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ABSTRACT 33 
Transcription factor (TF) proteins regulate gene activity by binding to regulatory regions, most 34 
importantly at gene promoters. Many genes have alternative promoters (APs) bound by distinct 35 
TFs. The role of differential TF activity at alternative promoters during tumor development is 36 
poorly understood. Here we show, using deep RNA sequencing in 274 biopsies of benign 37 
prostate tissue, localized prostate tumors, and metastatic castration-resistant prostate cancer 38 
(mCRPC), that AP usage increases as tumors progress and APs are responsible for a 39 
disproportionate amount of tumor transcriptional activity. Expression of the androgen receptor 40 
(AR), the key driver of prostate tumor activity, is correlated with elevated AP usage. We 41 
identified AR, FOXA1 and MYC as potential drivers of AP activation. DNA methylation is a likely 42 
mechanism for AP activation during tumor progression and lineage plasticity. Our data suggest 43 
that prostate tumors activate alternative promoters to magnify the transcriptional impact of tumor 44 
drivers including AR and MYC.  45 
 46 
Abstract word count: 151 47 
 48 
 49 
INTRODUCTION 50 



Over half of human genes are under the control of multiple promoters1. Each alternative 51 
promoter can initiate transcription of one or more distinct isoforms of the same gene with 52 
partially overlapping transcribed sequences. Alternative promoters (APs) are a tissue-specific 53 
mechanism for transcriptome regulation during development2. A recent pan-cancer study 54 
identified numerous cancer-associated alternative promoters, implicating them in 55 
tumorigenesis3. Alternative promoters harbor distinct transcription factor (TF) binding sites, 56 
contributing to complex gene regulation2,4. However, the impact of alternative promoters during 57 
tumor progression remains poorly understood, as does the impact of genomic and epigenomic 58 
changes on promoter usage. Increased methylation at canonical promoters generally represses 59 
transcription5. We have shown that during prostate tumorigenesis, methylation changes 60 
preferentially impact prostate tumor-specific genes6. Systematic analysis of methylation 61 
changes, TF binding, and promoter activity during tumor progression could elucidate how 62 
epigenetic factors cooperate to influence alternative promoter usage.    63 
 Prostate tumors are mainly driven by the androgen receptor (AR), a hormone-responsive 64 
transcription factor, making androgen signaling the primary target for prostate cancer (PCa) 65 
therapy. Progression from localized hormone-sensitive PCa to lethal metastatic castration-66 
resistant prostate cancer (mCRPC) is accompanied by genomic and epigenomic alterations 67 
affecting AR and other TFs6-10. A recent discovery linked a PCa risk SNP-mediated promoter 68 
switch in lncRNA PCAT19 to PCa initiation and progression11, highlighting the impact of 69 
alternative promoter usage. Here, we systematically investigated alternative promoter usage in 70 
benign prostate tissue, localized PCa, and mCRPC. Combining ultra-deep whole transcriptome 71 
sequencing with whole genome methylation sequencing, we define how transcriptional 72 
programs are activated during PCa progression and reveal a link between alternative promoter 73 
usage, TF binding, and DNA methylation.  74 
 75 
RESULTS 76 
 77 
AP use increases as localized PCa progresses to mCRPC 78 
 79 
To characterize how alternative promoter usage changes during prostate tumor progression, we 80 
compiled a consensus set of promoters from all annotated transcripts and used deep RNA 81 
sequencing to assess their activity across different PCa stages. We enumerated 99,589 82 
candidate promoters for 37,885 genes (Supplementary Table 1, Methods). Our transcriptomic 83 
dataset comprised 274 patient biopsies from benign tissue, localized PCa, and mCRPC 84 
(Supplementary Table 2, Extended Data Figure 1A). We sequenced 104 mCRPC biopsies to 85 
a median of 453M [million] (± 130M) reads/sample (WCDT cohort, with previously characterized 86 
DNA and bisulfite sequencing6,8,12,13), and obtained RNA-seq data from 8 benign tissue biopsies 87 
(median of 89M ± 9M reads/sample, PAIR cohort)14, and 162 localized PCa biopsies (median of 88 
190M ± 68M reads/sample, PAIR and CPC-GENE cohorts)15. Extended Data Figure  89 

We then quantified transcriptional activity at each promoter in each sample using a 90 
modified version of the proActiv tool3. We enhanced proActiv to measure internal promoters 91 
(promoters that overlap with internal exons, Methods) using split read subtractions, DNA 92 
methylation data, and publicly available H3K4me3 ChIP-seq data16 (Methods, Extended Data 93 
Figure 1B and S1C). This produced 72,399 promoters (9,015 high confidence internal 94 
promoters, 63,384 non-internal promoters, Extended Data Figure 1D). Ultra-deep RNA 95 
sequencing data improved promoter activity detection by an average of 26.31% compared to 96 
typical sequencing depths (42,7661,547 promoters at 500M reads vs 33,883744 promoters at 97 
subsets of 31.25M reads). Saturation analysis with down-sampled reads indicated that our 98 
sequencing depth captured most active promoters (Extended Data Figure 1E). 99 

We next analyzed promoter activity changes during prostate tumor progression. Active 100 
promoters per gene were similar across disease stages, with median values of 2.18, 2.16, and 101 



2.20 in benign, localized, and mCRPC respectively (Extended Data Figure 2A). However, 102 
compared to benign prostate tissue, genes upregulated in localized PCa or mCRPC and known 103 
oncogenes were more likely to switch from a single active promoter in benign tissue to multiple 104 
active promoters in tumors (Figure 1A). Conversely, genes downregulated in localized PCa or 105 
mCRPC tended to switch from multiple promoters in benign to a single promoter in localized or 106 
mCRPC (Extended Data Figure 2B). 107 

A gene’s most active promoter was not necessarily its canonical promoter, defined as 108 
the region around the transcription start site (TSS) of the canonical transcript listed in the 109 
Ensembl database17. To identify APs, we compared promoter activity across disease stages, 110 
relying solely on differential absolute and relative promoter activities measured by RNA-seq 111 
(Methods). We identified 463, 3,237, and 2,326 APs comparing localized PCa vs. benign, 112 
mCRPC vs. benign, and mCRPC vs localized PCa, respectively (Figure 1B, Supplementary 113 
Tables 3-5). Principal component analysis of promoter activity showed separate clustering of 114 
benign and localized PCa samples within the PAIR cohort by disease stage, while same-stage 115 
samples from the PAIR and CPC-GENE cohorts overlapped (Figure 1C). The largest source of 116 
variation separated mCRPC samples from other disease stages, consistent with the larger 117 
number of differential promoters in mCRPC compared to other stages (Figure 1B). We did not 118 
detect 5’ to 3’ bias of RNA-seq coverage (Extended Data Figure 2C). In summary, progression 119 
was not associated with total APs counts, but promoter activity was linked to gene expression 120 
changes during progression. 121 

 122 
AP use is linked to upregulation of PCa-relevant genes   123 
 124 
We next focused on APs upregulated in tumors. Most upregulated APs were non-canonical 125 
promoters: 78.9% in localized (146 of 185) and 66.7% in mCRPC (827 of 1,239). We tested 126 
whether AP upregulation could be explained by uniform increase in total expression from all 127 
promoters. The sum of each gene's promoter activity was positively correlated with that gene's 128 
expression level in localized PCa and mCRPC (Figure 1D, Extended Data Figure 3A). 129 
However, upregulated APs were more strongly correlated with gene expression, whereas 130 
downregulated APs exhibited a weaker correlation (Figure 1D, Extended Data Figure 3A). We 131 
hypothesized that upregulated APs contribute a disproportionately high percentage of the total 132 
transcriptional increase for genes upregulated during progression. This was the case in both 133 
localized PCa and mCRPC (Figure 1E), with a stronger effect in mCRPC (median contribution = 134 
98.8% vs 75.5%, Student’s t-test p value = 1.04 x 10-6) (Figure 1E). These observations support 135 
a model where APs are a primary source of increased tumor transcriptional activity among 136 
upregulated genes, particularly in advanced tumors.  137 

We next examined whether the most active promoters switched to upregulated APs in 138 
tumors. We labeled the promoter with the highest activity for each gene as the major promoter 139 
and the other active promoters for that gene as minor promoters. A minority of upregulated APs 140 
in both localized (17.8%, 33 out of 185) and mCRPC (35.8%, 444 out of 1,239) switched from 141 
being minor or inactive in benign to major in tumors. Notably, the switching frequency was twice 142 
as high in mCRPC, consistent with our observation of increased AP usage in advanced PCa 143 
compared to localized disease. For instance, the upregulated non-canonical AP of the RALBP1 144 
gene replaced the canonical promoter to become the dominant promoter mCRPC (Figure 1F 145 
and 1G). RALBP1 mediates endocytosis, binding to RalA to orchestrate human 146 
tumorigenesis18.  147 

We then investigated whether genes with upregulated APs were associated with 148 
biological functions that drive PCa progression. Genes with APs upregulated in mCRPC 149 
compared to benign prostate tissue were significantly enriched for roles in mitosis, cell cycle 150 
regulation, E2F and MYC targets, the P53 pathway and androgen signaling, as well as 151 
developmental pathways related to other cancers like pancreatic and hepatocellular carcinoma 152 



(Extended Data Figure 3B). The MYC target, P53 pathway, androgen signaling, and 153 
pancreatic/hepatocellular cancer pathways were unique to the upregulated AP analysis and not 154 
enriched in differentially expressed genes (Extended Data Figure 3B, Extended Data Figure 155 
3C), indicating that AP usage analysis may provide additional biological insights beyond 156 
standard differential expression. Our findings reveal a substantial increase in the number of APs 157 
exhibiting differential activity as localized PCa progresses to mCRPC. These observations 158 
support the hypothesis that AP activation constitutes an important mechanism driving the 159 
upregulation of genes relevant to disease progression.  160 
 161 
AP use is linked to FOXA1 binding and androgen activity 162 
 163 
Having shown that upregulated APs contribute disproportionately to gene expression increases 164 
during prostate tumor progression, and that activated promoters preferentially involve genes 165 
linked to tumor progression, we asked which transcription factors might drive the activation of 166 
these promoters. PCa depends on androgen signaling19, and we hypothesized that elevated AR 167 
activity during PCa progression might correlate with increased AP usage. Indeed, we found a 168 
significant positive correlation between AR gene expression and the number of upregulated APs 169 
in both localized PCa and mCRPC tumors (Figure 2A, FigureS4A).  170 

We then hypothesized that upregulated APs would be more likely to harbor binding sites 171 
for AR and FOXA1, a key AR pioneer factor20. To test this, we analyzed published AR and 172 
FOXA1 ChIP-seq data from benign prostate tissue, localized prostate tumors, and mCRPC 173 
patient-derived xenograft (PDX) models16. As expected, the canonical promoters of Hallmark 174 
AR targets were enriched for AR binding in localized PCa and mCRPC (Figure 2B). Consistent 175 
with our hypothesis, upregulated APs in localized PCa and mCRPC were enriched for tumor-176 
specific AR and FOXA1 binding (Figure 2B, 2C). Additionally, canonical promoters of Hallmark 177 
AR target genes and upregulated APs in mCRPC both showed enrichment for FOXA1 binding 178 
(Figure 2C). Although the percentage of AP sites with AR binding was lower than that at 179 
canonical AR target promoters, FOXA1 binding enrichment was comparable at these sites,  180 
suggesting that FOXA1 pioneers the activation of upregulated APs in tumors. A significantly 181 
lower proportion of AR-FOXA1 co-binding was present in FOXA1-bound upregulated APs in 182 
mCRPC compared to localized PCa, implying that other AR co-factors may be more pertinent 183 
than FOXA1 in this state (Extended Data Figure 4B). 184 
 We hypothesized that reducing FOXA1 expression in a PCa cell line would diminish 185 
FOXA1 binding at AP sites. We assessed this using previously published experiments 186 
conducted in LNCaP cells, a PCa model20. FOXA1 binding measured by ChIP-seq in LNCaP 187 
cells was enriched at upregulated APs containing FOXA1 ChIP-seq peaks in localized PCa and 188 
mCRPC (Figure 2D). Knockdown of FOXA1 mRNA in LNCaP cells caused a decrease in 189 
FOXA1 binding peaks at all sites, including upregulated APs (Figure 2D). Furthermore, most 190 
upregulated APs in localized PCa (71.4%) or in mCRPC (64.2%) bound by FOXA1 showed 191 
decreased expression in LNCaP cells following FOXA1 knockdown (Figure 2E), suggesting 192 
close association between FOXA1 binding and AP regulation. 193 
 In summary, we observed a significant association between AR expression levels and 194 
alternative promoter activation during prostate cancer development and a direct impact of the 195 
binding sites of AR and pioneer factor FOXA1 on these upregulated alternative promoters. 196 
 197 
MYC is a potential driver of AP activation in mCRPC 198 
 199 
To systematically map associations between driver genes altered during PCa progression and 200 
altered AP activity, we adopted an unbiased approach to identify TFs that bind upregulated APs. 201 
Using UniBind21, we identified TFs with experimentally defined ChIP-seq peaks enriched at 202 
upregulated APs. In localized PCa upregulated APs, the TFs most enriched for binding were 203 



AR, along with the AR co-factors FOXA1 and GATA2 (Extended Data Figure 5A). In mCRPC 204 
upregulated APs, while AR and FOXA1 binding were also enriched, the most significantly 205 
enriched TFs were MYC, E2F1 and HIF1A (Figure 3A, Extended Data Figure 5B). This finding 206 
aligned with known drivers of prostate tumor progression to mCRPC, including MYC and HIF1A 207 
overexpression, as well as loss of the E2F repressor RB17,8,22-24. MYC induces transcriptional 208 
amplification and is oncogenic in various tumors25. Genes with upregulated mCRPC APs 209 
overlapping with MYC ChIP-seq peaks26 were more likely to be MYC and E2F targets, and they 210 
were enriched for roles in the cell cycle and P53 signaling (Extended Data Figure 5C). This 211 
supports a model where MYC promotes proliferation during tumor progression in part by 212 
activating APs. 213 
 MYC gene amplification occurs in 30% of mCRPC tumors8 and is correlated with 214 
increased MYC expression. We hypothesized that AP sites in samples with higher MYC 215 
expression would be more likely to be bound by proteins relevant to MYC signaling. We divided 216 
mCRPC samples into tertiles by MYC expression and performed differential promoter analysis 217 
in samples with high versus low MYC expression (Supplementary Table 6). Indeed, top TFs 218 
enriched for binding at upregulated APs in MYC high samples included MYC along with its 219 
interactors MAX, MXI1 and MYCN (Figure 3B).  220 

We next investigated potential mechanisms behind MYC activation of APs in mCRPC. 221 
The histone methyltransferase enhancer of zeste homolog 2 (EZH2) can directly bind MYC, 222 
collaborating to enhance gene expression27. We hypothesized that EZH2 drives PCa in part by 223 
facilitating MYC binding at AP sites in mCRPC. We observed stronger enrichment of MYC 224 
binding at upregulated mCRPC APs that overlap EZH2 ChIP-seq peaks in LNCaP cells (Figure 225 
3C). Since EZH2 is not a TF, it isn't present in the UniBind TF ChIP-seq database. We analyzed 226 
previously published EZH2 ChIP-seq data in LNCaP cells28 and found EZH2 binding was 227 
enriched at upregulated mCRPC APs, particularly in those overlapping with MYC ChIP-seq 228 
peaks in LNCaP cells (Figure 3D).  Furthermore, the co-occurrence frequency of MYC and 229 
EZH2 ChIP-seq peaks was higher in upregulated APs and canonical promoters of upregulated 230 
genes in mCRPC than background or all canonical promoters (Figure 3E). These findings 231 
support the model that MYC and EZH2 cooperatively activate both canonical and alternative 232 
promoters.  233 

Genes bound by EZH2 but not by MYC were enriched for epithelial-mesenchymal 234 
transition (EMT) and developmental pathways (Extended Data Figure 6A), consistent with 235 
EZH2’s reported role in promoting EMT29. Conversely, genes co-bound by EZH2 and MYC were 236 
enriched for mTOR signaling, cell proliferation, MYC targets and androgen signaling (Extended 237 
Data Figure 6C), resembling those bound by MYC alone (Extended Data Figure 6B). This 238 
suggests that when EZH2 co-binds with MYC, it contributes to a pro-proliferation AR-responsive 239 
program. In one example, MYC and EZH2 co-bound at an AP of BMI1 (Figure 3F). BMI1, a 240 
core component of the PRC1 complex, is overexpressed in various tumors, including PCa30, 241 
with reported roles in cancer cell proliferation, invasion, metastasis, and patient survival31. 242 
Notably, MYC and EZH2 specifically co-bound at the BMI1 alternative promoter associated with 243 
a protein coding isoform overexpressed in mCRPC vs. benign (log2FC = 2.2, Figure 3G). 244 
These findings suggest that the co-binding of EZH2 and MYC at an AP of BMI1 plays a role in 245 
BMI1 protein upregulation in mCRPC. In summary, these observations demonstrate that 246 
elevated MYC activity in advanced PCa contributes to AP activity of genes with tumor-promoting 247 
functions.  248 

 249 
AP usage reflects lineage plasticity in response to therapy 250 
 251 
Prostate tumors that progress on therapy targeting androgen signaling can develop expression 252 
phenotypes resembling the neuroendocrine lineage9,12,13. These tumors lack androgen signaling 253 
and have poor prognosis32. We hypothesized that alternative promoter usage contributes to 254 



lineage plasticity. Among 104 mCRPC tumors, three previously identified by our group as 255 
neuroendocrine (treatment-emergent Small Cell Neuroendocrine Carcinoma, t-SCNC)8 were 256 
examined. We identified 523 APs differentially active in t-SCNC vs. adenocarcinoma samples 257 
(Supplementary Table 7). In UniBind ChIP-seq binding enrichment analysis, TFs enriched for 258 
binding at upregulated t-SCNC APs included HAND2 (critical for neurogenesis33,34), ASCL1 (a 259 
driver of small-cell neuroendocrine tumors10), and TFAP2A (associated with neural crest 260 
development35) (Figure 4A). Conversely, androgen-associated TFs AR, FOXA1, GRHL2, and 261 
the glucocorticoid receptor (NR3C1) were enriched at downregulated APs (Extended Data 262 
Figure 7A). The top enriched TF HAND2 was overexpressed in t-SCNC tumors (Figure 4B). 263 
Upregulated APs overlapping with HAND2 ChIP-seq peaks were enriched for genes related to 264 
neuronal function and cellular development (Figure 4C). These findings suggest that lineage 265 
switching and the development of t-SCNC are associated with AP activity influencing genes in 266 
the neuronal lineage.  267 

Previous studies by our group36 and others37 have demonstrated mCRPC tumors can 268 
exhibit a gastrointestinal (GI) expression phenotype. Using a previously published GI signature 269 
gene set37, we identified 25 WCDT tumors with a GI signature (Extended Data Figure 7B). 270 
Differential promoter analysis comparing samples with the highest quartile GI signature to other 271 
samples revealed 127 upregulated and 86 downregulated APs (Supplementary Table 8). 272 
UniBind ChIP-seq enrichment analysis of the upregulated APs in GI-high samples showed 273 
significant enrichment for binding of HNF family members HNF1A, HNF1B, HNF4G and HNF4A, 274 
key TFs in liver development that are upregulated in GI tissues38.(Figure 4D). The proto-275 
oncogene SRC was an intriguing example of a specific active promoter in GI-high samples. A 276 
non-canonical promoter (P1) upstream of the canonical promoter (P2) overlapped HNF1A ChIP-277 
seq peaks and has been experimentally shown to be regulated by HNF1A in the HepG2 liver 278 
tumor cell line39. We observed HNF1A-bound promoter P1 was upregulated in mCRPC samples 279 
with high GI scores, correlating with SRC gene upregulation (Figure 4E-G).  280 

The observation that SRC transcription is linked to lineage-specific TFs that bind APs 281 
suggests AP upregulation can be linked to therapy-induced lineage plasticity. Consistent with 282 
this model, examination of the upregulated promoters in these lineages identified TFs linked to 283 
lineage differentiation. 284 
 285 
AP activation is associated with DNA hypomethylation 286 
 287 
DNA methylation affects whether genomic regions are accessible to TFs, and we hypothesized 288 
that it impacts AP activity. We assessed differential methylation at AP sites between t-SCNC 289 
and adenocarcinoma tumors and observed a strong negative correlation between AP activity 290 
and methylation levels at APs (Spearman’s Rho = -0.7, p value = 2.1e-25, Extended Data 291 
Figure 8A). Intriguingly, the negative correlation between gene-level expression and 292 
methylation was notably stronger at differentially active APs (Spearman’s Rho = -0.31, p value= 293 
4.4e-05, Figure 5A) compared to canonical promoters within the same genes (Spearman’s Rho 294 
= -0.19, p value = 0.059 Figure 5B). This finding supports a model where methylation directly 295 
influences state-specific APs. For example, CBX5, encoding the heterochromatin protein HP1, 296 
is reported to be upregulated and to facilitate the development of neuroendocrine prostate 297 
tumors40. The mechanism underlying CBX5 upregulation remains unclear. The 5’-most CBX5 298 
promoter (P1) was methylated at similar levels in adenocarcinoma and t-SCNC. However, 299 
intragenic CBX5 promoter P2 was hypomethylated in t-SCNC tumors with increased P2 use and 300 
elevated overall CBX5 expression (Figure 5C-E). Two adenocarcinoma tumors also had 301 
hypomethylated P2 associated with higher P2 activity (Figure 5F). TFs predicted to bind at 302 
upregulated APs overlapping with differentially hypomethylated regions in t-SCNC were 303 
enriched for the neuroendocrine-associated TFs such as ASCL1, HAND2, NEUROD1, and 304 
SOX2 (Extended Data Figure 8B). 305 



We then tested the hypothesis that DNA hypomethylation is a general mechanism for AP 306 
activation. Canonical promoter methylation has modest inverse correlation with gene 307 
expression6. We hypothesized that methylation levels at APs would exhibit higher variance and 308 
stronger association with gene expression. Indeed, APs displaying differential activity in 309 
mCRPC had higher methylation variance compared to either canonical promoters (defined in 310 
GENCODE) or major promoters (defined as the most active promoter for each gene in our data) 311 
(Figure 5G). Differential APs exhibited a significantly stronger negative correlation between 312 
promoter methylation and gene expression compared to those in the other groups (Figure 5H). 313 
This suggests promoter methylation at APs plays an important role in driving gene expression.  314 

Collectively, these observations suggest methylation is linked to AP activity and may 315 
provide a mechanism to reinforce transcriptional phenotypic changes during disease 316 
progression.  317 
   318 
DISCUSSION 319 
Prostate cancer is primarily driven by aberrant TF activity, most importantly the androgen 320 
receptor. Comprehensive analysis of TF activity in mCRPC is challenging due to limited tissue 321 
availability for protein assays. Although TFs can bind to DNA at regulatory sites distant from a 322 
gene being targeted, they are most influential at gene promoters. Functional assays such as 323 
CAGE have revealed that many genes harbor multiple promoters1. Alternative promoter usage 324 
has been reported in various cancer types and is suggested to play a role in immune editing in 325 
GI tumors41. However, the extent to which TFs and epigenetic modifications exploit APs to 326 
modulate overall gene expression in cancer is unclear. We conducted ultra-deep RNA 327 
sequencing of mCRPC tumors to explore how disease progression and somatic changes in TF 328 
genes influence promoter selection and elucidate how alternative promoter usage contributes to 329 
gene regulation during progression from benign prostate tissue to advanced, treatment-resistant 330 
mCRPC.  331 
 We found that promoter activity patterns evolve throughout progression to mCRPC and 332 
are linked to epigenomic alterations that arise on therapy. The total number of genes employing 333 
multiple promoters didn’t significantly vary across different tumor progression states, and the 334 
proportion of 481 oncogenes with multiple active promoters was not significantly different across 335 
progression stages. However, a notable trend emerged: oncogenes more frequently switched 336 
from using single promoters to multiple promoters during progression. We then sought to 337 
identify promoters with differential usage by comparing their absolute and relative activities 338 
across progression states. Canonical promoters were not always the most active promoters in 339 
benign prostate tissue. For genes where the non-canonical promoter predominated in benign 340 
tissue, and where the canonical promoter exhibited a significant increase in both relative and 341 
absolute activity, that canonical promoter was categorized an upregulated alternative promoter. 342 
We identified both canonical and non-canonical promoters as APs in localized PCa and 343 
mCRPC.  344 

A minority of APs switched from inactive or minor status in benign tissue to major 345 
promoters in tumors. Nevertheless, APs significantly contributed to increases in mRNA 346 
abundance. In mCRPC, upregulated APs accounted for nearly all of the total increased 347 
transcriptional activity in genes featuring an AP. This suggested that the increase in promoter 348 
activity disproportionately favored alternative promoters during progression, highlighting 349 
alternative promoter usage as a vital mechanism for gene upregulation in this context. While 350 
alternative promoter usage was not the dominant mechanism for elevating gene expression, it 351 
contributed to transcriptional activity associated with disease progression.  352 

Our investigation of AP regulation mechanisms first focused on AR and FOXA1 because 353 
of their central roles in prostate tumor biology. Increased AR expression in both localized and 354 
metastatic PCa correlated with increased numbers of upregulated APs in individual samples. 355 
APs upregulated during tumor progression were enriched for binding sites of both AR and 356 



FOXA1. Only four genes in the Hallmark androgen response pathway harbored upregulated 357 
APs in localized PCa, with 13 in mCRPC. Despite increased AR signaling during PCa 358 
progression, upregulated APs were not restricted to canonical AR target genes, and AR may 359 
bind to and activate promoters of both canonical and non-canonical AR targets. Our results 360 
were consistent with the model that AR and FOXA1 binding is enriched at upregulated APs. 361 
APs with experimentally observed FOXA1 binding had a lower proportion of AR-FOXA1 co-362 
binding in mCRPC compared to localized PCa. Since FOXA1 is a pioneer factor which opens 363 
chromatin to facilitate binding of other TFs, this may indicate that FOXA1 serves as a pioneer 364 
factor for non-AR TFs in mCRPC tumors. This aligns with observations that enzalutamide-365 
induced reprogramming of FOXA1 favors active cis-regulatory elements that drive pro-survival 366 
signals via non-AR TFs such as ARNTL42,43.  367 

We also observed less enrichment for AR binding in upregulated mCRPC APs than 368 
localized APs, implicating the involvement of additional TFs driving AP activation in mCRPC. 369 
Indeed, APs containing MYC and E2F binding were the most enriched in advanced disease. We 370 
observed enrichment of EZH2 in upregulated APs in mCRPC. EZH2 is the primary enzymatic 371 
catalytic subunit of polycomb repressive complex 2 (PRC2), a histone methyltransferase 372 
complex frequently upregulated in aggressive advanced PCa44,45. EZH2 is overexpressed in 373 
PCa, and it directly interacts with MYC27.  While EZH2’s best-studied function involves gene 374 
repression, it has a non-canonical activation role in cancer28,45,46. Specifically, EZH2 has been 375 
identified as a transcription co-activator for AR45 and has been shown to mediate gene 376 
activation directly by binding to MYC, thereby promoting oncogenesis27.  377 
 Tumor lineage switching, a phenomenon observed in therapy-resistance mCRPC47 that 378 
also arises in other tissue sites47,48, is closely tied to lineage-specific TFs. We observed that APs 379 
in mCRPC tumors with neuroendocrine or gastrointestinal lineage phenotypes were preferably 380 
bound by lineage-specific TFs. The inverse correlation between gene expression and DNA 381 
methylation at canonical promoters is widely recognized5. Canonical promoters of genes 382 
expressed in prostate cancer are generally hypomethylated within prostate tumors. DNA 383 
methylation at intragenic CpGs is much more variable49. In PCa, tumor-specific DNA 384 
methylation has been linked to alternative promoters in certain genes like RASSF1, NDRG2, 385 
and APC50. By studying sample-matched DNA methylation and transcriptomes we observed 386 
that DNA methylation levels at alternative promoters were strongly associated with alternative 387 
promoter activity and overall gene expression. This supported a model of methylation as a 388 
mechanism of AP regulation during lineage switching.   389 
  Although we did not identify APs in known prostate cancer driver oncogenes such as 390 
AR and MYC, our results support alternative promoter usage as a mechanism by which these 391 
drivers alter the tumor transcriptome. Our alternative promoter analysis produced an unbiased 392 
view of transcriptional dysregulation and rewiring of TF binding profiles throughout PCa 393 
progression. 394 
  395 
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Data availability 401 
RNA sequencing and whole genome bisulfite sequencing data that support the findings 402 
of this study have been deposited in the European Genome-Phenome Archive (EGA) 403 
under accession code EGAS00001006275, and the SRA repository with Bioproject 404 
number PRJNA479544. Previously published RNA sequencing that were re-analyzed 405 
here are available under accession code GSE115414, EGAD00001004424, and 406 



GSE119757. All other data supporting the findings of this study are available from the 407 
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FIGURE LEGENDS 451 
 452 
Figure 1. Activation and upregulation of alternative promoters are associated with 453 
increased expression of disease related genes during prostate cancer progression. 454 

https://github.com/DavidQuigley/WCDT_alternative_promoter


A. Upregulated and downregulated genes were identified by differential gene expression 455 
analysis. Oncogenes and upregulated genes are enriched for switching from having a single 456 
promoter active in benign prostate to multiple promoters active in localized PCa (left) or 457 
mCRPC (right). The total number of genes in each category (T) and the number of genes 458 
that switched from SP to MP (N) are labeled next to the bars. SP: single-promoter active, 459 
MP: multiple-promoter active. (Fisher’s exact tests, two-sided). 460 

B. Differentially used alternative promoters were identified based on statistically significant 461 
differences in both absolute and relative activities by running the DEXseq differential exon 462 
usage analysis using promoter counts, and proActiv in corresponding comparisons (see 463 
Methods for details). AP: alternative promoter. 464 

C. Principal component analysis of all samples of different disease stages from three cohorts. 465 
PAIR: from the Henri Mondor institution, CPCG: Canadian Prostate Cancer Genome 466 
Network, WCDT: West Coast Dream Team, t-SCNC: treatment-emergent small cell 467 
neuroendocrine carcinoma. 468 

D. Density plot of the correlation between absolute promoter activity and corresponding gene 469 
expression levels for upregulated APs (red), downregulated APs (blue) and non-differential 470 
promoters (gray) in genes with differential APs in mCRPC vs benign. 471 

E. Density plot of the percentage of increased activity of upregulated APs over total increased 472 
activity of all promoters of the AP-containing genes in localized PCa and mCRPC. The other 473 
promoters from the AP-containing genes were plotted as controls. (Student’s t-tests, two-474 
sided).). 475 

F. Tracks plot showing the mean normalized RNA-seq coverage of benign and mCRPC 476 
samples over the RALBP1 gene on chromosome 18. Two annotated promoters (P1 and P2) 477 
are highlighted by shadows. CPM: counts per million reads. 478 

G. Box plot showing the relative activity of RALBP1 P1 and P2 in individual samples grouped 479 
by benign and mCRPC (Student’s t-test) (n = 8 for benign, n = 101 for mCRPC adeno). Box 480 
plots show data from the 25th to the 75th percentile, with the median as a line inside the box. 481 
Whiskers extend to 1.5 times the interquartile range (IQR) from the lower and upper 482 
quartiles.    483 

 484 
Figure 2. FOXA1 binding and androgen signaling are associated with alternative 485 
promoter usage in PCa. 486 
A. Correlation between the number of upregulated APs in individual localized PCa samples 487 

and AR expression levels. 95% confidence interval for the predictions from a linear model is 488 
displayed. (Spearman’s correlation test, two-sided) 489 

B. Left: The percentage of upregulated APs in localized PCa and canonical promoters of 490 
Hallmark AR targets that overlap with localized PCa_specific AR ChIP-seq peaks; 491 
Right: The percentage of upregulated APs in mCRPC and canonical promoters of Hallmark 492 
AR targets that overlap with mCRPC PDX-specific AR ChIP-seq peaks. (Fisher’s exact test, 493 
two-sided). 494 

C. Left: The percentage of upregulated APs in localized PCa and canonical promoters of 495 
Hallmark AR targets that overlap with localized PCa_specific FOXA1 ChIP-seq peaks; 496 
Right: The percentage of upregulated APs in mCRPC and canonical promoters of Hallmark 497 
AR targets that overlap with mCRPC PDX-specific FOXA1 ChIP-seq peaks. (Fisher’s exact 498 
test, two-sided). 499 

D. The percentage of overlapping with FOXA1 ChIP-seq peaks in control and FOXA1 500 
knockdown (shFOXA1) LNCaP cells in upregulated APs in localized PCa (middle) and 501 
mCRPC (right) with evidence of FOXA1 binding by FOXA1 ChIP-seq used in Figure 2C. 502 
(Fisher’s exact test one-sided). 503 



E. The percentage of FOXA1-bound upregulated APs in localized and mCRPC showing 504 
downregulated activity upon FOXA1 knockdown (shFOXA1) in LNCaP cells.  (Fisher’s exact 505 
test, two-sided). 506 

 507 
Figure 3. MYC is a potential driver of alternative promoter activation in mCRPC. 508 
A. UniBind results for top three TFs in localized PCa and mCRPC. Each dot represents one 509 

ChIP-seq dataset (n = 194, 70, 4, 4, 11, and 5 for AR, FOXA1, GATA2, MYC, E2F1, and 510 
HIF1A). TFs were ranked by the ChIP-seq dataset with the most significant overlap with 511 
upregulated APs. P values were calculated using Fisher’s exact test. Y axis shows the p 512 
values without multi-test adjustments, but the horizontal dashed line shows the 513 
corresponding Benjamini Hochberg (BH)-adjusted p value 0.05. 514 

B. UniBind results showing significance of overlap between TF ChIP-seq peaks and 515 
upregulated APs in MYC expression high vs. low mCRPC samples. Each dot represents 516 
one ChIP-seq dataset. TFs were ranked by the most significant ChIP-seq dataset. P values 517 
were calculated using Fisher’s exact tests. Y axis shows the p values without multi-test 518 
adjustments, but the horizontal dashed line shows the corresponding BH-adjusted p value 519 
0.05. 520 

C. The percentage of upregulated APs and EZH2 bound upregulated APs in mCRPC that 521 
overlapped with MYC ChIP-seq peaks in LNCaP cells. (Fisher’s exact test, two-sided). 522 

D. The percentage of upregulated APs and MYC bound upregulated APs in mCRPC that 523 
overlapped with EZH2 ChIP-seq peaks in LNCaP cells. (Fisher’s exact test, two-sided). 524 

E. The percentage of upregulated APs in mCRPC and canonical promoters of upregulated 525 
genes in mCRPC that overlapped with both MYC and EZH2 ChIP-seq peaks in LNCaP 526 
cells. (Fisher’s exact test, two-sided). 527 

F. Tracks plot showing the mean normalized RNA-seq coverage of benign and mCRPC 528 
samples over the BMI1 gene on chromosome 10. Two annotated promoters (P1 and P2) are 529 
highlighted by shadows. EZH2 and MYC ChIP-seq peaks in LNCaP cells are displayed. 530 
CPM: counts per million reads. 531 

G. Box plot showing the absolute activity of BMI1 P1 and P2 in individual samples grouped by 532 
benign and mCRPC (Student’s t-test) (n = 8 for benign, n = 101 for mCRPC). Box plots 533 
show data from the 25th to the 75th percentile, with the median as a line inside the box. 534 
Whiskers extend to 1.5 times the interquartile range (IQR) from the lower and upper 535 
quartiles.    536 

 537 
Figure 4. Alternative promoter usage reflects lineage plasticity in response to therapy. 538 
A. UniBind results showing significance of overlap between TF ChIP-seq peaks and 539 

upregulated APs in treatment emergent small cell neuroendocrine carcinoma (t-SCNC) vs 540 
adenocarcinoma mCRPC samples. Each dot represents one ChIP-seq dataset. TFs were 541 
ranked by the most significant ChIP-seq dataset. P values were calculated using Fisher’s 542 
exact tests. Y axis shows the p values without multi-test adjustments, but the horizontal 543 
dashed line shows the corresponding BH-adjusted p value 0.05. 544 

B. Box plot showing HAND2 expression in mCRPC adenocarcinoma (adeno) and t-SCNC 545 
tumors (Student’s t-test) (n = 101 for adeno, n = 3 for tSCNC). Box plots show data from the 546 
25th to the 75th percentile, with the median as a line inside the box. Whiskers extend to 1.5 547 
times the interquartile range (IQR) from the lower and upper quartiles.    548 

C. Pathway enrichment analysis of genes with upregulated APs in t-SCNC vs adenocarcinoma 549 
that overlapped with HAND2 ChIP-seq peaks. X axis shows the p values without multi-test 550 
adjustments, but the coloring was based on BH-adjusted p values. Dashed line shows 551 
unadjusted p value 0.05. 552 

D. UniBind results showing significance of overlap between TF ChIP-seq peaks and 553 
upregulated APs in tumors with high gastrointestinal (GI) scores. Each dot represents one 554 



ChIP-seq dataset. TFs were ranked by the most significant ChIP-seq dataset. P values were 555 
calculated using Fisher’s exact tests. Y axis shows the p values without multi-test 556 
adjustments, but the horizontal dashed line shows the corresponding BH-adjusted p value 557 
0.05. 558 

E. Tracks plot showing the mean normalized RNA-seq coverage of mCRPC samples with high 559 
and low GI score over the 5’ part of the SRC gene. Two annotated promoters (P1 and P2) 560 
are highlighted by shadows. CPM: counts per million reads. 561 

F. Box plot showing the relative promoter activity of SRC P1 and P2 in individual samples 562 
grouped by GI score high and low (Student’s t-test, two-sided) (n = 79 for GI low, n = 25 for 563 
GI high). Box plots show data from the 25th to the 75th percentile, with the median as a line 564 
inside the box. Whiskers extend to 1.5 times the interquartile range (IQR) from the lower and 565 
upper quartiles.    566 

G. Box plot showing the gene expression of SRC in individual samples grouped by GI score 567 
levels (Student’s t-test, two-sided) (n = 79 for GI low, n = 25 for GI high). Box plots show 568 
data from the 25th to the 75th percentile, with the median as a line inside the box. Whiskers 569 
extend to 1.5 times the interquartile range (IQR) from the lower and upper quartiles.    570 

 571 
Figure 5. Activation of alternative promoters is associated with DNA hypomethylation. 572 
A. Correlation between the gene expression fold change and methylation differences at 573 

alternative promoters differentially active between mCRPC t-SCNC and adenocarcinoma. 574 
95% confidence interval for the predictions from a linear model is displayed. (Spearman’s 575 
correlation test, two-sided) 576 

B. Correlation between the gene expression fold change and methylation differences at 577 
canonical promoters of the genes harboring differential APs between mCRPC t-SCNC and 578 
adenocarcinoma. 95% confidence interval for the predictions from a linear model is 579 
displayed. (Spearman’s correlation test, two-sided) 580 

C. Tracks plot showing the mean normalized RNA-seq coverage of mCRPC t-SCNC and 581 
adenocarcinoma samples over the 5’ region of the CBX5 gene. Two annotated promoters 582 
(P1 and P2) are highlighted by shadows. CPM: counts per million reads. DMR: differentially 583 
methylated region. HMR: hypomethylated region. PC_TX: protein-coding transcript; NC_TX: 584 
non-coding transcript. 585 

D. Box plot showing the activity of CBX5 P1 and P2 in individual samples grouped by t-SCNC 586 
and adenocarcinoma (Student’s t-test, two-sided) (n = 101 for adeno, n = 3 for tSCNC). Box 587 
plots show data from the 25th to the 75th percentile, with the median as a line inside the box. 588 
Whiskers extend to 1.5 times the interquartile range (IQR) from the lower and upper 589 
quartiles.    590 

E. Box plot showing the gene expression of CBX5 in individual samples grouped by t-SCNC 591 
and adenocarcinoma phenotype (Student’s t-test, two-sided) (n = 101 for adeno, n = 3 for 592 
tSCNC). Box plots show data from the 25th to the 75th percentile, with the median as a line 593 
inside the box. Whiskers extend to 1.5 times the interquartile range (IQR) from the lower and 594 
upper quartiles.    595 

F. Box plot showing the activity of CBX5 P2 in individual samples grouped by harboring an 596 
hypomethylated region (HMR) at P2 or not (Student’s t-test, two-sided) (n = 99 for No HMR, 597 
n = 5 for HMR). Box plots show data from the 25th to the 75th percentile, with the median as 598 
a line inside the box. Whiskers extend to 1.5 times the interquartile range (IQR) from the 599 
lower and upper quartiles.    600 

G. Standard deviation of methylation levels at recurrent hypomethylated regions (rHMR) 601 
overlapping with canonical promoters (as defined in the GENCODE gene model), major 602 
promoters in mCRPC (the most active promoters of each gene), and alternative promoters 603 
with differential activity within the mCRPC cohort. (Student’s t-test, two-sided) (n = 16,058 604 
for Canonical promoters, n = 12,468 for Major promoters in mCRPC, n = 490 for Promoters 605 



with alternative usage within mCRPC). Box plots show data from the 25th to the 75th 606 
percentile, with the median as a line inside the box. Whiskers extend to 1.5 times the 607 
interquartile range (IQR) from the lower and upper quartiles.    608 

H. Correlation between promoter methylation and gene expression at canonical promoters, 609 
major promoters, and alternative promoters with differential activity within the mCRPC 610 
cohort. (Student’s t-test, two-sided). 611 

 612 
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 755 
METHODS 756 
 757 
RNA sequencing and processing 758 
Human studies were approved and overseen by the UCSF Institutional Review Board. All 759 
individuals provided written informed consent to obtain fresh tumor biopsies and to perform 760 
comprehensive molecular profiling of tumor and germline samples. Patients donated samples 761 
and were not compensated. 762 
 763 
For the WCDT cohort, RNA was extracted from between 2 and 8 25um sections (50-200um 764 
total) of frozen tissue using the Qiagen UCP RNeasy Micro kit. Total RNA libraries were 765 
generated using the Kapa Hyperprep Total RNAseq kit, with Qiagen FastSelect rRNA depletion. 766 
The libraries were sequenced on the Illumina NovaSeq platform at paired end 150bp. Fastq files 767 
were first trimmed to remove adapter sequences using Cutadapt51 and then aligned to the 768 
human reference genome build hg38 using the splice-aware aligner STAR52 in 2-pass mode. 769 
The splice junction output (_SJ.out.tab) from STAR was used for promoter activity estimation 770 
described in the section below.  771 

Raw fastq files for RNA-seq data from the PAIR cohort, CPCG cohort, and shFOXA1 772 
and Ctrl LNCaP cells were downloaded from GSE115414, EGAD00001004424, and 773 
GSE119757, respectively. These RNA-seq data were processed using the same pipeline as our 774 
in-house RNA-seq data. We assessed positional biases in the RNA-seq datasets (WCDT, PAIR 775 
and CPCG) using the biasPlot function from R package “EDASeq”53, and did not observe 776 
notable differences between datasets (Extended Data Figure Extended Data Figure 2D). To 777 
assess the effect of differing sequencing depths on our analysis, we computationally down-778 
sampled the RNA-seq data in all three cohorts to 80M reads per sample, which was the lowest 779 
depth of all samples. We then re-calculated promoter activities using the down-sampled dataset, 780 
assessed promoter activity for each category of genes, and performed differential promoter 781 
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usage analysis between disease stages. As expected, we identified fewer genes that switched 782 
from single-promoter active to multiple-promoter activity in the down-sampled dataset, but the 783 
conclusions remained the same: both genes with upregulated expression in localized PCa or 784 
mCRPC (compared to benign) and known oncogenes were more likely to switch from a single 785 
promoter active in benign tissue to multiple promoters active in tumors compared to all 786 
expressed genes (Extended Data Figure Extended Data Figure 2E). Reassuringly, in the 787 
down-sampled dataset we observed a similar separation of the samples by disease type in the 788 
principal component analysis (Extended Data Figure 2F).  789 
 790 
Data exclusion statement 791 
One localized prostate cancer RNA-seq sample from the CPCG cohort (CPCG0416) was 792 
excluded from the analysis due to extremely low unique mapping rate (2.21%) using our 793 
processing pipeline. 794 
 795 
Estimation of promoter activity 796 
 797 
Promoter annotation 798 
Promoters were defined as the region around the first 5’ TSSs (transcription start sites, defined 799 
as the start of the first annotated exon) of overlapping first exons3,54. To create a comprehensive 800 
gene model, we combined GENCODE 3255 and NCBI RefSeq56. GENCODE 32 was used as 801 
the main gene model. Additional transcripts in RefSeq that have distinct inner exons from 802 
GENCODE 32 (excluding first and last exons to avoid redundancy due to noisy annotation of 803 
the gene starts and ends) were added. Promoters were then annotated from the customized 804 
gene model using the promoterAnnotation function from the R package proActiv3.  805 
 806 
Promoter region definition 807 
To identify transcription factor binding enrichment near TSS sites, we employed the 400bp 808 
promoter region definition recommended by the widely used transcription factor motif discovery 809 
tool Homer “-size -300, 100”54. This choice minimized the overlap between different promoters 810 
of the same gene. Using the 400bp definition, 15% of promoters from multi-promoter genes 811 
(7,765/49,976) overlapped with another promoter in the same gene; a wider search space (e.g. 812 
1,500bp, -1000, 500) would produce overlaps in 41.4% of genes.” 813 
 814 
Promoter activity estimation 815 
Absolute and relative promoter activities were calculated using the proActiv function from the R 816 
package proActiv3. Briefly, the absolute activity of a promoter is the total count of the junction 817 
reads aligning to the set of first introns belonging to the transcripts associated with that 818 
promoter. The absolute activities were normalized by DESeq2 size factors57. The relative 819 
activity of a promoter is the proportion of the absolute activity of that promoter divided by the 820 
sum of the absolute activity of all promoters of that gene. Major promoters are defined as the 821 
promoters with the highest activity for a gene.  822 
 823 
Internal promoter correction 824 
An internal promoter is defined as a promoter where the first exon overlaps with internal exons 825 
in other isoforms (P2 in Extended Data Figure 1B). The junction reads mapping to these exons 826 
cannot be unambiguously assigned to the internal promoter as they could also be from the 827 
transcription of other isoforms that use the exons internally. Although the internal promoters 828 
were excluded in prior pan-cancer analysis3, they developed a split read ratios method to 829 
correct for them. The ratios of the first exons’ donor sites junction reads against their acceptor 830 
sites junction reads were used as the corrected promoter activity (Extended Data Figure 1B). 831 
To assess the effectiveness of the correction, we performed correlation tests between the 832 



CAGE (cap analysis of gene expression) tag reads and the uncorrected and corrected promoter 833 
activity calculated from the RNA-seq data from matching samples from FANTOM558. The split 834 
read ratios method corrected activities showed an improved correlation with the CAGE signal 835 
(median of Spearman’s Rho 0.43 vs 0.35, Student’s test p value = 2.4 x 10-25, Extended Data 836 
Figure 1C). 837 

However, the ratios are not reflective of the actual abundance of transcription and not 838 
comparable to non-internal promoters. We developed a split read subtractions method which 839 
uses subtractions instead of ratios for correction (Extended Data Figure 1B). The correction 840 
excludes the transcription of other isoforms from that initiated from the internal promoters and 841 
preserves the actual expression levels. The correlation with the CAGE signal was further 842 
improved (median of Spearman’s Rho 0.51 vs 0.35, Student’s test p value = 7.71 x 10-55, 843 
Extended Data Figure 1C), and even to a similar extent as the non-internal promoters 844 
(Spearman’s Rho 0.52, Extended Data Figure 1C). 845 

To be conservative, we restricted candidate internal promoters to those with additional 846 
evidence: either the promoter was annotated as canonical in the Ensembl database17, or it 847 
overlapped with H3K4me3 ChIP peaks in benign prostate or localized PCa16, or it was located in 848 
recurrently hypomethylated regions in mCRPC6. A larger proportion of highly confident 849 
promoters were not internal, but the correlation with CAGE signal for internal promoters 850 
demonstrated the value of including these promoters after correction (Extended Data Figure 851 
1D).  852 
 853 
There is an edge case where a unique prior intron cannot be found for the isoform containing 854 
the internal exon (Extended Data Figure 1B, TXB). In this case, SJa and SJb would be the same 855 
junction, and thus the split read subtractions method [SJc-SJa|b] underestimates the activity of 856 
internal promoter P2 by incorrectly subtracting transcriptional activity from the SJa containing 857 
isoform (Extended Data Figure 1B, TXA). 9.1% (822 / 9,015) of the highly confident internal 858 
promoters fall into this scenario and were annotated in Supplementary Table 1.   859 
 860 
Differential promoter usage analysis 861 
 862 
Identification of differentially used promoters between two conditions  863 
Both absolute and relative promoter activities were considered as differential alternative 864 
promoter identification criteria. A differential exon usage (DEU) analysis was performed on the 865 
promoter activities by using the R package DEXSeq59 to identify differentially used alternative 866 
promoters between conditions within the mCRPC cohort (MYC expression high vs low, t-SCNC 867 
vs adeno, and GI signature high vs low). The DEXSeq analysis measured changes in the 868 
relative usage of promoters under different conditions, where the relative usage of a promoter is 869 

defined as 
number of transcripts from the gene that start with this promoter

number of all transcripts from the gene
. A promoter was considered 870 

differentially used if the adjusted p value was < 0.05.  871 
For comparisons between localized PCa vs benign, mCRPC vs benign and mCRPC vs 872 

localized, an additional linear model was fit using the getAlternativePromoters function from the 873 
R package proActiv3, and a more stringent threshold was used to identify the strongest 874 
differentially active promoters in tumors. The disease stage was the only covariate used for both 875 
DEXSeq and proActiv based analyses. Cohort/data source was not a covariate because all 876 
mCRPC samples were from the WCDT cohort, while all benign prostate samples were from the 877 
PAIR cohort. Promoters meeting the following criteria were considered significantly upregulated 878 
(or downregulated) in tumors: DEXseq adjusted p value < 0.05, log2fc > 1 (or < -1); proActiv 879 
linear model: adjusted p value for both absolute and relative promoter activity estimates < 0.05, 880 
log2fc of absolute activity > 1 (or < -1), difference in relative activity > 0 (or < 0).  881 
 882 



Identification of differentially used promoters in individual samples  883 
The absolute and relative activity in each individual sample was compared to the median values 884 
of a cohort. Promoters were considered to have differential usage if the log2fc of the absolute 885 
activity over the median value was greater than 1 and the difference in the relative activity from 886 
the median value was greater than 10%.  887 
 888 
Differential gene expression analysis 889 
Gene counts were calculated using the featureCounts function from the R package subread60. 890 
Differential gene expression analysis was carried out on the raw counts using the R package 891 
DESeq257. Genes with adjusted p value < 0.01 and log2 fold change > 1 (or < -1) were 892 
considered differentially upregulated (or downregulated).  893 
 894 
Pathway enrichment analysis 895 
The significance of overlapping between the selected genes (such as significantly upregulated 896 
genes called in the differential gene expression analysis, and genes with differentially used APs) 897 
and annotated gene sets was performed using the hypergeometric test implemented in the 898 
enricher function from the R package clusterProfiler61. The HALLMARK gene sets62, Wiki 899 
Pathways63, and the TOMLINS_PROSTATE_CANCER_UP pathway64 were obtained from the 900 
molecular signatures database (MSigDB)62. Prostate cancer specific genes constructed using 901 
the pan-cancer TCGA expression data as previously described6 were used. The GO_BP gene 902 
sets were included in the analysis for genes with upregulated APs in t-SCNC vs 903 
adenocarcinoma and in GI signature high vs low samples. All genes listed in the database of 904 
these pathways were used as the background genes. 905 
 906 
Transcription factor binding enrichment analysis 907 
The enrichment of transcription factor (TF) binding in the selected promoter regions was 908 
assessed by the UniBind Enrichment Analysis (https://unibind.uio.no/enrichment/)21. The 909 
UniBind enrichment tool predicts which sets of TFBSs from the UniBind database are enriched 910 
in a set of given genomic regions, in our case, the -300bp/+100bp region of the transcription 911 
start sites. Enrichment computations are preformed using the LOLA tool65, which uses Fisher’s 912 
exact tests with false discovery rate correction to assess the significance of overlap in each 913 
pairwise comparison. We used the Enrichment with a background type of analysis with the 914 
upregulated APs as the query set, and all high confident promoters with a non-NA p-value in 915 
corresponding DEXSeq output as the background set. The Robust collection of 4,166 ChIP-seq 916 
datasets of 268 Homo Sapiens TFs were used as the reference database. For the analysis of 917 
upregulated alternative promoters in localized PCa vs benign and in mCRPC vs benign, 31 TFs 918 
from the 386 ChIP-seq datasets in prostate tissues/cell lines were used.  919 
 920 
Methylation analysis 921 
Differential methylation analysis was performed using the DSS R package v2.26.066 with 922 
smoothing set to true, and otherwise using default parameters as described in our previous 923 
study6. Recurrent hypomethylated regions (rHMRs) were identified with the MethylSeekR67 tool 924 
as described in our previous study6: rHMRs were defined by running a 100-bp sliding window 925 
across the genome and identifying contiguous regions where MethylSeekR called an HMR in 926 
≥5% of mCRPC samples. For the correlation between promoter methylation and gene 927 
expression analysis, the -1000/+500bp regions around the overlapping first TSSs were used to 928 
calculate DNA methylation levels.  929 
 930 
Statistics & Reproducibility  931 

https://unibind.uio.no/enrichment/


No statistical methods were used to pre-determine sample sizes, but our sample sizes are 932 
similar to those reported in previous publications3. This study was a retrospective analysis of 933 
tumor samples, and randomization was not applicable, and no groups were allocated so 934 
blinding was not relevant. Transcriptomic sequence data were not presumed to be normally 935 
distributed and were analyzed using standard methods implemented in the DESeq and DEXseq 936 
package. 937 

All statistical analyses were conducted using the R statistical software version 4.0.368. All 938 
correlation analyses were performed using Spearman’s method. Differences between groups 939 
were assessed by Student’s t-tests. Fisher's exact tests were applied to determine enrichment 940 
of transcription factor binding in distinct promoter categories. All tests were two-sided unless 941 
otherwise noted, and p < 0.05 was considered statistically significant. Results were corrected for 942 
multiple testing using the Benjamini-Hochberg method, when applicable. All measurements 943 
were taken from distinct individual samples. 944 
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Figure 1. Activation and upregulation of alternative promoters are associated with increased expression of
disease related genes during prostate cancer progression.
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Figure 2. FOXA1 binding and androgen signaling are associated with alternative promoter usage in PCa

A

Spearman’s Rho = 0.22
p value = 0.0067

5.0

5.5

6.0

6.5

7.0

7.00 7.25 7.50 7.75

log2(# of upregulated APs in 
localized individual samples)

AR
 lo

g2
(T

PM
+1

)

Spearman’s Rho = 0.22
p value = 0.0067

0

20

40

60

80

Background
Canonical

AR targets

APs up localized

B Promoter – ChIP overlap: AR
localized mCRPC

p = 1.6e-03 
p = 2.75e-20

p = 9.27e-08

Background
Canonical

AR targets

APs up mCRPC

C Promoter – ChIP overlap: FOXA1
localized mCRPC

0

10

20

30

p = 2.99e-15
p = 2.34e-09

p = 6.16e-04

p = 5.32e-03
p = 0.104

p = 0.858

p = 7.84e-14
p = 4.6e-03 p = 0.539

Background

Canonical

AR targets

APs up localized

Background

Canonical

AR targets

APs up mCRPC

D E

0

20

40

60

80

FOXA1 bound
APs up in localized

% downregulated in shFOXA1 vs ctrl LNCaP cells

FOXA1 bound
APs up in mCRPC

0

10

20

30

% overlapping with FOXA1 ChIP−seq peaks

ctrl

shFOXA1

p = 0.0426

p = 7.46e-07

p < 2.2e-16

p = 6.29e-07
p = 1.28e-27

ctrl

shFOXA1

ctrl

shFOXA1

BackgroundFOXA1 bound
APs up in localized

FOXA1 bound
APs up in mCRPCBackground

p = 2.42e-06
p = 0.0252

p = 0.767

%
 o

ve
rla

pp
in

g 
w

ith
 C

hI
P-

se
q 

pe
ak

s

%
 o

ve
rla

pp
in

g 
w

ith
 C

hI
P-

se
q 

pe
ak

s

%
 o

ve
rla

pp
in

g 
w

ith
 C

hI
P-

se
q 

pe
ak

s

%
 d

ow
nr

eg
ul

at
ed

 



AR

FOXA1

GATA
2

MYC
HIF1A

E2F
1

−l
og

10
(p

Va
lu

e)

Upregulated APs in localized
Upregulated APs in mCRPC

Figure 3. MYC is a potential driver of alternative promoter activation in mCRPC.
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Figure 4. Alternative promoter usage reflects lineage plasticity in response to therapy.

A

0

2

4

HAND2

TFA
P2A

FOXK1
RFX5

REST
RFX1

ASCL1
SOX2

POU5F
1

YY1

−l
og

10
(p

Va
lu

e)

0

10

20

HNF1A

HNF1B
JU

ND

HNF4G
HNF4A

ATF3

NR2F
6
RXRA

FOXA1

FOXP1

−l
og

10
(p

Va
lu

e)

D

B

GOBP_BLASTODERM_SEGMENTATION
GOBP_CELLULAR_COMPONENT_DISASSEMBLY

GOBP_HYPOTHALAMUS_DEVELOPMENT

GOBP_SYMPATHETIC_NERVOUS_
SYSTEM_DEVELOPMENT

GOBP_FOREBRAIN_NEURON_DEVELOPMENT
GOBP_AXONAL_FASCICULATION

GOBP_GLAND_DEVELOPMENT
GOBP_AUTOPHAGY_OF_MITOCHONDRION

GOBP_GANGLION_DEVELOPMENT
GOBP_ANATOMICAL_STRUCTURE_ARRANGEMENT

GOBP_REGULATION_OF_BODY_FLUID_LEVELS

GOBP_HYPOTHALAMUS_CELL_DIFFERENTIATION
GOBP_DENDRITE_ARBORIZATION

GOBP_NEGATIVE_REGULATION_OF_
RESPONSE_TO_EXTERNAL_STIMULUS

0 2 4 6
−log10(pValue)

padj < 0.05

padj > 0.05

C

0

3

6

9

12

ad
en

o

tSCNC

HAND2 
gene expression

p = 0.0211

37.345 37.35 37.355 37.36 37.365
chr20 Mb

HNF1A
ChIP

0
2
4
6
8

10

G
I h

ig
h

0
2
4
6
8

10

G
I l

ow

ENST00000373578.6

NM_005417.4

E

GI low GI high GI low GI high
0

3

6

9

pr
om

ot
er

 a
ct

iv
ity

F

G

2
3
4
5
6

SR
C

 lo
g2

(T
PM

+1
)

GI low GI high

p = 0.00258 

P1P2

CPM

CPM

7

P2

SRC

GOBP_NEGATIVE_REGULATION_OF_
WOUND_HEALING

H
AN

D
2 

lo
g2

(T
PM

+1
)



hypermethylated

Figure 5. Activation of alternative promoters is associated with DNA hypomethylation.
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Supplementary Figure 1
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Supplementary Figure 1. Optimization for promoter activity estimation.
A) An overall schematic of the samples, data processing, and principle tools used for the analysis. 
PAIR: from the Henri Mondor institution, CPCG: Canadian Prostate Cancer Genome Network, WCDT: 
West Coast Dream Team, t-SCNC: treatment-emergent small cell neuroendocrine carcinoma. 
B) An illustration of the promoter activity estimation methods. Solid boxes represent exons while the B) An illustration of the promoter activity estimation methods. Solid boxes represent exons while the 
lines represent introns. The promoter (P1, P2, P3) are defined as the first 5’ TSSs (transcription start 
sites) of overlapping first exons. The splice junction reads (SJ) from the overlapping first exons were 
summed and log2-normalized to represent the transcriptional activity of the promoters. The activity of 
the internal promoter P2 driven isoform C (TXC) can be corrected by the split read ratios or split read subtractions method to exclude transcriptional activity from isoform B (TXB) (see Methods for details). TX: transcript, SJ: splice jucntion. 
C) Correlations between the CAGE (cap analysis of gene expression) tag reads and the promoter C) Correlations between the CAGE (cap analysis of gene expression) tag reads and the promoter 
activity calculated using RNA-seq data of non-internal promoters without correction, internal promoters 
without correction, internal promoters corrected by the split read ratios method, and internal promoters 
corrected by the split read subtractions method. The matching CAGE and RNA-seq data from the 
same samples were from FANTOM5. Upper row: representative correlation plots showing one human 
adult testis sample. Lower row: a box plot showing Spearman’s correlation coefficients for all 67 
samples with matching CAGE and RNA-seq data. 
D) Number of high confidence promoters (dark gray, see Methods for details) and non high confidence D) Number of high confidence promoters (dark gray, see Methods for details) and non high confidence 
promoters (light gray) in the non-internal and internal promoters category. 
E) A representative sample downsampled to 31.25 million (M), 62.5M, 125M, 250M, 500M, and 750M 
reads from 1000M. The bars show the number of active promoters detected at each read depth (left y 
axis). Lines connected by points show the number of new promoters detected per million reads, with 
values indicated on the right axis. 
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Supplementary Figure 2. Activation of additional promoters is associated with gene expression 
upregulation. 
A) The number of active promoters normalized to the number of expressed genes for each individual 
sample grouped by disease stages. Genes with nonzero counts were considered as expressed. 
B) Upregulated and downregulated genes were identified by differential gene expression analysis. Bar B) Upregulated and downregulated genes were identified by differential gene expression analysis. Bar 
plot shows the percentage of genes in each category that switch between single-promoter active and 
multiple-promoter active in benign prostate and localized PCa (left) or mCRPC (right). Activated: switch 
from SP (single-promoter active) in benign to MP (multiple-promoter active) in tumors. Deactivated: 
switch from MP in benign to SP in tumors. Inactive: SP in both benign and tumors. Constitutively active: 
MP in both benign and tumors. 
C) The RNA-seq coverage across gene body from 5’ to 3’ for ten random samples from each of the C) The RNA-seq coverage across gene body from 5’ to 3’ for ten random samples from each of the 
dataset (PAIR, CPCG, and WCDT) in our data collection. 
D) The EDASeq bias plot of the positional biases in unnormalized promoter counts of all samples from 
the RNA-seq datasets (PAIR, CPCG, and WCDT) in our data collection. 
E) The analysis of number of genes switching from single promoter active in benign prostate to multiple E) The analysis of number of genes switching from single promoter active in benign prostate to multiple 
promoters active in localized (left) or mCRPC (right) using the RNA-seq dataset all down-sampled to 
80M reads/sample. SP: single -promoter active, MP: multiple-promoter active. *p value < 0.05, **p 
value < 0.01, ***p value < 0.005 (Fisher’s exact tests). 
F. Principle component analysis of all samples of different disease stages from three cohorts using the 
down-sampled RNA-seq dataset. 
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Supplementary Figure 3. Alternative promoter usage occurs in cancer related genes.
A) Density plot of the Spearman’s correlation rho values between absolute promoter activity and 
corresponding gene expression for upregulated APs, downregulated APs and non-differential 
promoters in genes with differential APs in localized PCa vs benign prostate. 
B) Pathway enrichment analysis of genes with upregulated APs in mCRPC vs benign. Highlighted in B) Pathway enrichment analysis of genes with upregulated APs in mCRPC vs benign. Highlighted in 
red are pathways enriched for the genes with upregulated APs but not in upregulated genes. Dashed 
line shows p value 0.05. 
C) Pathway enrichment analysis result of genes upregulated in mCRPC vs benign prostate. Dashed 
line shows p value 0.05. 



Supplementary Figure 4. Alternative promoter usage is associated with AR levels.
A) Correlation between the number of upregulated APs in individual mCRPC samples with AR 
expression levels. 
B) The percentage of AR and FOXA1 co-binding in the FOXA1 bound upregulated APs in localized 
PCa and mCRPC (Fisher’s exact test). 



Supplementary Figure 5. Alternative promoter usage is associated with driver transcription 
factors. 
A, B) Unibind results showing significance of overlap between transcription factor (TF) ChIP-seq 
peaks and upregulated APs in localized PCa (A) or mCRPC (B). Each dot represents one ChIP-seq 
dataset. TFs were ranked by the most significant ChIP-seq dataset. Dashed line: BH adjusted p 
value = 0.05. 
C) Pathway enrichment analysis of genes with APs upregulated in mCRPC vs benign prostate and C) Pathway enrichment analysis of genes with APs upregulated in mCRPC vs benign prostate and 
overlapping with MYC ChIP-seq peaks in LNCaP cells. Dashed line: p value 0.05. 
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Supplementary Figure 6. Enriched pathways in genes whose promoters are bound by MYC, 
EZH2 or both. 
Pathway enrichment analyses of genes with promoters overlapping with EZH2 LNCaP ChIP-seq 
peaks only (A), with MYC LNCaP ChIP-seq peaks only (B), and with both MYC and EZH2 LNCaP 
ChIP-seq peaks (C). Dashed line: p value 0.05. 



Supplementary Figure 7. Alternative promoter usage reflects lineage plasticity in mCRPC. 
A) Unibind results showing significance of overlap between TF ChIP-seq peaks and downregulated 
APs in t-SCNC vs adenocarcinoma mCRPC. Each dot represents one ChIP-seq dataset. TFs were 
ranked by the most significant ChIP-seq dataset. Dashed line: BH adjusted p value = 0.05. 
B) Histogram showing the distribution of gastrointestinal (GI) scores across mCRPC samples. 
Dashed line splits the fourth quartile vs others. 
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Supplementary Figure 8. DNA methylation at alternative promoters is anticorrelated with 
their activity. 
A) Correlation between the promoter activity fold change and methylation differences at differentially 
active APs between mCRPC t-SCNC and adenocarcinoma mCRPC. 
B) Unibind results showing significance of overlap between TF ChIP-seq peaks and upregulated B) Unibind results showing significance of overlap between TF ChIP-seq peaks and upregulated 
APs in mCRPC t-SCNC vs adenocarcinoma that overlapped with differentially hypomethylated 
regions in t-SCNC. Each dot represents one ChIP-seq dataset. TFs were ranked by the most 
significant ChIP-seq dataset. Dashed line: BH adjusted p value = 0.05. 
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