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a b s t r a c t

A critical need exists for early, accurate diagnosis of burn wound severity to help identify the

course of treatment and outcome of the wound. Laser speckle imaging (LSI) is a promising

blood perfusion imaging approach, but it does not account for changes in tissue optical

properties that can occur with burn wounds, which are highly dynamic environments. Here,

we studied optical property dynamics following burn injury and debridement and the

associated impact on interpretation of LSI measurements of skin perfusion. We used spatial

frequency domain imaging (SFDI) measurements of tissue optical properties to study the

impact of burn-induced changes in these properties on LSI measurements. An established

preclinical porcine model of burn injury was used (n = 8). SFDI and LSI data were collected

from burn wounds of varying severity. SFDI measurements demonstrate that optical

properties change in response to burn injury in a porcine model. We then apply theoretical

modeling to demonstrate that the measured range of optical property changes can affect the

interpretation of LSI measurements of blood flow, but this effect is minimal for most of the

measured data. Collectively, our results indicate that, even with a dynamic burn wound
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environment, blood-flow measurements with LSI can serve as an appropriate strategy for

accurate assessment of burn severity.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Worldwide, more than 10 million people annually suffer from
burn wounds that receive medical attention [1]. The American
Burn Association approximates 450,000 burn injuries occur
each year in the United States alone [2]. Historically, burns
have constituted 5�20% of conventional warfare casualties [3].
Burn wounds can be classified into superficial, superficial
partial, deep partial, and full thickness burns. Superficial burn
wounds are minor and will heal on their own, whereas full
thickness burns benefit from surgical intervention [4]. Partial
thickness burns may progress into deep partial thickness
burns, making them more challenging to assess and treat
appropriately [5].

The dynamic nature of burn wounds within the first 24�72
h makes them extremely difficult to diagnose accurately [6].
Current clinical protocols for classifying burn wounds are
based on visual observations by an experienced surgeon
[5,7,8]. Experienced surgeons are accurate at assessing burn
depth only 64%�76% of the time [9]. Therefore, a critical need
exists for early, accurate diagnosis of burn wound severity to
help identify the course of treatment and outcome of the
wound [10�12].

Various optical imaging modalities have been utilized to
measure burn severity. Two promising candidates are laser
speckle imaging (LSI), which measures tissue perfusion, and
spatial frequency domain imaging (SFDI), which measures
tissue absorption and scattering properties. LSI uses diffuse
laser light to illuminate the entire sample [4,13�17] and
measurements of the fluctuation in the intensity of the
reflected light in a single snapshot [18]. LSI has shown promise
in improving upon clinical assessment of burn wounds
[4,14,19]. Also, the perfusion units of LSI, in Speckle Flow
Index (SFI), have been shown to correlate linearly with blood
flow rates found in tissue [20].

Although studies have shown that blood perfusion is an
adequate method for assessing burn wounds, they do not
consider the associated structural changes. A non-contact
imaging modality capable of quantifying these structural
changes is spatial frequency domain imaging (SFDI). SFDI is an
imaging technique that provides optical properties of tissue,
such as reduced scattering coefficient, ms

0, and absorption
coefficient, ma [21�26]. Ponticorvo et al. [27] used ms

0 from SFDI
and perfusion units from LSI to categorize burns. They showed
that at 24 h after burn, LSI provided a sensitivity and specificity
of 66% and 90%, respectively. At 72 h, sensitivity improved to
100%, but specificity decreased to 58%. They also showed that
SFDI provided a sensitivity and specificity of 93% and 74% at 24
h, and 83% and 90% at 72 h.

LSI is a relative blood perfusion method that does not
account for changes in tissue optical properties. Burn wounds
are highly dynamic environments, with changes in local blood
volume [5] and architecture. These changes likely confound

blood flow measurements with LSI. By incorporating SFDI, we
can investigate the impact of optical property dynamics on the
perfusion measured by LSI.

Here, we first demonstrate that optical properties change in
response to burn injury in a porcine model. We use modeling to
demonstrate that the measured range of optical property
changes can affect the interpretation of LSI measurements of
blood flow, but this effect is minimal for most of the measured
data. Together, these results indicate that blood-flow meas-
urements with laser speckle imaging may serve as an
appropriate strategy for accurate assessment of burn severity.

2. Materials and methods

2.1. Animals

All experiments were carried out under a US Army Institute for
Surgical Research (USAISR) approved IACUC protocol. Re-
search was conducted in compliance with the Animal Welfare
Act, the implementing Animal Welfare regulations, and the
principles of the Guide for the Care and Use of Laboratory
Animals, National Research Council. The facility’s Institution-
al Animal Care and Use Committee approved all research
conducted in this study. The facility where this research was
conducted is fully accredited by the AAALAC. Animals were
housed individually in a temperature-controlled environment
with a 12-h light/dark cycle in the AAALAC approved vivarium
at the USAISR with access to water and food ad libitum. Before
burning, hair was removed from the dorsum of the animals,
tattoos were created around each wound, and the skin was
rinsed with sterile water.

2.2. Varying-burn depth and varying-depth of
debridement

Each anesthetized pig received 10 burns (5 cm � 5 cm) created
on their dorsal side spaced roughly 3 cm from the spine in two
evenly distributed rows. The wounds varied in burn severity
from superficial to full thickness, followed by varying depths of
skin debridement. Burn treatments were randomized and
induced on the dorsal side of each pig. Each pig received ten
burn treatments. The contact burn device used was a 5 cm � 5
cm brass burn tool heated to 100 �C with active temperature
control [28]. LSI and SFDI data were acquired pre- and post-
burn on Day 0 of the study. On Day 7 of the study, debridement
of the wound bed was performed with a pneumatic derma-
tome set to 0.03000, and LSI and SFDI data were acquired pre-
and post-debridement. The depths of debridement varied
from 1 pass (0.03000) to 4 passes (0.12000) with the dermatome.

In addition to the ten burns, two control sites were located
adjacent to the first and last burns for each pig. A total of 8 pigs
were included in this study resulting in LSI and SFDI data on 80
experimental and 16 control sites for processing and data
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analysis. To focus on assessment of acute burn severity, we
only did not include data collected after initial debridement.
The time points of interest for this study were Day 0 pre- and
post-burn and Day 7 pre- and post-debridement due to the
relatively large changes in optical properties and blood flow
expected at these time points.

2.3. Spatial frequency domain imaging

To measure skin optical properties, we used a commercial
FDA-approved SFDI device (ReflectRS, Modulim, Irvine, CA).

Cuccia et al. [29] describe in detail SFDI theory. Briefly, SFDI
uses structured illumination at different spatial frequencies
(typically sine waves, although square waves also can be used,
combined with theoretical modeling of light propagation in
tissue, to estimate maps of absorption and reduced scattering
coefficients [30]. With measurements collected at multiple
excitation wavelengths, spectral analysis can extract maps of
tissue chromophores such as oxy- and deoxyhemoglobin.

The SFDI consisted of an imaging head mounted to a mobile
cart with an articulating arm. The device provides a field of
view (FOV) of 20 cm � 15 cm from a height of 32 cm from the

Fig. 1 – LSI and SFDI maps of a single burn treatment. Speckle Flow Index (SFI), SFDI reflectance, reduced scattering coefficient
(ms

0), and absorption coefficient (ma) maps of a single treatment site pre- and post-burn and debridement are shown. The regions
of interest (ROI) shown in black were manually selected in an attempt to obtain similar areas of tissue. The ROI selected for the
SFDI reflectance map was applied to the ms

0 and mamaps. Color photographs are shown for each of the four stages to provide a
visual representation of the sites.
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sample. Images were acquired using the MI Acquire V1.34.00
software, and the device was set to acquire 3 data sets of each
sample. Each data set consisted of 8 wavelengths from 471 nm
to 851 nm with five sinusoidal spatial frequencies, evenly
spaced between 0 mm�1 and 0.2 mm�1. The resulting data sets
were used to produce the reduced scattering coefficient (ms

0)
and absorption coefficient (ma) images used for this study
(Fig. 1). We selected a region of interest (ROI) using the ms

0 and
ma images for each treatment site (Fig. 1). We quantified the
mean ms

0 and ma within these ROIs using interpolation for 808
nm to correspond with the laser wavelength used in the LSI
device.

2.4. Laser speckle imaging device

The laser speckle imaging (LSI) system used in this study
consisted of an imaging head mounted to a mobile cart with an
articulating arm. The imaging head consisted of an 8-bit, 1.32
megapixel CCD camera (CMLN-13S2M-CS, FLIR Integrated
Imaging Solutions, Inc., Richmond, BC, Canada), a variable
zoom C-mount lens (Computar C-Mount 13�130 mm Varifocal
Lens, Computar), and 808 nm near-infrared laser diode (140
mW, Ondax Inc., Monrovia, CA). A 785 nm long-pass filter was
placed in front of the CCD sensor to allow data acquisition with
room lights. A 750 nm�850 nm linear polarizer (Edmund
Optics) was placed in front of the variable zoom lens to remove
specular reflectance from the surface of the sample.

The device provided a FOV of approximately 14 cm � 10.5
cm at a working distance of 35 cm from the sample. Each data
set contained 150 raw images acquired at 15 Hz. All raw images
were converted into speckle contrast (K) images using a 7 � 7
sliding window and the relationship of K = s/<I>, where s is
the standard deviation and <I> is the mean intensity of all
pixels within the window. All speckle contrast images from
each data set were used to create an average speckle contrast
image. The speckle contrast images were also converted into
speckle flow index (SFI) images to show relative blood flow,
using the relationship of SFI = 1/(2TK2), where T is the camera
exposure time in seconds. SFI is a measure of arbitrary units (a.
u.). An ROI comparable to the ones selected for the ms

0 and ma

was selected using the average speckle contrast image (Fig. 1).
We quantified the mean K and SFI within the ROI.

2.5. Modeling

A common approximation that describes light transport in
scattering media, such as biological tissues, is the diffusion
approximation [31,32]. A similar correlation diffusion approx-
imation [33] is used to describe momentum transport that
occurs due to interactions with moving scattering particles,
such as red blood cells:

r2G1 tð Þ � meffG1 tð Þ ¼ q (1)

where G1(t) is the intensity autocorrelation function, meff is the
effective attenuation coefficient of the medium [mm�1], and q
is the laser source intensity.

For uniform planar illumination, the speckle contrast (K) is
related to G1 as [34]:

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
T

R T
0 bG

2
1 tð Þ 1 � t=Tð Þdt
G2

1 t ¼ 0ð Þ

vuut (2)

where b accounts for polarization and speckle/pixel size ratio,
and

G1 tð Þ ¼
3P0A

m
0
S

mtr

mef f tð Þ
mtr

þ 1
� �

mef f tð Þ
mtr

þ 3A
� � (3)

where P0 is the incident optical power and mtr = ma + ms
0 is the

transport coefficient. A is a constant that depends on the
assumed boundary conditions used in the simulation of light
transport in the medium. For a partial current boundary
condition, A is

A ¼ 1 � Reff

2 1 þ Reff

� � (4)

and

Reff ¼ 0:0636n þ 0:668 þ 0:710
n

� 1:440
n2 (5)

where n is the refractive index of the skin (assumed to be 1.4).
The effective attenuation coefficient describing dynamic

light scattering is given as

meff tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ma;dyn tð Þmtr

q
(6)

We previously described a dynamic optical property term
ma,dyn that accounts for both the light absorption properties of
the tissue and particle motion [34]:

ma;dyn tð Þ ¼ ma þ
1
3
m

0
Sk

2
o Dr2 tð Þ� �� �

(7)

where ko is the wavenumber of light, ko = 2n/l, l is the laser
wavelength [m], and <Dr2(t)> is the mean square displace-
ment of the dynamic scattering particles.

Here, we describe Dr2(t) as a Brownian motion term:

Dr2 tð Þ� �� � ¼ 6DBT (8)

where DB is the Brownian diffusion coefficient [m2/s]. This
approach is consistent with that used in diffuse correlation
spectroscopy [35] and diffuse speckle contrast analysis [36] for
describing interactions between light and red blood cells
primarily in capillaries.

Hence, with optical property measurements from SFDI and
speckle contrast measurements from LSI, we use Eqs. (2)�(8) to
estimate DB. Specifically, we set up an iterative solver in a
Microsoft Excel spreadsheet to perform the following steps:

(a) We first calculated <Dr2(t)> for an assumed value of DB

and different values of t using Eq. (8).
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(b) The measured values of ma and ms
0 and calculated values of

<Dr2(t)> and ko were used to calculate ma,dyn(t) for the
same values of t with Eq. (7)

(c) The resultant ma,dyn and mtr values were used to calculate
meff for each value of t using Eq. (6).

(d) Eqs. (4) and (5) were used to calculate A
(e) The values from (a) to (d) were used to calculate G1(t) for

different values of t. The value of P0 was not important
because it canceled out in Eq. (2).

(f) Using Eq. (2), the value of K was calculated using numerical
integration of G1(t).

(g) This process was repeated in an iterative fashion with
different input values of DB until a simulated SFI value was
reached that matched the measured value, at integer
precision.

In this work, we first modeled the potential effects of optical
properties on the interpretation of K as a measure of blood
flow. We used the optical property and K values measured
from the porcine burn experiments to define the ranges of
values explored with modeling. We then calculated DB values
for all measured combinations of optical properties and
speckle contrast. We performed a linear regression analysis
to study the impact of measured optical property variations on
our interpretation of speckle contrast to measure blood flow.

3. Results

3.1. Both optical properties and speckle-based
measurements of blood flow change in response to burn injury
(Fig. 2)

The optical properties of the porcine skin at each given time
point varied considerably. The typical assumed optical
properties for absorption and reduced scattering coefficients
of skin are 0.01 mm�1 and 1 mm�1, respectively, at a
wavelength of �808 nm. However, the median values of
our measurements across all time points for absorption,
reduced scattering coefficient and speckle flow index were
0.0075 mm�1, 1.4 mm�1, and 400.

The pre- and post-burn data were treated as paired
data sets and the ma and ms

0 values were significantly different
(p < 0.05). However, the ma and ms

0 values for paired pre-and
post-debridement were not significantly different (p = 0.31 and
p = 0.10, respectively).

3.2. Optical property changes affect interpretation of SFI as
a blood-flow metric (Fig. 3)

Diffusion coefficient (DB) is a characteristic metric used to
represent tissue perfusion, and effects of optical property
variations among individuals and within an individual over
time are taken into account. Across the range of values
observed for ms

0 at the pre- and post-burn and debridement
time points, the DB values differed by less than 10% at each SFI
value modeled (9.1 � 0.4%). The DB values differed by 43 � 1.1%
at each SFI value across the range of values observed for ma.
The change in ma has a greater contribution to the DB value
than ms

0.

3.3. Even with dynamic optical properties following burn
injury, changes in blood flow are well represented by measured
changes in SFI (Fig. 4)

The SFI values of skin perfusion and estimated diffusion
coefficients were compared from SFDI and LSI measurements
collected at all time points. For all paired values, a strong linear
relationship (R2 = 0.87) exists between DB and SFI. A high (84%)
percentage of all measured SFI values were less than 500. For
SFI values greater than 500, the relationship between DB and
SFI has more scatter and hence a weaker goodness of fit (R2 =
0.56) with linear regression analysis.

4. Discussion

Our results reveal that the range of optical property changes
associated with burn injury can affect the interpretation of SFI
as a blood-flow metric, but for the majority of burns presented
in this study, changes in blood flow are well represented by
measured changes in SFI. Burn wounds are difficult to

Fig. 2 – Optical properties and speckle flow index values pre- and post-burn and debridement.
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accurately assess due to their dynamic nature in the first 24
�72 h after burn [5]. Hemodynamic changes and optical
property changes occur as the wound may convert into more
severe burns or begin to heal over time. Reducing the time after
injury to the correct diagnosis is of benefit to improve the
prognosis of the wound [14,24,37]. Imaging modalities, such as
LSI and SFDI, have attempted to provide clinicians with an
objective and quantifiable method to diagnose burn wounds.

LSI has shown its potential to provide meaningful blood
flow information in assessing burn wound severity. Ponticorvo
et al. [14] showed that at 24 and 72 h after burn, LSI correctly
assessed burn severity in 36 of 48 burn sites (75%) and 40 of 48
burn sites (83%), respectively. Mirdell et al. [19] also showed
sensitivities and specificities of 92% and 78% at 24 h and 100%
and 90% at 96 h post-burn.

SFDI and LSI have been used to measure optical properties
and blood flow, respectively, in multiple published studies
[14,24,27,37�40]. With SFDI, ms

0 values decrease soon after
burns are induced [4,24,38,40]. Mazhar et al. [38] observed that
ma did not change immediately after burn, but showed a
progressive increase in ma over a three-day period after burn,
associated with an increase in total hemoglobin content. For

both superficial and deep partial thickness burn wounds, SFI
values also decrease immediately [4,39]. The trends observed
in our data are in agreement with these published reports.
Here, we also report on optical property and SFI changes due to
debridement (Fig. 2). The absorption coefficient and SFI values
are higher after debridement, presumably due to exposure of
viable, vascularized skin regions. Collectively, these data
demonstrate consistent changes in optical properties and
SFI values at various time points after burn.

Using a theoretical framework first described by Boas and
Yodh [33] for dynamic light scattering, Mazhar et al. [34]
describe speckle contrast as a function of particle motion (as
DB) and optical properties. Optical properties have a clear
effect on K, and hence SFI. An increase in ma or ms

0 is
associated with increased SFI due to a decrease in optical
pathlength and hence decreased number of interactions with
moving particles. A given percent change in ma has a larger
impact on K than the same change in ms

0. Here, we
demonstrate this trend for the range of optical properties
and SFI values measured from our porcine burn model
(Fig. 3). As an illustrative example: if SFI is 500 for a ma of
0.0075 mm�1, the corresponding DB is 5.4 � 10�7 mm2/s. If SFI

Fig. 3 – Resulting diffusion coefficient (DB) with respect to varying speckle flow index values across the range of observed values
for reduced scattering coefficient (ms

0) and absorption coefficient (ma). Eqs. (2)�(8) were used to estimate DB from measured
values of ma, ms

0, and SFI shown in Fig. 2. (Left) Assuming a median ma value of 0.0075 mm�1, the model predicts that the
mapping between SFI and DB is minimally affected by changes in ms

0. (Right) Assuming a median ms
0 value of 1.4 mm�1, the

model predicts that the mapping between SFI and DB is affected by changes in ma. These data collectively suggest that speckle-
based measurements of flow can be affected by changes in tissue ma.

Fig. 4 – Quantified diffusion coefficient (DB) with respect to speckle flow index (SFI). There exists a strong linear relationship
between DBand SFI (R2 = 0.87), with an increase in scatter for SFI values greater than 500. The slope is 1.324 � 10�9 {95% CI: [1.269
� 10�9,1.37 � 10�9]} and the y-intercept �1.4 � 10�7.
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increases to 600, the new DB is 6.84 � 10�7 mm2/s. However, if
this increase is accompanied by an increase in ma to 0.015
mm�1, perhaps due to inflammation, then the new DB is 8.78
� 10�7 mm2/s, or a 63% increase. With this simple example,
use of SFI alone underestimates the actual change in the
blood flow by 3�. Collectively, these data suggest that optical
property dynamics can play a large role in our interpretation
of LSI measurements.

However, with application of the correlation diffusion
equation and SFDI measurements of optical properties to
analysis of measurements of K, we observe that a strong
linear relationship exists between SFI measurements and
corresponding DB values (Fig. 4). This result strongly suggests
that, despite the range of skin optical properties associated
with burn wounds of different severities, LSI is a reasonably
accurate measurement tool for blood flow assessment. SFI
values greater than 500 were measured for 16% of the
measurements. For these measurements, the R2 associated
with the linear regression is lower, suggesting that optical
properties may have a larger effect on the SFI measurements.
In addition, we [20] previously showed that the relationship
between SFI and flow speed deviates from linearity at higher
flow speeds. The linear response range of SFI to flow speed
depends on camera exposure time. We postulate that the
linear relationship between DB and SFI may become weaker
at the higher SFI values measured in this study, thus
contributing to the observed increase in deviation of the
data from the linear regression model. Nevertheless, these
data collectively demonstrate for the first time, to the best of
our knowledge, that LSI measurements from a highly
dynamic system such as burn wound healing, are reasonably
accurate indices of blood flow.

Limitations in our study exist. Here, we present functional
optical data collected from a collection of burn injuries without
discussion of burn severity. Although specific burn severities
were intended based on changing contact time of the heating
element, we acknowledge that actual burn severity can be
assessed only with histological analysis, which is forthcoming.
In this study, we used two separate systems for imaging which
caused some delays between acquiring SFDI and LSI data. To
address this, future studies utilizing a co-registered SFDI and
LSI system would allow us to acquire both data simultaneously
and pixel-to-pixel correction of optical properties and SFI [23].
This co-registered system would also allow the quantification
of metabolic rate of oxygen consumption in burn wounds and
provide additional information in the burn dynamics. Finally,
we present data collected with an established control model of
burn injury. With this model, we observed optical property
values that showed considerable variability (Fig. 1). We
speculate that the measured ranges of ma and ms

0 would
include values that would be observed with other models of
burn injury. Additional data collection with other burn models
is warranted.

In summary, our results demonstrate that burn wounds
induce considerable variation in skin optical properties,
which in turn can affect speckle contrast. However, even
with these changes in optical properties, our study results
suggest that LSI measurements accurately reflect changes in
blood flow, and thus may serve as a reliable measure of skin
viabilityafter burn.
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