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KINEMATIC CONSTRAINTS ON HELICITY_AMPLITUDES*

Henry P. Staﬁp
Lawrence Radiation Laboratory .

University of California
Berkeley, California

AN
March L, 1968

ABSTRACT

- 'The kinematic constraints on helicity amplitudes are derived
directl& from basic analyticity properties, without the use of crossing
or partiai—wave decomposition. The constraints are manifest in a
représentation of helicity amplitudes used earlier to study their
kinematic branch points. That work is completed by extracting from

that representation the powers of the kinematic poles.
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1. INTRODUCTION

‘The rélationships among helicity amplitudes imposed at thresh-
olds and - pseudothresholds by kinematic requirements are important

in Regge analySis. They have been studied by extensively,l and

recently have been derived by a genérai procedure based on crossing

properties,2 and also by an alternative method based on a partial-wave
decomposition.3 However, the use_of.crqssing or partial-wave decomposi-

tions to derive these constraints is roundabout: One should be able

‘to derive them directly from basic’analyticity properties. 'Th;s is

indeed the case, for they are manifest in a representation of the

~ helicity amplitudes used earlierh tp derive their analyticity propefties.

_That representation is discussed here in more detail, and the powers

of the kinematic poles at thresholds and pseudothresholds are derived

" from it. This completes the earlier wbrk, which dealt only with

branch point singulafities. Only the general unequal-mess case is

considered here.
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2. A REPRESENTATION OF HELICITY AMPLITUDES

This work is a continuation of Ref. k. Equation numbers with
asterisks refeér to that work.

. Let be a unit 3-vector. According to (2.5*) the spin-lm s
_ . . e .

boost in the direction L can be written

3% = [P rPreeg 500 -0F], @)

Ve

where the sign‘of € =% % determines the sign (sense)‘of:thé_bbost,v ib”:”

and vo is the time component of the covariant veloéity of a boosted

" particle that was originally at rest:
0 : : B
o B, (2.2)

‘Here y is the Lorentz contraction factor  (1 4.52);% }ﬁssociatéﬁ.z

with the boost. o | -
_According_to»(Q.ls*) the helicity amplitﬁdes_for the Scattefihéfiwhﬂwf-_f

of a spin~% particle on a spin-zero particle are matrix élements of_,iiil'. i

- the operator

- g B0, B AG, ) 30O, &), (2.3) ,

Here v0 and Go are the time components of the covariant velocifiesf o

of the initial and final fermion, respectively, ‘and '
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. | A(E) 6) :=. &(G) €; S, t) W,€+el R(G) . : (2.’4) ‘

Here the .a(e, E; s, t) are a set of four invariant amplitudes

| (pa.rity conservation is not assumed) tha.t are free of kinematic

31ngularities, except possibly on the surface @ = 0, which is where
at most two of the four energy-momentum vectors p are linearly

1
independent 3 W is the center-of—mass energy s?; eand .

_R(9) = exp[i‘gg . M] : ;, _ - | (2.5)

16 the rotation by 6 about the axis ‘B, which is the wiit normal to-

‘ the c.m, plane of scattering.

 The helicity amplitude is: the ma,trix element of H in the

frame where S Q‘ o, = 03 angl ;o‘ B O, = Oge In this

fra.me the boost factors B(v s e) a,nd B( s €) become simply

" numerical functions of the hellcities x and » of initial and

final particles, respectively, and the hellclty amplitudes are

0 -
He = E B(v,G,K)Ax(G,G 0; 5,8) B(v), €, 1)

€’€ = + (2 6)'

el f oy

where
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_isolating‘ R(®), one obtains -

B = Ak x(g) > T L
' wt-lereA
' - 1 1 .0 1. 1
o= Pl + 1E © )%, @ - 13, A0 - 1% s, 8, 5 W]
= E B, 5, ) alE, e 8, 1) Wl GO, 6, )
‘ - 1 o . o .
RS (2.80)

This form of the helicity amplitude for a sihgle spih-% particlé
was the basis of the analysis of . Ref. 4. The key'point~is that the.

dependence of Fr,on )\ and M occurs only through the factors
o - _.% _;o 1 - a

AMv' - 1)2 and A(v - 1)2, respectiveLy, whereas R; (9) is

known.

If one chooses the frame where o, = O3 and O = =0

then the matrix elements of H are the "transversity amplitudes" of
_ Kotanski.5 Then the rotation matrix R(G)l is diaéonai, instead‘éf
B(vo, €) and B(GO, €). This representation of H is denoted by
Hze ‘ o -
Note that if (vo»- 1) for .(50 - l)] is zero then the boost
factor B(vo, t) [or B(ﬁo, Eﬂ becomes unity. Then the dependeﬁce.lJ

of H on A or T '[or on A or ?] is determined by the matrix
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elements of the knoﬁn rotation operator R(). This immediately gives
- the kinematic constraints, as we shall see in the next sécticn.
Processes with higher spins are dealt with by conStfucting
their amplitudes from tensor‘products of spin-% amr.litudes. ‘For the
purpose of this (purely mathematical) construction one éan consider a
particle of spin J and velocity v to be a composite system (in a
purely mathematical sense) qf,ndf;,EJ spin—% particles of velocity v.
Leﬁ the labels on the particles of a +b —-c + 4 bé chosen so that
J, = Jc(mod‘l) and J, = td(mod 1). Tet N, = max(QJa, 2Jc) and.
N

= max(EJb, 2J Then imagine a process with N+ N =N

bd d)'

' spin~% particles, such that first Nac particles come in with velocity
Vo and leave with velocity V.o and last Nbd particles come in with

velocity v

b and leave with velocity v.,. ILet é%‘ represent the

d

set of Clebsch-Gordan operators that combine the last 2J; of the

Nac particles constituting particle a into a particle with spin
and ' .

J,. And let cg’, Cff, (24/ be similarly defined. Let th be the

a’ . b e’ M4 ‘ a

operator that projectis each of the first (%'Néc - Ja) oairs of

particles from the set of Nac particles constituting particle a

onto a spin-zero system. That is,,ﬂJ: is a tensor product of

Nac - Ja singlet projection operators, acting on these ’% i) - J

nj -

pairs of particles. And let .ﬁJL, JEZ ,and ,gdz be similarly defined.

Then H for the composite system is written as
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s lrewhol)| e B, O
S { i=1

[<,J @0)@ (:J xG)]

(2. 9a) ‘,15'.

| f: Thls equation is schematicy, for it does not meke explicit the

particular way that the N varlables for the operator in the center

'.7, are separated into the four spaces of the outer operators. But this

separatlon has already been explalned [See also the Appendli Also, ;
(2 9a) does not convey the information that in’ formlng the tensor

product .[H‘Qbfﬁi]’ each of the four termsvcorresponding to the four _f?itvtt

different possible values of (Ei, ei) in _Hi‘ is to be combined
independently with each of the four terms of each of the other Hi,_;;'
to give altogether yN terms,'whieh have independeht'coefficientsiv'

S, e, p S t). This fact is exhibited in the explicit .. 5 .

‘definition ' o | Gt
TT®H| - SR VL SR SRR AU
i=1 v €ai= + 3 . :

/racl B, ( 0 ¢ ) w'e i M ea.i" h (o) B"(»}Q € ‘.)‘
O 1\We 2 Sei ¢ i 1\Vg 2 Sai/
i=1 : L

x TT® 2,000 ey wlas* sl ry(e) B,(w0, ) (2uom) -
j=1 | o
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The summation on the right'is over_the 4N'vcombinations of signs of
the various €., where Q =a, b, ¢, or d. It was shown in Ref, 4
ol '

that the coefficients a(%xi;’s, t) can be made functions of the

- invariants s and 't that are free of kinematic singularities at

¢ 4 o.

One can write the equafion analagous to (2.9a) for either the’
M function or the S-matrix by simply'replacing the H and Hi
either by M and Mi or by S and Si’ respectively. The conver-

sions between the three forms go through because both the boosts and

 the rotations are converted in passage through the ,d o @ Q to

the form appropriate to the space on the other side.6
Going to the helicity representation and regrouping factors,

one obtains from (2.9) the analogue of (2.8):

H = j{: 04 1:%4 (e) , (2.102)
MrMhg ” Maherphe  MaleMpha .
where the sum over y is a sum arising from the linear combinations ‘
implied by the factors 4g? D C.. The factor R’ (@) is a
«@ o T et

linear combination of products of N elementary rotation operator

matrix elements (8) and Rx (8), which must satisfy

ci A ai

Bxda Mg .
z: M = Ny , | | (2.10b)



L :,.:,,' 7._' |
. The function F .. _
L Ad}ckbxa

factors like LN and LN 'of'(2;8b)‘whi¢h also must
’ aj™j ciMai o

- satisfy (2.10b). -In particulay we have

'is a linear combination of products of N

Py
2

24 = ‘F7[(vd +1)2, *ui(”d -5,1)2; 8, t3 w], R (2.1QE)~

MarcMora

where the ) , on the right satisfy (2.10b).

- The representation (2.10) is discussed in detail in the

Appendix. The main pertinent features are that the dependence of }  .

_ dexcxbx upon ), enters only through the factors Nai(vd 1) -
and that R; A X (8) 1is a linear combination of products of mafrix
o areMote, . ) : o

-8~ R g:‘ '.ﬁ_{ - ,ﬁCRL-18115 1 j q”

elements of N elementary rotations (2.5) having the correct total 5  f,ii;'

_helicities A, as specified by (2.10b).

The arguments that follow hold fbr each term of the sum in .

-(2.10a). Thus the index 9y will be omitted.
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3, KINEMATIC CONSTRAINTS

Equations (2.10b) and (2.10c) show that F is independent of

Ny at (vaO - 1) = 0. Thus the dependence on Ny 1s given completely

by the rotation operator R(6). This gives kinematic constraints.

These constraints take a neat form in the transversity
representation. For at vdo -1 = 0 the boost factors associated
with particle «a all become unity. Thus the transversity index

T applies directly to R(®). There are several cases, which are
discussed separately.
' . ' 0] 0 .
At W=m +m both (va -1) an@ (vb - 1) vanish,
[See (3.1%),]. Therefore the boost factors for the particles that
constitute particles a and b all become unity, and the trarsversity

indices 7, and 7, apply directly to R(6). Thus the behavior

near W = m, +m is dominated by the factor elg(T&+Tb) coming from
R__. (e):
"a"c"va
H e18(Tg7p) (W~m + m) . (3.1a)
Ta%e T - a .
' Similarly, we obtain
H ~ )y m em) . (3.1b)
T.7T T, 7 = e a’ ° *
d'ecba ‘

i0 S I .o . tl/z
- The factor e = cos © + 1 sin © behaves like CW - (ma + mb)

near W=m +m. [See (2.10%),].
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At W n‘- m, >0 the factors (v A‘- l) and (v + i)--
'vanish.' Thus the boosts for the partlcles that constitute partlcle
a all become unlty, whereas the boosts for the partlcles that
constitute b all become (1n the transversity representation)
proportional to 102.

fore be screw-diagonal. Thus we have

The boost factors for particle. b will there-

' io(t_ -1, ) - o v ' ”."'u
He fox ~ € a b (W ~ m, - m > o), o .(3.2) v
dcba A B R

* and similarly for the other mass cases. The conétraints'(B.l)-and :

(3. 2) were derlved in Ref. 2 from crossing propertles, and were shown ﬁ: -

- to give all the known kinematic constraints.
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W o . B 4. THRESHOLD AND PSEUDOTHRESHOLD BRANCH POINTS

. "A‘co'ntinua,tion of H around a small circle centered at
' o _ L ' 1
W=m, +m, reverses the sign of (vcO - 1) and (vdO -1)2

[see (3.1%)] and carries © to © +'x. [See (2.10%),]. Reversal of

=

1
the signs of (vco - 1)2 and (vdo - 1)2 1is equivalent to reversal

of the signs of the Mot and A in the boost factors

aj -

i
i

‘ 0 0] R
: : B(vc » €oys }‘ci) and B(vd s €a47 Kdi)’ and it legds to a reversal

of the signs of )\, and A, on F in (2.10a). Moreover, .
;! 4 e a AgheMpha, |

: ‘ o 2J +2J
g R, o (6 £ x) = (%(i ) R(Qi) = (1) e “Ya
i
IO |
2 (-1)7caNea R (e)

a MMt '

e (4.1)
[The identity ‘)\,d = -ﬂd is used here, It is assumed in (4.1) that
R(6) transforms on the left according to the Jc VoI) a representation.

‘ ' 'v This is justified in the Appendix. ]

.The effect of the continuation on H = FR(®) is therefore
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o
| . £
M Mote, S MgheMta

' ' a I +T =\ 0 , R v N
= (&1) ¢ (-1)°¢™"da ¢ ™ H N L (4.2)
a MMM, ~ S

. Now the continuation © —0 % =« - effects also the change

olunl  gluml o] glual
L sinS cos g' - (il)2§ (--.'L)")""u sin g - cos g .

: _Af(L;B)]  f«‘

Thus setting )\ equal tOA_Xd - xb,’and K equal to e = Ad,:and~

defining
N olwtal = 7 R
- B8An = COS =—
- 2 2
we find that ’
- Ly ST PR
B, ,, =—> 1 o= M H_L ., (k.58) . -
Miwhe o AadoMwra T o o SR
- wliere
) Jc+Jd+x ' N ' _
ne = (-1) = 1.(A) ¢ - (k.sd)

Thus the factor (1) © ¢ = (1) = ()™ drops out when f,

rather than H, is considered.
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P

" The same arguments give also '

o , . - . 1 . - . . ,
PR - . O H — H .= 7, H - . - (b.5¢)
3 T o B R |
-7 where
' J_+J, -u : S - . ' :
: b .

A e il L

“ [The signs of A and p in (h;5b) and (4.54) correspond to the case

D

'where'the‘initial particles have lower dotted indices and the final
'*; particles have lower undotted indices. According to the conventions -

- of Ref.'6, which are adopted here, rdtations act by multiplication

Rt DN T vl N i e

& from the right or left on lower dotted and undotted indices
.- respectively. ]
+ 1 that

. ' R R 0
At W= m, - my >0 it is vc, - ; and V4

vanish. The argument is just the same, except that the ch,= 2{1(mod 2)

E ' “_"' " boost factors associated with d all get an additional overall sign

change. Thus one obtains, instead of (h.5),father

S | i | 2J

=, .
R . H —> n.(-1) T H. . (4.62)
A o AgheMphg £ hg AR . .

B R R P

g | | .'% For continuation around W = m -'mb ?‘O: one gets

P e

: 23, _
—> n,; (1) " H

H (4.6p)
xdxckbha R :xaxc—kb-xa
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v.'_A‘Eqvllja.t;Lb_r‘ls. (h5) and (4.6) were: derii;éd in Ref. 2 from an
analysis of Williams' representation of M funétionsvﬂ in terms of
; in\}ariant ﬁnétions. They are the basic equations for the analysis
of threshold and pseudothreshold kinemtic branch .points given there.
:. [Cerfain sign differences are due to the unorthodox defin,ition'of

,heiicity states used in Ref. 2.]
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o T e

: 5. THRESHOLD AND PSEUDOTHRESHOLD POLES
© - Define
§ | {[s,- m, +‘mb) ]1[8 - (ma - m.b) ]} = 8, = 8; (5.1a)
¥ o . . . . .
‘ ) ‘and
, - 2 - AN o '
— {[s - (m, +vmd) 18- (m, -my) ]} = 8, = B¢ - (5.1p)
" And define
G = mx(,d) = in =g - (5.2)
i o =T Yo’ Ty 2y T “ay? . e
‘ where .y .is the mate of ‘o in'the pairing (a,c) or. (b,d),
The rotations R:(G) ﬂ‘in . H & FR(®) . are constructed as’ linear
 ‘combinations of terms of the form o :
- in &Y feos © e (l - cos 9)‘3/2 1 + cos e>(N'p)/2 |
R 3 2 = 2 e . ’
where ‘
N=N_+N, =2 .+ 23, = 23, + 27y = 2J}. | (5_.3).
| Thus near 8, S, =0 each of these terms has a singularity of the
. form [See (2.10%)]
. y ) A .
-N/2 -F -



| where J,EJ_ +J -and J,=EJ_+ I,
'ff,j” singularity in H, cancellations conceivably could reduce the magnitude

“jg!jof the exponents.'

a6 wmasns

The operator ,!/ _con81sts of J i& singlet projectlon.

'-It is shown 1n the Appendix that the action of .zg upon the boost

- Qfactors in fF produces an effectiveffactor__
AT S I %y B T
aa Coo R , ;
(55) & % - (s_(i,f)) ;o S ,.(s_,:,>,:.

,where B is the mate of « in the pairing (a,b) or (c d), and - -
'(i f) is i or f according to whether o -is initial ‘or final. RV
i'_The four factors (5 5), for «a = a, b, ¢, and a, reduce (5 h) to the - vj;w
ih-form | ' ' .

_;J_r s 1.v“’u '-Ja-J L -Jé;j :

s, T = b g Ja Ly e
51 "8 = Sy Sa et _(\_5,6)}_1____-,_. ol

This is the worst possible f'H?fffhz'

i a*

Define

| o Rxdlohbxa(g) o ey
"d"c"b" Y S 57
o sin = coS = s N : T S

2 2

i'°W1th vh = Ao, "~ Ab end ‘p = A, - Ay The matrixfeienents'of ﬁ(O)ﬁ-' o

- are polynomials in cos © of order at most J - M, where J= N/2

.. 'as before, and M= Max (IAI, lul}." This follows from the fact that ”a7
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R(6) 1s a linear combination of factors (sin 0/2)P (cos 9/2)N"p,
where p - Ju - A] = (even integer) >0 and
(N - p) = |p +A] = (even integer) > 0. These conditions on p

follow easily from an examination of the form of [x QpiRi].

In terms of R, H becomes

i

& = FR@E), | | ' (5.8)

vhere the indices are now suppréssed. The worst possible singularity ‘

of R(6) at s, 8

i

=0 1is evidently (sy sf)"(J'M). Thus, in

view of (5.5), the worst possible singularity in H is

ARG

-(Ja+Jb-M) '-(Jc+Jd-M)
i g © Tab

5 Sea > (5.9)

as follows elso directly from (5.6).



-18- UCRL-18115

6. COMBINED RESULTS

The various results given above are the ingredients from which
regularized helicity amplitudés are_constructed in Ref. 2. One can
therefore follow thelr procedure. Alternatively one can use the |
précedﬁre of Ref. k.

Invariance under space reflection was assumed, in Ref, 4, but
this is unnecessary. In the general case one uses in place of (3.9%)

“the definition

sz;i %[Q* "l’Nj;)(l ¥ (-i?#;)]%fg - | (6.-15'

]

where N; and N; are the operators that give the number of factors

N .
“Av °. 1)2 associated with the initial and final particles, respec-

¢ . SI(JC Aoq‘(é-l) . )
tively. The twotsigns on the rightAgre identified with the twoisigns

on the left, in the same order, so that N; 18 even or odd according

to whether the sign on the left in Pt ¥ is plus or minus, and Ni

is related in the same way to the sign on the right. . Then (3.10%)

shows that the function
e
v £1/0,(0,) 6(0,) - (6.2)

is free of kinematic branch points at sums and difference of masses.

Here Gi(ci) is the function on the right of (3.11%*) corresponding
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tq'thénéign ‘o, ‘on the left, for the case BB, FF,or FB at hand,

~and Gf(cﬁ)‘ is the corresponding function for the final particles.

Thetsame argument works if F 1is replaced by H. The

_ : - : 1
- operator Ny, = Nd + N; is the total number of factors (vdo - 1)

| 1 : -
Vd? + 1)2, .This number includes a term 27, [see ( 5.2)]

and (

coming from the Ejd boost factors associated with particle o. It

also includes contributions from the powers of cos ® in R ‘of

(5.8). Each power of cos @ has one factor of tu in the denominator.
Now
0 _1y2 (v+9 4, 1)2 0 _ ¥ (0,1
%15"- (vd 1) (vd +1)2 ~ (vB 1) (vB + 1) 3 (6.3)

where ~ means equal up to factors regular at sums and differences

" of masses. Thus each power of 'cos 8 can be considered to subtract

fwo from either Na or N_. Since only thé evenness and oddness of .

g
N, and Ng. are relevant to the arguments, these contributions from

R can be ignored.

Thus if one defines, in analogy to (6.1), the function

just}
i+
+

E%[@ibnﬁ)6t0ﬂﬁ>hi;'  '<am.f

- then (3.10%*) shows that

0.0 : : _
AT /e(0,) 6(0,) , | : (6.5)



ehis free of kinematic branch points at sums and differences of the

'(unequal) masses. And the arguments leadlng to (5 2*) show that i‘.

£ = 1 G o) 6. 68

is free of all kinematic branch points. - :[The variable is" W ‘for

1 the FB casel. .
The operator (-1) £ acting on H changes the sign of each
factor (véO - 1)2 and (vdp - l)2 Thls is equivalent to a contlnua- o

m, +mg. Thus (h.5)‘gives :

tion of H around W = 4
N - o _ . . | . _ S
f = ="f - o
(-1) " H = H = . H . , ’ ' (6.72)
Aehs Aehs e
. and similerly
N H : o e
(-l) ﬁ . = . H C T'. ﬁ ) o ' Co »— B - (6.7b) ' "
: Ahy Mehy T T T )
| 8% T
These identities allow HAfA to be expressed as linear combinations
i ' T . j
of the fi , with the appropriate coefficients 1,.(A) and e
, ’ +Af1~Ai aahecl e - RN
1+ 2 ‘
<e np(e x)) ¢ ef)/ g, 1 ( :) (l+€1)/2
b Rl S § i} f ,

’€=+l Y

R (6 3)
efAfeiAi .

S -20- .~ UCRL-18115
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the factor (Sab)
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" The functiohs ﬁt_t defined in (6.6) have no kinematic branch

 points, but they may have kinematic poles.  According to (5.9) the

Ja+Jb-M

functions A* * (8,) will be bounded at §_ = 0. Thus if

g 4T, M | \ ,
b , must free. of kinematic branch

"points and poles at .Sab = 0, since it is. free of branch points,and
- the denominator function Gi(ci) cannot lead to poles. If

_Ja‘+ qb.f M .is odd,then‘

G0 Jé+Jb~M-l.

 A%% 2
Bk 8,1 @]

»muétlbe_free of kinematic branch points and poles at Sab‘= o. For

. if the. factor G, 1is regular at any point of vSaﬁ = 0, then it *

can have no branch'poiﬁt at that point, since fI* * has none, hence

'Ja+Jb'M'1 _
is sufficient to ensure boundedness. If

the factor . Gy is singular at a point of Sab = 0, then

Ja+Jb-M-l

¥ ()

would not necessarily be bounded at that point,.both because of the

singularity of Gi in the-denomihatbr, and because of the one

missing power of 8,7 Which is needed to ensure the boundedness of -

H. The factor di supplies the two needed powérs.



" The same‘arguments apply to.the;finai particiés}

' conclude that -

~M-ep 'S.Ji'M;ei

5% 4% (Ve o

o ©is frég of kinemstic singularities. _Heré e

E dépénding on whether Ji':-ﬁ'= Iy + Jb,-fﬁ'fisjéveﬁ'bfiodd; énd’4efj, L-5”.“'u

is related to Jf - M= Jc'+ Jd -1 in the-sémé way.3vThiS:iS'the 5%f w;qT, f T

- result obtained in Ref. 2. .
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.Thus ﬁe may --: 5

1is 'zero or one

- o nepeg e Amp o o e st R e L+ eime 3 A o rn sy myes oiy
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APPENDIX =

DISCUSSION OF THE REPRESENTATION (2.10)

. From a set of n spin-% states one can form, by Clebsch- .

' Gordan composition, states of various spin J < n/2. Let the original
spin-% states be numbered in a particular way, and lét a sequence of

states be formed by first combining the first and second spin 5

states to get a state of spin zero or one; then combining this with

the third spin-% state in the various ways consistent with the vector

sum rules; and so on. The particular mode of composition is described
is

’5 by alset | 2y~= (Jl’JQ’."Jh-l’Jﬁ) of n spins Ji’ where Ji

- the total spin of the system consisting of the first 1 pafticles.

(Thus J, is 1/2 , and can be suppressed if desired; or Jo =0

.. can be included.) )

Let the generalized Clebsch-Gordan coefficient that connects

the set of n spin é

the sequence 9’ be denoted by @(9’,0&; ozl--.qn) = <9’O_L,al”.an) .

indices to the single spin-Jﬁ index O via

‘They are defined inductively in terms of Clebsch-Gordan coefficients

by the formula

(Jl’.'.Jn’a,al'..an> =;.§: (Jl-.-Jn_l,Bfal--.an_l) CJh_l ;KJh,a;an). -
8 . 2
(A.1)



-'2)4‘_‘_,' s . UCEL'.lal?-‘i""

They aré real and obey the orthogona.lity relations

(9 la -..a ) (a EE Y] lgia ) = 9 OU'. | . (A.2a.)

9/ (a ceeq ]9/&) ?fala'...a ) ’r'r oca' . EE (.Av.;'zbv):}

PR By means of these coefficients quantities in any space of n - "

variables Q = +%— can be transformed to the: 9/04‘ répresenta.tion. oo

: Tovcompactii‘yvthe'formulas we define, for € = ¢ %

1

T[(vo +'1)? + 2€ 0 (v - l)%]'v
> :

: B(vo, €)

W

B0 )e) = (ep(v®), (A5) -

and similarly = S ' - -
B(V- ) 'el, . oen) = . @ Bi(v » ei). | - : g . . (A_h) “_v
' i=1 e

The coefficients a(eai, s, t) of (2.9b) are also represgpted in

this bracket form:



3 ek T it serns A = i

et et s M T e R TN e W e R B A

Tl
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r‘eci~;~ »"'Ia(s t)leal.--ebl...;.. - (A.5)

* Then (2.9b) becomes

,rr ® K| - By, %) Bd(v )a(s t,W) R(G) By (v %) Bb(v ),
LS (4.6)

ﬂ,where the bracket identity |i)(i| 1 is used to recover (2.9v).

The varlable W in (Z(s t; W) 1ndicates that the exp1101t powers of -

W appearlng ‘in (2 9b) are incorporated into it.

The Clebsch-Gordan decomp051tion 15 not spec1fically associated

with spins; it is bas1cally a decomp051t10n according to symmetries.

can

In any case, the formal identities (A l) and (A. 2)Abe applled Just as

© well to the ¢ varlables as to spin_variablesr Thus we may write

[

’H’@H

B (v )| o , € ) [} Bd(v )'s}a ; € )

. -

(9#5, € ; d ] € wsJ t W) R(e)'9 b } e‘b)

| <9, e 15,v.% ® <§2/b,ebanb(v ), o an
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‘where the éuperscripts on the 9 ae sighify indices of the Clebsch-

Gordan decomposition of € space, as opposed to spin 'spa.ce'.
| Applying the Clebsch—Gordan decomposition also to the sp:Ln

aria.bles , one obtains

o vxc;9d, | ’]’T@H 19, x,?b, x)
g G0 e
@s m!%(vd)rgfd: @ P )
<9'c> o3 9'; LD rg;, s 9;, 4»1,5:»
<9;, 911; e s, © w)tg’a, 9’ &)
<9/; N ; 9;, eaxaa_w;’) o %)

o %b’%'%“’ ”% ) o (A8)

The Clebsch-Gordan coefficient @(9’ o Otl'“oz )  has the.

following symmetry property: It is antisymmetric under intercha.nge :

and Q.

of ay 141

'} - M ‘ . \.
if, and only if, Ji+l = Jdy .93 and it is symmetric
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under interchangé'bf o, end o, . if, end only if,
!Ji+l - Ji-l[ = 1. This property is used continually in what

follows.

By definition .

erB( MY
Z@(g”" Xl""&z)’[‘r® Bi(" ’ ei’ Mo a)

W‘i 1

| Y SR, ’y e .. ' . -
X @(9,}» ; 2\1“‘5‘)@(9,6; € e, . (a.9)
The factor q;]Qp Bi is completely symmetric under interchanges of*

lsbels 1. Thus the product of the three factors & in (A.9) must
also be symmetric under the simultaneous interchange of lebels
i e 1+1, if the sum on the right 1s to be nonzero. Thus if any

, .
two of the three sets %}1 g} s é}'e are given, the other is uniquely

determined. The relationship between the three J's is visualized by

drawing plots of J

1 Ji and J: versus i, with straight line

segments in the intervals between integral 1. The pldt Ji is

said to have a "break" at position i if, and only if, J = 3410

i-1

§
and similarly for Ji and Ji. If one of the three curves has a
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Gl = 0 = )

@, e

and the ‘Jacobi ﬁblynémials have thelfsy"mmetrvy'? _’
Jlﬁ-u" 'M-“l) (cos e) = (-1 )J ~M (IM‘P', |>\-u|) (_ cos e)
“ | H | (A 1&)

*  The explicit formula for the boost factor in (A.8) is-

| }"t;ﬂ”g‘ﬁ;Q-i}gx,B(‘;oz)‘,Q. }\,9 o 9 eenB<v°>|9'x>= s

2;@9*’ Tl oo

S N\ i=
T A §

= 0

h 3 ‘vthis “reduces to -

: : ;i @»(%_,k., " M),U.VZ‘ [(v  +:._1)2 * -)‘.Leéxjt(“’:ﬁ'l)ﬂiv

cst Im the-helicity fre.me,' where a

x C<9 A3 7‘1”"‘11)6(9 e) (A l6)



Cele o mdens

Qtﬂfﬁffsikﬁf?4 fSign”is*ﬁlﬁs'for"partiéleg fe:ahé"é;'whose: x'si5are plus
i,j_”' _”f:ggieje%-the%*i-component of spln, and minus for partlcles b and d whose

‘;:are minus the z component

Cons:Lder the case .n = 2 Then 1521 or 0, [The fixed '

L]%_ is suppressed in é} ( 1 J )] For %}F l the Clebsch-

Coonw

)

'-.l
e
L+
m
I
+
m
N
it
1
[

e For?e=0) it is the antisymmetrizer:

Te0 sy, ) -

()]
1
W
+-
(L]
I
e}

=0 .
(a.18) .

5-!These same fbrmulas ‘hold with efireﬁiaéeﬁﬁb§ ‘A Direct computation e, ;

2 then gives




i
no

‘ . . . ', ) o S .
([ 0 par? - up]® o Bl

o u
[

¢ Vis IXI. S - forﬁilxl +-|€l.

]
o

Va2 ° . . ‘fo? N ;|¢;

' end-

B, 05, 34, 0)

0

tv2h°+H?hO€D2;_mrm

6J+J’,1

RN | B

0 : o for A

are in accord with’ the general

Thg factors © 157

and . 5J_+J,"l _

-~ connection between . 9',9 and 96, ~discussed above.

" The maximum possible value of J(‘x 13 joz (see (5.2)]. If' RS

€

: R - , ' _
Ja is J.,, then the plot Jai has no brea.ks, and Jozi = Joti}

a)
this case the product of the three factors & in (A.16) will be

antisymmetric under interchange of any two variables )"i with

1l 2(..Ia - Ja) + 1, and symmetric under interchange of any two,

AR R : o UQRL;181;5 | -

(a19) |

e et i
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vvariables xi w1th 2(J - J ) + 1 i'< 23, ;H'This-Same:symmetry

& In particular, the product of the CZ 's

R will be antisymmetric in both A- and €f,spacejunder‘interchange of

5‘the'two variables of‘each of the. first“j’- J pairs of‘variables.

' ﬂ_The factors Ca will therefore convert the two boost factors of each

of these: {1 - {x pairs into factors (Au20). This gives (5.5).

CoIr g5, is less than"3 ; then there can be fewer of the

o booSt'factors (A.20). on the other hand, 1f J’ is less than J

then the J in (5 L) can be reduced to J 2 8s 1s seen from (A ll)

' [R (9) can be constructed as a linear combination of 2J elementary
' ,”;rotation operators ] These changes compensate each other, yielding
v‘fk;(S 6) and (5 9) in all cases. In;particular, it is shown below that

'?t;f7 the number of boost factors (A.20) associated with particle a is -

[

W€ oo i SR . i |
ny = Iy - 3, + 2, o - (A.21)

= where I is & positive integer, or zero.{vThis equation ensures that

.*-the boost factors (A 20) combine with the singularlties of R(G),

[T to give (5.6) and (5.9).

By combining R(G) with the na boost factors (A 20) we

N

" have effectively replaced the variable'index J, by the fixed index_av:'

04

- J_, in the exponent of the singular factor.' Similarly, the exponent



: ,,’q&? in (h 1), which in general should be J' will bé cbanged to J, .
: . if the na boost factors are combined with R(O) It is. shown =

below that if the nae boost factors are removed from ¥ then the

L ‘effect of reversing the signs of all (v T - 1)5 is equivalent to

R reversing the s:.gns of all the indices Myt Thus (L. l) leads to (h 2)

: €
,The genera,l.rela.tionship between 9’0" 9 o ’a,nd 9 o

entails that if there is a break in J . at 1, there must be a

b‘r'ea.k ‘a.t. i in either J&i

or J&i, but not both. For such a point -
R | .the symmetries' under 1 <——>‘i + 1 in the indices of the three )
'-(2 's in (A.10) are just those that lead to (A 20)." Thet is, these;i§”" :

o symnetries are such that ‘the two elementary boost factors B, and

e By,; ©of (A.16) combine into a factor (A.20), which conserves
xaj and eaj’ in the jump from j =1 -1 to j =1 +.13 conserves:,.}

also 'J'J or J"J; and gives a one unit cha.nge to 'J . J’j.

The symmetry property of 6(9'01 o ) is such that it is

. symmetric or a.ntisynnnetric under the 1nterchange Ot <—->Otk (k > J)
o according 40 whether there is an even' or odd number of brea.ks in Ji .

i in the ra.nge J €1 <k. This means that if there is & brea_,k-inﬂ-i-Jj T ‘1
" at j =1 then the symmetries in the indices. dj with

S £(1 or i +1) can be obtained by simply eliminating from the'_,
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éurve ,Jj'.the two segments incident on the break at . j = i; and
éonsidéring the plot of the.reduced curve ,er, which has these
segments taken out. That is, the symmetries in the indices

J4 (i or i +1) are given as well by Jﬁr as by Jj’ This

permits one to proceed stepwise, first eliminating, in favor of

- factors (A.20), the pair of boosts incident on any break in Jie,

then the pair incident on any break in the reduced Jier, and so -

f

“on. Finally one arrives at a curve Ji€ that has no breaks. The .

number of boost factors (A.20) introduced during the reduction of

€ ef €
ai .to qmi is na .

To derive (A.21), note that nof is just the number of

downward slanted segments of the curve Jdie° Thus

; - 1] [ . o .
o = g tBy T Iy Tty = Iyt , _ (A:22)

where ;1 is defined in (5.2), and n& and n, are the number of

: doﬁnward slanted segments of q;i and Jai’ respectively. The

Tt €
relationship between the curves Jﬁﬁ’ Qdi 1gnd %xi‘ demands that

the total number of downward slanted segments in each interval

i to i +1 be even. Thus one obtains by summation,

which in view of (A.22) is equivalent to (A.21).



L e 2(F - 3) = 2. ‘Thus there will be a net fa.ctor of -1 whenever

R :\;_,v‘v | ai

.7 should be primed. Consequently (3.6*) should read

°¢;v if we_take n= nanb/ncnd. Then F = ~ vanishes unless 'év- n oi,i'

6 wmesisc

- Once. the ndf_'boost'factors (A;20)lhaveﬁbeen;chtored out. '".fv‘2?fx?h‘i

~ of ?, the remaining function F' is such that a change of. sign of L

o N .
 all factors (v‘a0 -1)2 is equivalent to a change of the signs of :
all indices_ *a on F', An~equivalent statement'iS'“: o

N €
= (-1) F N 0 o(a2h) g
Doy T 'Fa-%c—»b% " B

What must be shown to prove (A 2h) is that the product of" the three

“2 's in (A 16) goes into itself times (-l) _if the signs of all.

e e e g

i,the N and xi are reversed. The reversal of. the signs of gj-jfoTF

M,~m and m' takes C

jl(J: M; m, m') into itself times the factor
2 . B "

J --.{;i changes by a unit. Thus (A 2&) follows from (A 21)
The distinction between Jd- and “Jd is not'indicated .

in (A.4%), and the J's in the expression for the sign in (3.8%) ~

.
T

°f°1

if'reflection'invariance_is maintained,' The equation P 2. 32}'.{f RERE
near the end of Ref. 4 should read pia =';mJ2.
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