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ARTICLE

Variant-specific inflation factors for assessing
population stratification at the phenotypic variance
level
Tamar Sofer 1,2,3✉, Xiuwen Zheng 4, Cecelia A. Laurie 4, Stephanie M. Gogarten 4,

Jennifer A. Brody 5, Matthew P. Conomos 4, Joshua C. Bis4, Timothy A. Thornton4, Adam Szpiro4,

Jeffrey R. O’Connell6, Ethan M. Lange7, Yan Gao8, L. Adrienne Cupples 9,10, Bruce M. Psaty5, NHLBI Trans-

Omics for Precision Medicine (TOPMed) Consortium* & Kenneth M. Rice 4

In modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data

from multiple studies are often pooled and results are obtained from a single analysis. We

consider the impact of differential phenotype variances by study, which we term ‘variance

stratification’. Unaccounted for, variance stratification can lead to both decreased statistical

power, and increased false positives rates, depending on how allele frequencies, sample sizes,

and phenotypic variances vary across the studies that are pooled. We develop a procedure to

compute variant-specific inflation factors, and show how it can be used for diagnosis

of genetic association analyses on pooled individual level data from multiple studies.

We describe a WGS-appropriate analysis approach, implemented in freely-available

software, which allows study-specific variances and thereby improves performance in

practice. We illustrate the variance stratification problem, its solutions, and the proposed

diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine

Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin

concentrations and BMI.
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Large-scale association analyses using whole genome
sequence (WGS) data on thousands of participants are now
underway, through programs such as the NHLBI’s Trans-

Omics for precision Medicine (TOPMed) program and NHGRI’s
Genome Sequencing Program. Unlike earlier Genome-Wide
Association Studies (GWASs), where data were combined using
meta-analyses of summary statistics, in WGS analyses
participant-level data from multiple studies are often pooled, and
results are obtained from a single analysis. Pooled analysis of
WGS is useful due to its computational tractability and its ability
to control for genetic relatedness across the pooled datasets.
However, it is sensitive to a form of population stratification that
is not well known. Population stratification in genetic association
analysis1,2 typically refers to situations where the mean pheno-
type value and allele frequency both differ across population
subgroups. Unless appropriately accounted for in the analysis,
e.g., by using regression-based adjustments for ancestry such as
principal components or genetic relatedness matrices in linear
mixed models, or their combination, it can lead to false–positive
associations3–5. Population stratification more generally can refer
to differences in phenotype distribution and allele frequency
across population subgroups6, and hence can also manifest as
differences in phenotype variances by subgroup, combined with
differences in allele frequencies. In practice, this phenomenon is
common in pooled analysis of multi-study data, as small differ-
ences in allele frequencies are prevalent, and different studies
being pooled often have different measurement protocols,
environmental exposures and inclusion criteria, all of which can
lead to different phenotype variances among studies.

Previous studies considered the effect of combining together
groups with different phenotypic variances. Haldar and Ghosh6

studied the effect of population stratification due to mean dif-
ferences, variance differences, and more generally, phenotypic
heterogeneity, across subpopulations, on false positive detections
when testing variant associations with a quantitative trait. Con-
omos et al.7 showed that when testing variant associations in a
pooled sample of Hispanics/Latinos from different Hispanic
background groups, statistical properties of tests are improved
when the model allows for different residual variances in the
different background groups. Musharoff et al.8, in a preprint,
studied population variance structure using statistical models of
both population means and variances, and developed statistical
tests for the association of genetic variants with phenotypic
variability.

In this manuscript, we develop variant-specific inflation factors
λvs, which quantify the degree of inflation/deflation in association
testing of a single genetic variant due to population stratification
at the variance level. We develop an algorithm to compute
approximate variant-specific inflation factors based on allele
frequencies and variances in groups pooled together for analysis,
demonstrate their usage for assessing model fit, and demonstrate
the implications of the population stratification at the variance
level in simulations and in analyses of WGS data from TOPMed.
To account for population stratification at the variance level we
use the computationally efficient and scalable approach proposed
in Conomos et al.7 and implemented in GENESIS9, and show in
simulations that it indeed addresses the variance stratification
problem in scenarios based on Musharoff et al.8.

Results
Simulation studies. Our simulations consisted of 576 simulation
settings according to various combinations of parameters. We
compared a few ways to estimate variance parameters to be used
in computing λvs: empirical variances based on homogeneous and
stratified variance models, and model-based variances from the

heterogeneous variance model. The estimated λvs were essentially
the same regardless of the method. Figure 1 compares the esti-
mated λvs to the observed λgc in each of the simulation settings
and in each of the two modeling approaches (homogeneous
versus stratified variance). Settings are divided according to pat-
terns determining whether variance stratification will be expected,
including same or different MAFs between the two studies, the
same or different error variances, and whether the PC affects the
genetic variance or not. The top three rows in Fig. 1 demonstrate
settings in which both the MAF and the total variances differ
between the two combined studies, including settings in which
both the error and genetic variance components are the same, but
the PC affects the genetic variance, resulting in different total
variance between the studies because the mean of the PC differs
between them. In these settings the variance stratification is
observed when using the homogeneous variance model, in that
the observed inflation can be substantially higher or lower than 1,
with exact values depending on the specific parameters used in
each simulation. Indeed, the computed λvs and the observed λgc
are highly correlated. In contrast, the stratified variance model
was robust to variance stratification across all settings, with
observed inflation around 1 in all simulations. The bottom two
rows of Fig. 1 demonstrate settings in which either the MAF or
the variances are the same in the two combined studies. In these
settings, the expected inflation computed by λvs is always 1 (no
inflation). As expected, the observed inflation is the same in the
homogeneous and stratified variance models. The spread seen in
the values of the observed inflation, with some values higher and
some lower than the desired 1, are consistent with that expected
based on the number of replication of simulations in each setting
(10,000); see Supplementary Information for more details.

Genetic association analysis of BMI and hemoglobin con-
centration in TOPMed. We demonstrate the variance stratifi-
cation problem in analyzes of hemoglobin concentrations (HGB,
N= 7596; three analysis groups) and body mass index (BMI, N=
9807; eight analysis groups) in the TOPMed freeze 4 dataset. In
both analyses we computed approximate variant-specific inflation
factors λvs. We investigated the inflation/deflation problems
resulting from variance stratification, and verified that the pat-
terns of inflation and deflation in the homogeneous variance
analysis agree, across the different variants, with those obtained
from the formula and the provided code. Figures 2 and 3 provide
quantile-quantile (QQ)-plots for variants from three categories of
variants, where theory predicts inflation ðλvs ≥ 1:01Þ, deflation
ðλvs ≤ 0:99Þ and variants with λvs “Approx. no inflation”
(0:99<λvs<1:01), and across all variants, for HGB and BMI ana-
lyses respectively. The plots overlay the results from the four
analyses methods together. While the homogeneous variance
model clearly produces inflated and deflated QQ-plots in line
with the theoretical expectation, when looking at all tested var-
iants together, this inflation and deflation (i.e., Type I and Type II
errors) mask each other, alarmingly. Despite appearances, these
problems do not “cancel out”; one creates more Type I errors, one
creates more Type II errors, yet the plot of all results may lead
investigators to conclude that the analysis is well-calibrated. In
contrast, the stratified residual variance model provides good
control of Type I errors, as seen in the QQ-plots, with the
exception of the bottom left panel in Fig. 3, which provides QQ-
plots for the set of variants that are expected to have deflated test
statistics under the pooled variance model when studying BMI:
here the stratified residual variance model was also somewhat
deflated. Figure 4 provides the genomic control inflation factors
λgc computed over each of the variant sets provided in the QQ-
plots and for each of the traits. The completely stratified and
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MetaCor models performed better in terms of overall QQ-plots
and computed λgc values in the two analyses, in that λgc values
were always closer to 1. MetaCor performed slightly better than
the completely stratified model under independence, likely

because it accounts for a low degree of relatedness between the
strata.

Table 1 describes the inflation/deflation patterns of variants
according to their MAF. One can see that the inflation/deflation
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Fig. 1 Estimated variant-specific inflation factors versus observed inflation in simulations. The figure compares estimated variant-specific inflation
factors λvs estimated in each of many simulation settings, and corresponding observed inflation λgc averaged across 10,000 repetitions of each simulation
settings. Observed inflation values are provided based on a homogeneous variance model, in which a single variance parameter is estimated using the
aggregated data; and based on a stratified variance model, that fits a different variance parameter to each of the two simulated studies. Each simulation set
corresponds to a single point on this figure, and the simulations are grouped (denoted by different colors and symbols) by the characteristics stated in the
legend. Within each group of simulation settings, the simulation parameters differ by specific parameter values, including MAFs, variance components, and
sample sizes, while still satisfying the broad conditions of the grouped simulation settings. The dashed horizontal lines correspond to the 2.5% and 97%
quantiles of the distribution of λgc based on 10,000 variants under the null of no inflation/deflation, obtained from simulations.
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problem is ubiquitous for rare variants, but less so for common
variants. In fact, for variants with frequency <0.05, only ~4% of
variants have λvs falling in the “approximately no inflation”
category. This is because the ratio between allele frequencies has a
strong effect on inflation/deflation, and ratios can become quite
high when variants are rare. In the Supplementary Information,
Figure S2 shows the distribution of inflation, deflation, and
“approximately no inflation” categories across variants in the two
analyses, and demonstrates how similar the deflation/inflation
categories are between them. Most variants stay in the same
category between analyses, but some rare variants (in the figure
defined as MAF < 0.05) can be inflated in one analysis and
deflated in the other. These differences are because λvs coefficients
are affected by sample sizes, variances, and allele frequencies,
which all differ to some extent between analyses due to different
samples and trait characteristics.

Discussion
A standard tool for analysis of quantitative traits is linear or linear
mixed model regression. In its widely-used default version, linear

regression is fitted under the assumption that the phenotype’s
residual variance is the same for all individuals in the analyzed
sample. The extent of the consequences if the variances are not
equal sized can be computed exactly given simplifying assump-
tions. Broadly, using default approaches, if a specific subgroup
has a larger phenotypic variance than that of other subgroups in
the pooled analysis, the estimated precision of the association
signal will understate the contribution from such a subgroup. The
result is deflation (loss of power) for variants where allele fre-
quency is greater in this subgroup compared to other subgroups,
or inflation (too many false positives) for variants with lower
allele frequency in this subgroup compared to others.

While default linear regression methods assume the same
variance for all subgroups, which leads to mis-calibrated tests if
the assumption does not hold, standard computational tools can
be adapted to allow for a stratified variance model, yielding better
calibrated tests. Specifically, by fitting different residual variances
for each study, or more generally, appropriately defined “analysis
group” (e.g., all African Americans of a specific study) the pro-
blem can be alleviated. This can be viewed as fitting a different
variance component for noise within each study, or as a weighted

Fig. 2 QQ-plots comparing observed and expected p values (−log10 transformed) from the analysis of hemoglobin concentrations. The analyses used
four approaches: “homogeneous variance” model, that assumes that all groups in the analysis have the same variances; “stratified variance” model, that
allows for different residual variances across analysis groups; a “completely stratified indep” model in which analysis groups were analyzed separately,
allowing for both heterogeneous residual and genetic variances across groups, and then combined together in meta-analysis under independence
assumption, and “MetaCor”, a procedure that accounts for relatedness across strata in the meta-analysis. The QQ-plots are provided across sets of
variants classified by their inflation/deflation patterns according to the algorithm for variant-specific approximate inflation factors. We categorized variants
as “Approx. no inflation” when they had estimated λvs between 0.99 and 1.01, “Deflated” when estimated λvs lower than 0.99, and “Inflated” when they had
estimated λvs higher than 1.01.
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least squares approach, in which the group-dependent weights are
estimated. This approach is implemented in some standard
genetic analysis software packages (e.g., GENESIS9). Our math-
ematical derivation and code can be used to assess the degree of
miscalibration of association tests. The code uses an additive
model, using a Binomial distribution for allele counts, which is
commonly used in GWAS. Inflation/deflation trends should be
similar between additive and dominant models, though specific
values estimated using each of the two models would not be
identical.

In linear regression, the stratified residual variance model
allows every analysis group to have its own residual variance
parameter. In the mixed model setting, where the variance is
decomposed into genetic and residual variances, this model keeps
the genetic variance component the same but allows for the
residual variance to differ across groups. Analysis groups can be
defined as study, race/ethnicity, combinations of these, or any
other sample characteristics that affect trait variance and may also
correlate with allele frequencies. Our mathematical derivation
and code for computing λvs are under simplifying assumptions of
no covariate effects and independent observations. Therefore,

these make no distinction between genetic and residual variance
components. While in the linear regression setting (independent
observations) the variance stratification model clearly suffices to
account for variance heterogeneity, in the mixed model setting, a
residual variance stratification model may not be optimal, because
it may not fully account for stratification in the genetic variance,
which could be the result of study design. For example, in Fig. 5,
the estimated genetic variance component of the Cleveland
Family Study is much higher than those of other studies, and of
the residual variance component of the same study, perhaps
because study participants were selected from families with
obstructive sleep apnea, which is highly associated with obesity.
Heterogeneity in genetic variance is addressed in the “completely
stratified model”, but such a model requires that individuals are
independent between different groups (strata). We also used
MetaCor, a method that allows for complete stratification of
analysis groups, while keeping genetically related individuals
across these groups15. MetaCor was shown to have good statis-
tical properties and performed well in the BMI and HGB analysis.
However, it is currently computationally costlier than a pooled
analysis because individual level data are used both at the

Fig. 3 QQ-plots comparing observed and expected p values (−log10 transformed) from the analysis of BMI. The analyses used four approaches:
“homogeneous variance” model, which assumes that all groups in the analysis have the same variances; “stratified variance” model, which allows for
different residual variances across analysis groups; a “completely stratified indep” model in which analysis groups were analyzed separately, allowing for
both heterogeneous residual and genetic variances across groups, and then combined together in meta-analysis under independence assumption, and
“MetaCor”, a procedure that accounts for relatedness across strata in the meta-analysis. The QQ-plots are provided across sets of variants classified by
their inflation/deflation patterns according to the algorithm for variant-specific approximate inflation factors. We categorized variants as “Approx. no
inflation” when they had estimated λvs between 0.99 and 1.01, “Deflated” when estimated λvs lower than 0.99, and “Inflated” when they had estimated λvs
higher than 1.01.
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individual analysis group computations, and when computing
covariances between effect size estimates of all analysis groups.
Computational efficiency is critical when testing the large number
of variants observed in WGS studies. In addition, the MetaCor
approach is not yet extended to tests of sets of rare variants
(rather than single rare variants tests studied in the current
manuscript). While more difficult to assess, variance stratification
likely affects tests of rare variant sets as well, and methods that
use a Score test based on a null model that is fit once, such as the
stratified variance approach implemented in GENESIS, straight-
forwardly extend to such settings. As sample sizes of TOPMed
grow, pooling together more diverse studies and populations,
variance stratification problems may be more severe. Models
allowing for pooled analysis with both group-specific residual and
genetic variances or robust variance estimates may be needed for
better control of Type I errors and increased efficiency. Until such
methods are developed, we recommend to first use the stratified
variance approach, because it is computationally efficient, it can
account for relatedness across the entire sample, and the same

null model can be used to test variant sets. As a second step, we
recommend computing approximate λvs, and assessing whether
observed inflation/deflation remains for test statistics within
groups of variants predicted to be inflated/deflated based on λvs
values. If inflation/deflation are observed despite residual variance
stratification, the analyst would ideally move forward with a
meta-analytic approach such as MetaCor (does not discard data
but computationally more demanding), or standard meta-analysis
after removing individuals to generate genetically independent
strata.

Methods
The linear model. For a total sample size of n, we assume that the data follow a
linear model denoted as

yi ¼ β0 þ giβþ ϵi; 1≤ i≤ n; ð1Þ

where yi is the trait or phenotype value of person i, gi is their count of coded alleles
(i.e., genotype), β0 denotes the mean outcome in those with no copies of the coded
allele, β denotes the effect on the mean trait of each additional copy of the coded
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Fig. 4 Estimated genomic control inflation factors (λgc) across compared analyses. The figure provides estimated λgc from the various analyzes of BMI
and hemoglobin concentrations, computed across sets of variants classified by their inflation/deflation patterns according to the algorithm for approximate
variant-specific inflation factors (λvs). We categorized variants as “Approx. no inflation” when they had estimated λvs between 0.99 to 1.01, “Deflated” when
estimated λvs were lower than 0.99, and “Inflated” when they had estimated λvshigher than 1.01. Genomic control inflation factors λgc were computed as the
ratio between the median χ21 test statistic across variants in the set to the theoretical median of the test statistic under the null hypothesis of no
association.

Table 1 Variant inflation/deflation characteristics by categories of MAF.

Deflation Approx. no
inflation

Inflation

MAF category #
variants

(0, 0.9] (0.9, 0.95] (0.95, 0.99] (0.99, 1.01] (1.01, 1.05] (1.05, 1.1] (1.1, 1.24]

BMI
[0.00102, 0.01] 13151242 14.47% 48.96% 7.25% 4.39% 19.74% 4.93% 0.25%
(0.01, 0.05] 5497411 0.99% 63.77% 6.34% 4.14% 24.23% 0.53% –
(0.05, 0.2] 3393012 – 19.37% 27.68% 23.15% 29.80% <0.01% –
(0.2, 0.5] 3318076 – 0.16% 11.40% 70.64% 17.80% – –
HGB
[0.00134, 0.01] 11140793 – 64.79% 9.05% 3.04% 19.97% 3.15% –
(0.01, 0.05] 6047232 – 64.41% 9.45% 5.29% 20.81% 0.04% –
(0.05, 0.2] 3704075 – 19.59% 29.49% 23.54% 27.38% – –
(0.2, 0.5] 3358855 – 0.20% 12.08% 73.15% 14.58% – –

In each of the analyses (BMI and HGB), for each allele frequency category we provide the number of variants in this category, and from these, the proportion of variants with computed λvs in each of
multiple categories of inflation/deflation values.
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allele, and the ϵi are residual errors, which we for now assume are independent, as a
simplifying assumption.

To provide intuition for the variance stratification problem, we first
demonstrate a mathematical derivation in simplified settings. We assume that the
genotype effect is null (β= 0), and that the errors follow a normal distribution
ϵi � Nð0; σ2i Þ. We further assume that the phenotypes are centered, the genotypes
are centered, and follow a dominant mode of inheritance, i.e., we are using
gi ¼ ð~gi � pÞ, where ~gi is the genotype under a dominant mode (having values 1 or
0), p is the frequency of having any copies of the variant allele, and gi is used in
analysis.

Implication of variance stratification on the Wald test. The Wald test quantifies
the strength of the genetic association by dividing a regression-based estimate of β
by its corresponding estimated standard error. The linear regression estimate of the
effect (written in the general regression form) is

β̂ ¼ ∑
n

i¼1
g2i

� ��1

∑
n

i¼1
giyi

� �
: ð2Þ

Denoting the estimated residual variance of individual i by σ2i (which may differ

across individuals), the variance of β̂ is

varðβ̂Þ ¼ ∑
n

i¼1
g2i

� ��2

∑
n

i¼1
g2i σ

2
i

� �
: ð3Þ

When the variance of the residuals is homogeneous across all individuals, this is

varðβ̂Þ ¼ ∑
n

i¼1
g2i

� ��2

∑
n

i¼1
g2i

� �
σ2 ¼ ∑

n

i¼1
g2i

� ��1

σ2; ð4Þ

where σ2 is the common variance parameter. To illustrate how this approach can
mislead under variance stratification, we consider the situation where two studies
are present, of sizes n1 and n2, respectively, such that n1 þ n2 ¼ n: Further, each
study is internally homogeneous with error variances σ21 and σ22, and it is also useful
to write p1 and p2 for the frequency of the variant of interest (under dominant
mode). Because we assume that the variant was centered in the pooled population,
we have that E½∑

i2Sj
g2i � ¼ niE½g2i � ¼ ni½pið1� piÞ2 þ ð1� piÞð0� piÞ2�, or

E½∑
i2Sj

g2i � ¼ nipið1� piÞ: We can re-write Eq. (3) as:

varðβ̂Þ ¼ n1p1ð1� p1Þσ21 þ n2p2ð1� p2Þσ22
½n1p1ð1� p1Þ þ n2p2ð1� p2Þ�2

ð5Þ

We see that the actual variance is a linear combination of the variance parameters

σ21; σ
2
2, and the weight assigned to each depends on the minor allele frequency and

sample size in each group. When the minor allele frequencies (MAFs) are equal, p1
= p2, the two forms4 and5 are equal, as there is no association between genotype
and outcome, and no confounding occurs. But when p1 ≠ p2 then the variance of
the estimator upweights the residual variance in the group where the variant is
more common, which does not happen under homogeneity. This result
straightforwardly generalizes for M studies.

In some studies, researchers use mixed models in GWAS to account for genetic
relationships between individuals. Then, it is usually assumed that the variance is
decomposed to an error and genetic variances, so that varðϵÞ ¼ σ2e þ σ2g . When
using unrelated individuals and not accounting for genetic relatedness via a genetic
relationship matrix, the two variance components are not identifiable and it is clear
that accounting for differences in error variances is the same as accounting for
differences in total variance (the sum of the two variance components). Musharoff
et al.8 introduced a model where the variances depends on individual-specific
genetic components. For example, it could depend on a principal component (PC)
of the genetic data, with: varðϵÞ ¼ σ2e þ θ2gσ

2
g where θg is a PC, with values varying

across individuals. We address this setting in simulations.

Computing approximate variant-specific inflation factors. We can use mathe-
matical derivations under homogeneity and heterogeneity, relaxing the restrictive
assumptions provided earlier, to compute variant-specific inflation factors. These
make use of standard “sandwich” formula for large-sample approximations of the
variance of estimators; for a minimally-technical summary see Result 2.1 in
Wakefield10, or for more detail Sections 5.2–5.3 of Van der Vaart11. We now allow
for additive genetic model, and do not assume that the genotypes are standardized.
The variance estimator used by the Wald test is now provided as follows:

varððβ̂0; β̂Þ
T Þ ¼

1 g1
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Fig. 5 Estimated variance components across compared analyses. The figure provides the estimated variance components corresponding to residual and
genetic relatedness in the analyzes of BMI and hemoglobin concentration (HGB). For each analysis group, the estimated variance components were
computed based on the analysis of the group alone, and were extracted from the second null model in the fully-adjusted two-stage rank-normalization
procedure, to match the procedure used for association analysis.
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which simplifies if covðyiÞ ¼ σ2 for all i ¼ 1; ¼ ; n, to:

varððβ̂0; β̂Þ
T Þ ¼
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but allowing for different variances per study, it becomes:
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Based on these two expressions, we propose an algorithm to compute an
approximate variant-specific inflation factor. For computational purposes, we
further simplify these arguments taking advantage of the fact that there are
repeated rows (e.g., people who have gi= 1 and are from the same study, having the
same residual variance). The algorithm below uses the additional assumption that
phenotypic variance within each study does not vary with genotype—which must
hold under the strong null hypothesis of no association in any subpopulation. It
also uses the simplifying assumption that variants are in Hardy Weinberg
Equilibrium (HWE) within each study population; testing HWE is a standard
preprocessing step for genotype data.

Algorithm for computing variant-specific inflation factors
Suppose that an analyst wished to estimate a vector of regression
parameters ðβg ; β1; ¼ ; βMÞT , where βg is a variant association
measure, and β1; ¼ ; βM are intercepts for M analysis groups.
Denote the genotype of the ith individual in the m analysis group
by gmi. The design matrix for estimating these parameters in
linear regression would be of the form

g1 1n1 0n1 ¼ 0n1
g2 0n2 1n2 ¼ 0n2

..

. ..
. ..

.
¼ ..

.

gM 0nM 0nM ¼ 1nM

0
BBBBB@

1
CCCCCA

where gm ¼ ðgm1; ¼ ; gmnm
ÞT , 1nm is a vector of length nm with all

entries being equal to 1, and similarly 0nm is a vector of length nm
with all entries being equal to 0. Let V ¼ varðyÞ be the diagonal
matrix with error variances of the outcomes. The estimator of the
variances and covariances of the vector of regression parameters
is varðβ̂Þ ¼ ðWTWÞ�1

WTVWðWTWÞ�1
. From the matrix varðβ̂Þ

we are interested in the leading diagonal value, which is the
variance of bβg . Suppose first that one construct the matrix W
using the actual data. Then:

ðWTWÞ ¼

∑
M

m¼1
gTmgm gT1 1n1 gT2 1n2 ¼ gMT1nM

gT1 1n1 n1 0 ¼ 0

gT2 1n2 0 n2 ¼ 0

..

. ..
. ..

. . .
.

0

gMT1nM 0 0 0 nM

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Now, instead of using the genotype themselves, we use the
large sample limit of the expected genotype under HWE to
replace the expression gTm1nm by
nm ´ ð0 ´ p2m þ 1´ 2pmð1� pmÞ þ 2 ´ ð1� pmÞ2Þ, where nmp

2
m,

2nmpmð1� pmÞ, and nmð1� pmÞ2 are the number of individuals
from analysis group m expected to have 0, 1, and 2 effect alleles
under HWE. Similarly, we can replace gTmgm by its large sample
limit under HWE.

Notice that the quantity 0 ´ p2m þ 1 ´ 2pmð1� pmÞ þ
2 ´ ð1� pmÞ2 is a multiplication of two vectors:
ð0; 1; 2Þ ´ ðp2m; 2pmð1� pmÞ; ð1� pTmÞÞ

T
. Thus, we now define a

matrix X and a matrix p, such that ðWTWÞ ¼ XTPX. In matrix X
the left column having values ð0; 1; 2; ¼ ; 0; 1; 2ÞT (ð0; 1; 2ÞT
repeating for each study), instead of the actual observed geno-
types ðg11; ¼ ; gMnM

ÞT , other columns represent study-specific
intercepts, and the matrix P is a diagonal matrix providing the
HWE probabilities, for each study, further scaled by the pro-
portion of individual that each analysis group contributes to the
study. We use the matrices X, P, and V = var(y) to similarly
replace WTVW by its large sample limit under HWE. Specifically,
define:

● X ¼ ðGDÞ where G is a vector of length 3M of the form
ð0; 1; 2; ¼ ; 0; 1; 2ÞT , and D is a 3M ×M design matrix
modeling study-specific intercepts where the i, j element Dij

is

1 if i ¼ 3m; 3m� 1 or 3m� 2; j ¼ m

0 otherwise:

�
● P, a 3M × 3M diagonal matrix, in which each entry gives

the population proportion in each combination of genotype
and study, i.e.,:
P ¼ diag

n1
n
p21;

n1
n
2p1ð1� p1Þ;

n1
n
ð1� p1Þ2; ¼

�
nM
n

p2M ;
nM
n

2pMð1� pMÞ;
nM
n

ð1� pMÞ2
�

V, is a 3M × 3M diagonal matrix, in which each entry gives the
outcome variance in each combination of genotype and study.

V ¼ diagðσ21; σ21; σ21; ¼ ; σ2M ; σ
2
M ; σ

2
MÞ

Define now B ¼ XTPX and A ¼ XTPVX, which give the large
sample limits of ðWTWÞ and WTVW. Under heterogeneity the
variance of the slope estimate bβg is proportional to the leading

diagonal entry B�1AB�1. Under homogeneity the variance bβg is
proportional to the leading entry of B�1 ´ sumðdiagðPVÞÞ, with
the same constant of proportionality. The ratio of these two
leading entries, squared, gives the large-sample value of λgc, the
genomic control inflation factor12 that would be obtained by
comparing the median Wald test statistic to the median of the χ21
reference distribution, if all variants had the same MAF values
across the studies. Because this formula provides different results
for each variant, depending on the allele frequencies, we denote
the ratio between the estimated values under homogeneous var-
iance and the heterogeneous variance models λvs, for “variant
specific”. Note that this function requires estimation of variances
(for constructing matrix P, under HWE assumption) and allele
frequencies (for constructing matrix V), which are readily
obtained.

An R function implementing these matrix calculations is pro-
vided, together with a tutorial that includes a coding example.
These are also provided on GitHub on https://github.com/
tamartsi/Variant_specific_inflation, and the function will be
integrated into the GENESIS R package.

Simulation studies. We performed simulations to study the
appropriateness of the proposed λvs, in terms of how it approx-
imates the standard genomic control coefficient λgc obtained from
a “homogeneous variance” model that estimates a single variance
parameter across data from all studies. We also studied whether a
“stratified variance” model, allowing for different variance para-
meters across two studies, improves upon the homogeneous
variances model. In this vein, we simulated unassociated genetic
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variants and outcomes in a range of settings combining two
studies. We simulated n1; n2 individuals in study 1 and study 2,
n1 þ n2 ¼ n. Let yi be the outcome value of person
i; i ¼ 1; ¼ ; n, and θi a PC value for this person, β1 ¼ 1; β2 ¼ 2
be study-specific intercepts for studies 1 and 2, σ21; σ

2
2study-

specific error variances, σ2g a common genetic variance parameter,
and βθ ¼ 1 models the linear association of the PC with the
outcome. The PC was simulated from a normal distribution with
variance 1, and mean μ1 ¼ 2 in study 1, and mean μ2 in study 2
computed such that the overall PC mean in the two studies

together is equal to zero (i.e., ð∑
n2

i¼1
θiÞ=n2 ¼ ð∑

n1

j¼1
θjÞ=n1). The

outcome model specified as:

yi ¼ α11study1 þ α21study2 þ θiαθ þ ϵi; ð6Þ
With

ϵi � Nð0; σ211study1 þ σ221study2 þ σ2gÞ; ð7Þ
Or

ϵi � Nð0; σ211study1 þ σ221study2 þ θ2i σ
2
gÞ: ð8Þ

In7 the PC does not affect the genetic outcome variance, while
in8 it does. Some of the parameters were the same in all
simulations (as reported above). We varied the following
parameters: n1; n2 2 f1000; 5000g, σ21; σ22; σ2g 2 f1; 2g; and simu-
lated bi-allelic independent genetic variants with MAFs p1; p2 2
f0:01; 0:05; 0:5g in the two studies.

We performed 10,000 simulations for each combination of
parameters and, for each such setting, computed λgc as the ratio
between median observed and expected value of the χ2ð1Þ test
statistic (under the null). We computed λvs in each of the
10,000 simulations based estimated variances and observed allele
frequencies in each of the two simulated studies, and averaged
these estimates across the simulations. We compared three
approaches to estimate variances1: fit a homogeneous variances
model, obtain residuals ϵ̂: For each study, estimate the variance as

the average 1=n ∑
n

i¼1

bϵ2i where n is the number of study individuals

(empirical variance)2; fit a “stratified variance” linear regression
model allowing for different residual variances by study (as
implemented in the R/Bioconductor package GENESIS9);3 use
the same model with stratified variances, but use the variance
estimates obtained by the AI-REML algorithm (model variance).
In the Supplementary Information, we provide a distribution of
λgc values that would be seen under random variability, using
10,000 independent test statistics (as was used in simulations),
and simulating test statistics under the null and computing
inflation factors λgc.

Whole genome sequencing in TOPMed. For the present analysis,
we used Whole Genome Sequencing (WGS) data from freeze 4 of
TOPMed. WGS was performed on DNA samples extracted from
blood. Sequencing was performed by the Broad Institute of MIT and
Harvard (FHS and Amish) and by the Northwest Genome Center
(JHS). PCR-free libraries were constructed using commercially
available kits from KAPA Biosystems (Broad) or Illumina TruSeq
(NWGC). Libraries were pooled for clustering and sequencing, and
later de-multiplexed using barcodes. Cluster amplification and
sequencing were performed according to manufacturer’s protocols
using the Illumina cBot and HiSeq X sequencer, to a read depth of
>30X. Base calling was performed using Illumina’s Real Time
Analysis 2 (RTA2) software. Read alignment, variant detection,
genotype calling and variant filtering were performed by the
TOPMed Informatics Research Center (University of Michigan).

Reads were aligned to the 1000 Genomes hs37d5 decoy reference
sequence. Variant detection and genotype calling were performed
jointly for several TOPMed studies (including the three analyzed
here), using the GotCloud pipeline. Mendelian consistency was used
to train a variant quality classifier using a Support Vector Machine,
used for variant filtering. Additional quality control (pedigree
checks, gender checks, and concordance with prior array data),
performed by the TOPMed Data Coordinating Center, were used to
detect and resolve sample identity issues. Further details (including
software versions) are provided online (see: https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/document.cgi?study_id=phs00096
4.v2.p1&phv=251960&phd=6969&pha=&pht=4838&phvf=&phd
f=&phaf=&phtf=&dssp=1&consent=&temp=1).

TOPMed analyses were performed in agreement with study
participants’ consent, as verified via an approval process by parent
studies PIs in TOPMed and TOPMed publication committee.

Variant-specific inflation and genetic association analysis of
BMI and hemoglobin concentration in TOPMed. To demon-
strate the variance stratification problem, we used datasets of
hemoglobin concentrations (HGB) and body mass index (BMI)
in the TOPMed freeze 4. For each of the traits, we computed a
Genetic Relationship Matrix (GRM13) on all available variants for
the corresponding trait with minor allele frequency at least 0.001,
which was used to control for genetic relatedness in mixed
models. Because some studies had individuals with different
genetic backgrounds (leading to differences in allele frequencies),
we defined “analysis groups” to use for assessment of variance
stratification. An analysis group was as either all individuals from
a single study (e.g., Amish), or further defined by both study and
race/ethnic group (e.g., European and African Americans from
the Cleveland Family Study were separate analysis groups). Thus,
analysis groups capture multiple potential sources of trait var-
iance, including differences in allele frequencies due to genetic
ancestry, differences in environment and social/cultural factors,
and differences in trait measurement by study. For both BMI and
HGB, we performed single-variant association analysis for all
variants with minor allele count of at least 20. Detailed break-
down of the studies and populations used in these analyses are
provided in the Tables 2 and 3. The analysis strategy for both
traits was to use the fully-adjusted two-stage procedure for rank-
normalization of residuals, because it was shown to have better
statistical properties (type 1 error control and power), especially
when testing possibly rare genetic variants14. Thus, we first fit a
mixed linear regression model, with fixed effects for sex, age (also
age2 for BMI), group defined by study and race/ethnicity, and
allowing for genetic relatedness by including a variance compo-
nent proportional to the GRM. Then we took the residuals gen-
erated by this model, rank-normalized them, and then re-fit the
same model but with the rank-normalized residuals as the trait.
For both traits, we compared four analyses: first, a ‘homogeneous
variance’ analysis that estimates a single residual variance para-
meter across all individuals; second, a “stratified residual var-
iance” model that allows a different residual variance parameter
for each analysis group; third, a “completely stratified” approach
which fits models and performs tests in each analysis group
separately, and then combines the results via inverse-variance
fixed-effects meta-analysis; and forth, a “MetaCor” analysis15 that
perform stratified analyses followed by fixed-effects meta-analysis
while accounting for potential correlations due to genetic rela-
tionships between individuals in different analysis groups. The
‘completely stratified’ and the ‘MetaCor’ analyses are slightly
more flexible than the stratified variance model because they
allow for different genetic variance components across analysis
groups, in addition to different residual variance components.
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For BMI, we removed eight individuals from the “completely
stratified” analysis to ensure individuals were unrelated across
groups, defined as less than third-degree relatedness. All analyses,
other than MetaCor, used the GENESIS R package.

Computing variant-specific inflation factors in mixed models
with residual rank-normalization. We studied the calibration of
the various analyses of HGB and BMI by computing approximate
variant-specific inflation factors λvs and, for diagnostics, gener-
ated QQ-plots as describe later. Notably, λvs were developed
assuming independent data, and applying them in the mixed
model settings provides only an approximation, as both the
sample size is inaccurate (e.g., two full siblings have similar
genetic data, so their effective sample size is <2), and there is
more than a single variance parameter, and thus it is not straight
forward to decide which variance estimates to use in computing
λvs. To see that, consider the mixed- model analysis. We modeled
both an error and a genetic variance component, so that for each
observation, the model, in matrix form, assumes that:

y ¼ Xβþ gjαj þ ϵ; with covðϵÞ ¼ σ2e I þ σ2gG

Where G is the GRM, and σ2e ; σ
2
g are error and genetic variance

components, respectively. Thus, the variance depends on σ2e , σ
2
g ,

and G
In addition, we applied the fully-adjusted two-stage procedure

for rank-normalization of residuals, another procedure unac-
counted for by the algorithm. Therefore, different possible models
will yield quite different variance estimates to be used in the λvs
computations, due to changes to the residual distributions due to
rank-normalization. Because we are alerting the readers to the
problems arising from assuming that variances are the same
across all studies, we used variance computed based on the
‘homogeneous variance’ null model (the same residual and
genetic variance components for all analysis groups). We
extracted marginal residuals (distinguished from conditional
residuals that can also be computed in mixed models) for each
group, and computed empirical variance for group j by

vj ¼ 1=nj ∑
i2Sj

bϵ2i . Note that this estimator does not account for

relatedness. We used the residuals from the second null model
from the two-stage procedure.

Assessing population stratification at the variance level
through QQ-plots. Once λvs are computed for each of the var-
iants of interest, we propose to generate QQ-plots across sets of
variants to visualize whether population stratification at the
variance level is appropriately addressed. A function is available
on the GitHub repository to generate QQ-plots stratifying var-
iants to categories: “Inflated”, “Deflated” and “Approx. no infla-
tion”. The categories can be manually defined, so that a variant
can be assigned to the “Inflated” category if its λvs is larger than a
user-specified value, e.g., 1.01. Similarly, a variant is assigned to
the “Deflated” category if its λvs is lower than a user-specified, e.g.,
0.99. Variants are assigned to the “Approx. no inflation” category
if they are not in the “Inflated” or “Deflated” categories, i.e., their
λvs is close to the desired value of 1.

Characterizing variants by inflation patterns. To study how
common the variant inflation/deflation problem is, and how it
relates to variant frequencies, we computed the proportion of
variants in levels of λvs for each allele frequency category: <0.01,
0.01–0.05, 0.05–0.2, and 0.2–0.5. We also studied the similarity of
inflation/deflation patterns between BMI and HGB.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TOPMed (https://www.nhlbiwgs.org/) whole genome sequencing data are available, from
TOPMed Freeze 5b and Freeze 8, on dbGaP by application to each of the studies used in
this manuscript. Phenotypes can also be obtained through application to dbGaP. Study
dbGaP accessions are: phs000956 (Amish; ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?id=phs000956); phs000954 (CFS; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?id=phs000954); phs000951 (COPDGene; https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?id=phs000951); phs000988 (CRA; https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000988.v4.p1); phs000974 (FHS;
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000974.v1.
p1); phs000964 (JHS; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000964.v4.p1). Source data are provided with this paper. Because Figs. 2
and 3 are based on results from testing tens of millions of variants, source data are
provided after randomly sampling a smaller subset of data points out of those with p
value > 0.01. Source data are provided with this paper.

Table 3 Analysis groups/strata participating in the analysis of hemoglobin concentration.

Study Race/ethnic group N Male sex number (%) Age mean (SD) Hemoglobin mean (SD)

Amish European American 1102 557 (50.5%) 50.6 (16.9) 13.8 (1.2)
FHS European American 3133 1512 (48.3%) 58.5 (15.0) 14.1 (1.3)
JHS African American 3251 1212 (37.3%) 54.8 (12.8) 13.0 (1.5)

For each group, we report parent study, race/ethnic group, number of participants, number and percentage of males, and age and hemoglobin’s means and standard deviations.

Table 2 Analysis groups/strata participating in the BMI analysis.

Study Race/ethnic group N Male sex number (%) Age Mean (SD) BMI mean (SD)

Amish European American 1106 556 (50.3%) 51.9 (16.9) 27.1 (4.7)
CFS African American 472 205 (43.4%) 40.0 (19) 32.7 (9.6)
CFS European American 471 235 (49.9%) 44.0 (19.6) 31.0 (9)
COPDGene African American 881 519 (58.9%) 58.7 (6.7) 28.4 (6.7)
COPDGene European American 995 505 (50.8%) 63.8 (8) 27.9 (5.7)
CRA Costa Rican 550 285 (51.8%) 18.9 (16.1) 20.8 (5.3)
FHS European American 3576 1584 (44.3%) 37.2 (9) 25.6 (4.8)
JHS African American 1756 641 (36.5%) 40.3 (9.9) 25.8 (4.7)

For each group, we report parent study, race/ethnic group, number of participants, number and percentage of males, and age and BMI’s means and standard deviations.
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Code availability
Statistical analyses were performed using the freely available R software, version 4.0.0.
Association testing used the GENESIS package version 2.18.0, available on R/
Bioconductor, or using the MetaCor R package available on GitHub https://github.com/
tamartsi/MetaCor. Code for computing variant-specific inflation factors is available on
GitHub https://github.com/tamartsi/Variant_specific_inflation with a tutorial, code, and
example simulated data provided also in Supplementary Software 1. The code will also
become available as part of GENESIS in a future release. Figures were generated using the
ggplot2 R package version 3.3.0.

Received: 9 March 2020; Accepted: 7 May 2021;

References
1. Hellwege, J. N. et al. Population stratification in genetic association. Stud.

Curr. Protoc. Hum. Genet.95, 1.22.1–1.3 (2017).
2. Cardon, L. R. & Palmer, L. J. Population stratification and spurious allelic

association. Lancet361, 598–604 (2003).
3. Price, A. L. et al. Principal components analysis corrects for stratification in

genome-wide association studies. Nat. Genet.38, 904–909 (2006).
4. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. Genome-wide complex

trait analysis (GCTA): methods, data analyses, and interpretations. Methods
Mol. Biol.1019, 215–236 (2013).

5. Conomos, M. P., Reiner, A. P., Weir, B. S. & Thornton, T. A. Model-free
estimation of recent genetic relatedness. Am. J. Hum. Genet.98, 127–148 (2016).

6. Haldar, T. & Ghosh, S. Effect of population stratification on false positive rates
of population-based association analyses of quantitative traits. Ann. Hum.
Genet.76, 237–245 (2012).

7. Conomos, M. P. et al. Genetic diversity and association studies in US
Hispanic/Latino populations: applications in the Hispanic Community Health
Study/study of Latinos. Am. J. Hum. Genet.98, 165–184 (2016).

8. Musharoff S., et al. 2018. Existence and implications of population variance
structure. bioRxiv:439661

9. Gogarten S. M., et al. 2019. Genetic association testing using the GENESIS R/
Bioconductor package. Bioinformatics.

10. Wakefield J. 2013. Bayesian and frequentist regression methods. Springer
Science & Business Media.

11. Van der Vaart A. W. 2000. Asymptotic statistics. Cambridge University Press.
12. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics55,

997–1004 (1999).
13. Amin, N., Van Duijn, C. M. & Aulchenko, Y. S. A genomic background based

method for association analysis in related individuals. PloS One2, e1274 (2007).
14. Sofer T., et al. 2019. A fully adjusted two-stage procedure for rank-

normalization in genetic association studies. Genet. Epidemiol.
15. Sofer, T. et al. Meta-analysis of genome-wide association studies with

correlated individuals: application to the Hispanic Community Health Study/
Study of Latinos (HCHS/SOL). Genet Epidemiol.40, 492–501 (2016).

Acknowledgements
T.S. was supported by National Heart, Lung, and Blood Institute (NHLBI;
R01HL120393‐03S1, 1R35HL135818, and 1R21HL145425). The views expressed in this

manuscript are those of the authors and do not necessarily represent the views of the
National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S.
Department of Health and Human Services. Study acknowledgements are provided in
Supplementary File 1.

Author contributions
T.S. and K.M.R. conceptualized the work and drafted the manuscript. T.S., X.Z., S.M.G.,
M.C., T.A.T., A.S. and K.M.R. developed, studied, and implemented the genetic analysis
algorithm that incorporates different residual variances by group. T.S. performed simulation
studies. X.Z., C.A.L., S.M.G. performed quality control on the genetic sequencing data. X.Z.,
C.A.L., J.A.B., and J.B. harmonized and performed quality control for the phenotypes used in
the analysis. B.M.P., C.C.L. and K.M.R. supervised quality control and phenotype harmo-
nization procedures. T.S., X.Z., C.A.L., S.M.G., J.A.B., M.P.C., J.C.B., T.A.T., A.S., J.R.O.,
E.M.L., Y.G., L.A.C., B.M.P. and K.M.R. interpreted the data, reviewed and approved the
final manuscript. The NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
authors contributed to the TOPMed data collection, joint processing and quality controls,
and establishment of analysis procedures.

Competing interests
Bruce M. Psaty serves on the Steering Committee of the Yale Open Data Access Project
funded by Johnson & Johnson. All other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23655-2.

Correspondence and requests for materials should be addressed to T.S.

Peer review information Nature Communications thanks Jacklyn Hellwege and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium

Namiko Abe11, Gonçalo Abecasis12, Francois Aguet13, Christine Albert14, Laura Almasy15, Alvaro Alonso16,

Seth Ament17, Peter Anderson18, Pramod Anugu19, Deborah Applebaum-Bowden20, Kristin Ardlie13,

Dan Arking21, Donna K. Arnett22, Allison Ashley-Koch23, Stella Aslibekyan24, Tim Assimes25, Paul Auer26,

Dimitrios Avramopoulos21, Najib Ayas27, Adithya Balasubramanian28, John Barnard29, Kathleen Barnes30,

R. Graham Barr31, Emily Barron-Casella21, Lucas Barwick32, Terri Beaty21, Gerald Beck29, Diane Becker21,

Lewis Becker21, Rebecca Beer33, Amber Beitelshees17, Emelia Benjamin34, Takis Benos35, Marcos Bezerra36,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23655-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3506 | https://doi.org/10.1038/s41467-021-23655-2 | www.nature.com/naturecommunications 11

https://github.com/tamartsi/MetaCor
https://github.com/tamartsi/MetaCor
https://github.com/tamartsi/Variant_specific_inflation
https://doi.org/10.1038/s41467-021-23655-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Larry Bielak12, Joshua Bis18, Thomas Blackwell12, John Blangero37, Eric Boerwinkle38, Donald W. Bowden39,

Russell Bowler40, Jennifer Brody18, Ulrich Broeckel41, Jai Broome18, Deborah Brown42, Karen Bunting11,

Esteban Burchard43, Carlos Bustamante25, Erin Buth18, Brian Cade44, Jonathan Cardwell45, Vincent Carey44,

Julie Carrier46, Cara Carty47, Richard Casaburi48, Juan P. Casas Romero44, James Casella21, Peter Castaldi44,

Mark Chaffin13, Christy Chang17, Yi-Cheng Chang49, Daniel Chasman44, Sameer Chavan45, Bo-Juen Chen11,

Wei-Min Chen50, Yii-Der Ida Chen51, Michael Cho44, Seung Hoan Choi13, Lee-Ming Chuang49, Mina Chung29,

Ren-Hua Chung52, Clary Clish13, Suzy Comhair29, Matthew Conomos18, Elaine Cornell53, Adolfo Correa54,

Carolyn Crandall48, James Crapo40, L. Adrienne Cupples55, Joanne Curran37, Jeffrey Curtis12, Brian Custer56,

Coleen Damcott17, Dawood Darbar57, Sean David58, Colleen Davis18, Michelle Daya45, Mariza de Andrade59,

Lisa de las Fuentes60, Paul de Vries42, Michael DeBaun61, Ranjan Deka62, Dawn DeMeo44, Scott Devine17,

Huyen Dinh28, Harsha Doddapaneni28, Qing Duan63, Shannon Dugan-Perez28, Ravi Duggirala64,

Jon Peter Durda53, Susan K. Dutcher60, Charles Eaton65, Lynette Ekunwe19, Adel El Boueiz66, Patrick Ellinor67,

Leslie Emery18, Serpil Erzurum29, Charles Farber50, Jesse Farek28, Tasha Fingerlin40, Matthew Flickinger12,

Myriam Fornage38, Nora Franceschini63, Chris Frazar18, Mao Fu17, Stephanie M. Fullerton18, Lucinda Fulton68,

Stacey Gabriel13, Weiniu Gan33, Shanshan Gao45, Yan Gao19, Margery Gass69, Heather Geiger11, Bruce Gelb70,

Mark Geraci35, Soren Germer11, Robert Gerszten71, Auyon Ghosh44, Richard Gibbs28, Chris Gignoux25,

Mark Gladwin35, David Glahn72, Stephanie Gogarten18, Da-Wei Gong17, Harald Goring73, Sharon Graw30,

Kathryn J. Gray74, Daniel Grine45, Colin Gross12, C. Charles Gu68, Yue Guan17, Xiuqing Guo51, Namrata Gupta13,

David M. Haas75, Jeff Haessler69, Michael Hall54, Yi Han28, Patrick Hanly76, Daniel Harris77, Nicola L. Hawley78,

Jiang He79, Ben Heavner18, Susan Heckbert18, Ryan Hernandez43, David Herrington39, Craig Hersh44,

Bertha Hidalgo24, James Hixson38, Brian Hobbs44, John Hokanson45, Elliott Hong17, Karin Hoth80,

Chao (Agnes) Hsiung52, Jianhong Hu28, Yi-Jen Hung81, Haley Huston82, Chii Min Hwu83,

Marguerite Ryan Irvin24, Rebecca Jackson84, Deepti Jain18, Cashell Jaquish33, Jill Johnsen82, Andrew Johnson33,

Craig Johnson18, Rich Johnston16, Kimberly Jones21, Hyun Min Kang12, Robert Kaplan85, Sharon Kardia12,

Shannon Kelly86, Eimear Kenny70, Michael Kessler17, Alyna Khan18, Ziad Khan28, Wonji Kim66, John Kimoff87,

Greg Kinney88, Barbara Konkle82, Charles Kooperberg69, Holly Kramer89, Christoph Lange90, Ethan Lange45,

Leslie Lange45, Cathy Laurie18, Cecelia Laurie18, Meryl LeBoff44, Sandra Lee28, Wen-Jane Lee83,

Jonathon LeFaive12, David Levine18, Dan Levy33, Joshua Lewis17, Xiaohui Li51, Yun Li63, Henry Lin51,

Honghuang Lin55, Xihong Lin90, Simin Liu65, Yongmei Liu23, Yu Liu25, Ruth J. F. Loos70, Steven Lubitz67,

Kathryn Lunetta55, James Luo33, Ulysses Magalang91, Michael Mahaney37, Barry Make21, Ani Manichaikul50,

Alisa Manning92, JoAnn Manson44, Lisa Martin93, Melissa Marton11, Susan Mathai45, Rasika Mathias21,

Susanne May18, Patrick McArdle17, Merry-Lynn McDonald24, Sean McFarland66, Stephen McGarvey65,

Daniel McGoldrick18, Caitlin McHugh18, Becky McNeil94, Hao Mei19, James Meigs67, Vipin Menon28,

Luisa Mestroni30, Ginger Metcalf28, Deborah A. Meyers95, Emmanuel Mignot96, Julie Mikulla33, Nancy Min19,

Mollie Minear97, Ryan L. Minster35, Braxton D. Mitchell17, Matt Moll44, Zeineen Momin28, May E. Montasser17,

Courtney Montgomery98, Donna Muzny28, Josyf C. Mychaleckyj50, Girish Nadkarni70, Rakhi Naik21,

Take Naseri99, Pradeep Natarajan13, Sergei Nekhai100, Sarah C. Nelson18, Bonnie Neltner45, Caitlin Nessner28,

Deborah Nickerson18, Osuji Nkechinyere28, Kari North63, Jeff O’Connell17, Tim O’Connor17,

Heather Ochs-Balcom101, Geoffrey Okwuonu28, Allan Pack102, David T. Paik25, Nicholette Palmer39,

James Pankow103, George Papanicolaou33, Cora Parker94, Gina Peloso104, Juan Manuel Peralta64,

Marco Perez25, James Perry17, Ulrike Peters69, Patricia Peyser12, Lawrence S. Phillips16, Jacob Pleiness12,

Toni Pollin17, Wendy Post21, Julia Powers Becker45, Meher Preethi Boorgula45, Michael Preuss70, Bruce Psaty18,

Pankaj Qasba33, Dandi Qiao44, Zhaohui Qin16, Nicholas Rafaels105, Laura Raffield63, Mahitha Rajendran28,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23655-2

12 NATURE COMMUNICATIONS |         (2021) 12:3506 | https://doi.org/10.1038/s41467-021-23655-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Vasan S. Ramachandran55, D. C. Rao68, Laura Rasmussen-Torvik106, Aakrosh Ratan50, Susan Redline44,

Robert Reed17, Catherine Reeves11, Elizabeth Regan40, Alex Reiner107, Muagututi’a Sefuiva Reupena108,

Ken Rice18, Stephen Rich50, Rebecca Robillard109, Nicolas Robine11, Dan Roden61, Carolina Roselli13,

Jerome Rotter51, Ingo Ruczinski21, Alexi Runnels11, Pamela Russell45, Sarah Ruuska82, Kathleen Ryan17,

Ester Cerdeira Sabino110, Danish Saleheen111, Shabnam Salimi17, Sejal Salvi28, Steven Salzberg21, Kevin Sandow51,

Vijay G. Sankaran66, Jireh Santibanez28, Karen Schwander68, David Schwartz45, Frank Sciurba35,

Christine Seidman112, Jonathan Seidman112, Frédéric Sériès113, Vivien Sheehan114, Stephanie L. Sherman16,

Amol Shetty17, Aniket Shetty45, Wayne Hui-Heng Sheu83, M. Benjamin Shoemaker61, Brian Silver115,

Edwin Silverman44, Robert Skomro116, Albert Vernon Smith12, Jennifer Smith12, Josh Smith18, Nicholas Smith18,

Tanja Smith11, Sylvia Smoller85, Beverly Snively39, Michael Snyder25, Tamar Sofer44, Nona Sotoodehnia18,

Adrienne M. Stilp18, Garrett Storm45, Elizabeth Streeten17, Jessica Lasky Su44, Yun Ju Sung68, Jody Sylvia44,

Adam Szpiro18, Daniel Taliun12, Hua Tang25, Margaret Taub21, Kent D. Taylor51, Matthew Taylor30,

Simeon Taylor17, Marilyn Telen23, Timothy A. Thornton18, Machiko Threlkeld18, Lesley Tinker69,

David Tirschwell18, Sarah Tishkoff102, Hemant Tiwari24, Catherine Tong18, Russell Tracy53, Michael Tsai103,

Dhananjay Vaidya21, David Van Den Berg117, Peter VandeHaar12, Scott Vrieze103, Tarik Walker45,

Robert Wallace80, Avram Walts45, Fei Fei Wang18, Heming Wang118, Jiongming Wang12, Karol Watson48,

Jennifer Watt28, Daniel E. Weeks35, Joshua Weinstock12, Bruce Weir18, Scott T. Weiss44, Lu-Chen Weng67,

Jennifer Wessel75, Cristen Willer12, Kayleen Williams18, L. Keoki Williams119, Carla Wilson44, James Wilson120,

Lara Winterkorn11, Quenna Wong18, Joseph Wu25, Huichun Xu17, Lisa Yanek21, Ivana Yang45, Ketian Yu12,

Seyedeh Maryam Zekavat13, Yingze Zhang35, Snow Xueyan Zhao40, Wei Zhao12, Xiaofeng Zhu121,

Michael Zody11 & Sebastian Zoellner12

11New York Genome Center, New York, NY, USA. 12University of Michigan, Ann Arbor, MI, USA. 13Broad Institute, Cambridge, MA, USA. 14Cedars
Sinai, Boston, MA, USA. 15Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA. 16Emory University, Atlanta, GA,
USA. 17University of Maryland, Baltimore, MD, USA. 18University of Washington, Seattle, WA, USA. 19University of Mississippi, Jackson, MS, USA.
20National Institutes of Health, Bethesda, MD, USA. 21Johns Hopkins University, Baltimore, MD, USA. 22University of Kentucky, Lexington, KY, USA
. 23Duke University, Durham, NC, USA. 24University of Alabama, Birmingham, AL, USA. 25Stanford University, Stanford, CA, USA. 26University of
Wisconsin Milwaukee, Milwaukee, WI, USA. 27Providence Health Care, Vancouver, BC, Canada. 28Baylor College of Medicine Human Genome
Sequencing Center, Houston, TX, USA. 29Cleveland Clinic, Cleveland, OH, USA. 30University of Colorado Anschutz Medical Campus, Aurora,
Colorado, USA. 31Columbia University, New York, NY, USA. 32The Emmes Corporation, Rockville, MD, USA. 33National Heart, Lung, and Blood
Institute, National Institutes of Health, Bethesda, MD, USA. 34Boston University, MA General Hospital, Boston, MA, USA. 35University of
Pittsburgh, Pittsburgh, PA, USA. 36FundaÃ§Ã£o de Hematologia e Hemoterapia de Pernambuco—Hemope, Recife, BR, Brazil. 37University of Texas
Rio Grande Valley School of Medicine, Brownsville, TX, USA. 38University of Texas Health at Houston, Houston, TX, USA. 39Wake Forest Baptist
Health, Winston-Salem, NC, USA. 40National Jewish Health, Denver, CO, USA. 41Medical College of Wisconsin, Milwaukee, WI, USA. 42University
of Texas Health at Houston, Houston, TX, USA. 43University of California, San Francisco, San Francisco, CA, USA. 44Brigham &Women’s Hospital,
Boston, MA, USA. 45University of Colorado at Denver, Denver, CO, USA. 46University of Montreal, Montreal, WI, USA. 47Washington State
University, Pullman, WA, US. 48University of California, Los Angeles, Los Angeles, CA, USA. 49National Taiwan University, Taipei, Taiwan, ROC.
50University of Virginia, Charlottesville, VA, USA. 51Lundquist Institute, Torrance, CA, USA. 52National Health Research Institute, Miaoli County,
Taiwan, ROC. 53University of Vermont, Burlington, VT, USA. 54University of Mississippi, Jackson, MS, USA. 55Boston University, Boston, MA, USA.
56Vitalant Research Institute, San Francisco, CA, USA. 57University of Illinois at Chicago, Chicago, IL, USA. 58University of Chicago, Chicago, IL,
USA. 59Mayo Clinic, Rochester, MN, USA. 60Washington University in St Louis, St. Louis, MO, USA. 61Vanderbilt University, Nashville, TN, USA.
62University of Cincinnati, Cincinnati, OH, USA. 63University of North Carolina, Chapel Hill, NC, USA. 64University of Texas Rio Grande Valley
School of Medicine, Edinburg, TX, USA. 65Brown University, Providence, RI, USA. 66Harvard University, Cambridge, MA, USA. 67Massachusetts
General Hospital, Boston, MA, USA. 68Washington University in St Louis, St Louis, MO, USA. 69Fred Hutchinson Cancer Research Center, Seattle,
WA, USA. 70Icahn School of Medicine at Mount Sinai, New York, NY, USA. 71Beth Israel Deaconess Medical Center, Boston, MA, USA. 72Boston
Children’s Hospital, Harvard Medical School, Boston, MA, USA. 73University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, USA.
74Mass General Brigham, Boston, MA, USA. 75Indiana University, Indianapolis, IN, USA. 76University of Calgary, Calgary, AB, Canada. 77University
of Maryland, Philadelphia, PA, USA. 78Yale University, New Haven, CT, USA. 79Tulane University, New Orleans, LO, USA. 80University of Iowa,
Iowa City, IA, USA. 81Tri-Service General Hospital National Defense Medical Center, Taipei City, Taiwan, ROC. 82Blood Works Northwest, Seattle,
WA, USA. 83Taichung Veterans General Hospital Taiwan, Taichung City, Taiwan, ROC. 84Oklahoma State University Medical Center, Columbus,
OH, USA. 85Albert Einstein College of Medicine, New York, NY, USA. 86University of California, San Francisco, San Francisco, CA, USA. 87McGill
University, Montreal, QC, Canada. 88University of Colorado at Denver, Aurora, CO, USA. 89Loyola University, Maywood, IL, USA. 90Harvard School
of Public Health, Boston, MA, USA. 91Ohio State University, Columbus, OH, USA. 92Broad Institute, Harvard University, Massachusetts General
Hospital, Boston, MA, USA. 93George Washington University, Washington, DC, USA. 94RTI International, Research Triangle Park, USA.
95University of Arizona, Tucson, AZ, USA. 96Stanford University, Palo Alto, California, USA. 97National Institute of Child Health and Human
Development, National Institutes of Health, Bethesda, MD, USA. 98Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. 99Ministry

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23655-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3506 | https://doi.org/10.1038/s41467-021-23655-2 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


of Health, Government of Samoa, Apia, WS, Samoa. 100Howard University, Washington, DC, USA. 101University at Buffalo, Buffalo, NY, USA.
102University of Pennsylvania, Philadelphia, PA, USA. 103University of Minnesota, Minneapolis, MN, USA. 104Boston University, Boston, MA, USA.
105University of Colorado at Denver, Denver, CO, USA. 106Northwestern University, Chicago, IL, USA. 107Fred Hutchinson Cancer Research Center,
University of Washington, Seattle, WA, USA. 108Lutia I Puava Ae Mapu I Fagalele, Apia, WS, Samoa. 109University of Ottawa, Ottawa, ON, Canada
. 110Universidade de Sao Paulo, Sao Paulo, Brazil. 111Columbia University, New York, New York, USA. 112Harvard Medical School, Boston, MA 02115,
USA. 113UniversitÃ© Laval, Quebec City, QC, Canada. 114Emory University, Atlanta, GA, USA. 115UMass Memorial Medical Center, Worcester, MA,
USA. 116University of Saskatchewan, Saskatoon, SK, Canada. 117University of Southern California, Los Angeles, CA, USA. 118Brigham & Women’s
Hospital, Mass General Brigham, Boston, MA, USA. 119Henry Ford Health System, Detroit, MI, USA. 120Beth Israel Deaconess Medical Center,
Cambridge, MA, USA. 121Case Western Reserve University, Cleveland, OH, USA.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23655-2

14 NATURE COMMUNICATIONS |         (2021) 12:3506 | https://doi.org/10.1038/s41467-021-23655-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

	Variant-specific inflation factors for assessing population stratification at the phenotypic variance level
	Results
	Simulation studies
	Genetic association analysis of BMI and hemoglobin concentration in TOPMed

	Discussion
	Methods
	The linear model
	Implication of variance stratification on the Wald test
	Computing approximate variant-specific inflation factors

	Algorithm for computing variant-specific inflation factors
	Simulation studies
	Whole genome sequencing in TOPMed
	Variant-specific inflation and genetic association analysis of BMI and hemoglobin concentration in TOPMed
	Computing variant-specific inflation factors in mixed models with residual rank-normalization
	Assessing population stratification at the variance level through QQ-plots
	Characterizing variants by inflation patterns

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




