt̄ events

An alternative approach to validating the jet mass scale is to study a hadronically decaying

particle with a known mass. The most accessible source of hadronically decaying massive

particles is events containing top-quark pairs (tt̄). The tt̄ process at the LHC has a relatively

large cross-section and the final state contains two W bosons. About 15% of the time, one of

the W bosons decays to a muon and neutrino, while the other decays to hadrons. This leads

to an abundant source of events with a distinctive leptonic signature and a hadronically

decaying known heavy particle.

Signal muons are defined as having pT > 25 GeV and |η| < 2.5, as well as passing a

number of quality criteria. Events are required to contain a signal muon and no additional

muons or electrons. The missing transverse momentum (Emiss
T ) is calculated as the negative

of the vector sum of the transverse momenta of all physics objects, at the appropriate energy

scale, and the transverse momentum of any remaining topo-clusters not associated with

physics objects in the event. Events are required to have Emiss
T > 25 GeV.

In events passing this leptonic selection, a W candidate is constructed from the signal

muon and Emiss
T . In order to reject multi-jet background, this candidate is required to have

transverse mass (mT) greater than 40 GeV.3

Boosted hadronically decaying W boson candidates are defined as single large-R jets

with pT > 200 GeV. The hadronic and leptonic W candidates are required to be separated

3Transverse mass mT is defined as
√
E2

T − p2T of the vector sum of the four-momentum of the signal

muon and Emiss
T , assumed to be due to the neutrino.
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Figure 11. Jet mass distributions for jets with pT > 200 GeV in events containing a W → µν

candidate and a b-tagged anti-kt jet. The jets shown are (a) Cambridge–Aachen R = 1.2 after

mass-drop filtering, and (b) anti-kt R = 1.0 after trimming.

by at least 1.2 radians in φ to minimize potential overlap between the decay products

of the two W bosons. In order to further enhance the fraction of top-quark production

processes, an anti-kt jet with R = 0.4, pT > 20 GeV and with ∆R > 1.0 to the hadronic

W candidate is required. This additional jet is also required to be tagged as a b-jet by the

MV1 algorithm at the 70% efficient working point [91].

The resulting mass distributions of hadronic W candidates for two jet algorithms can

be seen in figure 11. A peak near the W mass is clearly observed for both the mass-drop

filtering and trimming algorithms in data and simulated Monte Carlo events.

A fitting procedure is used to extract the features of the jet mass distribution. The

peak produced by the hadronic decays of W bosons is modelled by a Voigtian function,

which is the convolution of Gaussian and Lorentzian functions.4 In this function the width

of the Lorentzian component is fixed to the world-average W boson width. The width of

the Gaussian function is a measure of the mass resolution although this is not explored

in this study. The background shape has no simple analytic form and is assumed to be

modelled by a quadratic polynomial. In order to simplify the background modelling, the

W+jets MC prediction and multi-jet prediction are both subtracted from the data and the

resulting distributions are compared to the sum of the tt̄, single-top quark, and WW MC

samples. The results of this fit for Cambridge–Aachen jets can be seen in figure 12.

After fitting, the parameter controlling the mean of the Voigtian function (µ) is a mea-

sure of the reconstructed mass of hadronically decaying W bosons. As shown in figure 12,

this scale is observed to be µdata = 86.9±0.8 GeV and µMC = 87.4±0.2 GeV. The departure

from the world-average value of mW = 80.385 ± 0.015 GeV [92] is due to clustering and

detector effects, as well as physics effects such as contributions from the UE and hadroniza-

4The Lorentzian function is defined as L(x) = (σ/2π)

(x−x0)2+(σ/2)2
, where x0 specifies the mean and σ specifies

the width.
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Figure 12. Results of fitting the mass distributions of Cambridge–Aachen R = 1.2 jets after mass-

drop filtering. The W+jets and multi-jet predictions have been subtracted from the distributions.

The two figures show (a) the Monte Carlo prediction and (b) data. The dashed line represents the

polynomial fit to the background shape, while the solid line represents the combined signal and

background fit.
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Figure 13. The ratio µdata/µMC as a function of jet |η| for (a) Cambridge–Aachen R = 1.2 after

mass-drop filtering and (b) anti-kt R = 1.0 after trimming.

tion that are not completely removed by the grooming procedures. The ratio (µdata/µMC)

is therefore the relevant figure of merit for any mismodelling of the reconstructed scale in

Monte Carlo simulation. A relative scale difference of (−0.6± 1.0)% is found for C/A jets

after mass-drop filtering, whereas the value is (0.5± 1.2)% for anti-kt jets after trimming.

The uncertainties are statistical, as extracted from the fitting procedure.
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It is also possible to repeat the fitting procedure after dividing the data and Monte

Carlo simulation samples into bins of |η|. This allows a test of any potential |η| dependence

in a range outside that covered by track-jet techniques. The result of these fits can be

seen in figure 13. The results extracted in individual bins show no statistically significant

deviation from the average.

Furthermore, systematic uncertainties are evaluated for this technique. The Monte

Carlo modelling is assessed by replacing the tt̄ and single-top samples with alternative

samples as described in section 2.2. The impact of mismodelling of the jet resolution

is assessed by applying additional smearing. The effect of mismodelling of the pT scale is

studied by shifting the scale in the Monte Carlo predictions. Other systematic uncertainties

considered are: a possible bias in the fitting procedure; cross-section uncertainties; muon

reconstruction uncertainties; energy, resolution and b-tagging uncertainties associated with

the additional jet; Emiss
T reconstruction uncertainties. The most significant of these are the

uncertainties associated with Monte Carlo modelling and jet resolution.

The final relative scales including all uncertainties are, for Cambridge–Aachen jets

(−0.6 ± 1.0(stat)+1.9
−1.7(syst))% and for anti-kt jets (+0.5 ± 1.2(stat)+2.7

−2.7(syst))%. There

is therefore no observed discrepancy between data and Monte Carlo simulation for jets

originating from W bosons with pT & 200 GeV.

3.4 In situ validation of the subjet energy scale

The trimming and mass-drop filtering procedures both rely heavily on the energy scale

of subjets in order to evaluate fcut or µfrac, respectively. A similar approach based on

double ratios as described in section 3.3.2 is used in order to determine the uncertainty on

the energy scale of these subjets. Tracks measured by the inner detector are utilized as

an independent reference with which to compare calorimeter measurements. Each subjet

measured by the calorimeter has a set of tracks associated with it. The following momentum

ratio is defined using the calorimeter pT (psubjet
T ) and the track pT (ptrack

T ) for each subjet:

rsubjet
trk =

∑
ptrack

T

psubjet
T

(3.3)

It is useful to identify the general features of the subjet structure of large-R jets in

dijet events in order to guide the study of the kinematic properties of subjets. These

jets are typically characterized by a highly energetic leading-psubjet
T subjet located close to

the parent jet axis as shown in figure 14. These leading subjets (with Rsub = 0.3) carry

a large fraction of the parent jet energy, and this fraction increases with the parent jet

pT: psubjet,lead
T /pjet

T ≈ 0.71 for 100 GeV ≤ pjet
T < 150 GeV and psubjet,lead

T /pjet
T ≈ 0.86 for

400 GeV ≤ pjet
T < 500 GeV. The second leading-psubjet

T subjet carries approximately 10%

of the energy of the parent jet, for jets in the range 100 GeV ≤ pjet
T < 500 GeV. The

leading-psubjet
T subjet is located on average at ∆R ≤ 0.07 from the axis of the parent jet,

while less energetic subjets are more distant from the axis of the parent jet: ∆R ≥ 0.5.

These observations are consistent with the increased radial collimation expected in jets

produced from gluons and light quarks as the jet pT rises [93]. Therefore, the subjet

structure of jets from dijet events can be characterized by looking only at the leading and

sub-leading subjets.
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Figure 14. (a) Mean subjet energy fraction and (b) mean distance of subjets to the axis of the

parent jet for different subjets in the jet.

Given the crowded nature of the subjet topology within a jet, many standard ap-

proaches to studying the subjet energy scale begin to fail. Associating individual tracks

with calorimeter subjets may begin to suffer from the proximity of multiple such subjets to

a given track, which can in turn impact the measurement of rsubjet
trk . Geometrical matching

relies on assumptions that are not fulfilled in high-density environments. This association

assumes a cone-like shape and an area of πR2
sub for all subjets, and that all tracks within

this area belong to the subjet. This assumption generally works well in the case of an

isolated anti-kt jet. Conversely, kt, C/A, and even anti-kt subjets in high-multiplicity envi-

ronments often have very irregular boundaries and the question of which tracks to associate

becomes more difficult to answer. Ghost-association [94, 95] provides a much more appro-

priate matching of the tracks to the calorimeter subjets for this scenario. In this technique,

tracks are treated as infinitesimally soft, low-pT particles by setting their pT to 1 eV. These

tracks are then added to the list of inputs for jet finding. The low scale means the tracks

do not affect the reconstruction of calorimeter-jets. However, after jet finding, it is possible

to identify which tracks are clustered into which subjets. This technique shows a more sta-

ble dependence of the ratio rsubjet
trk on the angular separation between subjets. Generally,

this approach facilitates the measurement of the effective area of a jet, or the so-called

ghost area. Instead of tracks, a uniform, fixed density (one per ∆y ×∆φ = 0.01× 0.01) of

infinitesimally soft particles is distributed within the event and are allowed to participate

in the jet clustering algorithm. Instead of identifying tracks associated with the resulting

jets, the number of such ghost particles present in the jet after reconstruction defines the

effective area of that jet.

Figure 15 shows the mean ratio rsubjet
trk as a function of the distance between the subjet

and its closest neighbour subjet in the η − φ plane (∆Rmin). The numerator of rsubjet
trk

corresponds to the total transverse momentum of tracks associated with the subjet using

either a standard geometric association (figure 15(a)) or the novel ghost-association tech-
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Figure 15. Mean ratio of track pT to calorimeter pT (rsubjettrk ) for sub-leading subjets as a function

of the distance of the subjet to the nearest subjet within the jet for (a) geometrical association and

(b) ghost association techniques.

nique (figure 15(b)). For standard geometric track association, a rise in rsubjet
trk is observed

for close-by subjets with ∆Rmin ≤ 2 × Rsub. The impact of the track association scheme

is more significant for the second leading subjet, which often has a very energetic sub-

jet nearby (i.e. the leading-psubjet
T one). For these cases geometrical association of tracks

fails dramatically, and the ratio rsubjet
trk is a factor of two smaller at ∆Rmin = 0.6 than at

∆Rmin = 0.3, which is approximately the smallest separation between jets. The double

ratio Rsubjet
trk = 〈rsubjet

trk 〉
data

/〈rsubjet
trk 〉

MC
provides an estimate of the calibration uncertainty.

Any difference is well within 5% for the leading-psubjet
T subjet and 20% for the second

leading subjet, independent of the track matching scheme.

3.5 Calibration of subjets

The HEPTopTagger [32] also relies on the energy scale of subjets to analyse the struc-

ture of R = 1.5 jets and to reconstruct a top-quark candidate four-momentum. This

section describes a dedicated calibration procedure for C/A subjets with a radius param-

eter R = 0.2− 0.5, which are used in the study of HEPTopTagger performance. Both the

compatibility of the structure with hadronic top-quark decay and the dependence of the

reconstructed four-momentum on the calibration are discussed here.

C/A jets — reconstructed as independent jets and not as constituents of parent jets,

as above — are first calibrated using a simulation of the calorimeter response to jets by

comparing the energy and pseudorapidity of a generator-level jet to that of a matched

calorimeter jet. Calibration constants obtained from this procedure are then applied to

the actual subjets reconstructed by the HEPTopTagger. For this reason, these C/A jets are

referred to using the same subjet notation as in the previous section. Prior to calibration,

the reconstructed jet energy is lower than the particle jet’s energy and is corrected as a
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Figure 16. Comparison of the calibrated Cambridge–Aachen R = 0.4 calorimeter jet pT with

the pT of tracks matched to the jet for ATLAS data recorded in 2011 and for dijet simulations

with PYTHIA. The average number µ of interactions per bunch crossing ranges from 4 to 7. (a)

The average ratio 〈rsubjettrk 〉 as a function of the calibrated jet pT. (b) The double ratio Rtrk =

〈rsubjettrk 〉
data

/〈rsubjettrk 〉
MC

. The horizontal line indicates the uncertainty-weighted average.

function of pT and in bins of η. For example, the correction for C/A jets with R = 0.4 and

|η| < 0.1 is +9% at low pT and up to +2.5% for pT > 500 GeV. The corrected pT matches

that of the particle jet to within 2% for all energies and pseudorapidities. For C/A R = 0.2

jets this closure test is 4% at pT = 20 GeV and better for higher pT.

Uncertainties on the jet calibration are determined from the quality of the modelling of

the calorimeter-jet pT. The direct ratio pjet
T (MC)/pjet

T (data) is sensitive to mismodelling of

jets at the hadron level. To reduce this effect, the calorimeter-jet pT is normalized to the pT

of the tracks within the jet. This is done because the uncertainty of the track-jet pT tends

to be small compared to the calorimeter-jet pT in the kinematic regime considered here.

Tracks are matched to calorimeter-jets using ghost-track association. The jets are required

to be within |η| < 2.1 to ensure coverage of the associated tracks by the tracking detector.

The average rsubjet
trk for a subset of the data characterized by an average number of

interactions per bunch crossing in the range 4 < µ < 7 is shown in figure 16(a) as a function

of pjet
T for both data and simulation for C/A R = 0.4 jets with |η| < 0.8. The double ratio

Rtrk = 〈rsubjet
trk 〉

data
/〈rsubjet

trk 〉
MC

is shown in figure 16(b). Deviations of Rtrk from unity serve

as an estimate of the uncertainty of the MC calibrated calorimeter-jet pT. The largest

deviation from unity is seen at low pT and is 4% with a statistical uncertainty of 1%. The

statistical uncertainty-weighted average double ratio is indicated by the horizontal line.

Similar results are obtained when varying the jet radius parameter between 0.2 and

0.5 and for higher pile-up conditions (evaluated using a subset of the data characterized

by 13 < µ < 15). A jet energy uncertainty of 3.5% is assigned.

The imperfect knowledge of the material distribution in the tracking detector consti-

tutes the dominating systematic uncertainty. It results in an additional uncertainty in Rtrk

of ≈ 2% for |η| < 1.4 and ≈ 3% for 1.4 < |η| < 2.1, although it does not introduce a

measurable shift.
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Figure 17. Comparison of the MC-calibrated Cambridge–Aachen R = 0.4 calorimeter jet pT
with the pT of tracks matched to the jet for an event sample consisting of about 50% semilep-

tonically decaying tt̄ pairs with the hadronically decaying top quark having pT > 200 GeV. (a)

The average ratio 〈rsubjettrk 〉 as a function of the MC-calibrated jet pT. (b) The double ratio

Rtrk = 〈rsubjettrk 〉
data

/〈rsubjettrk 〉
MC

.

The jet pT systematic uncertainty is taken to be the absolute deviation of the central

weighted-average Rtrk from unity, with the shifts introduced by the systematic variations

added in quadrature. The uncertainty varies between 2.3% and 6.8%, depending on the jet

pT, η, and the jet radius parameter. The uncertainty has been determined independently

in samples with low and high pile-up µ-values and no significant difference has been found.

A sample of boosted top quarks is used to study the impact of heavy flavour and

close-by jet topologies on the systematic uncertainties estimated above. The track-based

validation is applied to a sample of events that contains ' 50% semileptonically decaying tt̄

pairs, in which the top quark with the hadronically decaying W boson has pt
T > 200 GeV.

The remaining events are dominated by W+jets production. Figure 17 shows rsubjet
trk and

Rtrk for C/A R = 0.4 jets in these events. The jet pT uncertainty in this sample varies

between 2.4% and 5.7%.

4 Jet substructure and grooming in the presence of pile-up

4.1 Impact of pile-up on the jet energy scale and the jet mass scale

This section elaborates on the impact of pile-up on the jet mass and other observables,

and the extent to which trimming, mass-drop filtering, and pruning are able to minimize

these effects. In particular, these measures of performance are used as some of the primary

figures of merit in determining a subset of groomed jet algorithms on which to focus for

physics analysis in ATLAS.

Figure 18 shows the dependence of the mean uncalibrated jet mass, 〈mjet〉, on the

number of reconstructed primary vertices, NPV, for a variety of jet algorithms in the

central region |η| < 0.8. The events used for these comparisons are obtained with the
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Figure 18. Evolution of the mean uncalibrated jet mass, 〈mjet〉, for jets in the central region

|η| < 0.8 as a function of the reconstructed vertex multiplicity, NPV for jets in the range 200 GeV ≤
pjetT < 300 GeV (left) and for leading-pjetT jets (〈mjet

1 〉) in the range 600 GeV ≤ pjetT < 800 GeV

(right). (a)-(b) show trimmed anti-kt jets with R = 1.0, (c)-(d) show pruned anti-kt jets with

R = 1.0, and (e)-(f) show mass-drop filtered C/A jets with R = 1.2. The error bars indicate the

statistical uncertainty on the mean value in each bin.
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inclusive selection described in section 2.2 and contain an admixture of light quark and

gluon jets. This dependence is shown in two pjet
T ranges of interest for jets after trimming

(figures 18(a)–18(b)), pruning (figures 18(c)–18(d)), and mass-drop filtering (figures 18(e)–

18(f)). For these comparisons, only the final period of data collection from 2011 is used,

which corresponds to approximately 1 fb−1 of integrated luminosity but is the period with

the highest instantaneous luminosity recorded at
√
s = 7 TeV, where 〈µ〉 = 12, higher

than the average over the whole 2011 data-taking period. The lower range, 200 GeV ≤
pjet

T < 300 GeV, represents the threshold for most hadronic boosted-object measurements

and searches, whereas the range 600 GeV ≤ pjet
T < 800 GeV is expected to contain top

quarks for which the decay products are fully merged within an R = 1.0 jet nearly 100% of

the time. In each figure, the full set of grooming algorithm parameter settings is included

for comparison. As noted in table 1, two values of the subjet radius, Rsub, are used

for trimming, three Rcut factors for pruning are tested (using the kt algorithm with the

procedure in all cases), and three µfrac settings are evaluated using the filtering algorithm.

Several observations can be made from figure 18. Of the grooming configurations

tested, trimming and filtering both significantly reduce the rise with pile-up of 〈mjet〉 seen

for ungroomed jets, whereas pruning does not. For at least one of the configurations tested,

trimming and filtering are both able to essentially eliminate this dependence. Furthermore,

the trimming configurations tested provide a highly tunable set of parameters that allow a

relatively continuous adjustment from small to large reduction of the pile-up dependence

of the jet mass. The trimming configurations with Rsub = 0.2, fcut = 0.03 and Rsub =

0.3, fcut = 0.05 exhibit good stability for both small and large pjet
T , with the fcut = 0.05

configuration exhibiting a slightly smaller impact from pile-up at high NPV for low pjet
T

(not shown). The other parameter settings either do not reduce the pile-up dependence at

low pjet
T (e.g. fcut = 0.01) or result in a downward slope of 〈mjet〉 as a function of pile-up

at high pjet
T (e.g. fcut = 0.05, Rsub = 0.2).

Pruning, on the other hand, exhibits the smallest impact on the pile-up dependence of

the jet mass for these large-R jets. Only by increasing the zcut parameter from zcut = 0.05

to zcut = 0.10 can any reduction on the dependence of 〈mjet〉 on pile-up be observed. This

is equivalent to reducing the low-pT contributions during the jet recombination; in the

language of trimming, this is analogous to raising fcut. This change slightly reduces the

magnitude of the variation of the mean jet mass as a function NPV for low pjet
T . The Rcut

parameter has very little impact on the performance, with nearly all of the differences

observed being due to the change in zcut. This observation holds for both small and

large pjet
T .

The mass-drop filtering algorithm can be made to affect 〈mjet〉 significantly solely via

the mass-drop criterion, µfrac. A drastic change in 〈mjet〉 is observed for all configurations

of the jet filtering, with the strictest µfrac = 0.20 setting rejecting nearly 90% of the jets

considered and resulting in a slightly negative slope in the mean jet mass versus NPV.

Nevertheless, the other two settings of µfrac tested exhibit no significant variation as a

function of the number of reconstructed vertices, and the optimum value of µfrac = 0.67

found previously seems to have the best stability. Studies from 2010 [25] demonstrate
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Figure 19. Dependence of the mean jet mass, 〈mjet
1 〉, on the reconstructed vertex multiplicity for

leading-pjetT anti-kt jets with R = 1.0 in the range 600 GeV ≤ pjetT < 800 GeV in the central region

|η| < 0.8 for both (a) untrimmed anti-kt jets and (b) trimmed anti-kt jets with fcut = 0.05. The

error bars indicate the statistical uncertainty on the mean value in each bin.

that this reduction in the sensitivity to pile-up is due primarily to the filtering step in the

algorithm as opposed to the jet selection itself.5

Figure 19 presents the pile-up dependence of the mean leading-pjet
T jet mass, 〈mjet

1 〉, in

data compared to the three simulations. Here, only the range 600 GeV ≤ pjet
T < 800 GeV for

ungroomed and trimmed anti-kt jets is shown for brevity, but similar conclusions apply in all

pjet
T ranges. The comparison is made using the full 2011 dataset. PYTHIA, HERWIG++,

and POWHEG+PYTHIA all model the data fairly accurately, with a slight 5%–10% dis-

crepancy appearing in the predictions from PYTHIA and HERWIG++ for the trimmed

jets. Most importantly, the impact of pile-up is very well modelled, with the slope of the

dependence of 〈mjet
1 〉 on NPV in data agreeing within 3% with the POWHEG+PYTHIA

prediction for both the ungroomed and trimmed jets.

Beyond simply providing a pile-up-independent average jet mass, the optimal groom-

ing configurations render the full jet mass spectrum insensitive to high instantaneous lu-

minosity. Figure 20 demonstrates this by comparing the jet mass spectrum for leading-pjet
T

ungroomed and trimmed anti-kt jets for various values of NPV. The comparison is per-

formed both in an inclusive data sample and using the Z ′ → tt̄ MC sample, which produces

a characteristic peak at the top-quark mass. The inclusive jet sample obtained from data

shows that a nearly identical trimmed mjet spectrum is obtained regardless of the level

of pile-up. The peak of the leading-pjet
T jet mass distribution for events with NPV ≥ 12

is shifted comparatively more due to trimming: from mjet ≈ 125 GeV to mjet ≈ 45 GeV

5The performance of grooming also depends on the radius parameter, R, which was not varied in these

studies for a single jet algorithm. In particular, the relative efficacy of the various grooming algorithms

and configurations in mitigating the effects of pile-up can change with R and will be studied in a future

analysis.
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(d) Z′: anti-kt, R = 1.0: Trimmed

Figure 20. Jet mass spectra for four primary vertex multiplicity ranges for anti-kt jets with R = 1.0

in the range 600 GeV ≤ pjetT < 800 GeV. Both untrimmed (left) and trimmed (right) anti-kt jets

are compared for the various NPV ranges in data (top) and for a Z ′ → tt̄ Monte Carlo sample

(bottom).

compared to an initial peak position of mjet ≈ 90 GeV for events with 1 ≤ NPV ≤ 4.

Nonetheless, the resulting trimmed jet mass spectra exhibit no dependence on NPV.

Comparisons performed using the simulated Z ′ → tt̄ sample demonstrate the same

performance of the trimming algorithm, but in the context of the reconstruction of highly

boosted top quarks. Figures 20(c)-(d) indicate that the ability to render the full jet mass

distribution independent of pile-up does not come at the cost of the mass resolution or

scale. Prior to jet trimming, a variation in the peak position of the jet mass of nearly

15 GeV is observed between the lowest and the highest ranges of NPV studied. After

jet trimming, the resulting mass spectra for the various NPV ranges are narrower and
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lie directly on top of one another, even in the case of a jet containing a highly boosted,

and thus very collimated, top-quark decay. This observation, combined with that above,

demonstrates that the trimming algorithm is working as expected by removing soft, wide-

angle contributions to the calculation of the jet mass while retaining the relevant hard

substructure of the jet.

Finally, although not shown explicitly, the mass-drop filtered jet mass is also stable

with respect to pile-up.

The track-jet approach used to evaluate the jet mass uncertainty (see section 3.3.2)

is also used to understand the effects of pile-up. It is observed that rmtrack jet is nearly

equal for the various trimming configurations in the case of little or no in-time pile-up

(i.e. NPV ≈ 1) whereas filtering shows a significant, although small, difference between

the configurations using µfrac = 0.67, 0.33, 0.20. This shows that the filtering method does

affect the magnitude of mjet and mtrack jet slightly differently, resulting in an approximate

12% relative drop in 〈rmtrack jet〉 after filtering. These distributions are nonetheless well

modelled by the simulation, resulting in double ratios of data to simulation very close to

one. The trimming configuration with Rsub = 0.3, fcut = 0.01 has almost no impact on the

dependence of rmtrack jet with pile-up.

4.2 Impact of pile-up on jet substructure properties

Figures 21 and 22 show the variation with pile-up observed in data for the splitting scales

and N -subjettiness observables for jets in the range 600 GeV ≤ pjet
T < 800 GeV. In this

case, the focus is on jet trimming since the mass-drop filtering algorithm makes a pre-

defined choice to search for properties of a jet characteristic of a two-body decay. The

constraints placed on subjet multiplicity by the filtering procedure are not appropriate for

calculating generic jet shapes given the strict substructure requirements they place on a jet.

Furthermore, pruning of jets with R = 1.0 does not seem to mitigate the effects of pile-up.

The trimming configurations with Rsub = 0.3 and fcut = 0.03, 0.05 yield the most stable

jet substructure properties with the smallest deviation in their observed mean values at

low NPV. This conclusion holds for all other jet pjet
T ranges as well, with larger differences

between fcut = 0.03, 0.05 appearing at low pjet
T .

Figure 23 presents a comparison of data and Monte Carlo simulation for 〈
√
d12〉 and

〈τ32〉 for ungroomed and trimmed (Rsub = 0.3, fcut = 0.05) anti-kt jets with R = 1.0. The

slope of these observables as a function of NPV is well modelled by the simulation.

4.3 Impact of pile-up on signal and background in simulation

In addition to the comparisons between data and simulation, and between the various

grooming configurations, a comparison of how grooming impacts signal-like events versus

background-like events in searches for resonances decaying to boosted jets is crucial.

Figure 24 shows the variation of the average leading-pjet
T jet mass, 〈mjet

1 〉, with NPV for

events with 600 GeV ≤ pjet
T < 800 GeV for ungroomed and trimmed anti-kt, R = 1.0 jets,

for both the Z ′ → tt̄ sample and the POWHEG+PYTHIA dijet sample. The average

ungroomed leading-pjet
T jet mass in the sample of gluons and light quarks in the inclusive

POWHEG+PYTHIA dijet events exhibits a slope of approximately d〈mjet
1 〉/dNPV ≈

3 GeV/NPV. The leading-pjet
T jets in the Z ′ sample are typically entirely composed of fully

– 34 –



J
H
E
P
0
9
(
2
0
1
3
)
0
7
6

)
PV

Reconstructed vertex multiplicity (N
0 2 4 6 8 10 12 14

 [G
eV

]
〉

12d
〈

20

30

40

50

60

70

80

90

100

110
ATLAS  = 7 TeVs, -1 Ldt = 1 fb∫
Data 2011

 LCW jets with R=1.0tanti-k
 < 800 GeV

T

jet p≤600 
No jet grooming =0.3

sub
=0.01, Rcutf

=0.3
sub

=0.03, Rcutf =0.3
sub

=0.05, Rcutf
=0.2

sub
=0.01, Rcutf =0.2

sub
=0.03, Rcutf

=0.2
sub

=0.05, Rcutf

(a)
√
d12

)
PV

Reconstructed vertex multiplicity (N
0 2 4 6 8 10 12 14

 [G
eV

]
〉

23d
〈

5

10

15

20

25

30

35

40

45
ATLAS  = 7 TeVs, -1 Ldt = 1 fb∫
Data 2011

 LCW jets with R=1.0tanti-k
 < 800 GeV

T

jet p≤600 
No jet grooming =0.3

sub
=0.01, Rcutf

=0.3
sub

=0.03, Rcutf =0.3
sub

=0.05, Rcutf
=0.2

sub
=0.01, Rcutf =0.2

sub
=0.03, Rcutf

=0.2
sub

=0.05, Rcutf

(b)
√
d23

Figure 21. Variation with the number of reconstructed primary vertices, NPV, of the mean

splitting scales (a) 〈
√
d12〉 and (b) 〈

√
d23〉 measured in data for anti-kt jets with R = 1.0 in the

range 600 GeV ≤ pjetT < 800 GeV before and after trimming. The error bars indicate the statistical

uncertainty on the mean value in each bin.
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Figure 22. Variation with the number of reconstructed primary vertices, NPV, of the mean N -

subjettiness ratios (a) 〈τ21〉 and (b) 〈τ32〉 measured in data for anti-kt jets with R = 1.0 in the

range 600 GeV ≤ pjetT < 800 GeV before and after trimming. The error bars indicate the statistical

uncertainty on the mean value in each bin.

hadronic boosted top-quark decays contained in a single jet. The mass reconstruction in

this case proceeds as usual (four-momentum recombination) and the mass distribution is

highly peaked near the top-quark mass of approximately 175 GeV. Jets in this peak but

without grooming exhibit a slope of roughly d〈mjet
1 〉/dNPV ≈ 2.15 GeV/NPV, or about

30% smaller than in the inclusive jet sample. In the case of trimmed jets, the slopes as a

function of NPV for both signal-like jets and jets in dijet events are consistent with zero.
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Figure 23. Variation with the number of reconstructed primary vertices, NPV, of (a) the mean

N -subjettiness ratio (〈τ32〉) for ungroomed anti-kt jets with R = 1.0 and (b) the mean splitting

scales (〈
√
d12〉) for trimmed jets (Rsub = 0.3, fcut = 0.05), for data and simulation. The error bars

indicate the statistical uncertainty on the mean value in each bin. The lower panels show the ratio

of the mean values measured in data to simulation.

)
PV

Reconstructed vertex multiplicity (N
0 2 4 6 8 10 12 14

 [G
eV

]
〉

1je
t

m〈

100

150

200

250

300
ATLAS Simulation

 LCW jets with R=1.0tanti-k
No jet grooming

| < 0.8η < 800 GeV, |
T

jet
 p≤600 

Dijets (POWHEG+Pythia)
=1.6 TeV)

Z'
 (mt t→Z'

(a) Ungroomed

)
PV

Reconstructed vertex multiplicity (N
0 2 4 6 8 10 12 14

 [G
eV

]
〉

1je
t

m〈

100

150

200

250

300
ATLAS Simulation

 LCW jets with R=1.0tanti-k
=0.3

sub
=0.05, Rcutf

| < 0.8η < 800 GeV, |
T

jet
 p≤600 

Dijets (POWHEG+Pythia)
=1.6 TeV)

Z'
 (mt t→Z'

(b) Trimmed

Figure 24. Variation with the number of reconstructed primary vertices, NPV, of the average

leading-pjetT jet mass, 〈mjet
1 〉, in the range 600 GeV ≤ pjetT < 800 GeV for (a) ungroomed and (b)

trimmed jets. The error bars indicate the statistical uncertainty on the mean value in each bin.

Most importantly, the average separation between the mean jet mass for signal-like

jets in the Z ′ sample and those in the POWHEG+PYTHIA dijet sample increases by

nearly 50% after trimming and remains stable across the full range of NPV. This allows

for much better discrimination between the two processes. The separation shown here is

significant since the widths of the peaks of each of the distributions are also simultaneously
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narrowed by the grooming algorithm, as shown in figure 20. This differential impact of

trimming is again due to the design of the algorithm: soft, wide-angle contributions to the

jet mass that are ubiquitous in jets produced from light quarks and gluons are suppressed

whereas the hard components present in a jet with true substructure — as in the case of

the top-quark jets here — are preserved.

5 Jet substructure and grooming with boosted objects in data and sim-

ulation

Comparisons between jets containing signal-like boosted objects and a light-quark or gluon

jet background are presented here. Boosted objects are divided into two categories depend-

ing on the event topology: two-pronged, such as hadronically decaying W or Z bosons, and

three-pronged, such as the top quark decaying into a b-jet and a hadronically decaying W

boson. Performance measures are shown for both simulated samples of Z → qq̄ and top

quarks (from Z ′ → tt̄), as well as for inclusive jet data and events enriched in boosted

top quark pairs. In addition to the event and object selection listed in section 2.2, the

large-R ungroomed leading-pjet
T jet axis is required to be within |η| < 2.0. For the signal

distributions, a ∆R < 1.5 match between the four-momentum of the hadronically decay-

ing boosted object in the truth record and the reconstructed ungroomed leading-pjet
T jet is

made to minimize the contamination from light-quark or gluon jets (or top quarks with a

leptonically decaying W boson in the Z ′ sample).

5.1 Expected performance of jet substructure and grooming in simulation

5.1.1 Jet mass resolution for background

The fractional jet mass resolution is defined as the width of a Gaussian fit to the central part

of the distribution that is generated by taking the difference between the generator-level jet

mass and the reconstructed jet mass, divided by the same generator-level jet mass. Here,

the generator-level jet is the simulated particle shower that has been groomed according to

the same grooming algorithms used after jet reconstruction. Large-R generator-level and

reconstructed jets before grooming are matched if they are within ∆R < 0.7. The matching

is performed only once and comparisons between generator-level and reconstructed jets

after grooming are made using the groomed versions of the matched ungroomed jets. The

mass-drop filtering method is not applied to anti-kt jets, as discussed in section 1.2.

Figure 25 shows the fractional mass resolution for leading-pjet
T jets in the

POWHEG+PYTHIA dijet sample with the same pile-up conditions as were observed

in the data. Abbreviated versions of the groomed algorithm names used to label the fig-

ures are listed in table 3. In general, the groomed jets have better resolution than the

ungroomed large-R jets, with improvements of up to ∼10% (absolute) in some cases. The

trimmed and pruned jet resolution improves with increasing pT, where the calibrated jets

gain ∼3−5% over the range 300 GeV ≤ pjet
T < 800 GeV. The pruning algorithm, especially

with C/A jets, produces larger tails in the resolution distribution compared to the trimmed

algorithm, worsening the overall fractional resolution in comparison. The resolution is fairly

stable for the mass-drop filtering algorithm over a large range of pT. It is important to
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Label Algorithm and Parameters Label Algorithm and Parameters

Trm PtF1 R30 Trimmed, fcut = 1%, Rsub = 0.3 Prn Rc10 Zc5 Pruned, Rcut = 0.1, zcut = 5%

Trm PtF3 R30† Trimmed, fcut = 3%, Rsub = 0.3 Prn Rc10 Zc10 Pruned, Rcut = 0.1, zcut = 10%

Trm PtF5 R30‡ Trimmed, fcut = 5%, Rsub = 0.3 Prn Rc20 Zc5 Pruned, Rcut = 0.2, zcut = 5%

Trm PtF1 R20 Trimmed, fcut = 1%, Rsub = 0.2 Prn Rc20 Zc10 Pruned, Rcut = 0.2, zcut = 10%

Trm PtF3 R20 Trimmed, fcut = 3%, Rsub = 0.2 Prn Rc30 Zc5 Pruned, Rcut = 0.3, zcut = 5%

Trm PtF5 R20 Trimmed, fcut = 5%, Rsub = 0.2 Prn Rc30 Zc10 Pruned, Rcut = 0.3, zcut = 10%

MD Filt mf20 Mass-drop Filtered, µfrac = 0.2 MD Filt mf67§ Mass-drop Filtered, µfrac = 0.67

MD Filt mf33 Mass-drop Filtered, µfrac = 0.33

Table 3. Labels used in figures to represent the various configurations of the grooming algorithms.
†Groomed jets have been calibrated for both anti-kt and C/A jets. ‡Groomed jets have been

calibrated for anti-kt only. §Groomed jets have been calibrated for C/A only.
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Figure 25. Fractional mass resolution comparing the various grooming algorithms (with labels

defined in table 3) for the leading-pjetT jet in POWHEG+PYTHIA dijet simulated events. Here,

nominal refers to jets before grooming is applied. Three ranges of the nominal jet pjetT are shown.

The uncertainty on the width of the Gaussian fit is indicated by the error bars.

note that the efficiency is considerably lower for jets resulting from this algorithm com-

pared with jets produced in other grooming procedures (∼30%) due to the strict mass-drop

requirement, which is often not met for jets without boosted object substructure.

A summary of the fractional mass resolution for jets before and after grooming in

the presence of various pile-up conditions is shown in figure 26. Trimming in both anti-kt
and C/A jets reduces the dependence of the jet mass on pile-up (spread in the points)

compared to the ungroomed jet, as does the mass-drop filtering procedure in the case of

C/A jets, while pruning has little impact. In all cases, no pile-up subtraction is applied

to the ungroomed jet kinematics. In particular, the trimming parameters fcut = 0.03 and

0.05 slightly outperform the looser fcut = 0.01 setting in events with a mean number of
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Figure 26. Fractional mass resolution comparing the various grooming algorithms (with labels

defined in table 3) for the leading-pjetT jet in the range 500 GeV ≤ pjetT < 600 GeV in dijet events,

simulated with POWHEG+PYTHIA. Nominal refers to jets before grooming is applied. Various

ranges of the average number of interactions (〈µ〉) in the events are shown. The uncertainty on the

width of the Gaussian fit is indicated by the error bars.

interactions greater than 12. They also exhibit a significantly reduced overall variation

between various instantaneous luminosities.

Based on the above comparisons of mass resolution in different pjet
T ranges and under

various pile-up conditions, two configurations, trimmed anti-kt jets (fcut = 0.05, Rsub =

0.3) with R = 1.0 and filtered C/A jets (µfrac = 0.67) with R = 1.2, are chosen for detailed

comparisons between data and simulation and are presented in section 5.2.

5.1.2 Jet mass resolution for simulated signal events

Figures 27 and 28 show the fractional mass resolution for the two-pronged and three-

pronged cases, respectively. The mass-drop filtering algorithm is shown only for the simu-

lated two-pronged signal events with C/A jets. In the two-pronged case, as for the case of

jets in the inclusive jet events shown in figure 25, the C/A mass-drop filtering algorithm

performs the best, but with a signal reconstruction efficiency of ∼ 45% in Z → qq̄ events

(for µfrac = 0.67). In both the two-pronged and three-pronged configurations, the trimmed

jets have better fractional mass resolution (∼ 5− 10%) than the pruned jets, especially for

those jets with grooming applied after the C/A algorithm. The trimmed jet mass resolu-

tion also remains fairly stable across a large pjet
T range, with equivalent performance for

anti-kt and C/A jets.

5.1.3 Signal and background comparisons with and without grooming

Leading-pjet
T jet distributions of mass, splitting scales and N -subjettiness are compared for

jets in simulated signal and background events in the range 600 GeV ≤ pjet
T < 800 GeV.

As seen in figures 29–31, showing distributions for the two-pronged decay case, and in
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Figure 27. Fractional mass resolution of the leading-pjetT jet in Z → qq̄ simulated events comparing

the various grooming algorithms. Here, nominal refers to jets before grooming is applied. Three

ranges of the nominal jet pjetT are shown. The uncertainty on the width of the Gaussian fit is

indicated by the error bars.
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Figure 28. Fractional mass resolution of the leading-pjetT jet in Z ′ → tt̄ (mZ′ = 1.6 TeV) simulated

events comparing the various grooming algorithms. Here, nominal refers to the jet before grooming

is applied. Three ranges of the ungroomed jet pjetT are shown. The uncertainty on the width of the

Gaussian fit is indicated by the error bars.

figures 32–35 showing comparisons for the three-pronged decay case, better discrimination

between signal and background is obtained after grooming. In these figures, the ungroomed

distributions are normalized to unit area, while the groomed distributions have the effi-

ciency with respect to the ungroomed large-R jets folded in for comparison. This is espe-

cially conspicuous in the C/A jets with mass-drop filtering applied as mentioned previously.

The mass resolution of the simulated Z → qq̄ signal events shown in figure 29 dra-

matically improves after trimming or mass-drop filtering for anti-kt jets with R = 1.0 and
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Figure 29. Leading-pjetT jet mass for simulated HERWIG+JIMMY Z → qq̄ signal events (red)

compared to POWHEG+PYTHIA dijet background events (black) for jets in the range 600 GeV ≤
pjetT < 800 GeV. The dotted lines show the ungroomed jet distributions, whereas the solid lines

show the (a) trimmed and (b) mass-drop filtered jet distributions. The trimming parameters are

fcut = 0.05 and Rsub = 0.3 and the mass-drop filtering parameter is µfrac = 0.67. The groomed

distributions are normalized with respect to the ungroomed distributions, which are themselves

normalized to unity.
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Figure 30. Leading-pjetT jet splitting scale
√
d12 for simulated HERWIG+JIMMY Z → qq̄ signal

events (red) compared to POWHEG+PYTHIA dijet background events (black) for jets in the

range 600 GeV ≤ pjetT < 800 GeV. The dotted lines show the ungroomed jet distributions, while

the solid lines show the (a) trimmed and (b) mass-drop filtered jet distributions. The trimmed

parameters are fcut = 0.05 and Rsub = 0.3 and the mass-drop filtering parameter is µfrac = 0.67.

The groomed distributions are normalized with respect to the ungroomed distributions, which are

themselves normalized to unity.
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Figure 31. Leading-pjetT jet N -subjettiness τ21 for simulated HERWIG+JIMMY Z → qq̄ signal

events (red) compared to POWHEG+PYTHIA dijet background events (black) for jets in the

range 600 GeV ≤ pjetT < 800 GeV. The dotted lines show the ungroomed jet distributions, while

the solid lines show the (a) trimmed and (b) mass-drop filtered jet distributions. The trimmed

parameters are fcut = 0.05 and Rsub = 0.3 and the mass-drop filtering parameter is µfrac = 0.67.

The groomed distributions are normalized with respect to the ungroomed distributions, which are

normalized to unity.

C/A jets with R = 1.2, respectively. Mass-drop filtering has an efficiency of approximately

55% and therefore fewer jets remain in this figure. After trimming or mass-drop filtering,

the mass peak corresponding to the Z boson is clearly seen at the correct mass. Note that

the dijet background is pushed much lower in mass after grooming as was demonstrated

in figure 20, while the constituents of signal jets have higher pT and survive the grooming

procedure, thus improving discrimination between signal and background. The small ex-

cess of signal events below 50 GeV is the result of one of the two quarks from the decay

of the Z boson being removed by the jet grooming, thus leaving only one quark recon-

structed as the jet and making it indistinguishable from the background. Figure 30 shows

the splitting scale
√
d12 in Z → qq̄ events. The signal exhibits a splitting scale roughly

equal to half the mass of the jet, whereas the splitting scale distribution for jets produced in

dijet events peaks at smaller values of
√
d12 and falls more steeply. This effect is enhanced

after grooming, especially in the case of C/A jets after mass-drop filtering. In figure 31,

the N -subjettiness variable τ21 is observed to have improved discrimination between signal

and background with anti-kt trimmed jets compared to C/A mass-drop filtered jets, where

the discrimination is worsened after applying the mass-drop filtering criteria. The filtering

step is explicitly reconstructing a fixed number of final subjets (three, in this case), thereby

shaping the background and worsening the resulting separation.

The three-pronged hadronic top-jet mass distributions from Z ′ → tt̄ events are shown

in figure 32, where the signal peak is relatively unshifted between groomed and ungroomed

jets, especially with anti-kt jets. Again the mass resolution for the signal improves after

grooming, where the W -mass peak can also be seen after trimming is applied. The en-
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Figure 32. Leading-pjetT jet mass for simulated PYTHIA Z ′ → tt̄ (mZ′ = 1.6 TeV) signal events

(red) compared to POWHEG+PYTHIA dijet background events (black) for jets in the range

600 GeV ≤ pjetT < 800 GeV. The dotted lines show the ungroomed leading-pjetT jet distribution,

while the solid lines show the corresponding trimmed (fcut = 0.05, Rsub = 0.3) jets. The groomed

distributions are normalized with respect to the ungroomed distributions, which are themselves

normalized to unity.

hancement of the W -mass peak is seen especially in jets with lower pjet
T , as the jet from

the b-quark decay falls outside the radius of the large-R jet. Figures 33 and 34 show the

variables
√
d12 and

√
d23, respectively, for Z ′ → tt̄ events compared to jets produced in

dijet events. As in the two-pronged case, signal discrimination with the splitting scales is

enhanced after jet trimming.

One of the primary applications of N -subjettiness is as a discriminating variable in

searches for highly boosted top quarks [18]. A common method of comparing the per-

formance of such discriminating variables or tagging algorithms is to compare the rate at

which light-quark or gluon jets are selected (the mis-tag rate) to the efficiency for retaining

jets containing the hadronic particle decay of interest [13, 14]. This comparison is per-

formed for both ungroomed and trimmed jets in order to assess the impact of grooming on

the discrimination power of this observable. Figure 35 shows the τ32 distribution before and

after trimming. Here, trimming of anti-kt and C/A jets results in similar discrimination

between signal and background. In order to understand the utility of the τ32 selection crite-

rion and the potential impact of jet grooming, trimmed anti-kt, R = 1.0 jets are compared

to their ungroomed counterparts in a boosted top sample for two jet momentum ranges.

The signal mass range is defined as that which contains a large fraction of the boosted top

signal. For ungroomed jets this fraction is set to 90%, and the mass range that satisfies

this requirement is 100 GeV ≤ mjet < 250 GeV. A slightly lower signal fraction of 80%

for the same mass range is required for groomed jets; this is motivated by the tendency

for trimmed jets to populate an additional small peak around the W mass, as shown in

figure 32.
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Figure 33. Leading-pjetT jet splitting scale
√
d12 for simulated PYTHIA Z ′ → tt̄ (mZ′ = 1.6 TeV)

signal events (red) compared to POWHEG+PYTHIA dijet background events (black) for jets

in the range 600 GeV ≤ pjetT < 800 GeV. The dotted lines show the ungroomed leading-pjetT jet

distribution, while the solid lines show the corresponding trimmed (fcut = 0.05, Rsub = 0.3) jets.

The groomed distributions are normalized with respect to the ungroomed distributions, which are

themselves normalized to unity.
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Figure 34. Leading-pjetT jet splitting scale
√
d23 for simulated PYTHIA Z ′ → tt̄ (mZ′ = 1.6 TeV)

signal events (red) compared to POWHEG+PYTHIA dijet background events (black) for jets

in the range 600 GeV ≤ pjetT < 800 GeV. The dotted lines show the ungroomed leading-pjetT jet

distribution, while the solid lines show the corresponding trimmed (fcut = 0.05, Rsub = 0.3) jets.

The groomed distributions are normalized with respect to the ungroomed distributions, which are

themselves normalized to unity.

The mis-tag rate is defined as the fraction of the POWHEG dijet sample that remains

in the mass window after a simple selection based on τ32. The signal top jet efficiency is

defined as the fraction of top jets selected in the Z ′ sample with the same τ32 selection.
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Figure 35. Leading-pjetT jet N -subjettiness τ32 for simulated PYTHIA Z ′ → tt̄ (mZ′ = 1.6 TeV)

signal events (red) compared to POWHEG+PYTHIA dijet background events (black) for jets

in the range 600 GeV ≤ pjetT < 800 GeV. The dotted lines show the ungroomed leading-pjetT jet

distribution, while the solid lines show the corresponding trimmed (fcut = 0.05, Rsub = 0.3) jets.

The groomed distributions are normalized with respect to the ungroomed distributions, which are

themselves normalized to unity.
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Figure 36. Jet mis-tag rate for dijet events vs. top-jet efficiency curves using τ32 as a top tagger

for (a) 600 GeV ≤ pjetT < 800 GeV and (b) 800 GeV ≤ pjetT < 1000 GeV with masses in the range

100 GeV ≤ mjet < 250 GeV.

Figure 36 shows the performance of the N -subjettiness tagger for jets with 600 GeV ≤
pjet

T < 800 GeV and 800 GeV ≤ pjet
T < 1000 GeV. In both cases, for a fixed top-jet efficiency,

the reduction in high-invariant-mass jets due to trimming results in a relative reduction of

several percent in the mis-tag rate. Moreover, in the case of very high pjet
T , as in figure 36(b),

the slightly more aggressive trimming configuration results in a slight performance gain

as well.
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Figure 37. Mass of jets in the range 600 GeV ≤ pjetT < 800 GeV and in the central calorimeter

(|η| < 0.8). Shown are (a) ungroomed and (b) trimmed (fcut = 0.05, Rsub = 0.3) anti-kt jets with

R = 1.0; and (c) ungroomed and (d) filtered (µfrac = 0.67) C/A jets with R = 1.2. The ratios

between data and MC distributions are shown in the lower section of each figure.

5.2 Inclusive jet data compared to simulation with and without grooming

Previous studies conducted by ATLAS [25] and CMS [26] suggest that even complex jet

substructure observables are fairly well modelled by the MC simulations used by the LHC

experiments. This section reviews the description provided by PYTHIA, HERWIG++,

and POWHEG+PYTHIA of the jet grooming techniques introduced above, and of the

substructure of the ungroomed and groomed jets themselves.

Figure 37 presents a comparison of the jet invariant mass for ungroomed, trimmed, and

filtered jets in the range 600 GeV ≤ pjet
T < 800 GeV and in the central calorimeter, |η| < 0.8.

Similar performance is observed in all other pT regions in the range pT > 300 GeV, and
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Figure 38. Mass of jets in the range 600 GeV ≤ pjetT < 800 GeV and in the central calorimeter

(|η| < 0.8). In (a) anti-kt jets with R = 1.0 are compared before (ungroomed) and after trimming

with several configurations of pT fraction (fcut) and subjet size (Rsub). In (b) C/A jets with R = 1.2

are compared before and after filtering with three different values of mass-drop fraction (µfrac).

|η| < 2.1. The description of both the ungroomed and trimmed anti-kt jets with R = 1.0

provided by PYTHIA is poor for large masses. The descriptions provided by HERWIG++

as well as for the NLO generator POWHEG+PYTHIA are more accurate. PYTHIA

tends to underestimate the fraction of high-mass large-R anti-kt jets, whereas HERWIG++

and POWHEG+PYTHIA are accurate to within a few percent, even for very massive

jets. The ungroomed anti-kt, R = 1.0 jets are poorly described by all three MC simulations

at low mass; this could be due to non-perturbative and detector effects which increase the

jet mass. This generally soft contribution is removed by grooming.

A similarly poor description of the low-mass region is observed for C/A jets with R =

1.2. In this case however, PYTHIA, in addition to both HERWIG++ and POWHEG

+PYTHIA, provides a fairly good description of the high-mass regime of the jet mass

spectrum. This suggests that there is a slight angular scale dependence, and the slightly

smaller radius used for the large-R anti-kt jets in these studies could play a role in the

observed discrepancy with PYTHIA. Figure 37 also shows that the shape of the jet mass

distribution is significantly affected by the mass-drop filtering technique. This change is

well described by all of the MC simulations, although the accuracy of the HERWIG++

and POWHEG+PYTHIA predictions is again observed to be slightly better.

Figure 38 presents an overview of the shape of the jet mass spectrum for several

configurations of the jet trimming algorithm for anti-kt jets and for C/A jets with mass-

drop filtering applied. These spectra are measured using approximately 1 fb−1 of data from

the last data-taking period of 2011 where 〈µ〉 = 12, higher than the average over the whole

2011 data-taking period. The significant spectral shift and shape difference compared to

the original jet is apparent for both grooming algorithms shown (and also for pruning,

which is not shown here). Significant variation is also observed among the configurations
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Figure 39. Average area of jets in the range 500 GeV ≤ pjetT < 600 GeV as a function of jet mass.

Shown are (a) ungroomed and (b) trimmed (fcut = 0.05, Rsub = 0.3) anti-kt jets with R = 1.0.

The ratios between data and MC distributions are shown in the lower section of each figure.

tested, with the large fcut, small Rsub setting for trimming and the small µfrac setting for

mass-drop filtering exhibiting the most dramatic changes. For jet masses in the range of

50 GeV ≤ mjet < 300 GeV, which is expected to be the most relevant in searches for new

physics, the trimming configurations exhibit efficiencies in the range of 30%–70%, defined as

the ratio of the yield after grooming to that prior to grooming. In particular, the trimming

configuration with fcut = 0.05 and Rsub = 0.3 yields an approximate 47% efficiency in this

mass range. Mass-drop filtering provides a more stringent selection, yielding efficiencies

in the same 50 GeV ≤ mjet < 300 GeV mass range of 20%, 12%, and 3% for µfrac =

0.67, 0.33, 0.30, respectively.

The significant change observed in the jet mass distribution is due primarily to a

reduction in the effective area of each jet (see section 3.4 a detailed description of the jet

area). Soft and wide-angle jet constituents are removed from the jet, thereby reducing the

overall catchment area. This has the desirable effect of also reducing the impact of pile-up

on the jet properties.

Figure 39 shows the effect of grooming on the average jet area as a function of the jet

mass for both the ungroomed and trimmed anti-kt, R = 1.0 jets. Prior to jet trimming,

the anti-kt, R = 1.0 area is very close to π (i.e. πR2, with R = 1.0). A small rise in

the ungroomed jet area is observed for jets with very large mass, characterized by small

additional clusters near the edge of the jet. For trimmed jets at low mass, the average jet

area is reduced by a factor of 3–5 and continuously rises as a function of the jet mass to

a maximum of approximately half of the original jet area for high-mass ungroomed jets.

These features are very well described by the MC simulations across the entire spectrum

of jet mass, both before and after trimming. Similar observations are made with respect

to lower and higher pjet
T bins, as well as for pruning and filtering.

As discussed in section 1.2, the splitting scales
√
d12 and

√
d23 are designed to give

approximate measures of the relative mass of the leading, sub-leading, and third leading
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Figure 40. Splitting scale
√
d12 of jets in the range 600 GeV ≤ pjetT < 800 GeV. Shown are (a)

ungroomed and (b) trimmed (fcut = 0.05, Rsub = 0.3) anti-kt jets with R = 1.0. The ratios between

data and MC distributions are shown in the lower section of each figure.

subjets, ordered by psubjet
T . These observables are therefore dominated by contributions

originating from energetic partons, either from the parton shower or from massive par-

ticle decay. It is therefore not surprising that the jet grooming, which removes low-pT

components of the jet, does not significantly affect
√
d12, shown in figure 40. It is also

not surprising that POWHEG+PYTHIA describes this variable better than PYTHIA,

especially at large values. Interestingly, HERWIG++ also models this substructure char-

acteristic well, despite providing only a LO description of the hard process. In the case

of events selected only for the presence of a single high-pT jet, a second hard splitting is

not highly probable, as also evidenced by the spectrum of
√
d23, shown in figure 41, falling

more steeply than
√
d12. This demonstrates that the trimming tends to affect this splitting

scale slightly more when a third -psubjet
T subjet within the parent jet is modified during the

trimming procedure.

N -subjettiness helps to discriminate between jets that have well-formed substructure

and those that do not. Figures 42 and 43 demonstrate that the MC simulations model the

distributions of τ21 and τ32 observed in the data within about 20%. The jets in this case are

selected to have 600 GeV ≤ pjet
T < 800 GeV. Both PYTHIA and POWHEG+PYTHIA

exhibit a shift in the τ21 distribution towards larger values of τ21 with respect to the data

for both the ungroomed and trimmed jets. HERWIG++, however, provides a much better

description of τ21 for ungroomed jets, and shows a slight shift towards smaller values of

τ21 compared to the data. The fraction of events with a small value of τij is predicted to

be slightly smaller than in data, while it is the opposite for high values of τij . In addition,

the distributions of both τ21 and τ32 are broadened for trimmed jets (figures 42(b) and

43(b)) and shifted slightly towards smaller values of τij and into the region expected to be

populated by boosted hadronic particle decays. These observations suggest that the use of
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Figure 41. Splitting scale
√
d23 of jets in the range 600 GeV ≤ pjetT < 800 GeV. Shown are (a)

ungroomed and (b) trimmed (fcut = 0.05, Rsub = 0.3) anti-kt jets with R = 1.0. The ratios between

data and MC distributions are shown in the lower section of each figure.
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Figure 42. N -subjettiness τ21 for jets in the range 600 GeV ≤ pjetT < 800 GeV. Shown are (a)

ungroomed and (b) trimmed (fcut = 0.05, Rsub = 0.3) anti-kt jets with R = 1.0. The ratios

between data and MC distributions are shown in the lower section of each figure.

shape observables for ungroomed jets, and of jet mass and substructure observables (like√
d12) may lead to better discrimination between signal and background.

For τ32, the MC distributions slightly underestimate the fraction of jets with 0.3 <

τ32 < 0.7, which is the signal range for boosted top-quark candidates. Since these observ-

ables are intended to be used as discriminants between boosted object signal events and

the inclusive jet background, such differences are important for the resulting estimation

of signal efficiency compared to background rejection. However, the variations observed
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Figure 43. N -subjettiness τ32 for jets in the range 600 GeV ≤ pjetT < 800 GeV. Shown are (a)

ungroomed and (b) trimmed (fcut = 0.05, Rsub = 0.3) anti-kt jets with R = 1.0. The ratios

between data and MC distributions are shown in the lower section of each figure.

in the distribution of each observable translate into much smaller differences in efficiency

and rejection.

The modelling of the background with respect to massive boosted objects can be tested

by evaluating, for example, the evolution of the mean of substructure variables as a function

of jet mass. This is shown for 〈τ32〉 in figure 44 for the same 600 GeV ≤ pjet
T < 800 GeV

range as used above. Three important observations can be made. Values of 〈τ32〉 are

slightly lower in data than those predicted by the MC simulations, and the trimmed values

are lower compared to ungroomed jets. Furthermore, 〈τ32〉 is a slowly varying function of

the jet mass for both the ungroomed and trimmed jets. This variation is slightly reduced

for trimmed jets.

5.3 Performance of jet grooming in boosted top-quark events

5.3.1 Semi-leptonic tt̄ selection

A selection of tt̄→ (Wb)(Wb̄)→ (µνb)(qq̄b̄) events is used to demonstrate in data the effect

of grooming on large-R jets with substructure. The semileptonic tt̄ decay mode in which

one W boson decays into a neutrino and a muon is chosen in order to tag the tt̄ event and

reduce the overwhelming multi-jet background so that the top-quark signal is visible. This

provides a relatively pure sample of top quarks and is also very close to the selection used

in searches for resonances that decay to pairs of boosted top quarks [96, 97]. The following

event-level and physics object selection criteria are applied to data and simulation:

• Event-level trigger and data quality selection: the standard data quality and vertex

requirements described in section 2.2 are applied. Events are selected if they satisfy

the single-muon Event Filter trigger with muon pT > 18 GeV.
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Figure 44. Mean τ32 as a function of jet mass for (a) ungroomed and (b) trimmed (fcut = 0.05,

Rsub = 0.3) anti-kt jets with R = 1.0 in the range 600 GeV ≤ pjetT < 800 GeV.

• Event-level jet selection: events are required to have at least four anti-kt jets with

R = 0.4 having pjet
T > 25 GeV and jet vertex fraction |JV F | >0.75. The jet vertex

fraction is a discriminant that contains information regarding the probability that a

jet originated from the selected primary vertex in an event [98].

• Lepton selection: muons must be reconstructed in both the inner detector and the

muon spectrometer and have pT > 20 GeV and |η| < 2.5. The opening angle between

the muon and any R = 0.4 jet with pT > 25 GeV and jet vertex fraction |JV F | > 0.75

must be greater than ∆R = 0.4 to be well isolated. Events with one or more electrons

passing standard criteria as described in ref. [97] are rejected.

• Event-level neutrino and leptonic W -decay requirement: to tag events with a lepton-

ically decaying W boson from a top-quark decay, events are required to have missing

transverse momentum Emiss
T > 20 GeV. Additionally, the scalar sum of Emiss

T and the

transverse mass of the leptonicW boson candidate must satisfy Emiss
T +mW

T > 60 GeV,

where mW
T =

√
2pTEmiss

T (1− cos ∆φ) is calculated from the muon pT and Emiss
T in

the event, and ∆φ is the azimuthal angle between the charged lepton and the Emiss
T ,

which is assumed to be due to the neutrino.

After these selection requirements, the W+jets process constitutes the largest back-

ground, with smaller contributions from Z+jets and single-top-quark processes.

5.3.2 Performance of trimming in tt̄ events

Figure 45 shows the leading-pjet
T jet mass of anti-kt jets with R = 1.0 having pT > 350 GeV

before and after trimming (fcut = 0.05, Rsub = 0.3) after the above selection criteria are

applied. The data and simulation agree within statistical uncertainty. The W → µν events

produced in association with jets form the largest background. Since large-R jets in W
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Figure 45. Jet mass for leading-pjetT anti-kt jets with R = 1.0 for (a) ungroomed jets and (b)

trimmed jets (fcut = 0.05 and Rsub = 0.3). The shaded band represents the bin-by-bin statistical

uncertainty in simulation.
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Figure 46. Jet mass for leading-pjetT anti-kt jets with R = 1.0 for (a) ungroomed jets and (b)

trimmed jets (fcut = 0.05 and Rsub = 0.3), where one anti-kt jet with R = 0.4 was tagged as a

b-jet.

events are formed from one or more random light-quark or gluon jets, trimming causes

the mass spectrum to fall more steeply and the peak of the distribution to lie at smaller

masses, similar to the multi-jet background in figure 38(a). However, trimming does not

alter the signal mass spectrum drastically, and any signal loss near the top-mass peak is

due to events in which the top quark is not boosted enough to have all three hadronic

decay products fall within R = 1.0.

In order to look at events with a reduced W + jets background, a b-tagging requirement

on at least one anti-kt jet in the event with R = 0.4 is applied in addition to the selection

criteria described in section 5.3.1. Figure 46 shows the effect of trimming on the mass of

the leading-pjet
T anti-kt jet with R = 1.0 in a sample of nearly pure tt̄ events. Trimming

clearly enhances the mass discrimination compared to the ungroomed case, with a peak

at low mass corresponding to large-R jets containing one quark or gluon (probably from a

fully leptonic tt̄ event) and a peak around the top mass, where all three top decay products,

the b-jet and hadronic W -decay daughters, fall inside the large-R jet radius.

– 53 –



J
H
E
P
0
9
(
2
0
1
3
)
0
7
6

 [GeV]12d
0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s 

/ 1
0 

G
ev

0

100

200

300

400

500
Data 2011

tt
W+jets

Z+jets

Single Top

Statistical uncertainty

ATLAS
 LCW jets with R=1.0tanti-k

No jet grooming applied

 350 GeV≥ jet

T
p

 = 7 TeVs, -1 L dt = 4.7 fb∫

(a) anti-kt, R = 1.0, ungroomed

 [GeV]12d
0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s 

/ 1
0 

G
ev

0

100

200

300

400

500
Data 2011

tt
W+jets

Z+jets

Single Top

Statistical uncertainty

ATLAS
 LCW jets with R=1.0tanti-k

=0.3)
sub

=0.05, R
cut

Trimmed (f

 350 GeV≥ jet

T
p

 = 7 TeVs, -1 L dt = 4.7 fb∫

(b) anti-kt, R = 1.0, trimmed

0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s 

/ 1
0 

G
ev

20

40

60

80

100

120

140
Data 2011
tt

Statistical uncertainty

ATLAS
 LCW jets with R=1.0tanti-k

No jet grooming applied

 350 GeV≥ jet
T

p

 = 7 TeVs, -1 L dt = 4.7 fb∫

Backgrounds subtracted from data

 [GeV]
12

d
0 20 40 60 80 100 120 140 160 180 200

D
at

a/
M

C

0
0.5

1
1.5

2

(c) anti-kt, R = 1.0, ungroomed

0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s 

/ 1
0 

G
ev

20

40

60

80

100

120

140
Data 2011
tt

Statistical uncertainty

ATLAS
 LCW jets with R=1.0tanti-k

=0.3)
sub

=0.05, R
cut

Trimmed (f

 350 GeV≥ jet
T

p

 = 7 TeVs, -1 L dt = 4.7 fb∫

Backgrounds subtracted from data

 [GeV]
12

d
0 20 40 60 80 100 120 140 160 180 200

D
at

a/
M

C

0
0.5

1
1.5

2

(d) anti-kt, R = 1.0, trimmed

Figure 47. Splitting scale
√
d12 for leading-pjetT anti-kt jets with R = 1.0 for (a) ungroomed jets

and (b) trimmed jets (fcut = 0.05 and Rsub = 0.3). The background-subtracted distributions for

ungroomed jets and trimmed jets are also shown in (c) and (d), respectively.

Figures 47 and 48 show the distributions of
√
d12 and

√
d23, respectively, before and

after trimming. Again, the top-quark distribution remains relatively unaffected by trim-

ming, while the W+jets background is pushed to lower values; however, the effect is smaller

for these variables than for the mass. Also shown are the distributions with the simulated

background subtracted. Comparing the shape before and after grooming with the signal

distributions shown in figures 33 and 34 for very high-pT top quarks, it is apparent that not

all top quarks in this data sample were sufficiently boosted to have their decay products

fall within a single R = 1.0 jet.

Figure 49 shows the signal-enriched distributions of τ32 before and after trimming.

Here, there is less discrimination between the W+jets background and the top-quark signal.

This is due to the fact that multiple quark and gluon jets in W events can be reconstructed

as one R = 1.0 anti-kt jet and mimic the subjettiness signature of the large-R jet containing

the hadronic decay products of the top quark. For shape comparisons with figure 35, the

background-subtracted plots are also shown.

5.3.3 Application of the HEPTopTagger in tt̄ events

Basic kinematic distributions for large-R jets before and after applying the HEPTopTagger

algorithm, but without any b-tagging requirement, are shown in this section. Top-quark
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Figure 48. Splitting scale
√
d23 for leading-pjetT anti-kt jets with R = 1.0 for (a) ungroomed jets

with R = 1.0 and (b) trimmed jets (fcut = 0.05 and Rsub = 0.3). The background-subtracted

distributions for ungroomed jets and trimmed jets are also shown in (c) and (d), respectively.

candidates in data and simulation are compared after selecting events according to the

criteria listed in section 5.3.1. Figure 50 shows the jet mass distributions of C/A jets

with R = 1.5 and R = 1.8 before applying the HEPTopTagger, for jets having pT >

200 GeV. The sample consists of approximately 50% tt̄-pair events, with other contributions

coming mainly from W+jets and Z+jets events. A larger contribution from multi-jet events

compared to that observed in section 5.3.2 is expected, due to the larger jet radius and

lower pT threshold. The large-R jet mass is generally well described by the simulation.

Figure 51 shows the top-candidate mass distribution after applying the HEPTopTagger

with four different filtering and large-R jet configurations (see table 2 for details). For all

settings, the top-mass peak shape is generally well described by MC simulation and a

relatively pure tt̄ selection is obtained for top-quark candidate masses above 120 GeV.

The good agreement between data and simulation both before and after applying the

HEPTopTagger shows that the exploited substructure is modelled well, even for jets with

a very large radius.

Figure 52 shows the variables used in the requirements imposed by the HEPTopTagger

on the subjet mass ratios, defined in eq. (1.6) and eq. (1.7). For example in figure 52(b), if

the sub-leading pT and the sub-sub-leading pT subjets are the decay products of a W boson
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Figure 49. N -subjettiness τ32 for leading-pjetT anti-kt jets with R = 1.0 for (a) ungroomed jets

with R = 1.0 and (b) trimmed jets (fcut = 0.05 and Rsub = 0.3). The background-subtracted

distributions for ungroomed jets and trimmed jets are also shown in (c) and (d), respectively.
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Figure 50. Mass distribution for C/A jets with (a) R = 1.5 and (b) R = 1.8 before running the

HEPTopTagger.

then m23/m123 peaks at mW /mt ∼ 0.46. The mW distribution in figure 52(c) is obtained

by taking the subjet pair with the invariant mass closest to the true mW , which also

influences the shapes of the background distributions. All distributions are well modelled

by the simulation.
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Figure 51. Top candidate mass distribution after the HEPTopTagger procedure (before applying

a mt window). The distance parameter for large-R jet finding is R = 1.5 in (a), (c), and (d), and

R = 1.8 in (b). Distributions (a) and (b) use the default filtering settings, whereas (c) and (d) have

been optimized for high purity and high signal efficiency, respectively.

The efficiency of the HEPTopTagger is measured as a function of the transverse mo-

mentum of the generated top quark, and is the product of the large-R jet finding efficiency

and the efficiency to tag the jet correctly: ε(total) = ε(large-R jet) · ε(tag). Figure 53

shows ε(total) for four different filtering configurations of the HEPTopTagger as a function

of the generator-level true top-quark pT for the tt̄ MC sample. The efficiency for the de-

fault settings is 20% at 250 GeV and reaches a plateau of 40% at 500 GeV. Below 400 GeV

the efficiency can be improved by 5% by using a larger radius parameter of R = 1.8. The

maximum efficiency for the tight filtering settings is 30%.

The fake efficiency, shown in figure 54(a), is defined in exactly the same way but is

evaluated using the PYTHIA inclusive jet sample. The pT of the leading-pjet
T anti-kt jet

with R = 0.4 has been chosen to compute the efficiency as it provides a measure for the

energy available in the event and is easily comparable between different tagging approaches.

The fake efficiency shows a sharp turn-on around 200 GeV with efficiencies below 0.5%

below and a plateau of 4% (2.5%) for the default and loose (tight) filtering settings.

Figure 54(b) shows the fake tagging efficiency as a function of the top-jet pT in a

multi-jet background sample and for events with a hadronically decaying W boson. The
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Figure 52. Substructure variables (a) arctan(m13/m12), (b) m23/m123, and (c) mW for

HEPTopTagger-tagged top candidates using the default filtering parameters and a jet size of

R = 1.5.

fake efficiency rises sharply at 300 GeV and reaches a plateau of 2.5% at a large-R jet pT

of 400 GeV.

The efficiency of the HEPTopTagger to select jets from boosted top quarks can be

increased by varying the filtering parameters. Since this also increases the fake efficiency,

the optimal working-point depends on the analysis in question.

6 Conclusions

It has been demonstrated experimentally in this paper that jet grooming algorithms can

improve the identification of Lorentz-boosted physics objects that decay to jets, as well as

increase sensitivity to several new physics processes. The performance of large-R jets is

improved overall, and the dependence on pile-up and the underlying event is reduced.

Jet mass calibrations have been derived in simulation for various large-R jet algorithms,

subjets, as well as for jets with grooming applied. These have been validated for boosted W

bosons in tt̄ events and using calorimeter-jet versus track-jet double ratios. Uncertainties

– 58 –



J
H
E
P
0
9
(
2
0
1
3
)
0
7
6

 [GeV]
T

Top quark p

0 100 200 300 400 500 600 700 800 900

 (
to

ta
l)

ε

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Simulation
HEPTopTagger jets with R=1.5 and 1.8
tt

ATLAS

default filtering

default filtering, R=1.8

loose filtering

tight filtering

Figure 53. Tagging efficiency per top quark as a function of the generator-level top-quark pT for

various filtering settings of the HEPTopTagger, evaluated using the semileptonic tt̄ MC sample.

 [GeV]
T

 (R=0.4) jet p
t

Leading anti-k

0 200 400 600 800 100012001400

 (
to

ta
l)

fa
ke

ε

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

HEPTopTagger jets with R=1.5 and 1.8
Dijets (Pythia)

loose filtering

default filtering, R=1.8

default filtering

tight filtering

ATLAS Simulation

(a) Efficiency as a function of anti-kt, R = 0.4 jet

pT with various taggers.

 [GeV]
T

Candidate top jet p

0 200 400 600 800

 (
ta

g 
la

rg
e-

R
 je

t)
fa

ke
ε

0

0.005

0.01

0.015

0.02

0.025

0.03
 qq (Herwig+Jimmy)→W 

Dijets (Pythia)

ATLAS Simulation
HEPTopTagger jets with R=1.5, default filtering

(b) Efficiency as a function pT for top-jet candi-

dates.

Figure 54. (a) Per-event fake efficiency as a function of the leading-pjetT anti-kt R = 0.4 jet

pT in the event for different filtering settings, measured using the dijet MC sample and (b) a

comparison of the per-jet fake efficiency between the dijet sample (PYTHIA) and the W → qq̄

sample (HERWIG+JIMMY) taken from tt̄ events, both using the default filtering.

on the jet energy scale and the jet mass scale have been provided over a wide range of

large-R jet momentum.

The mass distributions observed in data for large-R jets in the inclusive jet sample,

before and after grooming, are well reproduced by the ATLAS simulation, especially using

the POWHEG NLO generator. The substructure variables presented here also show good

agreement between data and simulation, typically within 5% for key observables for modern
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NLO plus parton shower Monte Carlo programs such as POWHEG+PYTHIA, as well as

for the LO MC program HERWIG++.

The parameters of trimmed, pruned and mass-drop filtered jet algorithms have been

optimized for searches and precision Standard Model measurements using various perfor-

mance measures. Among the configurations tested here, the trimming algorithm exhibits

better performance than the pruning algorithm, with superior mass resolution and reduced

dependence on pile-up. In particular, the anti-kt algorithm with R = 1.0 and trimming

parameters fcut = 0.05 and Rsub = 0.3 is recommended for boosted top physics analyses,

where a minimum pT requirement of 200 GeV is typical. It is important to note, though,

that only the kt-pruning for large-R (R = 1.0) jets has been tested in this work, and that

future studies should expand the comparisons to include the C/A-pruning as well. Addi-

tionally, C/A jets with R = 1.2 using the mass-drop filtering parameter µfrac = 0.67 are

recommended for boosted two-pronged analyses such as H → bb̄ or searches using W → qq̄.

The benefit of using these grooming algorithms along with substructure variables has

been demonstrated in top-tagging studies, where the efficiency of finding a boosted top

quark for a given background jet mis-tag rate is greatly increased after grooming is applied

due to the improved mass resolution. Grooming has been shown to leave the boosted signal

mass peak relatively unaffected while systematically shifting the light-quark and gluon jet

background lower in mass, thus increasing the discrimination of signal from background.

The HEPTopTagger has been demonstrated to be a robust and versatile tool to re-

construct hadronically-decaying top quarks in the presence of the underlying event and

pile-up, using jet grooming and substructure techniques. A comparison to data shows that

the algorithm is well modelled by the simulations. The HEPTopTagger performance (ef-

ficiency, rejection, mass resolution) can be optimized for a given analysis by varying the

algorithm parameters.

From the studies presented here, groomed jets and substructure variables are ready

to be used in further ATLAS physics analyses. These techniques will become extremely

beneficial tools in upcoming searches for boosted physics objects in supersymmetric and

exotic models, measurements of boosted Higgs topologies, and in detailed precision Stan-

dard Model measurements of QCD and electroweak processes with jets and boosted

hadronic objects.
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L. Köpke82, A.K. Kopp48, K. Korcyl39, K. Kordas155, A. Korn46, A.A. Korol108, I. Korolkov12,
E.V. Korolkova140, V.A. Korotkov129, O. Kortner100, S. Kortner100, V.V. Kostyukhin21,
S. Kotov100, V.M. Kotov64, A. Kotwal45, C. Kourkoumelis9, V. Kouskoura155, A. Koutsman160a,
R. Kowalewski170, T.Z. Kowalski38a, W. Kozanecki137, A.S. Kozhin129, V. Kral127,
V.A. Kramarenko98, G. Kramberger74, M.W. Krasny79, A. Krasznahorkay109, J.K. Kraus21,
A. Kravchenko25, S. Kreiss109, J. Kretzschmar73, K. Kreutzfeldt52, N. Krieger54, P. Krieger159,
K. Kroeninger54, H. Kroha100, J. Kroll121, J. Kroseberg21, J. Krstic13a, U. Kruchonak64,
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Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University

of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao

del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica

Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
27 Departamento de F́ısica, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de F́ısica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento
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