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Abstract: This study provides a novel method of documenting established populations of bird-feeding
ticks. Single populations of the blacklegged tick, Ixodes scapularis, and the rabbit tick, Haemaphysalis
leporispalustris, were revealed in southwestern Québec, Canada. Blacklegged tick nymphs and,
similarly, larval and nymphal rabbit ticks were tested for the Lyme disease bacterium, Borrelia
burgdorferi sensu lato (Bbsl), using PCR and the flagellin (flaB) gene, and 14 (42%) of 33 of blacklegged
tick nymphs tested were positive. In contrast, larval and nymphal H. leporsipalustris ticks were
negative for Bbsl. The occurrence of Bbsl in I. scapularis nymphs brings to light the presence of a
Lyme disease endemic area at this songbird nesting locality. Because our findings denote that this
area is a Lyme disease endemic area, and I. scapularis is a human-biting tick, local residents and
outdoor workers must take preventive measures to avoid tick bites. Furthermore, local healthcare
practitioners must include Lyme disease in their differential diagnosis.

Keywords: songbirds; nesting; fledgling; ticks; established population; Ixodes scapularis; Haemaphysalis
leporispalustris; Canada

1. Introduction

Blacklegged ticks, Ixodes scapularis (Acari: Ixodidae), have a native range east of the Rocky
Mountains, and are vectors of multiple enzootic pathogens. This human-biting ectoparasite is known
to harbor and transmit at least nine different tick-borne, zoonotic pathogens [1]. Songbirds (Order:
Passeriformes) are well known to widely disperse I. scapularis larvae and nymphs in Canada extending
as far west and as far north as northern Alberta [2–8]. During northbound migratory flights, certain
avifauna have transcontinental or trans-equatorial flights [9,10]. These long-distance passerines fly
hundreds of kilometers, and transport Amblyomma ticks, including A. americanum [2], A. dissimile [11],
A. humerale [12], A. imitator [4], A. maculatum [2,3], A. rotundatum [13], A. sabanerae [14], and Ixodes
ticks, namely I. affinis [15], I. minor [16], I. scapularis [2,4–8] into Canada from the southern United
States and the Neotropics. During the nesting and fledgling period, passerines make multiple flights
back and forth to the nest. When these ground-foraging songbirds are parasitized by a number of
co-infesting blacklegged ticks, they have the potential to initiate new geographical foci of ticks in
outlying areas [17–19].

Most established populations of I. scapularis are infected with the Lyme disease bacterium, Borrelia
burgdorferi sensu lato (Bbsl) [20]. Worldwide, the Bbsl complex consists of at least 24 genospecies
(Borrelia maritima being the latest entry); the most common borrelial genospecies in the Temperate
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Zone of North America is Borrelia burgdorferi sensu stricto (Bbss), which is pathogenic to humans
and several domestic animals [21]. At least six Bbsl genospecies in North America are known to be
pathogenic to humans. Epidemiologically, at least seven human-biting Ixodes species act as vectors
of Lyme disease spirochetes in Canada, namely Ixodes angustus, Ixodes cookei (groundhog tick), Ixodes
muris (mouse tick), Ixodes pacificus (western blacklegged tick), Ixodes scapularis (blacklegged tick), and
Ixodes spinipalpis [8,22–24].

When the tick salivary glands are infected with Lyme disease spirochetes, Ixodes ticks can transmit
Bbsl to the host in less than a day [25], especially during nymphal blood meals. Based on North
American studies, Bbsl is normally transmitted in 24–48 h; however, when the salivary glands are
infected with Lyme disease spirochetes, transmission to a host can occur in less than 16 h [26,27].
Using European Bbsl strains and Ixodes ricinus ticks, Bbsl has been found disseminated in mice within
12 h [26].

In order for a location to meet the criteria for an established population of I. scapularis, an area
must have at least six individual ticks or at least two of the three motile life stages identified within a
single collection period [28]. Normally the collection period is one year; however, in the present study,
it was two months.

The aim of this study was: (1) to determine whether tick-infested songbirds monitored during the
nesting period are a means of pinpointing unrecognized populations of ticks and (2) to ascertain if
these bird-feeding ticks are infected with tick-borne, zoonotic pathogens.

2. Materials and Methods

2.1. Tick Collection

Ticks were collected from songbirds during the period 8 June to 2 August 2019 at Montée Biggar
(45.088226◦ N, 74.215678◦ W) in southwestern Québec, Canada (Figure 1). Live ticks were collected
from passerines using hardened stainless steel, #5, superfine-tipped forceps (BioQuip Products, Rancho
Dominguez, CA). Live ticks were put into a transparent 8.5 mL, 15.7 mm × 75 mm, round-bottomed
polypropylene tube (Sarstedt, Montréal, Québec, CA); each tube contained ticks from a single host.
In order to keep live ticks from escaping, a piece of tulle netting (3-cm diameter) was placed over the
mouth of the tube, and a push cap, which had a 7-mm hole, was promptly inserted into tube opening.
This technique prevented live ticks from escaping and, at the same time, provided ventilation for live
ticks. For mailing, polypropylene tubes were put in a double-zipper plastic bag with slightly moistened
paper towel to sustain high humidity. All ticks were sent directly to the lab (J.D.S.) for identification.
Live, partially and fully engorged larval and nymphal ticks were held to molt (metamorphose to
the next developmental life stage) to confirm the species identification and, in certain cases, reveal
transstadial passage of tick-borne, zoonotic pathogens.

Figure 1. Map shows the songbird monitoring site at Montée Biggar, Québec. The red dot indicates the
location of an established population of blacklegged ticks and associated Lyme disease endemic area.
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Taxonomic keys and scientific articles were employed to confirm ixodid tick identifications, namely
I. scapularis larvae [29,30] and nymphs [30,31] and, likewise, Haemaphysalis leporispalustris (rabbit tick)
larvae [29] and nymphs [32].

Engorged ticks were exposed to a long-day photoperiod of 16:8 (L:D) h. Background and
processing information (i.e., host species, leg band number, geographic location, date collected,
collector’s name, developmental life stage, degree of engorgement) were logged for ticks from each
avian host. After identification, ticks were stored in 2-mL microtubes (Sarstedt, Montréal, Québec,
Canada) containing 95% ethyl alcohol to preserve them and stabilize DNA.

2.2. Spirochete Detection

DNA was extracted from ixodid ticks preserved in 95% ethyl alcohol using the Qiagen DNeasy
Blood and Tissue Kit (Qiagen, Valencia, CA, USA) following the manufacturer's instructions.
Quantitative real-time PCR (qPCR) was used in a combined thermocycler/fluorometer (ABI
Prism 7700; Applied Biosystems, Foster City, CA) to screen for B. burgdorferi s.l. DNA. A probe
(6FAM-TTC-GGT-ACT-AAC-TTT-TAG-TTA-A) with a 3’ end modified with minor groove binding
protein and labelled with corresponding dye, forward (5’-GCT-GTA-AAC-GAT-GCA-CAC-TTG-GT-3’)
and reverse (5’-GGC-GGC-ACA-CTT-AAC-ACG-TTA-G-3’) primers targeting a region of the 16S
rRNA gene were used [33,34]. Water negative controls were included in each run, while positive
controls consisted of DNA from cultured Bbsl. Ticks were considered positive if the cycle threshold
was <40, and there was a characteristic amplification curve. To identify B. burgdorferi s.l. genospecies
in qPCR-positive samples, conventional PCR using primers (5’-AAR-GAA-TTG-GCA-GTT-CAA-TC-3’
and 5’-GCA-TTT-TCW-ATT-TTA-GCA-AGT-GAT-G-3’) that target the flagellin (flaB) gene were
performed as previously described [35]. Modifications were made to use GoTaq Green Master Mix
(Promega, Madison, WI). Gel electrophoresis was performed on conventional PCR products using
1% agarose gel stained with Gelstar (Lonza, Rockland, ME). Amplicons of approximately 497 bases
were excised from the gel and purified using the QIAquick Gel Extraction Kit (Qiagen, Valencia, USA),
and sequenced using an ABI 3730 sequencer (Davis Sequencing, Davis, CA). Results were examined
for accuracy of base determination, and end-read errors were trimmed [36]. We compared sequences
to those in the GenBank database using the Basic Local Alignment Search Tool (BLAST), National
Center for Biotechnology Information (NCBI), Bethesda, MD [37]. The MUSCLE algorithm was used to
perform sequence alignments for fla gene sequences from ticks and from reference Borrelia genospecies
obtained from the NCBI GenBank database [38].

3. Results

3.1. Tick Collection

In total, 68 ticks were collected from 23 songbirds representing five families within the Order
Passeriformes (Table 1). These songbird-derived ticks include 64 blacklegged ticks (nymphs, n = 63;
larva, n = 1) and four H. leporispalustris (nymphs, n = 3, larva, n = 1). It is noteworthy that all tick
collections were made before southward migration started and, therefore, all ticks were locally acquired.

In one particular bird parasitism, a Veery was parasitized by three engorged I. scapularis nymphs,
and one fully engorged nymph molted to a male in 31 d. As well, another Veery was parasitized by two
engorged I. scapularis nymphs, and a partially engorged nymph molted to a male in 33 d. In addition,
a partially engorged I. scapularis nymph was collected from a Rose-breasted Grosbeak, and it molted
to a female in 40 d; this female was positive for Bbsl. In the present study, Veeries were the most
frequently occurring songbirds followed by Common Yellowthroats (Table 1).



Healthcare 2020, 8, 59 4 of 14

Table 1. Detection of Borrelia burgdorferi sensu stricto in ticks collected from nesting songbirds captured
at Montée Biggar, Québec, 8th June to 2nd August 2019.

Bird Species No. of Hosts No. of Ticks

No. of Ticks Pos./No. Ticks Tested

Hlp Isc I. scapularis
Nymphs (%)Larva Nymphs Larva Nymphs

American Robin, Turdus migratorius L. 3 14 * 0/0 0/0 0/0 5/5, 2NT 5/5 (100)
Common Yellowthroat, Geothlypis trichas (L.) 6 19 0/0 0/1 0/0 2/6, 12NT 2/6 (33)
Rose-breasted Grosbeak, Pheucticus ludovicianus (L.) 2 3 0/0 0/0 0/0 1/1, 2NT 1/1 (100)
Chestnut-sided Warbler, Setophaga pensylvanica (L.) 1 1 0/0 0/0 0/0 0/0, 1NT 0/0 (0)
Veery, Catharus fuscescens (Stephens) 8 26 0/1 0/2 1NT 6/19, 3NT 6/19 (32)
Song Sparrow, Melospiza melodia (Wilson) 1 3 0/0 0/0 0/0 0/0, 3NT 0/0 (0)
Gray Catbird, Dumetella carolinensis (L.) 1 1 0/0 0/0 0/0 0/1 0/1 (0)
Nashville Warbler, Oreothlypsis ruficapilla (Wilson) 1 1 0/0 0/0 0/0 0/1 0/1 (0)

Total: 8 bird species 23 68 0/1 0/3 1NT 14/33,
23NT 14/33 (42)

Bbss, Borrelia burgdorferi sensu stricto. Hlp, Haemaphysalis leporispalustris; Isc, Ixodes scapularis. NT, not tested.
* Seven I. scapularis nymphs collected from an American Robin were pooled for testing, but were not included in the
infection prevalence calculations for Bbsl.

3.2. Spirochete Detection

All ticks testing positive for Bbsl belonged to the genospecies B. burgdorferi sensu stricto.
Significantly, 14 (42%) of 33 I. scapularis nymphs tested were positive (Table 1). A single I. scapularis
larva was collected, but not tested for Bbsl. All larval and nymphal H. leporispalustris were negative
for Bbsl. Four I. scapularis nymphs were collected from an American Robin on 22 July 2019, and each
was positive for Bbsl. Of epidemiological merit, five (100%) of five I. scapularis nymphs collected
from American Robins were positive for Bbsl. As well, seven I. scapularis nymphs collected from
an American Robin were pooled for Bbsl testing; the pool was positive for Bbsl. This pool was not
included in the Bbsl prevalence calculations. A total of 23 ticks were not tested for Bbsl because they
got hot in transit, and died and spoiled.

Bbsl DNA sequences from this study were submitted to GenBank, and the accession numbers are
listed in Table 2.

Table 2. Results of sequence analysis of Borrelia species positive for Borrelia burgdorferi sensu lato and
associated NCBI GenBank accession numbers detected in Ixodes scapularis nymphs collected from
nesting songbirds at Montée Biggar, Québec, 2019.

Bird Species Reference Strain flaB Gene Sequence

American Robin * CN19-71 MT039724
American Robin CN19-75 MT039725

Common Yellowthroat CN19-76B MT039726
Rose-breasted Grosbeak CN19-77 MT039727

Veery CN19-109A MT039728
American Robin † CN19-112A-1 MT039729
American Robin † CN19-112A-2 MT039730
American Robin † CN19-112B-1 MT039731
American Robin † CN19-112B-2 MT039732

Veery CN19-113A MT039733
Veery § CN19-117A-2 MT039735
Veery § CN19-117B-1 MT039736
Veery CN19-118B MT039737

Common Yellowthroat CN19-121 MT093795

* pool of seven I. scapularis nymphs; †, same host bird; §, single avian host.

4. Discussion

In this study, we exposed I. scapularis and H. leporispalustris populations by monitoring a wooded
area in southwestern Québec during the nesting and fledgling period. This deciduous woodland
turned out to be a breeding colony of I. scapularis infected with Lyme disease spirochetes. The presence
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of Bbsl in these bird-feeding I. scapularis nymphs indicates that this nesting area is endemic for Lyme
disease. Most importantly, these bird parasitisms during the nesting and fledgling periods provide a
unique means of identifying established populations of ticks.

4.1. Nesting Area Marks Established Population of Blacklegged Ticks

Firstly, a Common Yellowthroat parasitized by 12 I. scapularis nymphs signifies an established
population in this nesting environs (Figure 2) [28]. Secondly, a Veery was parasitized by immature stages
of I. scapularis (two nymphs, one larva), and these two developmental stages on a single host within
a single year, indicate that this locale is an established population [28]. When engorged I. scapularis
nymphs molt, they become adults in late June to mid-August. Consistent with other bird-tick-Bbsl
studies reporting Bbsl infection prevalence which range from 31% to 59% in I. scapularis nymphs in
the Great Lakes area [5,7,8,14], we obtained an infection prevalence of 42%. Since these Bbsl-infected
nymphs will molt to adults, we extrapolate that the Bbsl infection prevalence for I. scapularis adults
will be approximately 42% at this locale. Thirdly, when we combine all of the three motile life stages
(larvae, nymphs, adults), there is an established population in this woodland locality. In three different
ways, we meet the surveillance criteria for an established population of I. scapularis ticks [28]. Based on
the Bbsl infection prevalence, we show that this area is clearly endemic for Lyme disease.

Figure 2. Common Yellowthroat, after-second year male, infested with 12 I. scapularis nymphs (eight
not visible). This multi-tick bird parasitism brings to light the potential of this bird, and the attached
nymphs, to establish a new population of blacklegged ticks. Photo credits: Ana Morales.

The determination of whether blacklegged ticks form an established population in an area is often
determined by active surveillance. However, in this study, we have shown that ticks collected from
songbirds during the nestling and fledgling period are, indeed, an established population. The June–July
period is the time of year when songbirds stay in close proximity to the nest. Ecologically, the present
bird-tick-pathogen study was conducted during the nesting and fledgling period, which coincides with
the peak questing period of nymphal blacklegged ticks [39]. As a result, ground-foraging songbirds
are frequently parasitized by host-seeking I. scapularis nymphs.

Cricetid rodents, such as deer mice (Peromyscus maniculatus) and eastern chipmunks (Tamias
striatus), act as reservoir hosts for Lyme disease spirochetes, and maintain an enzootic transmission
cycle of Bbsl, year-round [40–42]. In an established breeding colony of bird-feeding ticks, overwintering
songbirds act as maintenance hosts, whereas migratory songbirds are incidental hosts [17]. Because
migratory songbirds widely disperse ticks during bidirectional migration, heavily-infested passerine
migrants can initiate Bbsl-endemic foci in new areas hundreds of kilometers away from their original
source [17–19].

4.2. Short-Distance Flights Signify Tick Populations

During the nesting and fledgling period, songbirds forage contiguous to the nest, and maintain
short-distance trips back and forth for food. Short runs ensure that the eggs in the nest stay warm
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and protected from predators. Additionally, during the fledgling period, ground-foraging songbirds
make hasty flights near the nest, and promptly return to feed their young. As the ground-frequenting
songbirds forage through the leaf litter or grass refuge searching for arthropods, they may become
parasitized by host-seeking (questing) ticks. In the present study, bird banders, who were conducting
demographic monitoring and collecting data related to songbird activity, had the opportunity to
collected bird-feeding ticks. Notably, in late July, songbirds are in moult (shed and replace feathers),
and only have localized flight activity. Based on the criteria for an established population [28], we were
able to ascertain that there were solo populations of I. scapularis and H. leporispalustris ticks in the
nesting and fledgling area at Montée Biggar, Québec. We were also able to determine that this nesting
area is endemic for Lyme disease.

4.3. Songbirds as Reservoir Hosts

Certain bird species are reservoir hosts of Bbsl. An American Robin (female, second year) was
parasitized with four I. scapularis nymphs, and each nymph was infected with Bbsl (Figure 3). Anderson
et al. isolated Lyme disease spirochetes from the liver of a Veery [43] and, also, from I. scapularis
larvae feeding on this avian host. These acarologists also isolated Bbsl from larval I. scapularis feeding
on Rose-breasted Grosbeaks and Common Yellowthroats suggesting that these songbirds are also
reservoir-competent hosts. Other researchers provide substantive evidence that the Veery, Song Sparrow,
Common Yellowthroat are competent reservoirs of Bbsl [17,44,45]. Using xenodiagnostic methods,
Richter et al. placed unfed spirochete-free I. scapularis larvae on Bbsl-inoculated American Robins [46]
and, when replete, let these fully engorged larvae molt to nymphs. These unfed nymphs were then
placed on spirochete-free American Robins and, subsequently, became infected with Lyme disease
spirochetes. These findings reveal that American Robins are competent reservoirs. Similarly, Anderson
et al. found that American Robins are reservoir hosts of Bbsl [18]. In the present study, five (100%) of
five I. scapularis nymphs parasitizing American Robins were infected with Bbsl. In addition, six (32%)
of 19 I. scapularis nymphs collected from Veeries were infected with Bbsl. Since we did not take any
blood samples from host birds, we do not know whether any songbirds were spirochetemic for Bbsl.

Of enzootic significance, a partially engorged I. scapularis nymph molted to an unfed female, and
this female was positive for Bbsl; this molt demonstrates transstadial passage of Bbsl. This enzootic
finding show that Bbsl can move to the next developmental life stage at this site.

Figure 3. American Robin, second year female, parasitized by four I. scapularis nymphs (two not visible).
On 22 July 2019, this bird was in moult in preparation for the upcoming, southbound, fall migration.
Photo credits: Simon Duval.

4.4. H. leporispalustris Vector Competency

In this study, we did not identify Bbsl in H. leporispalustris ticks. However, Banerjee et al. detected
Lyme disease spirochetes in H. leporispalustris ticks collected from a snowshoe hare, Lepus americanus,
in northern Alberta [47]. As well, Scott et al. discovered Borrelia lanei-like spirochetes and a Babesia
divergens-like piroplasm concurrently in a H. leporispalustris (female) collected from an eastern cottontail,
Sylvilagus floridanus, in southern Manitoba [48]. Scott & Durden provide the first record of a Bbsl-positive
H. leporispalustris (nymph) collected from an avian host (Swainson's Thrush) in Canada [14]. Previously,
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Scott et al. found Bbsl in a H. leporispalustris larva parasitizing a passerine (Canada Warbler) in Québec
suggesting that this tick species is a reservoir-competent host [8]. During southbound, fall migration
in Canada, larval and nymphal H. leporispalustris frequently parasitize passerines, and are widely
dispersed in southern regions.

4.5. Ticks Co-infest Songbirds

One Veery was co-infested with H. leporispalustris (one nymph and one larva), and I. scapularis
(two nymphs). Not only is there a breeding colony of I. scapularis present in this Laurentian River basin,
an established population of H. leporispalustris is also there. Since these ixodid ticks were collected
during the nesting and fledgling period, this bird parasitism denotes a cohabitation of two tick species
in this sylvan locale, and signifies that these two tick species are sympatric. The Veery has trans-border
and trans-equatorial migration during its northward spring flight, and has a breeding range in southern
Canada, including southwestern Québec and northern United States; the wintering range is in central
and southeastern Brazil (Figure 4). During the breeding, nesting, and fledgling period, Veeries have
localized activity in juxtaposition to the stationary nest. When the young have fledged the nest, these
passerines replenish their fat reserves, and prepare for the southbound trek to wintering ranges in
southern latitudes during August and September. In late July, they typically moult in preparation for
the southbound marathon flight.

Figure 4. Veery, after-second year male, infested with three I. scapularis nymphs. One fully engorged
nymph moulted to a male in 31 d. On 22 July 2019, this bird was moulting to prepare for the southward
flight to its wintering range in Brazil. Photo credits: Simon Duval.

4.6. Definition of Lyme Disease Endemic Area

We put forth the following definition for a Lyme disease endemic area based on comprehensive,
tick and Lyme disease research across Canada [8], and similarly, conducting field studies and monitoring
multiple established tick populations [4,8,12,14,19,22,48–58]: A Lyme disease endemic area is defined as
an established population of vector ticks infected with the Lyme disease bacterium, Borrelia burgdorferi
sensu lato, at a geographic locality in a single collection period. The present bird–tick–pathogen study
at Montée Biggar, Québec meets this definition for a Lyme disease endemic area.

4.7. Clinical Manifestations of Lyme Disease

Lyme disease is an insidious, multisystem spirochetosis that involves many body systems,
including cardiac, cutaneous, endocrine, gastrointestinal, genitourinary, musculoskeletal, neurological,
otologic, ophthalmological, encephalitic, and neuropsychiatric [59,60]. Only 14%–41% of Lyme disease
patients remember a tick bite [61,62], and 9%–39% exhibit an erythema migrans (EM) rash; more
than 50% of those with a rash have a homogenous rash [61,63,64]. Bbsl is pleopmorphic with diverse
forms (i.e., granules, blebs, spherocytes, spirochetes) and, combined together in a gelatinous matrix,
these forms become biofilms [65–67]. Lyme disease spirochetes can sequester in protected niche
reservoirs, including brain [68–71], bone [72], eye [73], collagenous tissues (ligaments, tendons) [74,75],
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heart [71,76], kidney [71], liver [71], muscle [77], synovial cells [78], central nervous system [79,80],
glial and neuronal cells [81–83], and scar tissue [84].

Because Lyme disease patients often experience lengthy delays in diagnosis and treatment, these
patients frequently become persistent cases that result in longstanding Bbsl infections (chronic Lyme
disease) [69,72,74,75,78,85–100]. Chronic Lyme disease is defined as a persistent Bbsl infection of at
least six months duration [59,60,71,100]. Persistent spirochetal infection has been demonstrated in
many Lyme disease patients by PCR and culture [68,71,73,74,86,87,90,91]. Whenever there is continual
spirochetemia, approximately 63% of patients infected with Bbsl develop chronic Lyme disease [101].
Patients with this spirochetosis are frequently seronegative especially when serological testing falls
outside the peak immune response period, typically 6 to 8 wk after initial infection. Only 48% of
patients with persistent Lyme disease test positive using the two-tier serological testing system [102];
dissimilar to AIDS testing, seronegativity is common in Lyme disease patients [103]. Even though
Lyme disease patients are seronegative, they may still have active infection because Bbsl side-steps
the immune response [71,77,86,88,89,93,96,104–106]. The Lyme disease spirochete is able to evade
the host immune response using a mechanism called stealth pathogenesis. When biofilm busters are
implemented prior to blood draw, they help to activate the immune response and provide more reliable
serological testing [107]. Psychiatric illnesses, caused by Bbsl, may include violence, substance abuse,
and developmental disabilities [108–110]. Chronic Lyme disease frequently causes severe disability, and
potentially gives rise to central nervous system complications and cognitive impairment [49,50,61,90].
Under the dire duress of chronic Lyme disease, patients resort to suicide [108–110], and critically ill
patients ultimately have fatal outcomes caused by advanced Bbsl spirochetosis [68,71,73,88,111,112].
Bbsl may be potentially transmitted to a partner via intimate relations [89,113]. Gestational Lyme
disease takes place when pregnant mothers with Lyme disease pass Bbsl spirochetes across the placenta
by vertical transmission from mother to the fetus in utero [114–119].

5. Conclusions

By monitoring nesting songbirds, we demonstrate a novel method of pinpointing tick populations.
Nesting songbirds have short-distance flight, and reflect bird-feeding ticks acquired locally. By testing
songbird-derived ticks during the nesting and fledgling period, we obtained an infection prevalence of
42% for I. scapularis nymphs, and discovered that this locality is a Lyme disease endemic area. This high
level of Bbsl infectivity, reveals that outdoor people working in this newfound, Lyme disease endemic
area during snow-free days encounter a public health risk. Any individuals frequenting this area
should take extra precautions to avoid tick bites, and do full-body tick checks at the end of the day.
Because Borrelia burgdorferi sensu stricto is pathogenic to humans, anyone who is bitten by a tick or has
Lyme disease symptoms should seek medical attention. Since chronic Lyme disease is a pernicious,
debilitating infection, healthcare practitioners must take special steps to screen symptomatic patients
for this incapacitating spirochetosis.
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