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ABSTRACT 

Climate change and environmental problems have spurred new strategies to reduce fossil fuel 

consumption in transportation. Two important strategies include a rapid transition to green energy 

and the replacement of internal combustion vehicles with electric vehicles (EVs). However, the 

increasing demand for electricity by EVs, especially from time-dependent green sources of energy 

(e.g., solar, wind), will likely overload the grid at peak hours. Smart charging programs for EVs 

could defer charging to off-peak times and better match demand with supply. Yet, little is currently 

known about people’s willingness to sign up for a program. 

To understand incentive effects on smart charging program adoption, we distributed a survey 

(n=785) in October 2018 across the United States targeting three groups: 1) EV owners/lessees 

(n=151), 2) EV interested buyers/lessees (n=555), and 3) a general population (n=79). We first 

found that a significant portion of both EV groups would be interested in the program without any 

incentive, but there was a participation limit. Employing three mixed logit models, we found that 

monetary incentives and free charging equipment increased participation for the two EV groups, 

although the attributes exhibited heterogeneity. Guaranteed battery level (or rides home) increased 

participation for all three groups and at least one random parameter was present for all three 

groups. Penalties deployed to discourage participants from taking back charging control decreased 

participation willingness in the two EV groups, although EV interested buyers/lessees responded 

heterogeneously. While higher monetary incentives increased participation, the effects displayed 

diminishing returns.  

 

Keywords: Smart charging, electric vehicles, demand response, incentives, behavior, vehicle-to-

grid 

 

Highlights: 

• Using a survey and choice models, we tested incentives for smart charging adoption. 

• Monetary incentives, free equipment, and guaranteed rides/battery spurred adoption. 

• Penalties for retaking control of charging discouraged participation in a program. 

• Heterogeneity was found for multiple attributes and different respondent groups. 

• Some respondents would refuse to participate, even at very high incentive levels. 
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Introduction 

Between 2020 and 2021, sales of battery electric vehicles (BEVs) and plug-in hybrid electric 

vehicles (PHEVs) more than doubled, bringing the worldwide total of BEVs and PHEVs to 

approximately 16 million vehicles on the road (International Energy Agency, 2022). In the United 

States (U.S.), approximately 325,000 PHEVs were sold in 2019 (U.S. Department of Energy, 

2022), representing strong growth compared to 2017 and earlier. With increasing advances in 

battery technology, faster production rates of auto manufacturers, growing charging networks, and 

federal and state government incentives, sales of EVs (collectively BEVs and PHEVs in this paper) 

are expected to increase at a faster rate in the coming years. While this growth may decrease carbon 

emissions and help governments reach greenhouse gas (GHG) reduction goals, the growth will 

also coincide with several challenges for the power grid. Most notably, the increase in EVs will 

put additional stress on the grid, particularly in the evening when individuals generally return from 

work and plug in to charge. A charging peak already exists for this evening period as people home 

and begin using appliances that require electricity. Concurrently, the energy sector is undergoing 

a large transformation to renewable and green energy with a strong focus on solar and wind power. 

Despite the environmental benefits of this transformation, solar power is only available during 

daylight hours, and wind power tends to be highly variable (Ueckerdt et al., 2015). Without 

consistent generation, peaks in electricity consumption often coincide with an inability to produce 

and distribute enough renewable electricity, increasing the electricity rates of consumers and 

stressing the grid.  

Consequently, there has been interest among researchers, utility companies, and aggregators to 

consider methods to reduce peak electricity usage by BEVs and PHEVs. One method is to employ 

“smart charging” wherein vehicle owners/lessees or a third party can control when the electric 

vehicle charges. A smart charging program is a type of demand response (DR) program that defers 

the charging of EVs when the electricity demand is lower. This process is enabled through 

unidirectional power flow (also called V1G) technology for vehicles, which allows BEV 

owners/lessees (or a third-party operator) to permit the stop and start of vehicle charging based on 

signals sent by the grid. Often, BEV owners/lessees are allowed to manage their preferences and 

charging schedules via a smartphone app. By shifting when EV charging occurs, smart charging 

programs can: 

- Reduce the strain on the electrical grid during periods of peak demand; 

- Allow utilities to forgo costly grid distribution and power generation upgrades (for extra 

capacity) since demand is more even; 

- Reduce electricity costs for EV owners/lessees, enabled via time-of-use (TOU) electricity 

rate plans; and 

- Bolster the effectiveness of renewable energy sources, which often produce more 

electricity at off-peak times. 

Despite these smart charging benefits, one critical barrier is the enrollment and retainment of EV 

owners/lessees in a smart charging program. Electricity cost savings have not been sufficient to 

nudge behavior. Despite some research on smart charging programs and their potential revenue 

for third parties, work remains ongoing to understand how customers would respond to these 

programs and if they would be willing to sign up for a program. To address this gap in the literature, 

we developed several key research questions. 
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1) What is the perception and attitude of people toward smart charging programs? 

2) What influences an individual to participate (or not) in a smart charging program? 

To understand the implications of potential smart charging programs and answer these research 

questions, we distributed a survey (n=785) that was administered to most states in the U.S., 

targeting 1) EV owners/lessees (n=151); 2) EV interested buyers/lessees (n=555), 3) a random 

general population (n=79). We begin this paper by presenting the current state of literature, 

focusing on smart charging literature. We then provide the data and the methodology. Next, we 

present the descriptive statistics from the survey and results from the discrete choice analysis using 

a choice experiment. We close the paper with limitations and conclusions.  

2) Literature Review 

In this review, we first identify the early history of demand response, smart charging programs, 

and related vehicle-to-grid (V2G) programs, including research on opportunities for these 

programs. Next, we discuss research on behavioral responses to smart charging and V2G 

programs. We follow this with the current state of smart charging in North America and key gaps 

in understanding behavior and incentives.  

2.1) History and Opportunities for Demand Response, Smarting Charging, and V2G 

Demand response (DR) generally refers to mechanisms and signals that allow customers to change 

their electricity consumption. The earliest DR programs in North America – occurring before 2000 

– were focused on interruptible tariffs where lower power usage from large customers was 

requested by utilities via paging or calling (Brown et al., 2017). Technological advances have 

enabled requests to occur more automatically with closer to real-time signals (Brown et al., 2017). 

One example of this has been V1G technology – often called smart charging. Smart charging is a 

type of DR program and technology that sends signals/communication in a unidirectional manner 

to control the charging of an EV (Noel et al., 2019). Stepping beyond V1G, one key development 

for EVs was the early conceptualization of vehicle-to-grid (V2G) technology, which enables 

bidirectional power flow and communication (Noel et al., 2019). Kempton and Letendre (1997) 

led this effort, identifying significant benefits to using large EV fleets as batteries including lower 

costs for customers, improved grid reliability, and easier integration of renewables. Further history 

and definitions of V2G can be found in Noel et al. (2019). Current conceptualization has also 

included vehicle-to-everything (V2X) which encompasses V2G, vehicle-to-home (V2H), and 

vehicle-to-business (V2B) (Pearre and Ribberink, 2019).  

Despite increasing opportunities, some early large-scale DR programs were focused only on 

emergency demand. This included California’s blackout reduction program that was formed 

following an extreme heat wave in the summer of 2006 (CPUC, 2022a). The program has evolved 

to include pilots for smart metering, air conditioning cycling, and plug-in vehicles (CPUC, 2022a). 

Early smart charging work included the design of a digital EV smart charging system (Alvarez et 

al., 2003), smart management for buses (Wang et al., 2005), and integration of smart charging into 

the electrical grid (Lopes et al., 2010). A full review of smart charging approaches can be found 

in Garcia-Villalobos et al. (2014). V2G pilots have generally lagged behind smart charging, but 

new opportunities have arisen for large V2X pilots in California (CPUC, 2022b) and the United 

Kingdom (Cenex, 2021). 
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Additional research has been conducted on how smart charging via EVs may offer revenue 

opportunities for operators and transaction facilitators. Research has found that smart charging 

could yield a loss of $300 per vehicle per year up to a profit of over $4600 depending on the 

context, with most studies indicating a profit in the $100 to $300 per vehicle per year range 

(Richardson, 2013). More recent research claims that there exists upwards of $15 billion in 

opportunity value for battery storage using electric vehicles in a demand response program 

(Coignard et al., 2018), while another study found potential cost savings of $690 million per year 

for grid operation costs with 5 million vehicles per year using smart charging in California (Szinai 

et al., 2020). Other studies of the system cost have found savings of 227 Euros per vehicle per year 

by using smart charging over a normal charging plan (Kiviluoma and Meibom, 2011). Pratt and 

Bernal (2018) found that smart charging could produce savings of upwards of over $20 per month 

for plug-in EV owners that were not already on time-of-use electricity plans. 

Additional studies on the system cost (and potential savings) of BEVs on the electricity grid have 

found mixed results on the degree of the benefit, which is heavily dependent on assumptions such 

as the mix of electricity (Wang et al., 2011; Lyon et al., 2012). In the opposite direction (grid-to-

vehicle) wherein the vehicle is used as a battery for electricity, one study found a revenue level of 

a maximum of 192 euros per year and an average of just 60 Euros per year for vehicles as battery 

storage (Jargstorf and Wickert, 2013). A further review of demand response programs with a focus 

on smart charging can be found in Tomić and Kempton (2007), Richardson (2013), and Niesten 

and Alkemade (2016). New optimization strategies for smart charging also exist to use electricity 

infrastructure more effectively (Frendo et al., 2020). 

2.3) Participation in Smart Charging and V2G Programs 

While revenue is a crucial determinant in the success of a V1G or V2G program, the vehicle owner 

or lessee may need some incentive or compensation to participate. While V1G and V2G programs 

benefit grid system optimality for grid operators, there is less of an inherent benefit to the consumer 

for deferring vehicle charge or slowing the speed of it, which may explain why just 31% of Canada 

EV owners reported they were enrolled in smart charging (Al-Obaidi, et al. 2021). The research 

went on to develop a model of bidirectional charging that considered user preferences and 

optimized profits and minimized costs for EV users (Al-Obaidi, et al. 2021). Indeed, consumers 

can benefit by receiving compensation from the grid operator or third party who benefits by 

earning higher revenue or avoiding higher generation or distribution costs. Both opportunities 

present an economic structure in which consumers, operators, and third-party transaction 

facilitators (such as automakers) can engage in an exchange that earns revenue and/or avoids 

opportunity costs. The broader objective is to increase the overall cost-effectiveness of charging 

and BEV ownership while minimizing the impact on the grid. In addition, by considering user 

preferences and behavior (Clairand et al., 2018), models also can be developed that reduce the cost 

on the aggregator (i.e., third-party) that is responsible for managing EV charging. Despite a focus 

on incentives, research has found other motivations for smart charging participation including: 1) 

improved fire safety (rather than using a wall socket); 2) faster charging; 3) interest and joy in 

using smart technology; and 4) flexibility that can lead to physical comfort (e.g., preheating a 

vehicle) (Henriksen et al., 2021). 

Recently, several research papers have investigated customer acceptance of V2G programs and 

the incentives needed to induce program participation. However, most research studies have only 

considered cost savings on monthly electricity bills as opposed to lump sum or yearly 
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compensation. One study (Bailey and Axsen, 2015) attempted to gauge the openness to V2G of 

potential plug-in BEV buyers. Around 60% of the potential EV buyers were open to V2G without 

any incentives, while the most effective programs offered 20% savings on electricity bills. With 

20% electricity bill savings and a guaranteed minimum charge of 100%, the program enrollment 

rose to 72%. Using the same survey among a population of current BEV owners, researchers found 

that BEV owners need more than twice as much financial compensation to enroll in controlled 

charging programs than potential early mainstream users (Axsen et al, 2016). Parsons et al. (2014) 

administered a web-based stated preference survey of randomly selected U.S. respondents 

(n=3029). Respondents completed a choice experiment to determine their willingness-to-pay for 

EVs with no V2G capability, which was used to develop a latent class random utility model to 

analyze respondent choices of V2G-EVs and their contract terms. The researchers simulated 

several contracts (varying in the minimum number of plug-in hours and minimum guaranteed 

driving range) and estimated the payment (as annual cash-back) that respondents would require to 

sign the contracts. Through this modeling, the researchers found that individuals would require 

$2,000 to $8,000 per year to enroll in a V2G program (Parsons et al., 2014).  

Separately, Daina et al. (2017) claimed that the current appraisal of smart charging relies on 

simplistic and theoretical representations of driver charging and travel behavior, which is not 

policy sensitive and lacks strong empirical foundations. They offered a charging behavioral model, 

developed from a random utility model for joint EV driver activity travel scheduling and charging 

choices. Empirical versions of the model using data from two discrete choice experiments revealed 

the value placed by individuals on the main attributes of the charging choices. The main attributes 

of the charging choices included: 1) the amount of battery available after charging (E), 2) effective 

charging time (ECT), and 3) charging cost (CC). They found that 80-90% of drivers have a positive 

marginal utility for E, and 60% of drivers have a positive marginal utility for ECT if charging 

levels do not induce schedule delays. Latinopoulos et al. (2017) assessed the effectiveness of 

dynamic pricing by examining how EV drivers responded to uncertain future prices when charging 

their vehicles away from home. The authors designed a survey to observe the stated preferences 

of respondents for hypothetical charging services. The survey included two stated preference 

exercises: 1) a charging game to understand driver preference for charging attributes and 2) a 

booking game to see how drivers make their charging choices when provided with additional 

information regarding uncertain travel choices. Latinopoulos et al. (2017) presented a risky-choice 

framework where expected utility (EUT) and non-expected utility theory (non-EUT) specifications 

were compared to evaluate booking behavior during dynamic pricing and attitudes toward risk. 

The results suggested that most tend to opt for the safe option over the risky one, but there are 

specific demographic groups, such as young and educated individuals, who are more likely to do 

the opposite.  

Monetary incentives offered by the government to buy EVs have been successful to some degree. 

However, in the case of smart charging, studies have found the opposite case. Results from 

Schmalfuβ et al. (2015) indicated that monetary compensation was not a primary motivation to 

participate in smart charging. On the contrary, the authors found that users were instead strongly 

motivated by the feeling of ‘doing something good’ and contributing to society (Schmalfuβ et al., 

2015). Similarly, Will and Schuller (2016) found that contribution to grid stability and integration 

of renewable energy sources were influential factors in the acceptance of smart charging, 

underlining the impact of communicating the benefits of smart charging to potential users. Huber 

and Weinhardt (2018) explored this idea by suggesting a feedback nudge that encourages users to 
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provide more temporal charging flexibility. The authors suggested providing information on 

carbon dioxide saving potentials as the feedback nudge, which can be incorporated into a smart 

charging algorithm. Asensio and Delmas (2016) expanded upon this idea with their results that 

suggested that providing feedback about energy consumption in a health-based frame was 

particularly effective in encouraging the desired behavioral response.  

Spencer et al. (2021) evaluated non-monetary incentives in which participants were incentivized 

with increasingly valuable sweepstakes opportunities as group participation increased. Participants 

were encouraged to increase their number of plug-ins throughout a two-week period, without any 

restriction on the time of the day that they should be charging. Zhang et al. (2018) also proposed 

a real-time system that used a non-monetary concept of prioritization to incentivize EV users to 

engage in the smart charging schedule. Users were rewarded with high or low priority depending 

on their charging behavior, and those with high priority had increased flexibility with their 

charging schedules and increased the amount of energy that they can receive. Zhang et al. (2018) 

conducted numerical simulations and experiments to verify the effectiveness of this non-monetary 

system and found that the local solar consumption rate would increase by 37% as a result. While 

the experimental results have shown this non-monetary incentive alone produces the desired effect, 

the authors also suggested an optional cryptocurrency mechanism that could be included to further 

increase the effectiveness of the overall system. 

At the same time, an overarching theme in the literature was the potential for consumer distrust of 

the electric utilities or third party that would determine vehicle charging (Sovacool et al., 2017) 

along with the social dimensions of V2G (Sovacool et al., 2018). Baily and Axsen (2015) found 

that while respondents to a survey thought that V2G should be deployed, 24% of respondents were 

concerned about an invasion of privacy and 39% were worried about a loss of control. Survey 

respondents have also been known to be very sensitive to any perceived restrictions, and they have 

tended to place a high value on flexibility in their driving lifestyle (Parsons et al., 2014). Therefore, 

respondents will likely need higher incentives for charging programs that do not guarantee full 

levels of charge. In related research, Delmonte et al. (2020) determined that a charging program 

conducted by a supplier (or third-party) was less preferred than a charging program managed by 

the individual user, due to a perceived potential loss of control. This has implications beyond 

incentives: having control, especially in ensuring the vehicle is fully charged, affects smart 

charging participation (Delmonte et al. 2020). 

Given this recent V2G literature, researchers are concerned that the revenue opportunities may not 

be high enough to absorb the costs of incentivizing vehicle owners and lessees to join smart 

charging programs (Richardson, 2013; Mallette and Venkataramanan, 2013). One of the largest 

challenges for smart charging is merely encouraging vehicle owners and lessees to opt into the 

smart charging program. Some research has suggested that a “set and forget” strategy is more 

effective in engaging with consumers in a smart metering scheme than strategies that require 

manual input (U.S. Department of Energy, 2015).  

2.4) Current Smarting Charging Programs and Pilots 

We also reviewed current smart charging programs and pilots in North America to better 

understand the type, delivery, and value of different incentives. This helps anchor the research to 

current trends for smart charging. Recently, utilities, auto manufacturers, and transaction 

facilitators have begun setting various incentives for smart charging programs. For example, Con 

Edison has built incentive packages for smart charging with electric vehicles where participants 
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are able to earn money per month along with a $150 signup bonus to enable Con Edison to control 

when the BEV charges (Con Edison, 2022). Table 1 presents a list of many of these smart charging 

programs across North America, including some specific values and incentives. In addition to these 

smart charging programs, many of the same providers and other providers offer time-of-use (TOU) 

pricing specifically for EV. Customers can opt for the BEV rate plan, which encourages late-night 

charging of BEVs by decreasing the price of electricity during off-peak hours. For example, San 

Diego Gas and Electric (SDG&E) offers three different TOU plans for EVs, all of which enable 

customers to save money by shifting their charging away from peak times to super saving periods 

(SDG&E). Southern California Edison offers a Charge Ready Program, which provides multi-

family housing, public sector, and commercial properties assistance in obtaining charging 

infrastructure and installation (SCE, 2022). While the program does not currently operate a smart 

charging program, businesses can choose different TOU rate plans (SCE, 2022). 

Table 1: List of Selected Smart Charging Pilots and Programs in North America* 

Provider Program Name Location Description Status Source 

Con Edison SmartCharge 

New York 

New York, 

USA 

Customers can earn $150 for 

signing up and additional 

money for charging at specific 

times or locations.  

Program Con Edison 

(2022) 

Dominion 

Energy 

Smart Charging 

Infrastructure 

Pilot Program 

Virginia, 

USA 

Customers can receive a rebate 

for charging equipment that 

enables smart charging 

technology and data collection. 

Pilot Dominion 

Energy 

(2020) 

DTE Energy DTE Smart 
Charge 

Michigan, 
USA 

In partnership with Ford and 
Chevrolet, DTE offered a $100 

incentive for participating in a 

one-year pilot. 

Pilot DTE Energy 
(2021) 

ENMAX Charge Up Calgary, 

Canada 

EV owners may opt-in to a 

pilot that assesses their 

charging behavior. 

Pilot ENMAX 

(2022) 

GA Power SmartCharge 

Georgia 

Georgia, 

USA 

Participants can earn up to $85 

per year by allowing smart 

charging for their EV. 

Program SmartCharge 

Rewards 

(2022b) 

NB Power SmartCharge 

New Brunswick 

New 

Brunswick, 

Canada 

Participants are rewarded $25 

for signing up and are paid out 

various rewards each month. 

Program SmartCharge 

Rewards 

(2022d) 

Nova Scotia 

Power 

Electric Vehicle 

Smart Charging 

Program 

Nova Scotia, 

Canada 

EV owners can apply to have 

an EV smart charger installed 

in their home. 

Pilot Nova Scotia 

Power (2022) 

Pacific Gas 

& Electric 

and BMW  

ChargeForward** California, 

USA 

BMW EV owners living in 

PG&E service areas in 

California can opt-in to a smart 

charging program that shifts 

vehicle charging in exchange 

for incentives to the customer. 

Program BMW Group 

(2021) 

Portland 

General 

Electric 

SmartCharge 

PGE 

Oregon, USA Participants can earn between 

$100 and $800 during the 

course of the smart charging 

program. 

Pilot SmartCharge 

Rewards 

(2022e) 

Sacramento 

Municipal 

Utility 

Workplace Fleet 

Charging Case 

Study 

California, 

USA 

Sacramento Municipal Utility 

EVs were managed on a smart 

charging system, identifying 

Pilot Enel X 

(2022b) 
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potential for EV fleet 

management. 

Shell Shell 

RechargePlus 

California, 

USA 

Shell gas station owners may 

participate in a smart charging 

program that helps decrease 

overall electricity costs. 

Program Shell (2022) 

Tennessee 

Valley 

Authority 

SmartCharge 

Nashville 

Tennessee, 

USA 

EV owners can receive cash 

bonuses and other incentives 

for participating in the program. 

Program SmartCharge 

Rewards 

(2022c) 

Toronto 

Hydro 

EV Smart 

Charging Pilot 

Program 

Toronto, 

Canada 

EV owners can receive a free 

EV charger for their home for 

participating in a smart 

charging pilot. 

Pilot Plug 'N Drive 

(2022) 

Xcel Energy Charging Perks Colorado, 

USA 

Customers can receive up to 

$300 for participating in a pilot, 

alongside BMW, Ford, General 

Motors, and Honda. 

Pilot Xcel Energy 

(2021) 

*This information was updated to early 2022. This list contains only selected smart charging programs. Elements of 

programs will likely change over time, and the source links will also likely change with information. 

**An original pilot had been offered for PG&E and BMW customers in Northern California (BMW 2020). 

Alongside the increase of smart charging programs, companies are beginning to offer smart 

charging software, program management, and smart equipment. For example, SmartCharge 

Rewards (formally FleetCarma) has developed a platform for utilities and other stakeholders to 

operate their smart charging pilots/programs (SmartCharge Rewards, 2022a). The company has 

18 current or past partnerships in the United States and five in Canada (SmartCharge Rewards, 

2022a). Other companies offer similar smart charging platforms (GreenFlux, 2022), while 

ChargePoint has opted to continue focusing on infrastructure, but ensuring that new charging 

stations are smart charging compatible and enabled (ChargePoint, 2022). Hilo, a private company 

that specializes in smart home technology in Quebec, is currently operating a smart charging pilot 

with incentives for smart home purchases (Hilo, 2022). Other companies, such as Enel X (formally 

eMotorwerks), are selling EV charging equipment that is compatible with smart charging for home 

use (Enel X, 2022a). Enel X also partnered with the Sacramento Municipal Utility District on a 

fleet charging project that was enabled through smart charging technology (Enel X, 2022b). In 

addition to more readily available V1G technology, V2G technology could also expand functions 

to handle changes in demand and supply of electricity. According to a Smart Electric Power 

Alliance survey of utility companies (n=48), just nine utilities were piloting V2G technologies 

(Blair et al., 2021). The number of utilities piloting this technology will likely grow, similar to the 

rapid increase in smart charging pilots and programs in the last few years. 

2.5) Key Gaps 

Despite the interest in offering incentives to defer charging through a smart charging program, 

only some work has been conducted in either research or practice to determine an optimal strategy 

for incentives or the factors that may influence consumer behavior in this context. Most research 
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has focused on pricing or incentives in a dynamic way once people have signed up for the program. 

Despite some behavioral work related to smart charging programs, it remains unclear what 

incentives (monetary or otherwise) are needed to influence smart charging participation in the first 

place. A stronger behavioral understanding of smart charging program adoption could improve 

and guide many of the above programs in Table 1, while also encouraging sign-ups to enable more 

dynamic pricing and nudging in the midst of the program. In addition, as seen with the current 

smart charging programs, nearly all programs focus on a monetary incentive. This is paid as a sign-

up bonus and/or as a reward throughout the program. While the effectiveness of these programs is 

not currently known, the types, delivery, and value of the incentives are insightful for how 

operators are testing and planning to introduce smart charging to consumers and increase sign-ups. 

Consequently, this research analyzes how different incentives and smart charging benefits could 

nudge consumers into participating in a smart charging program, including potential bundles of 

incentives that include yearly monetary incentives, guaranteed ride/charge, and free charging 

equipment. We also introduce a penalty variable that could be applied if there was excessive opt-

out during the program. This paper differs from most other literature by: 1) focusing on program 

adoption (i.e., opting into a program); 2) inquiring directly with consumers about their current 

behavior, preferences, and intentions; and 3) developing different bundles of incentives for signing 

up. In particular, this work builds off of Bailey and Axsen (2015) and related behavioral studies 

with data from the U.S., alternative incentives, and more recent data across EV owners/lessees, 

EV interested buyers/lessees, and a general population. 

3) Data 

We distributed a survey to individuals with varying levels of EV experience (n=785) in October 

2018 through a recruitment process with the help of Qualtrics, a survey management company. 

Qualtrics includes an option to request panels of individuals based on specific criteria. For the 

survey, three different respondent-type panels were created, with the intent to collect about 1,000 

responses: 1) EV owners/lessees (n=200); 2) EV interested buyers/lessees (n=700); and 3) a 

general population (n=100) to reflect the diversity of gender, race, education, and income of the 

general U.S. population. We note that our focus in this research was on EV owners/lessees and EV 

interested buyers/lessees as they would be current or near-term adopters of smart charging. The 

EV interested buyers/lessees group was particularly targeted in the research since an operator of a 

smart charging program (such as an original equipment manufacturer [OEM]) could pair the 

program sign-up with the point-of-sale of an EV. The general population was included in the data 

collection as a point of reference and comparison to the other two EV groups. These reasons 

account for the large difference in responses among the three groups. Respondents were split into 

these three categories based on their answer to the question: “Are you interested in purchasing or 

leasing a battery electric vehicle (BEV) or a plug-in hybrid electric vehicle (PHEV)?” 

• EV Owners/Lessees: Answered “Currently an owner/lessee.” 

• EV Interested Buyers/Lessees: Answered “Actively shopping for this kind of vehicle,” 

“Plan to research it for my next purchase/lease,” or “Open to learning more about it.” 

• General Population: Chose any answer to the purchase/lease question (respondents 

sampled to reflect US Census data (2010) across age, gender, and income characteristics). 

The survey was distributed in 30 specified states and the District of Columbia based on four factors 

at the time of distribution in 2018: 1) states in the Multi-State ZEV Task Force, 2) states with more 
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than 1 BEV per 1,000 residents, 3) states with over 5,000 BEV units sold per year, or 4) states of 

current Honda Fit EV owners/lessees (Multi-State ZEV Task Force, 2018; Ayre, 2017; Shahan, 

2017). While California and New York remain the dominant EV markets in the U.S., we were also 

interested in assessing the charging and incentive preferences of individuals across the U.S. in 

markets primed for EV sales growth. For this reason, we focused on a variety of criteria to better 

capture states with these market conditions. The first criterion factors in states that must (or are 

committed to) sell a certain number (or percentage) of EVs in the coming years based on state 

policy. The second criterion was chosen to account for smaller states that may have fewer total 

sales but have a relatively high adoption per capita (i.e., Nevada, Utah, Hawaii, New Hampshire, 

and Washington, D.C.). The third criterion captured larger states with a high number of sales, 

although they may be isolated to major cities in the state (e.g., North Carolina, Ohio, Pennsylvania, 

Virginia, Texas, and Illinois). Finally, Honda (the funder of the project) was interested in assessing 

the charging and incentive preferences of individuals across the U.S. in states where they intend 

to sell vehicles. Unique states to this criterion included South Carolina, Alabama, Mississippi, and 

Maine.  

Data cleaning was executed through a review of responses and completed surveys. Only completed 

surveys from Qualtrics were retained in the dataset. Demographic and location questions were 

deployed at the beginning of the survey to screen potential respondents to ensure representation 

reflective of the general population. All respondents had to be 18 or older. Responses were 

reviewed for misspellings and updated accordingly (e.g., state/city names). Data were otherwise 

retained as created by the respondents. After data cleaning, the total complete responses for each 

panel were as follows: 1) n=151 for EV owners/lessees, 2) n=555 for EV interested buyers/lessees, 

3) and n=79 for general population respondents. 

4) Methodology 

The research methodology using the survey data from study includes: 1) descriptive statistics of 

survey results, and 2) a discrete choice analysis of the decision to take part in a smart charging 

incentive program. Descriptive statistics were gathered based on key questions posed to 

participants in the survey. Questions asked for the likelihood to purchase an EV, current travel 

behavior, charging behavior (for EV owners/lessees), perceptions of a potential smart charging 

program, and demographic characteristics. Along with these descriptive statistics, a series of 

questions were asked that identified the likelihood that people would participate in a smart 

charging program. Across the questions, the value of a monetary incentive ranged from $0 to 

$1000 per year. 

We next developed three discrete choice models to determine the factors that influence the 

willingness to participate in smart charging programs. Discrete choice analysis is a modeling 

technique that uses variables of the decision-maker or a set of alternatives to predict an individual’s 

or household’s choice. The majority of discrete choice models employ utility maximization as the 

decision rule. A decision-maker will consider all the variables and characteristics and choose the 

most attractive alternative that “maximizes” their utility or satisfaction. Utility maximization has 

been the primary decision rule in discrete choice analysis, largely because it has statistical 

properties that produce relatively simple, accurate, and tractable solutions (Ben-Akiva and 

Lerman, 1985). Ben-Akiva and Lerman (1985) contains the framework for calculating utility, 

employing maximum likelihood estimation, estimating the coefficients of the covariates, and 
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determining the choice probabilities (additional information can also be found in Washington et 

al., 2010).  

Through a choice experiment, survey respondents were introduced to an incentive program with 

four attributes, as shown in Table 2. These attributes were based on a number of factors. First, 

monetary incentives are a key mechanism for current smart charging programs. Past literature has 

also considered the effect of some monetary benefit (e.g., Bailey and Axsen, 2015; Parsons et al., 

2014; Schmalfuβ et al., 2015), although the results have been mixed. Internal discussions between 

the project funder (i.e., Honda) and local utilities in California were influential in determining the 

attribute levels. Honda determined that any incentives beyond $400 would not be feasible from an 

economic standpoint. Moreover, most monetary incentives appeared to range from $50 to $300 

from our review of current programs. 

Penalties have yet to be studied in the literature, but they can be a vital part of a smart charging 

program. Without a penalty, EV users could participate at a very minimum level, which would 

render the smart charging program ineffective. Through discussions between Honda and the local 

utilities, there was significant concern that people could take the monetary incentive but still 

choose to forgo long-term participation. By asking respondents upfront if they would choose a 

program with a penalty, the experiment helped make the program more realistic from an operator’s 

perspective.  

Free EV charging equipment (whether Level 1 or Level 2) was mentioned in several smart 

charging programs. This prompted the team to consider if the equipment could shift program 

uptake, especially since it could be seen as a “signing bonus.” Moreover, it would help address the 

upfront costs of home charging. The team, including Honda, was interested to see if this free 

equipment might induce a response from respondents.  

Finally, an internal survey of Honda EV users found that a major concern was not receiving a 

sufficient charge to travel during the day. Indeed, they found that the stopping and starting of 

charging from a program would be too risky. By guaranteeing a minimum charge start of providing 

rides (or reimbursements) for stranded motorists, the incentive could reduce EV owner/lessee 

anxiety with signing up for the program. It also would be a relatively inexpensive incentive for 

Honda if its program was effective. While a minimum guaranteed charge was studied in Bailey 

and Axsen (2015), we note that these last three program attributes have not been generally studied 

in the literature. However, they were deemed important from the perspective of an OEM or a 

utility. Importantly, the attributes could also be used at the time of sign-ups. This is key since smart 

charging programs will likely remain opt-in programs (as seen with the various pilots in the 

literature review). We recognize that the attributes and associated levels have limitations, which 

are discussed in the Limitations section near the end of the paper.  

Respondents were asked, based on the attributes, if they would participate in the charging program 

(“Yes”) or not participate in the charging program (“No”) (hence a binary choice). Each respondent 

was first presented with a sample scenario in which the incentive was set at $150 and all other 

attributes as “yes.” This was built into the survey to prepare the respondent for the next eight 

experiments. In each of the eight experiments and for each respondent, a program was randomly 

generated using the four attributes. In all, the number of total experiments (i.e., the sample size for 

our models) for EV owners/lessees (n=1,118), EV interested buyers/lessees (n=4,369), and the 

general population (n=622) was sufficiently large for model estimation. The data were used to 

develop three mixed logit models (using procedures from Train, 2009): one for EV interested 
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buyers/lessees, one for EV owners/lessees and one for the general population. A mixed logit was 

chosen to account for the multiple experiments that each person performed in the survey. 

Based on recommendations from Ben-Akiva and Lerman (1985), we chose covariates based on 

statistical significance, behavioral importance, and correct a priori coefficient sign. We opted for 

a more efficient model by retaining only a few insignificant variables. We also conducted a sample 

enumeration that used the coefficients from the models to inform forecasts of different incentive 

values (i.e., $100, $200, $300). The sample enumeration gives the probability that the aggregated 

sample would choose the program under each incentive value. This predictive work can be useful 

for establishing a set price and other attributes for a future smart charging incentive program. We 

also present marginal effects for the dummy variables and an average point elasticity by program 

type for the monetary incentives. 

Table 2: Stated Preference Attributes for Choice Experiment 

Incentive Program Attribute Levels 

Incentive Per Year $0, $50, $100, $150, $200, $250, $300 

Potential to Receive a Penalty, Based on 

Lack of Program Participation or Excessive 

Opt-Outs 

Yes or No 

Free level 1 (120V) and Level 2 (240V) 

Charging Equipment 
Yes or No 

Guaranteed Battery Level; Uber/Lyft/Taxi 

Ride Reimbursement if Battery Level is Not 

Met 

Yes or No 

 

5) Results 

In this section, we provide key results from the survey of EV owners/lessees, EV interested 

buyers/lessees, and a general population. We discuss the characteristics of each group, responses 

to varying monetary incentives, and modeling results from a choice experiment using multiple 

types of incentives and benefits.  

5.1) Statistics of Survey Respondents 

Characteristics of survey respondents across the three groups (EV owners/lessees, EV interested, 

and the general population are provided in Table 3. For the three categories, gender was evenly 

split between male and female, and most respondents were white (between 71% and 75%). 

However, EV owners/lessees tended to be younger on average, have higher levels of educational 

attainment, and skewed toward higher income levels. Despite these differences, the racial 

composition of EV owners/lessees was similar to the EV interested group and the general 

population.  
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We note that these characteristics do not automatically align with other research on EV 

owners/lessees. Compared to a large sample of California EV owner/lessees (Tal et al., 2020), our 

sample skews more female and lower in income. A similar result was found based on a small 

sample of EV owners in Virginia (Jia and Chen, 2021) and an older sample from California 

(California Center for Sustainable Energy, 2013). Our sample also skews more white than recent 

results for BEV and PHEV sales in California, although the income distribution is similar 

(Muehlegger and Rapson, 2018). Compared to a survey of EV drivers in the United Kingdom 

(Latinopoulos et al., 2017), our survey skews more female and higher in education. These 

differences in comparison to these other studies likely reflect the different population that was 

sampled for this research (i.e., 30 states plus D.C.).  

EV interested buyers/lessees mostly reflected the demographic characteristics of the general 

population. Interestingly, the income levels of the EV interested group and the general population 

were similar, suggesting that EVs are now within the price range of more Americans. The general 

population sample mostly mirrors the U.S. population, though there are some differences in 

race/ethnicity and education. Across the full sample (n=785), a surprising number of respondents 

were actively shopping for an EV (10%), planning to research EVs for future purchases (32%), or 

were open to learning more about EVs (35%). Of the full sample, 19% were current EV 

owners/lessees (targeted panel) and just 4% were not interested in EV ownership/leasing. We also 

provide a comparison of the demographics against that of the U.S. population using 2020 

American Community Survey (ACS) 5-Year Estimates (ACS, 2022) in Table 3. 

Table 3: Characteristics of Survey Respondents 

Gender 
EV owners/lessees(n=151) 

EV interested 

(n=555) 

General 

population 

(n=79) 

U.S. 

population 

[See notes] 

Female 48% 51% 52% 50.8%  
Male 52% 49% 48% 49.2%  

 
    

 

Race and Ethnicity 
EV owners/lessees (n=151) 

EV interested 

(n=555) 

General 

population 

(n=79) 

U.S. 

population 

American Indian or Alaska Native 0% 1% 3% 1.8%  
Asian 6% 6% 10% 6.8%  
Black or African American 13% 8% 8% 14.2%  
Caucasian/White 71% 74% 75% 75.1%  
Hispanic or Latino 5% 6% 4% (18.2%)  
Native Hawaiian or Pacific Islander 5% 5% 0% 0.4%  
Other/Mixed 0% 1% 1% 10.3%  

 
    

 

Age 
EV owners/lessees (n=151) 

EV interested 

(n=555) 

General 

population 

(n=79) 

U.S. 

population  

18-24 12% 13% 14% 12.0%  
25-34 29% 11% 10% 18.0%  
35-44 14% 14% 15% 16.3%  
45-54 9% 14% 19% 16.4%  
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55-64 16% 19% 20% 16.6%  
65-74 15% 22% 13% 12.1%  
75-85 4% 6% 8% 6.0%  
85 or older 1% 1% 1% 2.6%  

 
    

 

Highest Level of Education 
EV owners/lessees (n=151) 

EV interested 

(n=555) 

General 

population 

(n=79) 

U.S. 

population 

Less than high school 1% 1% 3% 10.7%  
High school graduate (or equivalent) 7% 14% 13% 26.3%  
Some college or associate's degree 23% 30% 39% 28.1%  
Bachelor's degree 37% 27% 28% 21.2%  
Graduate or professional degree 32% 27% 18% 13.8%  

 
    

 

Annual Household Income 
EV owners/lessees (n=151) 

EV interested 

(n=555) 

General 

population 

(n=79) 

U.S. 

population 

Less than $10,000 5% 5% 6% 5.8%  
$10,000-$14,999 1% 4% 4% 4.1%  
$15,000-$24,999 3% 8% 8% 8.5%  
$25,000-$34,999 3% 10% 10% 8.6%  
$35,000-$49,999 6% 11% 13% 12%  
$50,000-$74,999 14% 19% 16% 17.2%  
$75,000-$99,999 15% 14% 14% 12.8%  
$100,000-$124,999 13% 8% 6% 

15.6%  
$125,000-$149,999 13% 6% 8%  
$150,000-$174,999 5% 4% 4% 

7.1%  
$175,000-$199,999 5% 1% 3%  
More than $200,000 10% 3% 9% 8.3%  
No answer 7% 7% 0% 0%  

 
    

 

Electricity Program at Home 
EV owners/lessees (n=151) 

EV interested 

(n=555) 

General 

population 

(n=79) 

 

Fixed-rate 38% 38% 33%   
Variable-rate 24% 18% 22%   
Tiered-rate 11% 8% 14%   
Time-of-use (TOU) 7% 10% 9%   
Demand response 6% 3% 0%   
EV-specific plan 5% 1% 0%   
Other 2% 1% 1%   
I don't know 6% 21% 22%   
Notes: U.S. population educational attainment is for the population 25 years and over. 

U.S. population race statistics reported as a single race only.  

Hispanic/Latino is considered ethnicity in the ACS but was streamlined in our survey. 

Age is calculated as a percentage of the U.S. population 18 and over  
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ACS does not include a prefer not to answer for the income question. 

May not equal 100% due to rounding or multi-choice answer. 

      

 

Respondents were asked to provide the top five attributes of a vehicle that they would consider 

during the purchasing/leasing process. Across the three groups, battery range (over half of all 

respondents) followed by price/cost of ownership were the most important attributes of an EV (as 

indicated in Table 4). Expected maintenance costs were also an important consideration for 

buying/leasing an EV for all groups. Separately, EV owners/lessees noted the importance of 

handling/maneuverability (i.e., performance), while the EV interested group and the general 

population considered the location and availability of charging stations.  

For just EV owners/lessees, we asked several questions related to their travel and charging 

behavior (Table 5). EV owners/lessees tended to be new (66% receiving their vehicle from 2016-

2018) and have a BEV (69%). A significant number of EV owners/lessees still experienced range 

anxiety at least once a month (64%), even though 55% did not have a failed trip due to insufficient 

charge across an entire year. For charging, 44% of respondents charged every day, with 55% 

always charging at home and 53% always charging at work/school. Public charging was generally 

lower, with just 21% always charging in that context. Approximately 71% of EV owners always 

(33%) or most times (38%) charge their EVs as soon as they arrive home. While the drivers could 

cause significant peak demand on the grid, these individuals could also be amenable to shifting the 

time of charge via smart charging, especially if smart charging systems are readily available and/or 

if they receive an incentive. Approximately 84% of respondents would “always” or “most of the 

time” plug in immediately at work/school. Since these charging decisions may cause significant 

peaks during the middle of the day, smart charging could be effective in spreading out demand.  

 

Table 4: Most Important EV Attributes 

 

EV Owners (n=151)  
Battery range 55% 

Price/cost of ownership 36% 

Handling/maneuverability 32% 

Available financing or leasing terms 31% 

Expected maintenance costs 28% 

  
EV Interested (n=555)  
Battery range 65% 

Price/cost of ownership 53% 

Expected maintenance costs 43% 

Location and availability of charging stations 37% 

Speed of battery charging; Home electricity bills 24% 

  
General Population (n=79)  
Battery range 58% 

Price/cost of ownership 39% 

Location and availability of charging stations 38% 
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Expected maintenance costs 37% 

Cargo capacity/usefulness 25% 

 

Table 5: Characteristics of EV Owners/Lessees 

 

Year Became EV Owners/Lessees (n=142)  
Before 2010 4% 

2010-2012 10% 

2013-2015 20% 

2016-2018 66% 

  
BEV/PHEV Ownership/Leasing (n=150)  
I own/lease a BEV 69% 

I own/lease a PHEV 24% 

I own/lease both a BEV and PHEV 7% 

  
Times Experiencing Range Anxiety Per Month (n=111) 

None 36% 

1 to 5 53% 

More than 5 11% 

  

Commutes Per Month without Full Charge (n=118) 

None 25% 

1 to 5 47% 

More than 5 28% 

  
Failed Trips Per Year Due to Insufficient Charge (n=110) 

None 55% 

1 to 5 34% 

More than 5 11% 

 

Charging Frequency (n=151)  
Everyday 44% 

2 to 3 times per week 35% 

Once a week 15% 

Less than once a week 7% 

  
Charge at Home (n=151)  
Always 55% 

Most of the time 30% 

About half the time 9% 

Sometimes 4% 

Never 1% 

  
Charge as Soon as Arrive at Home (n=151)  
Always 33% 

Most of the time 38% 

About half the time 14% 

Sometimes 12% 

Never 3% 
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Charge at Public Station (n=149)  
Always 21% 

Most of the time 22% 

About half the time 13% 

Sometimes 24% 

Never 20% 

  
Charge at Work/School (n=75)  
Always 53% 

Most of the time 28% 

About half the time 7% 

Sometimes 11% 

Never 1% 

  
Charge as Soon as Arrive at Work/School (n=74) 

Always 57% 

Most of the time 27% 

About half the time 9% 

Sometimes 4% 

Never 3% 

 

5.2) Monetary Incentives for DR and Smart Charging Participation  

In the survey, respondents were asked to choose the likelihood that they would participate in a DR 

program as the incentive offered per year increased from $0 to $1000 per year. The full text of the 

scenario is included in the Appendix.  

As seen in Figure 1, the results indicate that as the incentive amount offered per year increased, 

the more likely a person wanted to participate in a DR program (in this case smart charging). The 

incentive programs gained the most participation from all three groups of people at levels higher 

than $300 per year (Figure 1-3). EV owners/lessees and EV interested buyers/lessees were more 

likely to consider participation in a DR program than the general population across all incentive 

values. Moreover, around 50% of respondents for both EV owners/lessees and EV interested 

buyers/lessees would definitely participate in a DR program if they were provided $1000 per year. 

Interestingly, 26% of EV owners/lessees would be willing to participate, even without an 

incentive. Participants may be sufficiently interested in saving money on electricity and/or 

spreading out electricity demand to not need an incentive per year. They may also have strong 

environmental positions or want to provide help to society, as noted in Schmalfuβ et al. (2015) and 

Will and Schuller (2016). However, participation in this zero-cost incentive drops to 14% for EV 

interested buyers/lessees and 13% for the general population.  

We also note that the general population was not as motivated by incentives compared to the two 

EV groups. Even at $1000 per year, 38% of the general population stated that they would 

“definitely not” participate in a DR program. Across all three groups, when we combined the 

probability of those who would “definitely” or “probably” participate, we found that there are 

diminishing returns for each dollar given per year. For example, both $750 and $1000 per year 

influenced 63-64% of EV owners to definitely or probably participate. This is only a small increase 

from the 58% of EV owners at $500 per year. Overall, the implications of these results are that 

incentives help increase participation, but there is a limit to their effectiveness. At the same time, 
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some people may participate without an incentive, offering a pathway to spread out some demand 

without costs beyond the program administration.  

Figure 1: EV Owners/Lessees – Participation in DR Incentive Program 

 

 

 

Figure 2: EV Interested Buyers/Lessees - Participation in DR Incentive Program 

 

 

 

$0/year 26% 19% 18% 15% 22%

$50/year 23% 17% 24% 17% 20%

$100/year 25% 25% 22% 11% 18%

$150/year 26% 25% 21% 11% 17%

$200/year 26% 29% 19% 11% 15%

$250/year 26% 29% 20% 11% 14%

$300/year 33% 24% 17% 14% 12%

$400/year 32% 21% 22% 13% 12%

$500/year 42% 16% 17% 13% 12%

$750/year 44% 19% 15% 9% 13%

$1000/year 50% 14% 17% 7% 13%

Definitely Probably Maybe Probably Not Definitely Not

Please select how likely you would be to participate in the demand response program for 

each of the following incentive levels. (N = 151)

$0/year 14% 11% 23% 17% 35%

$50/year 11% 16% 26% 20% 27%

$100/year 11% 19% 31% 19% 20%

$150/year 11% 23% 32% 16% 18%

$200/year 15% 27% 27% 16% 15%

$250/year 19% 27% 24% 14% 16%

$300/year 27% 25% 19% 12% 17%

$400/year 34% 21% 15% 11% 18%

$500/year 45% 15% 13% 10% 17%

$750/year 48% 13% 10% 11% 18%

$1000/year 54% 12% 9% 8% 17%

Definitely Probably Maybe Probably Not Definitely Not

Please select how likely you would be to participate in the demand response program for 

each of the following incentive levels. (N = 555)
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Figure 3: General Population - Participation in DR Incentive Program 

 

5.3) Factors Influencing Smart Charging Program Participation 

Next, we developed a choice experiment and three mixed logit models to assess the factors that 

would influence an individual to participate in a smart charging program. Table 6 presents the 

model for EV interested buyers/lessees, Table 7 presents the model for EV owners/lessees, and 

Table 8 presents the model for the general population. 

 

Table 6: Estimation Results of Mixed Logit Model for EV Interested Buyers/Lessees  

Variable 
Estim. 

Coef. 

Std. 

Err. 
p-value 

  

Program Preference -0.930 0.224 0.000 *** 
     

 
Incentive Program Attributes     

 
Monetary Incentive 0.004 0.001 0.000 *** 

Std. Dev. of Monetary Incentive 0.009 0.001 0.000 *** 

Penalty for Nonparticipation -0.471 0.131 0.000 *** 

Std. Dev. of Penalty for Nonparticipation 1.878 0.167 0.000 *** 

Free EV Supply Equipment (EVSE) 1.549 0.120 0.000 *** 

Std. Dev. of Free EVSE 1.297 0.158 0.000 *** 

Guaranteed Battery Level or Ride 1.188 0.118 0.000 *** 

Std. Dev. of Guaranteed Battery Level or Ride 1.307 0.160 0.000 *** 

      
Demographics     
Young (Under 35) 0.343 0.171 0.044 * 

Female -0.415 0.147 0.005 ** 

$0/year 13% 8% 22% 11% 47%

$50/year 9% 14% 24% 13% 41%

$100/year 9% 15% 25% 13% 38%

$150/year 11% 13% 25% 16% 34%

$200/year 13% 19% 19% 16% 33%

$250/year 13% 16% 16% 22% 33%

$300/year 18% 11% 15% 19% 37%

$400/year 20% 13% 14% 15% 38%

$500/year 25% 10% 14% 14% 37%

$750/year 32% 5% 16% 11% 35%

$1000/year 33% 10% 10% 9% 38%

Definitely Probably Maybe Probably Not Definitely Not

Please select how likely you would be to participate in the demand response program for 

each of the following incentive levels. (N = 79)
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Black or African American† 0.671 0.283 0.018 * 

Hispanic or Latino† -0.592 0.295 0.045 * 

Do Not Own Smartphone -0.523 0.235 0.026 * 

      
Household Characteristics    

 
No Children in Household -1.325 0.172 0.000 *** 

Tiered Electricity Program -0.698 0.312 0.025 * 

Sole Transportation Decision-Maker 0.673 0.147 0.000 *** 

Living in Southeast U.S. -0.476 0.178 0.008 ** 

      
Number of Observations 4,369    
Goodness of Fit 0.201    
Adjusted Goodness of Fit 0.195    
Log-Likelihood -2,420.6    
LL-Null -3,028.4    
AIC 4,877.2    
BIC 4,992.1    
Halton Draws 1000    
     
Significance Level *95% **99% ***99.9% 

† Base: White, Asian, Other, Prefer not to Answer 

 

5.3.1) EV Interested Buyers/Lessees Model Results 

For the model specified with the EV interested buyers/lessees, the alternative specific constant 

(ASC) – referred to in the table as “program preference” – was negative and significant, indicating 

a preference against participating in a smart charging incentive program as described in our choice 

experiment, all else equal. Each of the coefficients for incentive program attributes was significant, 

indicating each attribute influenced the respondents’ decisions to participate or not. The coefficient 

signs met our expectations: the monetary incentive, free Electric Vehicle Supply Equipment 

(EVSE), and guaranteed charge level or ride home attributes were positive, indicating that these 

attributes increased willingness to participate in the program. The coefficient for the penalty 

program was negative, indicating that members of the EV interested buyers/lessees population 

were less inclined to join a smart charging program in which they may be penalized (in this case, 

lose up to the full amount of the monetary incentive given for participating in the program) for not 

relinquishing control of their vehicle.  

However, these coefficients require additional nuance based on the mixed logit results. The 

standard deviation for all four coefficients of the program was significant, indicating heterogeneity 

in the population that can be determined based on the normal distribution. For some respondents 

(67%), an increase in the amount of the monetary incentive ($50) also increases their likelihood of 

choosing the smart charging program. However, there is a substantial part of the population (33%) 

where each additional $50 decreases their likelihood. A clear explanation for this heterogeneity is 

not immediately available, although there are some people who would not participate in a program 

even if they were given a substantial monetary incentive (as seen in Figure 2). A penalty for 

nonparticipation produced a negative program selection for approximately 60% of respondents. 

However, it was a positive factor for 40%. Again, the reasoning is not immediately clear, although 

these respondents may view penalties as necessary for nudging behavior toward the common good 
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(i.e., approving penalties for other people). Both free charging equipment and guaranteed battery 

level or ride home induced very strong positive responses to choosing a program for most people 

(88% and 82%).  

The EV interested buyers/lessees model included multiple demographic variables including: age, 

gender, and race or ethnicity along with smartphone access. The model indicates that younger 

individuals (less than 35 years old) were more likely to participate in the program (positive and 

significant). The coefficient for females was significant and negative, indicating a lower 

willingness to participate in a program. The coefficient for Black or African American individuals 

interested in owning an EV was positive and significant. However, the coefficient for Hispanic or 

Latino was negative. This indicates that compared to White, Asians, other, and prefer not to answer 

respondents, Black or African American individuals were most likely to be willing to participate 

in a smart charging program while Hispanic and Latino individuals were less willing. Those who 

do not own a smartphone were less willing to participate in a smart charging program. 

The model also included several household characteristics. The negative coefficient for individuals 

who do not live with children was also significant. This was surprising, as we expected that parents 

would be less likely to participate due to the need for flexible, reliable transportation. Perhaps 

individuals with children may have multiple vehicles available, and thus have an extra vehicle if 

sufficient charging was not achieved for their EV. The model indicated that individuals with tiered 

electricity plans were less likely to participate in a smart charging program. In a tiered electricity 

plan, an individual’s payment rate increases as they surpass “tiers” of energy usage. An 

interpretation of the model results is that individuals may be wary of losing charging control if 

they wish to stay within a certain allocation of energy usage. In the survey, respondents were asked 

whether they were the sole decision-maker for transportation decisions in their household. The 

model indicates that those who said they were the sole decision-maker were more likely to 

participate in a program than individuals who make joint transportation decisions with other 

household members. Finally, the model included a variable for the geographic region. The 

coefficient for the Southeastern U.S. (compared against all other regions) was negative and 

significant, indicating that EV interested buyers/lessees from the Southeast were less likely to 

participate than EV interested buyers/lessees from other regions. The southeast region included 

the states of Florida, Georgia, South Carolina, North Carolina, Louisiana, Alabama, and 

Mississippi.  

5.3.2) EV Owners/Lessees Model Results 

The model estimated with the EV owners/lessees population (Table 7) had a negative and 

significant coefficient for program preference, suggesting a natural inclination against 

participating in a smart charging program, all else equal. Similar to the EV interested 

buyers/lessees model, all the program attributes were significant, and the directionalities of the 

coefficients were the same for both models. Focusing on the random parameters, we again found 

that monetary incentives produced heterogeneity in the population with 75% being positively 

affected and 25% negatively affected. The program variables of free equipment and guaranteed 

battery level/ride also produced heterogeneity. 

We found several demographic and household variables that were significant. Individuals who 

make the sole transportation decisions in their household were more likely to participate. Again, 

households with no children were less likely to participate, which may be related to the number of 
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available vehicles. All other demographic and household variables were insignificant, indicating 

the strong effect of program characteristics on the EV owner/lessee group. Several EV-experience 

variables also were tested with the EV owners model. Individuals who “always” or “most of the 

time” plug in immediately when arriving at home were more likely to participate in a smart 

charging program. With a charging system readily available, these individuals might prefer a “set 

and forget” style program that automatically charges their vehicle. Interestingly, those who had to 

choose a gasoline vehicle when they had insufficient range, and those who experienced insufficient 

battery at the commute start were both more likely to participate. One hypothesis is that these 

owners may believe that a smart charging program could have reduced their negative experiences 

with insufficient charging.  

Table 7: Estimation Results of Mixed Logit Model for EV Owners/Lessees  

Variable 
Estim. 

Coef. 

Std. 

Err. 
p-value 

Program Preference -0.7327 0.398 0.065  

      
Incentive Program Attributes      
Monetary Incentive 0.008 0.002 0.000 *** 

   Std. Dev. of Monetary Incentive 0.012 0.001 0.000 *** 

Penalty for Nonparticipation -0.576 0.194 0.003 ** 

Free EV Supply Equipment (EVSE) 1.256 0.301 0.000 *** 

   Std. Dev. of Free EVSE  1.827 0.350 0.000 *** 

Guaranteed Battery Level or Ride 0.634 0.226 0.005 ** 

   Std. Dev. Guaranteed Battery Level or Ride 0.769 0.327 0.019 * 

     
 

Household Characteristics     
 

No Children in Household -1.630 0.319 0.000 *** 

Sole Transportation Decision-Maker 1.373 0.291 0.000 *** 
      

Electric Vehicle Experiences     
 

Always or Most Times Plug in Immediately at Home 0.687 0.315 0.029 * 

Chose a Gasoline Car if Insufficient Range (at least 

once per year) 
1.143 0.407 0.005 ** 

Experienced Insufficient Battery at Commute Start (at 

least once per year) 
0.995 0.390 0.011 * 

      
Number of Observations 1,188   

 
Goodness of Fit 0.339   

 
Adjusted Goodness of Fit 0.324   

 
Log-Likelihood -543.9   

 
LL-Null -823.5   

 
AIC 1,113.8   

 
BIC 1,179.9   

 
Halton Draws 1000    
Significance Level *95% **99% ***99.9%     

     
     
    

5.3.3) General Population Model Results 
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Finally, we built a model using experimental results from the general population (Table 8). 

Program preference, unlike for the other two groups of respondents, was insignificant. Program-

related attributes, such as monetary incentives and receiving a penalty, were insignificant and 

removed from the model. While free charging equipment was also insignificant, we found a 

significant standard deviation. This indicates that there is substantial heterogeneity in the 

population, such that 63% were positively affected by equipment and 37% are negatively 

impacted. Given that the population is general, the respondents may not have understood what free 

charging equipment would mean for them as an incentive. Guaranteed battery level or ride was 

also insignificant, but the value of the random effect was significant. In this case, 66% of 

participants were positively influenced by this attribute, while 34% were negatively influenced. A 

potential explanation is that the attribute may signal that the program operator would potentially 

leave the motorist stranded and cause inconvenience multiple times.  

 

For demographic and household variables, we found that younger adults were more likely to 

participate in a program, while women were less likely. Households without children were also 

less likely to participate. For this population, we also found that those with a variable rate 

electricity program were more likely to participate in a smart charging program. We hypothesize 

that people with this plan would welcome a smart charging program to better address the high 

costs that might arise from varying electricity rates.  

 

Table 8: Estimation Results of Mixed Logit Model for General Population 

Variable 
Estim. 

Coef. 

Std. 

Err. 
p-value 

  

Program Preference 0.048 0.274 0.861  
     

 
Incentive Program Attributes    

 
Free EV Supply Equipment (EVSE) 0.562 0.442 0.204  

Std. Dev. of Free EVSE  1.735 0.451 0.000 *** 

Guaranteed Battery Level or Ride 0.833 0.468 0.075  
Std. Dev. of Guaranteed Battery Level or Ride 1.955 0.404 0.000 *** 

      
Demographics     
Young (Under 35) 0.937 0.255 0.000 *** 

Female -2.089 0.289 0.000 *** 

      
Household Characteristics     
No Children in Household -1.594 0.254 0.000 *** 

Variable Rate Electricity Program 1.256 0.270 0.000 *** 

      
Number of Observations 622    
Goodness of Fit 0.320    
Adjusted Goodness of Fit 0.300    
Log-Likelihood -293.0    
LL-Null -431.1    
AIC 604.0    
BIC 643.9    
Halton Draws 1000    
     
Significance Level *95% **99% ***99.9% 
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5.3.4) Sample Enumeration and Incentive Testing 

Using the three discrete choice models developed for EV owners/lessees and EV interested 

buyers/lessees, we extend our discussion by conducting sample enumeration. We used the 

coefficients found in the three models for the program attributes and demographic variables. We 

then altered the program attributes to see how they impacted the probability that individuals would 

choose the smart charging program. For example, we set a “full program” where the third-party 

would issue penalties for resuming control, provide free charging equipment, and guarantee rides 

home or adequate charge. We then changed the monetary incentive value from $0 to $500 to see 

how it would impact the likelihood to participate. This process provides the opportunity to plan 

out different programs with shifting attributes. We note that sample enumeration assumes that the 

demographic variables remain fixed and that the coefficients of the program attributes allow us to 

estimate the new probabilities. Since we developed mixed logit models, we conducted our sample 

enumeration by drawing 300 values based on the mean and standard deviation for the random 

parameters for each experiment. These values were used to calculate the probabilities for choosing 

the program or not choosing it. The probabilities were averaged across all 300 draws for each 

experiment. Consequently, this is a rough estimate of program participation. As a general tool, the 

sample enumeration helps highlight if significant changes in incentives can push individuals to 

participate in a smart charging program. 

For EV owners/lessees (Figure 4) willingness to participate in a smart charging program is 

considerably high. For a program with a penalty for gaining control but no monetary incentive, 

equipment, or guaranteed ride/charge, approximately 28.1% of EV owners/lessees would still 

participate in the program. This indicates that a substantial number of EV owners/lessees could be 

convinced to participate with minimal cost to the third-party, especially if the program was 

developed as an opt-out program. For the same program at $500 per year, the participation rate 

climbs to 63.6%. We find that 37.2% of EV owners/lessees would participate with no incentive or 

equipment, but with guaranteed charge and a penalty. This number jumps to 67.2% for a value of 

$500 per year. The best program for EV owners/lessees would be one in which no penalty is 

assessed when the individual retakes control of charging. In this program, participants would still 

receive equipment and guaranteed rides/charge. For a $500 incentive, 75.8% of EV owners/lessees 

would participate in the program. For all tested programs, the results also indicate that there are 

strong diminishing returns with a rising monetary incentive value. For several program options, 

the probability difference between $300 per year and $500 per year is small.  

Compared to EV owners/lessees, we find that EV interested buyers/lessees are less likely to 

participate in a smart charging program (Figure 5), particularly for the least attractive scenarios. 

Without equipment or guaranteed ride/charge but with a penalty for opt-out, only 18.5% would 

participate in a program at $0. When the monetary incentive increases to $500, the probability 

rises to 46.8%. EV interested buyers/lessees also place a higher value on guaranteed ride/charge 

than EV owners/lessees, which can be seen by the coefficients and the sample enumeration results. 

EV interested buyers/lessees gain nearly twice as much utility with a program with guaranteed 

ride/charge than EV owners/lessees. Consequently, we find that the difference between a full 

program and a program without a guaranteed ride/charge is 15.3% for no monetary incentive. This 
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difference diminishes with higher monetary incentives (i.e., a difference of 7.9% for a $500 

incentive). With no penalty and all other incentives, about 70.2% of participants would be willing 

to be part of a smart charging program (ceiling of adoption).  

Figure 4: Sample Enumeration - Incentive Curves for Different Smart Charging Programs 

Assuming Constant Demographics - EV Owners/Lessees 
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Figure 5: Sample Enumeration - Incentive Curves for Different Smart Charging Programs 

Assuming Constant Demographics - EV Interested Buyers/Lessees 
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We also conducted a sample enumeration for the general population. Since monetary incentives 

were not a significant variable in the mixed logit model, we were unable to conduct the 

enumeration across changing values. However, we were able to test four different program types 

based on the variables in the model: equipment and ride/charge. We found that 21.0% of the 

general population would choose a program if there were no equipment and no guaranteed 

ride/charge. A program with just a guaranteed ride/charge increased the probability to 37.6%, 

while a program with just free equipment increased the probability to 33.5%. The program with 

both incentives increased participation to 45.8%, nearly doubled the probability compared to a 

program with no incentives.  

Through sample enumeration, we find several interesting results: 

• A significant portion of EV owners/lessees (but a smaller portion of EV interested 

buyers/lessees) would be willing to participate in a smart charging program without any 

monetary incentive, equipment, or guaranteed ride/charge.  

• Monetary incentives do increase willingness to participate but the impacts differ based on what 

other incentives are being provided. 

• Monetary incentives produce diminishing returns, meaning that each additional $1 spent would 

yield decreasing marginal participation in the program. 

• An ideal monetary incentive value to achieve optimal participation is not apparent, especially 

given different combinations of smart charging program attributes and the limitation that 

operators need to be revenue neutral or profitable.  

• A ceiling exists on participation rates (assuming a maximum of $500 incentive) at 74.4% for 

EV owners/lessees, 68.4% for EV interested buyers/lessees, and 45.8% for the general 

population. 

5.3.5) Marginal Effects and Elasticities 

We also included an analysis of the marginal effects of all dummy variables in the three models 

(Table 9) and the average point elasticities of the monetary incentives by program type (Table 10). 

The average point elasticities across a program were calculated by averaging all point elasticities 

for a 1% increase in each monetary incentive value in our experiment except for $0 ($50 to $500 

increments of $50). While we recognize that the point elasticities are non-linear, the averages were 

taken given the very small non-linear effects and for easier interpretation in Table 10. 

The marginal effects (i.e., the change in probability of choosing a program given the unit change 

of a given variable) produced several interesting results. First, free EVSE and guaranteed battery 

level/ride produced relatively high increases in probability compared to other variables, although 

the effect was most pronounced for the EV interested buyers/lessees group. While penalties 

decreased the probability of choosing the program for the EV owner/lessees and EV interested 

buyer/lessees groups, the effect easily could be offset by the positive influence of other program 

characteristics. No children in the household produced a strong decrease in program selection 

probability for all three groups. Women in the general population reacted the most negatively 

compared to the other two groups. As a common theme, the demographic characteristics did 
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produce some movement in the probabilities across all groups, which indicates that they cannot be 

ignored when designing a smart charging program.  

The elasticities (i.e., the change in probability of choosing a program given the 1% change of 

monetary incentives) displayed some influence of monetary incentives in program selection. For 

example, in the worst-case program for the consumer (penalty, no equipment, no guaranteed 

battery/ride), a 1% increase in monetary incentive translated to a .14% increase in the probability 

of selecting the program. This program and others show that monetary incentives matter for 

program selection, but this is only to a small degree.  

Table 9: Marginal Effects for Dummy Variables across Mixed Logit Models 

EV Owners/Lessees 
X=1 X=0 

Marginal 

effect 

Penalty for Nonparticipation 56.0% 62.1% -6.1% 

Free EV Supply Equipment (EVSE) 65.5% 53.2% 12.3% 

Guaranteed Battery Level or Ride 62.5% 55.8% 6.7% 

No Children in Household 48.9% 70.5% -21.6% 

Sole Transportation Decision-Maker 65.8% 51.7% 14.1% 

Always or Most Times Plug in Immediately at Home 61.3% 53.9% 7.4% 

Chose a Gasoline Car if Insufficient Range (at least once per year) 62.1% 49.3% 12.8% 

Experienced Insufficient Battery at Commute Start (at least once per year) 61.3% 50.3% 11.0% 
 

   
 

EV Interested Buyers/Lessees 
X=1 X=0 

Marginal 

effect 

Penalty for Nonparticipation 45.1% 49.9% -4.8% 

Free EV Supply Equipment (EVSE) 57.1% 37.5% 19.6% 

Guaranteed Battery Level or Ride 55.1% 40.1% 15.0% 

Young (Under 35) 50.6% 46.5% 4.1% 

Female 45.0% 50.0% -5.0% 

Black or African-American 55.0% 46.8% 8.2% 

Hispanic or Latino 40.9% 47.9% -7.0% 

Do Not Own Smartphone 42.0% 48.2% -6.2% 

No Children in Household 43.3% 59.7% -16.4% 

Tiered Electricity Program 39.9% 48.1% -8.2% 

Sole Transportation Decision-Maker 51.9% 43.7% 8.2% 

Living in Southeast U.S. 43.2% 48.8% -5.6% 

     

General Population 
X=1 X=0 

Marginal 

effect 

Free EV Supply Equipment (EVSE) 39.3% 28.8% 10.5% 

Guaranteed Battery Level or Ride 41.7% 27.2% 14.5% 

Young (Under 35) 43.4% 31.1% 12.3% 

Female 21.8% 47.9% -26.1% 

No Children in Household 29.1% 50.5% -21.4% 

Variable Rate Electricity Program 47.2% 30.7% 16.5% 
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Table 10: Averaged Point Elasticities for Monetary Incentives  

 
Penalty for 

Nonparticipation 

Free EV 

Supply 

Equipment 

(EVSE) 

Guaranteed 

Battery Level or 

Ride 

Average of Point Elasticities Across 

Monetary Incentives from $50 to $500 in 

$50 increments 

  
EV 

Owners/Lessees 

EV Interested 

Buyers/Lessees 

Program 1 Yes Yes Yes 0.08% 0.01% 

Program 2 Yes Yes No 0.13% 0.12% 

Program 3 Yes No No 0.14% 0.14% 

Program 4 No Yes Yes 0.09% 0.01% 

Program 5 No No No 0.12% 0.17% 

Program 6 Yes No Yes 0.09% 0.13% 

 

5) Limitations  

This research contains a number of limitations, first related to the survey. The survey exhibited 

some bias as it was distributed solely online. The EV owners/lessees and EV interested 

buyer/lessee groups may not necessarily reflect populations in certain parts of the U.S. In this case, 

the demographic characteristics of these surveyed groups may not represent all EV owners/lessees 

or EV interested buyers/lessees. There also were some cases where participants did not answer all 

eight discrete choice experiments. While there is no indication that participants were responding 

in an irrational or untrustworthy way, leaving these participants in the study may cause some bias 

in results. However, as noted in Lancsar and Louviere (2006), the deletion of these types of 

responses could instead cause a different sample selection bias and reduce statistical efficiency. 

We note that Qualtrics, the survey provider, has mechanisms in place to detect fraudulent 

responses. To test the influence of respondents with missing answers, we built a parallel series of 

models but removed any respondent that did not answer all eight of the discrete choice 

experiments. This removed 54 respondents from the EV interested buyer/lessee group, 12 

respondents from the EV owner/lessee group, and four respondents from the general population 

group. We found remarkable consistency in the models such that only a single variable in one 

model became insignificant and no variable signs changed. We decided to retain the models with 

the full data (as originally developed) given this minimal discrepancy.  

 

Regarding methodology, the three mixed logit models do not consider the risk perceptions of the 

respondents, in particular perceptions related to range anxiety, security, privacy, or relative control 

(some of which are noted in Delmonte et al., 2020). This presents a clear limitation that was caused 

by the need to have a short survey to retain respondents. In addition, the survey was more focused 

on monetary incentives and included additional questions on EV purchase behavior that were not 

specifically relevant to the research in this paper. We recommend future surveys should focus more 

on risk perceptions.  
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In our choice experiments, we did not vary some of the other attributes of a possible smart charging 

program. Indeed, different assumed values for equipment and alternative incentive structures (e.g., 

receiving a high rebate upfront in exchange for smart charging for the life of the vehicle or lease) 

may lead to different behavioral responses. For example, a $2,000 upfront rebate may be more 

effective in program uptake than $200 incentives per year for ten years. Research has generally 

shown that as the delay of a reward increases over time, people will choose lower values of an 

immediate reward (Green et al., 1994). If we gave respondents the option of $100 per year for five 

years or $400 immediately, more people would likely choose the $400 based on the research. This 

also can be conceptualized by the ideas of net present value and time value of money, which 

together lead to the conclusion that money today is worth more than money tomorrow (Gallo, 

2014). Similarly, changing the penalty structure could lead to different behavioral responses, 

especially if the penalty value was altered. For example, a $1 fine per opted-out session versus a 

complete $200 after reaching a pre-determined threshold of opted-out sessions would yield 

different responses. We also note the description of the guaranteed charge level or ride is somewhat 

limited. This is because a guaranteed battery level would have to be tied to the EV users’ equipment 

and the amount of time that they need to charge to meet their travel needs. The wording and the 

specifics of the incentive should be amended in future work to better account for this limitation. 

Another limitation is that individuals may have different preferences on giving up charging 

depending on the time of day (evening more likely, during work less likely). Individuals may also 

not want to give up charging for certain trip purposes, especially if the battery may be low. 

However, these different programmatic aspects are not generally relevant for smart charging 

program adoption. Time of day and trip purpose could be considered by operators for program 

retention and satisfaction. Future work should include a preference question to determine the 

periods of the day or trip purposes that would be acceptable in a smart charging program. 

 

Currently, infrastructure remains a key barrier to EV adoption. While smart charging is not directly 

affected by this barrier, a lack of infrastructure could produce fewer participants for smart charging 

programs overall. It also would remove a relatively easy mechanism to implement smart charging. 

This is especially important for geographic regions with limited public charging infrastructure and 

for customers who live in apartments, condos, and townhomes (which have been traditionally slow 

to build EV charging infrastructure). Infrastructure-oriented questions, including opportunities to 

access a dedicated network of chargers or save money on certain charging networks, may affect 

willingness to participate in a smart charging program. Widely available infrastructure on a 

dedicated charging network could be a major perk for customers. This could also allow for more 

user control in a smart charging program. Finally, we note that results presented in this research, 

especially related to charging behavior, may have changed significantly during and following the 

COVID-19 pandemic. With the requirement of work-from-home policies to reduce COVID-19 

spread, travel behavior and patterns have also likely shifted. Indeed, charging behavior may be 

less tied to the typical morning and evening commute patterns (i.e., pre-pandemic). A new iteration 

of research studies on this topic within this altered work landscape is necessary. 

 

6) Conclusions 

In this paper, we investigated the willingness of EV owners/lessees, EV interested buyers/lessees, 

and a general population to participate in a smart charging program. These programs can help shift 

demand from EVs to off-peak hours, improve the matching of supply and demand, reduce future 
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grid costs, and enable more renewable energy usage. Employing a survey distributed across most 

of the U.S., we determined that both monetary and non-monetary incentives are generally effective 

in shifting willingness to participate in a smart charging program. We found that respondents, 

especially EV owners/lessees and EV interested buyers/lessees, were largely receptive to smart 

charging programs. When just considering monetary incentives, an incentive of $300 to $400 per 

year is sufficient for the majority of EV owners/lessees or EV interested buyers/lessees to 

definitely or probably participate in smart charging. 

Through discrete choice modeling, we found that the willingness of the three groups to sign-up 

and participate in a smart charging program was significantly impacted by the attributes of the 

program. Monetary incentives and guaranteed battery level or ride were particularly impactful for 

EV owner/lessees and EV interested buyers/lessees in increasing participation. Free charging 

equipment increased participation across all groups. Meanwhile, penalties for non-participation or 

excessive opted-out sessions decreased willingness for the two EV groups. These statistically 

significant results come with a very important caveat. Mixed logit models revealed that 

heterogeneity of these attributes exists across all three samples. The implications are that some 

people may actually experience an opposite influence depending on the standard deviation of the 

attribute coefficient. Described in another way, not all people in the sample will react the same to 

the program attributes. This adds a layer of complexity to smart charging program design. 

To add more complexity, demographic variables had differing effects on willingness, indicating 

that the manager of a program may want to advertise the program to specific groups. Young adults 

(under 35) were more likely to participate across two groups of people (interested EV 

buyers/lessees and general population). However, households without children were less likely to 

participate across all three groups. Sole transportation decision-makers were more willing to 

participate for the two EV groups, while women in the EV interested buyer/lessee group and the 

general population group were less willing. Each of the models also had unique variables, 

indicating some differences among EV owners/lessees, EV interested buyers/lessees, and the 

general population. When conducting the sample enumeration, we found diminishing returns for 

each invested $50 per year for both EV groups. Moreover, participation rates differ among 

combinations of different incentives, which indicates that program attributes need to be 

thoughtfully considered to increase sign-ups. Marginal effects analysis displayed the relative 

strength of program characteristics compared to most demographic variables. In addition, 

elasticities for the monetary incentives displayed a positive although relatively small effect (i.e., 

inelastic) on the likelihood to select a smart charging program. 

The results, both discrete choice and sample enumeration, indicate that a third-party operator 

would have to make tradeoffs in developing a smart charging program. While equipment would 

be expensive to provide by a third party, it might encourage EV interested buyers/lessees to use 

smart charging, as Level 2 charging installation at home can cost around $2,000 (Kurczewski, 

2022). Guaranteed rides/charges would increase willingness to participate, but the coordination of 

rides and recharging might be challenging. For example, a third party would need a mechanism to 

reimburse drivers for their ride (which can be taken via public transit, ridesourcing/ridehailing, 

etc.), operate a fleet of mobile charging vehicles, or contract with a towing or roadside assistance 

service. Alternatively, a guaranteed battery level that is too high might render a smart charging 

program ineffective since there is no temporal opportunity to shift charging. Monetary incentives 

would be an easy mechanism to calculate costs, but they have a limited impact on willingness due 

to diminishing returns and inelastic effects. Finally, penalties decrease willingness to participate, 
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but they may be necessary for the third party to maintain consistency and profits in a smart 

charging program. Adding more nuance, the heterogenous responses from the different groups 

indicate that people may react in the opposite direction to certain program attributes. These random 

effects are important to note as they will likely cause a lower sign-up rate than what is expected 

by third parties. 

While incentives increase participation in our models for the two EV groups, results also suggest 

that a small but sizable number of both EV owners/lessees (26%) and EV interested buyers/lessees 

(14%) would definitely participate in smart charging without receiving any monetary incentives. 

Interestingly, when focusing solely on incentives from $0 to $1000 (in Section 5.2), we found that 

there also are diminishing returns when considering “definite” and “probable” participants of smart 

charging programs. This confirms the general trend in the sample enumeration results. In this way, 

we found that monetary incentives have a limit. The general population remains largely skeptical 

of smart charging programs and incentives with 38% saying they would definitely not participate 

with even a $1,000 incentive per year.  

Altogether, these overarching results from our research suggest that a third-party operator could 

successfully develop a cost-effective smart charging program that shifts charging behavior, 

maintains strong participation, and decreases peak electricity demand. To answer this paper’s title 

questions, incentives do make a difference in smart charging adoption. However, monetary and 

other types of incentives have limits, which suggests that universal opt-in will be hard to achieve, 

at present. While specific nuances of a program require piloting, the benefits of a smart charging 

program to consumers, utilities, and other stakeholders would be significant and worthwhile. 
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9) Appendix 

Key Survey Question: Demand Response Participation – Full Prompt 

In this scenario, you own a battery electric vehicle (BEV). You have the opportunity to participate 

in a demand response program. In this program, you will use an app on your smartphone to set a 

charging schedule (i.e., when the car must be ready for use) as well as the desired state of charge 

(i.e., 90% charged). Using this information, a third party will choose when your vehicle charges 

to match when electricity demand is low and the availability of renewable energy is high. At any 

point in time, you can override the charging decisions made by the V1G program. 

  

If an error occurs during charging and you do not have sufficient charge at your scheduled 

departure time, you will be reimbursed for a ride through a ridesourcing company (Uber/Lyft) or 

a taxi. For your participation in the program, you will receive a yearly incentive. 

  

Please select how likely you would be to participate in the demand response program for each of 

the following incentive levels. The incentive amount shown is how much you will be paid per year 

to participate in the V1G program. 
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