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Sampling conformational changes of bound ligands using 
Nonequilibrium Candidate Monte Carlo and Molecular Dynamics

Sukanya Sasmal†, Samuel C. Gill‡, Nathan M. Lim†, David L. Mobley†,‡

† Department of Pharmaceutical Sciences, University of California, Irvine

‡ Department of Chemistry, University of California, Irvine

Abstract

Flexible ligands often have multiple binding modes or bound conformations that differ by rotation 

of a portion of the molecule around internal rotatable bonds. Knowledge of these binding modes is 

important for understanding the interactions stabilizing the ligand in the binding pocket, and other 

studies indicate it is important for calculating accurate binding affinities. In this work, we use a 

hybrid molecular dynamics (MD)/non-equilibrium candidate Monte Carlo (NCMC) method to 

sample the different binding modes of several flexible ligands and also to estimate the population 

distribution of the modes. The NCMC move proposal is divided into three parts. The flexible part 

of the ligand is alchemically turned off by decreasing the electrostatics and steric interactions 

gradually, followed by rotating the rotatable bond by a random angle and then slowly turning the 

ligand back on to its fully interacting state. The alchemical steps prior to and after the move 

proposal help the surrounding protein and water atoms in the binding pocket relax around the 

proposed ligand conformation and increase move acceptance rates. The protein-ligand system is 

propagated using classical MD in between the NCMC proposals. Using this MD/NCMC method, 

we were able to correctly reproduce the different binding modes of inhibitors binding to two 

kinase targets – c-Jun N-terminal kinase-1 and cyclin-dependent kinase 2 – at a much lower 

computational cost compared to conventional MD and umbrella sampling. This method is 

available as a part of the BLUES software package.
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1. Introduction

Ligands often bind to proteins in multiple binding modes.1,2 Understanding ligand 

conformational heterogeneity in the binding pocket is important for modulating binding 

affinity and selectivity, and in turn for having better molecular recognition and function. For 

example, researchers used knowledge of the two distinct binding modes of mono-substituted 

ligands of the tyrosine kinase EphB4 to rationally design bi-substituted ligands with single 

conformation and higher affinity.3 In a different drug design project, nuclear magnetic 

resonance (NMR) spectroscopy identified minor population states of ligands binding to the 

antibiotic target LpxC, which hinted towards a larger cryptic binding site and led to the 

design of a larger and more potent antibiotic.4 Thus, improved understanding of binding 

mechanisms can be used to develop better inhibitors in structure-based drug design.

Multiple binding modes are commonly identified experimentally using X-ray 

crystallography and NMR techniques, which can be time-consuming or costly. Information 

about multiple binding modes present in electron density maps is often overlooked during 

construction of the 3-dimensional structure during X-ray crystallography. One recent study 

showed that up to 29% of protein-ligand co-crystal structures deposited in the Protein Data 

Bank have unmodeled ligand conformations and sometimes even unrealistic single bound 

conformations that are based on averaged electron density contributions from multiple 

binding modes.1 The same study also found that less than 2% of ligand-bound crystal 

structures in the PDB database contained multiple ligand conformations. Additionally, 

crystal preparation methods like cryocooling can alter the binding modes.4,5 Thus, simply 

having a high-resolution crystal structure does not always guarantee adequate information 

for structure-guided design.4,6 On the other hand, binding affinity studies such as those 

based on calorimetry present an overall picture of the protein-ligand interactions in 

solutions, but are hard to interpret in terms of contribution of each individual binding mode. 

Thus, there is a need for computational tools which can provide information about ligand 

conformational heterogeneity during rational structure-based drug design.

Moreover, knowledge of ligand binding modes, and in particular the occupancy of each 

mode, can help improve alchemical binding free energy calculations.7,8 These free energy 

calculations are beginning to be commonly used during lead optimization to prioritize 

compounds for synthesis and further testing. Ligands with multiple binding modes need 

separate calculations or other careful study to estimate the contribution of each mode. But, if 
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the population distribution of the modes is known, then only a single free energy calculation 

is needed, which decreases the computational cost and improves the accuracy at the same 

time.

Binding mode inter-conversions can be simple where small rigid fragments flip as in the 

case of toluene binding to T4-lysozyme8 to more complex ones where binding modes differ 

both in orientation and configuration.9,10 Binding mode inter-conversions can be 

accompanied with a change in the net charge of the ligand,11 which make the systems even 

more complex. Here we study a binding mode inter-conversion problem of moderate 

difficulty – where a single rotatable bond in a flexible ligand rotates by 180° to form two 

distinct modes.

In this work, we introduce a new method for sampling multiple binding modes of flexible 

ligands with rotatable bonds. We use a hybrid method which combines molecular dynamics 

(MD) and nonequilibrium candidate Monte Carlo12 (NCMC) for this purpose. Previously it 

has been shown than MD/NCMC can help to accelerate sampling of multiple binding modes 

of rigid fragments8 and side-chain rotameric states of proteins.13

We validated our MD/NCMC protocol using ligands binding to the protein target c-Jun N-

terminal kinase-1 (JNK1). These ligands have different substitutions in a terminal phenyl 

ring which revolves around a rotatable bond, resulting in two distinct binding modes. Kaus 

et al. performed extensive alchemical free energy calculations to determine the free energy 

difference between the two binding modes for these ligands,7 which can be converted to 

population estimates. Additionally, we also validated our method using a different ligand 

binding to the cyclin-dependent kinase 2 (CDK2) protein with experimental population 

estimates of the two binding modes based on X-ray electron density maps of crystal 

structures.1

Using MD/NCMC, we computed population estimates close to those obtained using 

experimental or other computational techniques. MD/NCMC also required much less 

computation than standard MD and umbrella sampling, thus suggesting that MD/NCMC is 

an efficient computational tool for determining multiple binding modes of flexible ligands.

2. Theory

2.1. Knowledge of binding modes is important for accurate binding free energy 
calculations

Each binding mode makes a separate contribution to the total binding free energy ΔG°14,15 –

ΔG° = − β−1ln ∑
i = 1

n
e−βΔGi°

where ΔGi° is the binding free energy associated with binding mode i, n is the total number 

of binding modes and β is the inverse of the product of the Boltzmann factor kB and the 

absolute temperature T. Subscript i, for the binding mode, refers to only the bound state of 

the ligand here.
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Binding modes often interconvert slowly compared to the timescales of typical MD 

simulations, and thus interconversions are not generally observed in free energy calculations 

unless enhanced sampling techniques are used.8 As a result, if the binding mode is uncertain 

or may change as a ligand is modified (e.g. in a lead optimization context) one needs to 

perform separate free energy calculations limited to each binding mode to compute the total 

binding free energy.7,8 This increases the overall computational cost of binding affinity 

calculations for ligands with multiple binding modes.

However, if the population distribution of binding modes are known, the the binding affinity 

calculation can become faster and cheaper. Specifically, if we know the probability p1 of 

binding mode 1, then we can use the following two relations to simplify the calculations –

pi ∝ e−βGi, bound°

∑
i = 1

pi = 1

where Gi, bound°  is the free energy of the binding mode i in the bound form.

The total binding free energy ΔG° can be rewritten as–

ΔG° = ΔG1° + β−1lnp1

Thus, only one binding free energy calculation is needed per ligand leading to significant 

decrease in the computational cost.8,16

2.2. Various computational methods can be applied for sampling binding modes

In this section we mention a few common computational techniques that can be used to 

sample binding modes, and the benefits and difficulties of using these methods.

The most common and computationally cheapest method for suggesting potential binding 

modes of ligand is docking.17,18 However, docking is designed to rapidly screen large 

molecular libraries and compromises accuracy to achieve such high speed. As a result, 

docking is not very efficient is identifying the true binding mode(s).19 Moreover, docking 

scores do not correlate well with binding affinities19 and thus, they do not give reasonable 

estimates of occupancy ratios of multiple binding modes (if present).

An alternative to docking is to use MD-based approaches.20 Classical MD can sample 

multiple binding modes, but the modes are usually separated by large energy barriers 

resulting in slower time scales for binding mode transitions in these simulations, 

necessitating very long simulations. A more pragmatic approach is to use MD-based 

enhanced sampling techniques to overcome the energy barriers.

In order to overcome energy barriers, metadynamics continuously adapts the potential 

energy along a few chosen degrees of freedom as the MD simulation progresses which in 

turn decreases energy barriers between different states. Thus, metadynamics biases the 

simulation to sample regions of the phase space not yet sampled. This can potentially 
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enhance the sampling of the entire energy surface. However, metadynamics require some 

degree of intuition about the important degrees of freedom of the system.

Another way to accelerate sampling across energy barriers is by varying the system 

temperature in MD simulations, which is commonly done using tempering and annealing 

methods. For example, replica exchange with solute tempering (REST/REST2)21 scales the 

temperature of only the ligand and selected protein residues to explore alternate 

conformations. However, there is always a possibility of the protein becoming unstable (and 

potentially even unfolding) with these techniques because of the high temperatures.

Apart from the works mentioned here, several other binding free energy methods22–26 also 

enhance sampling of internal degrees of freedom and have different strengths and 

weaknesses.

If the binding modes are known, the problem of crossing energy barriers becomes more 

tractable. Relative alchemical free energy perturbation (AFE) simulations can sometimes be 

used in such cases to find out the free energy difference between two binding modes.7,27 

These calculations simulate a series of separate intermediate states to transform one binding 

mode into another by disappearing atoms from one region and growing them in another 

region. The resulting free energy difference can be computed via a variety of perturbation-

based estimators such as the multistate Bennett acceptance-ratio method (MBAR), or via 

alternative formulations like thermodynamic integration (TI). The binding modes need to be 

very similar to each other for relative AFE calculations.

Another way to determine the free energy difference between binding modes is to use 

umbrella sampling.28 Similar to AFE, umbrella sampling constructs a series of intermediate 

states between binding modes along a physical degree of freedom. For example, for 

sampling the energy change associated with rotating a rotatable bond, the intermediate states 

are described by different degrees of rotations of the rotatable bond. The system is simulated 

at the intermediate states using restraints, and then a free energy profile is constructed based 

on all sampled conformations. However, sampling along a single degree of freedom can 

result in inadequate sampling of all relevant conformations in complex three-dimensional 

protein-ligand systems. Particularly, orthogonal degrees of freedom can be especially 

difficult to adequately sample. Both AFE and umbrella sampling simulations require prior 

knowledge of what the different binding modes are.

Monte Carlo (MC) is another class of molecular simulation technique where moves are 

proposed to hop between energy basins. Unlike MD-based techniques, the likelihood of MC 

moves between binding modes depends only on the initial and proposed states of the system 

and not on the barrier heights. However, proposing a move without resulting in overlapping 

atoms is extremely difficult in densely solvated systems. Thus, MD-based techniques are 

more popular for biomolecular simulations.

Recently, there have been few efforts to use hybrid MD/MC based approaches instead for 

ligand sampling. For example, Chodera et al. have used rotational and translations MC 

moves to explore ligand binding modes during absolute binding free energy calculations in 

the YANK software package.29 Cole et al.30 have combined MC moves involving dihedral 
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angle rotations with REST to enhance sampling of multiple binding modes during free 

energy calculations. Also, in our previous work,8 MD/MC simulations gave positive results 

for sampling toluene binding to T4-lysozyme, but the performance degraded with the 

addition of bulkier side groups (toluene to iodo-toluene). Thus, designing move proposals 

with high acceptance rates for larger ligands still remains a major challenge.

As discussed in this section, there does not exist a general solution to rapidly sample ligand 

binding modes and obtain correct populations or free energies, even in cases where binding 

modes differ primarily only by rotation of one or several rotatable bonds. To address this 

problem, we developed a hybrid MD and nonequilibrium candidate Monte Carlo based 

method in this work, which could potentially provide a more general approach.

2.3. Nonequilibrium Candidate Monte Carlo is an efficient sampling tool for crowded 
systems

Nonequilibrium candidate Monte Carlo (NCMC) offers the advantages of barrier crossings 

present in traditional MC moves, but with much higher acceptance rates.12 Unlike MC 

where move proposals are instantaneous, NCMC move proposals involve a finite-time 
process where the system is driven through a nonequilibrium protocol to a proposed state.

NCMC protocol includes a series of perturbation or propagation steps involving chosen 

degrees of freedom and/or thermodynamic parameters. The switching steps allow the 

environment surrounding the perturbed region to relax around the proposed state, thereby 

reducing the chances of steric or electrostatic clashes which are common in MC move 

proposals. As a result, NCMC move proposals have higher acceptance rates in densely 

solvated systems compared to MC.

The proposed NCMC move is accepted or rejected based on the total work w[X] done 

during the nonequilibrium process X, given as–

w[X] = ∑
t = 1

T
ut xt − ut − 1 xt + wsℎadow[X]

where xt is a microstate at switching step t and ut is the reduced potential energy. The first 

term in the above equation is the “protocol work” wprotocol and the second term is the 

“shadow work” which accounts for the errors introduced by the use of finite-time-step 

Langevin integrators.31 The acceptance probability A[X] is determined using a modified 

Metropolis-Hastings criterion32 to maintain detailed balance,

A[X] = min 1, e−w(X)

Previously, NCMC has been used by another group to sample side-chain dihedral angles.33 

In their NCMC protocol, they used a force to drive the system across energy barriers from 

one side-chain orientation to another without perturbing any interactions in the system. 

Although they obtained good results in vacuum systems, the protocol had low acceptance 
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rates in solvated systems. In particular, the NCMC moves frequently resulted in overlapping 

water molecules.

2.4. We introduce torsional moves with NCMC for sampling flexible ligands via BLUES 
software package

In this work, we use the BLUES framework8(https://github.com/MobleyLab/blues) for 

implementing NCMC move proposals. The BLUES framework uses a combination of MD 

and NCMC and is designed specifically for sampling ligand conformations in dense 

systems.

In BLUES, the NCMC move proposal is defined as a series of alchemical steps where the 

protein-ligand electrostatic and steric interactions are turned off gradually, followed by 

proposing a new ligand orientation and then, restoring the interactions. The NCMC 

switching steps allow the protein and water (if any) surrounding the ligand to relax around 

the proposed ligand conformation and decreases the chance of overlapping atoms, as 

observed in the previously described NCMC protocol by Kurut et al.33

BLUES uses the BAOAB integrator34 for Langevin dynamics, which can sample the 

configurational space with high accuracy and the shadow work wshadow can be neglected 

without introducing any significant errors. Thus, the total work w is approximated to be only 

the protocol work wprotocol, which is the work done to propagate the system during the 

NCMC protocol.

In between the NCMC move proposals, BLUES performs conventional MD steps to capture 

some of the natural protein dynamics by general sampling of the system’s motion. Thus, 

BLUES samples the system using successive NCMC moves and MD propagation steps.

Previously, BLUES has been successfully used to study multiple binding modes of rigid 

fragments – toluene binding to T4-lysozyme8 and caffeine binding to metabolizing enzyme 

Cytochrome P450 1A2.35 The NCMC protocol used random ligand rotation around the 

centre of mass of the ligand to sample different binding modes. However, simple rigid-body 

rotational moves are not sufficient to sample the binding modes of drug-like molecules, 

which can have conformational degrees of freedom in the binding pocket in addition to 

rotational and translational ones.

In this work, we extend the NCMC move classes in BLUES by introducing torsional moves 

for flexible ligands to facilitate transitions between binding modes resulting due to rotation 

of rotatable bonds. Figure 1 shows the different steps involved in the NCMC protocol. We 

identify a region connected to the chosen rotatable bond of the ligand which is able to move 

freely and only this region of the ligand is alchemically turned off and on during the NCMC 

move proposal. In the middle of the NCMC protocol after the alchemical region is 

annihilated, the rotatable bond is randomly rotated, followed by restoring the interactions of 

the alchemical region.

Apart from proposing random torsion rotations of the rotatable bonds in ligands where any 

amount of rotation (small or large) can be proposed, we also developed another new move 
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class – flip moves where the rotatable bond is randomly rotated only by large amounts, 

specifically between 160°–200°.

3. Computational methods

Full details of the methods used in this work can be found in the associated GitHub 

repository. If we have any updates to the tools/scripts, they will be made available on 

GitHub. We provide a brief overview of some of the key details of our methods here.

3.1. System preparation

We used four ligands to validate our MD/NCMC protocol (Figure 2). Ligands 1–3 bind to 

JNK1 and have the same scaffold but with different substitutions in the terminal phenyl 

group. Their binding free energies were studied extensively by other groups both 

experimentally36 and computationally.7 In the previous computational study with a different 

force field than that employed here, the ligands exhibited two distinct binding modes with 

equal probability of occurrence. We modeled the binding mode for these three ligands based 

on the PDB 2gmx.37 The different aromatic ring substitutions were added to the ligand 

present in the co-crystal structure using Chimera 1.12.38

For ligand 4, PDB 2r3i39 was used. Missing residues were modeled using Modeller 9.19.40 

The partial charges of the ligand atoms were assigned based on the AM1-BCC model41 

using Antechamber, included with the Amber 16 package42 and the protonation states of the 

protein residues using H++43 (http://biophysics.cs.vt.edu/H++).

The simulation box was built using tleap, also a part of the Amber 16 package. We used the 

protein and ligand force field parameters from the Amberff14sb44 and GAFF 1.845 force 

field respectively. Each protein-ligand complex was solvated using TIP3P waters46 in a 

cubic box with 10 Å padding. Two Na+ ions and four Cl- ions were added to neutralize the 

JNK1 and CDK2 protein-ligand complexes respectively.

3.2. Equilibration and production MD simulation details

The MD simulations were performed using OpenMM 7.1.147. We used a Langevin 

integrator with 2 fs time step and a friction coefficient of 1 ps−1. A cutoff of 10 Å was used 

for real-space electrostatics and Lennard-Jones forces, while long-range electrostatics was 

calculated using the particle mesh Ewald method.

Each system was first minimized for 4000 steps with 500 kcal/mol/Å2 positional restraints 

on the heavy atoms present in the protein-ligand complex, followed by another 4000 steps of 

minimization with 50 kcal/mol/Å2 positional restraints only on the protein atoms. Next we 

performed MD simulations in the NVT ensemble to slowly heat the system and to release 

the restraints on the protein atoms using the following steps: i) 20 ps of simulation with 25 

kcal/mol/Å2 restraints at 10 K, ii) gradual heating of the sytem from 10 to 300 K for 40 ps 

with 5 kcal/mol/Å2 restraints, iii) 20 ps of simulation with 5 kcal/mol/Å2 restraints at 300 K, 

iv) 40 ps of simulation with 1 kcal/mol/Å2 restraints, v) 40 ps of simulation with 0.1 

kcal/mol/Å2 restraints, and vi) 40 ps of simulation without any restraints. In a final phase of 
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equilibration, we ran the system in the NPT ensemble using a Monte Carlo barostat for 5 ns 

to get the correct density at 1 atmospheric pressure.

The MD production run was for 100 ns in NVT ensemble with frames being written after 

every 10 ps. Chimera and CPPTRAJ 16.1648 was used for molecular visualizations and MD 

trajectory analysis respectively.

3.3. MD/NCMC implemented using BLUES software package

We implemented our MD/NCMC protocol using BLUES version 0.1.3. The MD simulations 

were performed using OpenMM, while the NCMC part used openmmtools 0.14.049 for 

turning the ligands on and off alchemically. Only the flexible region of the ligand (Figure 2) 

was selected as the alchemical region. OpenEye Toolkits 3.0.8 (OpenEye Scientific 

Software) was used to set the selected torsion angles (shown in Figure 2) to random values 

during NCMC move proposal.

During the NCMC move, all atoms more than 5 Å away from the ligand were frozen. 

Freezing atoms limits the extent of conformational relaxation to the immediate vicinity of 

the ligand. This decreases the variance in the βw values and thereby improves the move 

acceptance rate. This comes at the expense of allowing less long-range relaxation, which has 

its own costs, but in practice we find that this improves overall acceptance in the systems 

studied here, as in previous work.8

Each iteration consisted of 1000 MD steps and 3400 NCMC switching steps, except in 

section 4.3 where we varied the number of NCMC switching steps. During the NCMC 

protocol, the ligand interactions are varied by scaling the λ parameter which control the 

strength of the non-bonded interactions. The NCMC steps were not evenly distributed across 

the λ schedule. For λ values between 0.2 to 0.8, we performed additional four perturbation 

steps for each alchemical step as shown in supplementary Figure S3. For example, for 3400 

switching steps, 200 steps were used for λ values 0.0 to 0.2, 3000 steps for λ values 0.2 to 

0.8, and 200 steps for λ values 0.8 to 1.0. The NCMC steps were not counted towards the 

final trajectory. In other words, we only used the MD trajectory as the final MD/NCMC 

trajectory, thus each iteration corresponded to 1000*0.002 fs/step = 2 ps worth of production 

run.

We performed a single MD/NCMC simulation for each protein-ligand system and NCMC 

parameter settings. The uncertainties were calculated based on block-averaging.50 We chose 

the number of blocks in such a way that the standard error of the mean was maximized 

across the blocks. For probabilities of the modes, we divided the simulation into smaller 

pieces of 1 ns length for MD/NCMC (10 ns for MD) and then calculated the uncertainties 

for each chunk of simulation.

3.4. Umbrella sampling performed by sampling different orientations of the rotatable 
bond

OpenMM was used to carry out the umbrella sampling simulations. We used the same MD 

simulation parameters described in section 3.2. The rotatable bond of the ligand was 

harmonically restrained to sample specified dihedral regions in each window. We tried three 

Sasmal et al. Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2021 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different parameter settings for the umbrella sampling simulations -i) 72 windows each with 

200 kcal/mol/Å2 force constant, ii) 128 windows each with 200 kcal/mol/Å2 force constant, 

and iii) 152 windows with different force constants - 400 or 600 or 800 kcal/mol/Å2. Each 

window was simulated for 10 ns.

While restraining the rotatable bond at different dihedral values in each window, we 

observed that sometimes it altered the binding mode of the ligand (supplementary Figure 

S4). Ideally, we would like to sample only a single degree of freedom in umbrella sampling 

simulations – different orientations of the rotatable bond with the same configuration for the 

rest of the ligand in our case. Hence, we applied 250 kcal/mol/Å2 positional restraint on the 

fixed part of the ligand (atoms outside the grey box in Figure 2) during simulations with 

parameter settings (ii) and (iii) to ensure that the protein-ligand interactions are the same for 

the rest of the ligand.

The one-dimensional free energy profile or the potential of mean force (PMF) was computed 

using the multistate Bennett acceptance ratio (MBAR) method51 available through the 

pymbar package. The population pi of binding mode i can be calculated using the following 

equation:

pi = ∑
n ∈ i

e−PMFwn/kBT / ∑
n ∈ i, j

e−PMFwn/kBT

where wn corresponds to the window sampling dihedral angle n, PMFwn is the free energy 

corresponding to the window wn. The summation is over windows wn that collectively 

sample binding modes i or j.

4. Results

4.1. MD/NCMC is more efficient than MD for sampling the two binding modes

In this work, we developed a hybrid MD/NCMC method to enhance the sampling of binding 

modes of flexible ligands. We first tested our MD/NCMC method using ligand 1.

Ligand 1 has a rotatable bond which can rotate even in the bound configuration, giving rise 

to two different binding modes separated by a 180° rotation of the rotatable bond. We refer 

these two binding modes as ‘orig’ and ‘flip’ ( short for ‘original’ and ‘flipped’, shown in 

Figure 3). The two phenyl ring orientations are chemically indistinguishable, but 

distinguishable in simulations because we can number the individual atoms and track which 

orientation it is in. We should clearly see two distinct and equally populated binding modes 

in molecular simulations. This is a trivial test but it is a good proof-of-principle because we 

know what the right answer is and we can test whether we recover this quickly/accurately.

As a point of comparison, we ran a standard 100 ns MD simulation and also monitored the 

orientation of this ring. Figure 4 shows the binding modes sampled during the MD and MD/

NCMC simulations and the probability of the two binding modes as a function of time. We 

saw only a single transition between the two binding modes during the entire course of the 

MD simulation, while with MD/NCMC there were frequent transitions between the two 
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binding modes. Since there were not enough transitions in the MD simulations, the 

populations of the two binding modes did not converge to the ‘ideal’ 50/50 probability. On 

the other hand, the populations of the two binding modes converged to the expected values 

in the MD/NCMC simulations. Thus, MD/NCMC was not only able to increase the 

transition rate, but it also sampled correctly from the Boltzmann distribution.

It is not straightforward to do a direct efficiency comparison between MD and MD/NCMC 

simulations since we incur additional computational costs during the NCMC alchemical 

steps, which are not counted towards the final trajectory length. Force evaluations are the 

most expensive calculation in simulations and we are interested in sampling more transitions 

between different binding states. Hence, we compared the two methods based on the 

observed number of transitions per million force evaluations (transitions/million f-ev).

NCMC requires one force evaluation for each switching step. Thus, for N switching steps 

and M MD steps, total number of force evaluations performed per iteration is N + M. 

Standard MD executes one force evaluation per step.

Using the calculation described above, we obtain 15.73 ± 0.08 transitions per million f-ev 

with MD/NCMC, which is about a three order of magnitude improvement over standard 

MD. We obtain an acceptance rate of 12.7 ± 0.7% for the NCMC moves, which is similar to 

11% obtained by Gill et al.8 in previous MD/NCMC work on rigid fragments. Unlike 

standard Monte Carlo simulations where the ideal efficiency rate is about 20%, the 

efficiency rate in NCMC simulations is a strong function of the size or the importance of the 

moves. Particularly even low acceptance of important moves can provide dramatic sampling 

enhancements, as discussed in the prior NCMC paper.

4.2. Choice of alchemical region important for increasing acceptance rates

During the NCMC move proposal, we preselect only the part of the ligand that moves due to 

rotation of the rotatable bond. We alchemically turn on and off only this region. However in 

previous work by Gill et al.,8 the whole ligand was specified as the alchemical region. 

Hence, we investigated the effect of different alchemical regions on move acceptance rates, 

which in turn affects the convergence time.

We compared the work w distribution for just turning ligand 1 on and off in the binding 

pocket without any random torsion rotation for two different alchemical regions – i) the 

whole ligand (Figure 5–a), and ii) only the moving part of the ligand as shown in Figure 2 

(Figure 5–b). Ideally we want βw values to be less than or close to zero. This increases the 

likelihood of moves getting accepted.

When the whole ligand is selected as the alchemical region, the work values are too high (in 

fact, always significantly unfavorable, here), resulting in every move getting rejected. This is 

probably because the whole binding pocket undergoes changes when the ligand alchemically 

disappears (or appears) resulting in high work values. When we designate only the moving 

part of the ligand as the alchemical region, the work distribution gets shifted to lower values 

which results in reasonable move acceptance rates.
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Thus, in general, we believe that the alchemical region should be selected in such a way that 

the surrounding protein and water molecules are perturbed only to the extent needed to 

accommodate the new orientation of the ligand.

It is to be noted that the βw values calculated here are only for turning the ligand on and off 

in the binding pocket. When a random torsional move is attempted after turning the ligand 

off in an actual NCMC move proposal, the βw values are overall higher than the case we 

have looked at in this section since the degree of perturbation in the binding pocket is larger 

due to rotation of the selected dihedral angle.

4.3. Acceptance rates and actual transitions vary with different amounts of NCMC 
relaxation

In previous MD/NCMC work,8 move acceptance rates were dependent on the NCMC 

protocols. Hence, we decided to explore how variations in the NCMC protocol, in particular 

the total amount of NCMC switching steps affect the move acceptance rates (Figure 6).

We see a general trend that with more NCMC relaxation, there is an increase in the 

acceptance rate. This is expected since more relaxation means more time for the binding 

pocket to adjust itself around the proposed orientation of the ligand and to relieve any bad 

contacts.

However, this increase in acceptance rate is deceptive since more NCMC switching steps 

require more computation. If instead we compare moves accepted per million force 

evaluations, we see it initially increasing and reaching its maximum value at 3400 NCMC 

switching steps, after which it decreases. Thus, having more relaxation steps is not always 

computationally efficient. 3400 switching steps is the optimal amount of relaxation for our 

current test system.

4.4. Random flip moves increase efficiency of the NCMC protocol

Thus far, we have explored random torsional rotations, which may not be optimal. 

Particularly, our random torsion rotations can take any value between 0° to 180°. As a result, 

small rotations are often suggested and accepted, often even within the same binding mode. 

Not every accepted move thus results in a successful transition between the two binding 

modes (supplementary Figures S5 and S6).

Move proposals within the same binding mode require additional computation without 

facilitating transitions between binding modes, thus decreasing the efficiency of MD/NCMC 

simulations.

An alternative strategy could be to ensure only larger moves are proposed, which could 

increase efficiency. To test this, we we decided to propose only larger moves. Instead of 

proposing any random value, we designed flip moves, where moves are still randomly 

chosen but between 160° to 200° values (and thus are suitable only for cases where a 

torsional angle is expected to have only two stable conformations that differ by roughly 180 

degrees).
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Figure 7 shows the probability of state as a function of time for MD/NCMC simulation with 

flip moves for ligand 1. The moves still sample from Boltzmann distribution and the 

population converges to the ideal 50/50 population distribution. The number of moves 

accepted per million force evaluations ( 30 ± 2 ) and transitions per million force evaluations 

(28.4 ± 0.4) are very close in value, whereas for our previous random torsional move 

proposals, about half of the moves resulted in actual transitions (29 ± 2 moves accepted per 

million force evaluations and 15.72 ± 0.08 transitions per million force evaluations). The 

efficiency of flip moves is also evident from the shorter convergence time (~2 ns or 1000 

iterations) compared to random torsional moves (~5 ns or 2500 iterations from Figure 4).

Note that even with flip moves, there are some accepted moves that do not result in an actual 

transition, as seen from the difference between the number of accepted moves accepted and 

the number actual transitions. This is probably because during the NCMC relaxation for a 

small percentage of moves, the ligand is able to relax back to its previous binding mode with 

acceptable work values.

4.5. MD/NCMC method gives reasonable population estimates for different JNK1 and 
CDK2 inhibitors

After optimizing and validating our protocol with ligand 1, we decided to test our MD/

NCMC method on additional ligands. Figure 8 shows the probability of the two binding 

states during the course of MD/NCMC simulations for ligands 2–4.

Ligands 2 and 3 are from the same chemical series as ligand 1 and differ only by methyl 

substitutions in the terminal phenyl ring. The populations of the binding modes take 

different amounts of time to converge for the two ligands – 10 ns or 5000 iterations for 

ligand 2 and 40 ns or 20000 iterations for ligand 3. The additional methyl group in ligand 3 
decreases the transition rate by almost a factor of seven. Thus, ligands or substituents with 

bulkier substitutions or large alchemical regions need to be simulated longer to achieve 

convergence.

Next, we compare our results with population estimates based on AFE calculations by Kaus 

et al.7 For ligand 2, our population estimates are same as those obtained from AFE 

calculations (50:50), while for ligand 3, we get 63:37 population estimates compared to 

45:55 obtained using AFE with ~7% error bar. It is to be noted here that the AFE 

calculations were performed using a different force field (modified OPLS 2.1 for the ligands 

in the Kaus et al. study), which can give different answers. The final populations are also 

very sensitive to the AFE protocol. Kaus et al. initially obtained 20:80 population estimates, 

after which they modified their AFE protocol to obtain a 50:50 estimate for ligand 3.

MD/NCMC simulations have previously been able to correctly sample binding modes of 

rigid fragments8 and side-chain rotamers.13 They also correctly sampled the binding mode 

populations for ligand 1 in this work. Hence, we believe that the population distribution we 

obtained using MD/NCMC for ligand 3 is correct given the force fields used in this work.

As a final test, we looked at ligand 4, which also has two distinct binding modes in CDK2. 

The occupancies of the two binding modes have been reported to 60:40 based on electron 
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density maps by Zundert et al.1 with an error bar of ~10% (occupancies calculated by 

Zundert et al., and error bars based on personal communication with Henry van den Bedem 

and James Fraser). This is a computational estimate of the populations based on refinement 

of the crystal structure. With MD/NCMC, we obtain an occupancy ratio of 53:47, which is 

within the experimental error margin.

Overall, we find that MD/NCMC significantly improves performance of transition sampling 

for all three ligands (2–4) which have multiple chemically distinct binding modes. 

Particularly, for all of these ligands, MD did not allow transitions during the 100 ns long 

simulations (supplementary Figure S7). The binding modes are likely separated by large 

energy barriers, which is not easy to overcome with standard MD. Like Monte Carlo moves, 

the success of NCMC moves is not dependent on the height of the barriers and NCMC 

moves are able to overcome them. Thus, we see an enhancement in the sampling of binding 

modes using our MD/NCMC method.

Instead of using direct MD simulations to obtain populations, an alternate approach would 

have been to employ AFE calculations for each distinct binding mode which, in the best case 

scenario, could be roughly comparable in cost to MD/NCMC implemented via BLUES. 

Specifically, standard AFE calculations require separate simulations for 12 lambda values 

with 5 ns of simulation for each lambda value, resulting in a total 60 ns worth of simulation 

(based on simulation protocol reported by Kaus et al.7). We were able to have sufficiently 

converged simulations with ~10–20 ns of MD/NCMC simulations, which is computationally 

equivalent to 44–88 ns of MD simulations. Thus, the computational cost of MD/NCMC 

simulations is in the same order of magnitude of that for AFE calculations. Note that for n 
binding modes, we have to perform n − 1 AFE calculations to obtain the population 

distribution, whereas for MD/NCMC we just need to perform a single simulation.

Even though AFE calculations and MD/NCMC may have similar computational cost, at 

least in the case of few binding modes, AFE calculations are not always that straightforward 

to implement. For example, the core region of the ligands might require additional restraints 

to prevent them from drifting out of the binding pocket during the intermediate alchemical 

states.7 Additionally, rotatable bonds might need harmonic restraints such that they sample 

only a specific binding modes. Furthermore, it is hard to converge AFE calculations to a 

reasonable accuracy of 1.0 kcal/mol.52 In practice, AFE calculations are popularly coupled 

with tempering methods, such as REST/REST2, for better sampling and convergence. 

Unlike AFE calculations, with MD/NCMC we have not used any restraints with the ligand 

having full freedom to move around in the binding pocket if it wants to do so and were able 

to achieve a satisfactory level of convergence.

4.6. Umbrella sampling requires more computation to converge to the correct population

As an additional point of comparison, we ran umbrella sampling simulations with ligand 1 to 

compare the computational cost with MD/NCMC simulations. Unlike MD/NCMC 

simulations, where we were able to get converged simulations easily (or by running longer 

for larger ligands), we had to optimize and tune the umbrella sampling protocol a number of 

times to achieve a converged population distribution for the two binding modes 

(supplementary Figure S8 and S9).
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Figure 9 shows the probability of the two states we obtained using different number of 

windows in umbrella sampling simulations. We had to use 152 windows to achieve 

convergence. Additional windows directly increases the computational cost. Umbrella 

sampling was ~35 times more expensive than MD/NCMC simulations for ligand 1. While 

we invested considerable effort initially in developing simpler protocols with fewer windows 

which would perform adequately, we were ultimately unsuccessful — probably in part 

because steric barriers associated with rotating the group between binding modes often 

induce ligand and/or protein motions as the bond is rotated.

Additionally, we tried using the protocol optimized with ligand 1 to estimate the population 

of the binding modes for ligand 2. We found that same protocol did not work for ligand 2 
(supplementary Figure S10). Thus, at least for these binding mode sampling problems, 

umbrella sampling is not only expensive, it cannot be used as a reliable option for estimating 

binding modes, especially when doing a prospective or blind study, as the protocol employed 

would require tuning for each individual ligand to ensure correct populations are obtained – 

a procedure which is impossible when correct populations are not known.

5. Discussion

In this work, we have developed two NCMC moves – random torsional moves and random 

flip moves. These two categories of move have different strengths and weaknesses, and the 

best choice of move likely depends on how much prior information is available. For the 

ligands studied here, we knew the binding modes and also that the main configuration 

changes were the flips of the phenyl rings. For such cases, using flip moves is the more 

efficient choice for the MD/NCMC simulations since the computational effort in NCMC is 

directed only towards exploring 180° rotations. For systems with limited information, one 

should perform exploratory simulations with rotational moves to have a better understanding 

of possible binding modes.

We have studied only multiple binding modes resulting because from ring flips here. 

However, the torsional moves we designed here can be used for other categories of alternate 

conformations, for example enhanced sampling of branched components in linear regions of 

ligands or rotations of terminal rotatable bonds (both are relevant experimentally1). The 

NCMC torsional moves can also be combined with other moves like random ligand 

rotations8 or translations to have broader applicability.

Apart from sampling multiple binding modes of flexible ligands, we also tried to simulate 

flexible ligands in pure water using MD/NCMC to test its efficiency. But, we found out that 

for such cases the energy barriers separating different conformers could be overcome by 

standard MD with no need for additional sampling enhancements.

In its current implementation MD/NCMC needs human input about which rotatable bond(s) 

present in the ligand ought to be explored via this approach. Future work may automate this 

identifying the rotatable bonds of the ligand and then systematically exploring the binding 

modes that can arise because of their multiple orientations. For ligands with multiple 

rotatable bonds, binding modes might differ by multiple torsion angles. For such cases, we 
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could propose torsional moves of multiple bonds in a single move. We expect that randomly 

proposing moves for such cases is not an efficient option because the number of possible 

moves will grow exponentially with increase in the degrees of freedom of the torsional 

space. To increase acceptance rates, we could draw on exploratory initial simulations of the 

ligand in implicit or explicit solvent to identify potentially favorable conformations and then 

propose moves in the binding site randomly based on the explored torsional space.

6. Conclusions

An important component of structure-based drug design is to understand how ligands bind to 

proteins. However, it is not trivial to determine the binding mode using computational tools. 

The problem becomes harder when the ligand binds in multiple configurations, or when a 

new ligand has multiple possible binding modes which have not yet been characterized.

To aid in the problem of binding mode determination and binding mode sampling, here, we 

developed a new simulation technique based on MD and NCMC to sample binding modes of 

flexible ligands, and incorporated this into our BLUES package for binding mode sampling. 

In our approach, we propagate the system using standard MD with regular NCMC move 

proposals in between to overcome energy barriers. We propose random torsion rotations of 

rotatable bonds of ligands to accelerate transition rates between different binding modes. 

However, instead of instantaneous move proposals as in MC, NCMC moves relax the 

surrounding atoms of the ligand around the proposed orientation to help relax clashes. This 

helps to improve the move acceptance rate, and in turn the sampling efficiency.

Using MD/NCMC, we were able to sample multiple binding modes of different kinase 

inhibitors and obtain correct occupancy ratio for the binding modes. The observed transition 

rates were much faster than standard MD and umbrella sampling. We also found that ‘flip’ 

moves, where we propose large moves or close to 180° random rotations of rotatable bonds, 

was about two times more efficient than random torsional moves where any degree of 

rotation can be proposed. Thus, MD/NCMC has the potential to be a more general and 

efficient tool for sampling multiple binding modes of flexible ligands.

To sum up, we have applied MD/NCMC to sample binding modes of flexible ligands in this 

paper and have successfully determined the occupancy ratios of the binding modes of four 

kinase inhibitors at a much lower computational cost compared to standard MD and 

umbrella sampling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
NCMC move for twisting a rotatable bond of a ligand. Circles with black outline represent 

the regions of the ligand at various levels of interaction with its neighboring atoms: black – 

fully interacting, white – non-interacting, and gray – intermediate level. The blue circles are 

for the surrounding protein and water molecules. A) The ligand is fully interacting. B) The 

atoms of the ligand which are translocated because of the rotation of the rotatable bond is 

selected as the alchemical region. The non-bonded interactions of the ligand are slowly 

decreased only for the alchemical region. This allows the atoms surrounding the alchemical 

region to relax. C) The alchemical region of the ligand is fully non-interacting. D) The 

rotatable bond is randomly rotated leading to a new orientation of the alchemical region. E) 

The alchemical region is slowly turned back on. The surrounding atoms relax around the 

new configuration of the ligand to relieve clashes if present. F) The whole ligand is fully 

interacting. The total work done in performing steps A-F is calculated and the NCMC move 

is accepted or rejected based on it.
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Figure 2. 
Structure of the four ligands used to validate our MD/NCMC protocol. Ligands 1–3 bind to 

JNK1, while ligand 4 binds to CDK2. The grey boxes show the regions selected as the 

alchemical regions for the NCMC moves. The arrows indicate the bonds rotating freely in 

the bound form of the ligands. The remainder of the ligand forms an anchor or core which 

retains its pose (key interactions with the protein) in the binding site as the remainder of the 

ligand rotates. More details about the protein-ligand interactions can be found in the contact 

maps presented in the supplementary Figures S1 and S2.
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Figure 3. 
Binding modes of ligand 1. The rotation of the rotatable bond leads to two distinguishable 

binding modes in molecular simulations -’orig’ and ‘flip’. The black atom in the phenyl ring 

represents a carbon atom and is colored black for reference only.
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Figure 4. 
Comparison of the sampling efficiency of MD and MD/NCMC simulations for ligand 1. 

Torsion angles (corresponding to the two binding modes) sampled during the course of the 

simulations as a function of time (left). The number of transitions between the two binding 

modes per million force evaluations (transitions/million f-ev) is also reported. Probability of 

the two binding modes, namely ‘orig’ and ‘flip’ as a function of time (right). MD/NCMC 

increases the rate of transition between the two binding modes compared to classical MD 

simulations, resulting in faster convergence of the population of two binding modes to the 

‘ideal’ distribution.
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Figure 5. 
Distribution of work w done in turning ligand 1 on and off in the binding pocket without 

proposing any random torsion rotation. The alchemical region is specified as follows: a) the 

whole ligand; b) only the flexible part of the ligand. β is the inverse of the product of the 

Boltzmann constant kB and the temperature T. Proposed moves with smaller values of βw 
(close to or less than zero) are more likely to be accepted. Thus, defining only the flexible 

part of the ligand as the alchemical region is better for move acceptances as seen from the 

work distribution.
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Figure 6. 
Acceptance rate of NCMC moves (in blue) and moves accepted per million force evaluations 

(f-ev) (in orange) as a function of the number of NCMC switching steps for ligand 1. The 

acceptance rate increases with more NCMC steps. However, the number of moves accepted 

per million force evaluations initially increases and then decreases with the number of 

NCMC switching steps.
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Figure 7. 
Probability of the two binding states of ligand 1 as a function of time sampled using MD/

NCMC with flip moves. The simulation converges around 2x faster than our previous 

simulation with random rotational moves in Section 4.1.
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Figure 8. 
Probability of the binding states of ligands 2, 3 and 4 as a function of time based on MD/

NCMC simulations with flip moves (solid lines). The simulations require different amounts 

of time to converge for the three ligands. The final population estimates of the binding 

modes for ligand 2 is close to that obtained using AFE calculations by Kaus et al.7 (dashed 

lines), whereas for ligand 3, the converged populations are slightly different from AFE 

estimates (dashed lines). For ligand 4, the population estimates are similar to those 

computed by Zundert et al.1 using X-ray electron density data with an error margin of 0.1 

(dashed lines).
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Figure 9. 
Probability of the two binding modes obtained using MD/NCMC and umbrella sampling 

(Umb) with different number of windows. The ideal population estimate is 50:50 shown by 

the dotted line. We had to use 152 windows to get estimates close to the ideal value with 

umbrella sampling, which increased the computational cost considerably.
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