
UC Davis
UC Davis Previously Published Works

Title
Uncrowding algorithm for hook-valued tableaux

Permalink
https://escholarship.org/uc/item/98z922b3

Authors
Pan, Jianping
Pappe, Joseph
Poh, Wencin
et al.

Publication Date
2020-12-29

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/98z922b3
https://escholarship.org/uc/item/98z922b3#author
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

ar
X

iv
:2

01
2.

14
97

5v
2

 [
m

at
h.

C
O

]
 1

0
Ja

n
20

22

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX

JIANPING PAN, JOSEPH PAPPE, WENCIN POH, AND ANNE SCHILLING

Abstract. Whereas set-valued tableaux are the combinatorial objects associated to stable Grothen-
dieck polynomials, hook-valued tableaux are associated to stable canonical Grothendieck polynomi-
als. In this paper, we define a novel uncrowding algorithm for hook-valued tableaux. The algorithm
“uncrowds” the entries in the arm of the hooks and yields a set-valued tableau and a column-flagged
increasing tableau. We prove that our uncrowding algorithm intertwines with crystal operators. An
alternative uncrowding algorithm that “uncrowds” the entries in the leg instead of the arm of the
hooks is also given. As an application of uncrowding, we obtain various expansions of the canonical
Grothendieck polynomials.

1. Introduction

Set-valued tableaux play an important role in the K-theory of the Grassmannian. They form a
generalization of semi-standard Young tableaux, where boxes may contain sets of integers rather
than just integers [Buc02]. In particular, the stable symmetric Grothendieck polynomial indexed by
the partition λ is the generating function of set-valued tableaux

(1.1) Gλ(x;β) =
∑

T∈SVT(λ)

β|T |−|λ|xweight(T),

where SVT(λ) is the set of set-valued tableaux of shape λ and weight(T) is the vector with i-th
entry being the number of i in T . Here |T | is the number of entries in T and |λ| is the size of λ.
Stable symmetric Grothendieck polynomials Gλ can be viewed as a K-theory analogue of the Schur
functions sλ (while the Grothendieck polynomial is an analog of the Schubert polynomial [LS83]).
Buch [Buc02] also described the structure coefficients cνλµ, which is the coefficient of Gν in the
expansion of GλGµ in terms of set-valued tableaux, generalizing the Littlewood–Richardson rule
for Schur functions.

The Grassmannian Gr(k,Cn) of k-planes in C
n has a fundamental duality isomorphism

Gr(k,Cn) ∼= Gr(n− k,Cn).

This implies that the structure constants have the symmetry cνλµ = cν
′

λ′µ′ , where λ′ denotes the

conjugate of the partition λ (see for example [Ful97, Example 9.20]). Hence one expects a ring
homomorphism on the completion of the ring of symmetric function defined on the basis of stable
symmetric Grothendieck polynomials τ(Gλ) = Gλ′ . The standard involutive ring automorphism ω
defined on the Schur basis by ω(sλ) = sλ′ does not have this property [LP07]

ω(Gλ) = Jλ 6= Gλ′ ,

where Jλ is the weak symmetric Grothendieck polynomial.
Yeliussizov [Yel17] introduced a new family of canonical stable Grothendieck polynomials Gλ(x;α, β)

such that

ω(Gλ(x;α, β)) = Gλ′(x;β, α).

Date: January 11, 2022.
2010 Mathematics Subject Classification. Primary 05E05, 05E10; Secondary 14N10, 14N15, 20G42.
Key words and phrases. stable (canonical) Grothendieck polynomials, hook-valued tableaux, crystal bases, un-

crowding algorithm.

1

http://arxiv.org/abs/2012.14975v2

2 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

Combinatorially, the canonical stable Grothendieck polynomials can be expressed as generating
functions of hook-valued tableaux . In a hook-valued tableau, each box contains a semistandard
Young tableau of hook shape, which is weakly increasing in rows and strictly increasing in columns.
More precisely

Gλ(x;α, β) =
∑

T∈HVT(λ)

αa(T)βℓ(T)xweight(T),

where HVT(λ) is the set of hook-valued tableaux of shape λ, a(T) is the sum of all arm lengths
and ℓ(T) is the sum of all leg lengths of the hook tableaux in T .

A hook-valued tableau T is a set-valued tableau when all hook tableaux entries are single columns
or equivalently a(T) = 0. Hence Gλ(x;α, β) specializes to Gλ(x;β) for α = 0. Similarly, a hook-
valued tableau T is a multiset-valued tableau when all hook tableaux entries are single rows or
equivalently ℓ(T) = 0. Hence Gλ(x;α, β) specializes to Jλ(x;α) for β = 0.

In this paper, we describe a novel uncrowding algorithm on hook-valued tableaux (see Defini-
tions 3.2, 3.4 and 3.5). The uncrowding algorithm on set-valued tableaux was originally developed
by Buch [Buc02, Theorem 6.11] to give a bijective proof of Lenart’s Schur expansion of symmetric
stable Grothendieck polynomials [Len00]. This uncrowding algorithm takes as input a set-valued
tableau and produces a semistandard Young tableau (using the RSK bumping algorithm to uncrowd
cells that contain more than one integer) and a flagged increasing tableau [Len00] (also known as
an elegant filling [LP07, BM12, Pat16]), which serves as a recording tableau.

Chan and Pflueger [CP21] provide an expansion of stable Grothendieck polynomials indexed
by skew partitions in terms of skew Schur functions. Their proof uses a generalization of the
uncrowding algorithm of Lenart [Len00], Buch [Buc02], and Reiner, Tenner and Yong [RTY18]
to skew shapes. Their analysis is motivated geometrically by identifying Euler characteristics of
Brill–Noether varieties up to sign as counts of set-valued standard tableaux. The uncrowding
algorithm was also used in the analysis of K-theoretic analogues of the Hopf algebras of symmetric
functions, quasisymmetric functions, noncommutative symmetric functions, and of the Malvenuto–
Reutenauer Hopf algebra of permutations [LP07, BM12, Pat16]. In [GZJ20], a vertex model for
canonical Grothendieck polynomials and their duals was studied, which was used to derive Cauchy
identities.

An important property of the uncrowding algorithm on set-valued tableaux is that it intertwines
with crystal operators [MPS21] (see also [MPPS20]). The crystal structure on a combinatorial
set is the combinatorial shadow of a (quantum) group representation (see for example [HK02,
BS17]). A crystal structure on hook-valued tableaux was recently introduced by Hawkes and
Scrimshaw [HS20]. Our novel uncrowding map on hook-valued tableaux yields a set-valued tableau
and a recording tableau. We prove that it intertwines with crystal operators (see Proposition 3.12
and Theorem 3.14). This was stated as an open problem in [HS20].

The paper is organized as follows. In Section 2, we review the definition of semistandard hook-
valued tableaux of [Yel17] and the crystal structure on them [HS20]. In Section 3, we define the new
uncrowding map on hook-valued tableaux and prove that it intertwines with the crystal operators
and other properties. We also give a variant of the uncrowding algorithm on hook-valued tableaux.
In Section 4, we consider applications of the uncrowding algorithm, in particular expansions of the
canonical Grothendieck polynomials using techniques developed in [BM12].

Acknowledgments. We are grateful to Graham Hawkes and Travis Scrimshaw for discussions.
This work was partially supported by NSF grant DMS–1764153. JiP was partially supported by

NSF grant DMS–1700814. AS was partially supported by NSF grant DMS–1760329.

2. Hook-valued tableaux

In Section 2.1, we define hook-valued tableaux [Yel17] and in Section 2.2 we review the crystal
structure on hook-valued tableaux as introduced in [HS20].

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 3

2.1. Hook-valued tableaux. A semistandard Young tableau U of hook shape is a tableau of the
form

U =

ℓp
...

ℓ1

x a1 . . . aq ,

where the integer entries weakly increase from left to right and strictly increase from bottom to
top. Note that we use French notation for Young diagrams and tableaux throughout the paper.
In this case, H(U) = x is called the hook entry of U , L(U) = (ℓ1, ℓ2, . . . , ℓp) is the leg of U , and
A(U) = (a1, a2, . . . , aq) is the arm of U . Both the arm and the leg of U are allowed to be empty.
Additionally, the extended leg of U is defined as L+(U) = (x, ℓ1, ℓ2, . . . , ℓp). We denote by max(U)
(resp. min(U)) the maximal (resp. minimal) entry in U .

Definition 2.1. [Yel17] Fix a partition λ. A semistandard hook-valued tableau (or hook-valued
tableau for short) T of shape λ is a filling of the Young diagram for λ with (nonempty) semistandard
Young tableaux of hook shape such that:

(i) max(A) 6 min(B) whenever the cell containing A is in the same row, but left of the cell
containing B;

(ii) max(A) < min(C) whenever the cell containing A is in the same column, but below the cell
containing C.

The set of all hook-valued tableaux of shape λ (respectively, with entries at most m) is denoted by
HVT(λ) (respectively, HVTm(λ)).

Given a hook-valued tableau T , its arm excess is the total number of integers in the arms of all
cells of T , while its leg excess is the total number of integers in the legs of all cells of T .

Remark 2.2. In the special case when a hook-valued tableau has arm excess 0, it is also called
a set-valued tableau. Similarly, a multiset-valued tableau is a hook-valued tableau with leg excess
0. We use the notation SVT(λ) (resp. SVTm(λ)) and MVT(λ) (resp. MVTm(λ)) for the set of
all set-valued tableaux of shape λ (resp. with entries at most m) and the set of all multiset-valued
tableaux of shape λ (resp. with entries at most m), respectively.

2.2. Crystal structure on hook-valued tableaux. Hawkes and Scrimshaw [HS20] defined a
crystal structure on hook-valued tableaux. We review their definition here.

Definition 2.3 ([HS20], Definition 4.1). Let C be a hook-valued tableau of column shape. The
column reading word R(C) is obtained by reading the extended leg in each cell from top to bottom,
followed by reading all of the remaining entries, arranged in a weakly increasing order.

For a hook-valued tableau T , its column reading word is formed by concatenating the column
reading words of all of its columns, read from left to right, that is,

R(T) = R(C1)R(C2) . . . R(Cℓ),

where ℓ is the number of columns of T and Ci is the ith column of T .

Example 2.4. Let T be the hook-valued tableau

T =

4
33 5
2
11

4
334 4445

.

The column reading words for the columns of T are respectively 432113, 54334 and 4445, so that

R(T) = 432113543344445.

4 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

Definition 2.5. [HS20, Definition 4.3] Let T ∈ HVTm(λ). For any 1 6 i < m, we employ the
following pairing rules. Assign − to every i in R(T) and assign + to every i + 1 in R(T). Then,
successively pair each + that is adjacent and to the left of a −, removing all paired signs until
nothing can be paired.

The operator fi acts on T according to the following rules in the given order. If there is no
unpaired −, then fi annihilates T . Otherwise, locate the cell c with entry the hook-valued tableau
B = T (c) containing the i corresponding to the rightmost unpaired −.

(M) If there is an i+ 1 in the cell above c with entry B↑, then fi removes an i from A(B) and
adds i+ 1 to A(B↑).

(S) Otherwise, if there is a cell to the right of c with entry B→, such that it contains an i in
L+(B→), then fi removes the i from L+(B→) and adds i+ 1 to L(B).

(N) Else, fi changes the i in B into an i+ 1.

Similarly, the operator ei acts on T according to the following rules in the given order. If there
is no unpaired +, then ei annihilates T . Otherwise, locate the cell c with entry the hook-valued
tableau B = T (c) containing the entry i+ 1 corresponding to the leftmost unpaired +.

(M) If there is an i in the cell below c with entry B↓, then ei removes the i+ 1 from A(B) and
adds i to A(B↓).

(S) Otherwise, if there is a cell to the left of c with entry B←, such that it contains an i+ 1 in
L(B←), then ei removes the i+ 1 from L(B←) and adds i to L+(B).

(N) Else, ei changes the i+ 1 in B into an i.

Based on the pairing procedure above, ϕi(T) is the number of unpaired −, whereas εi(T) is the
number of unpaired +.

We remark that the definition of crystal operators on HVT specializes to the definition on SVT

in [MPS21] or the one on MVT in [HS20] when the arm excess or leg excess of the tableaux is set
to 0, respectively.

Example 2.6. Consider the following hook-valued tableau T :

T =

4
34

5
4

2
11

3
233

.

Then, e3 annihilates T , whereas

e1(T) =

4
34

5
4

11

3
2
133

, f1(T) =

4
34

5
4

2
12

3
233

, f3(T) =

4
34

5
44

2
11

3
23

.

For a given cell (r, c) in row r and column c in a hook-valued tableau T , let LT (r, c) be the leg
of T (r, c), let AT (r, c) be arm of T (r, c), let HT (r, c) be the hook entry of T (r, c), and let L+

T (r, c)
be the extended leg of T (r, c).

3. Uncrowding map on hook-valued tableaux

In Section 3.1, we first review the uncrowding map on set-valued tableaux. In Section 3.2, we give
a new uncrowding map on hook-valued tableaux and prove some of its properties in Section 3.3. The
relation to the uncrowding map on multiset-valued tableaux is given in Section 3.4. In Section 3.5,
we give the inverse of the uncrowding map on hook-valued tableaux, called the crowding map. In
Section 3.6, an alternative definition of the uncrowding map on hook-valued tableaux is provided.

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 5

3.1. Uncrowding map on set-valued tableaux. For set-valued tableaux, there exists an un-
crowding operator, which maps a set-valued tableau to a pair of tableaux, one being a semistandard
Young tableau and the other a flagged increasing tableau (see for example [Len00, Buc02, BM12,
RTY18]). In this setting, the uncrowding operator intertwines with the crystal operators on set-
valued tableaux and semistandard Young tableaux, respectively [MPS21].

Consider partitions λ, µ with λ ⊆ µ and λ1 = µ1. A flagged increasing tableau (introduced
in [Len00] and called (strict) elegant fillings by various authors [LP07, BM12, Pat16]) is a row and
column strict filling of the skew shape µ/λ such that the positive integer entries in the i-th row
of the tableau are at most i − 1 for all 1 6 i 6 ℓ(µ), where ℓ(µ) is the length of partition µ. In
particular, the bottom row is empty. The set of all flagged increasing tableaux is denoted by F .
The set of all flagged increasing tableaux of shape µ/λ with λ1 = µ1 is denoted by F(µ/λ).

We now review the uncrowding operation on set-valued tableaux. We call a cell in a set-valued
tableau a multicell if it contains more than one letter.

Definition 3.1. Define the uncrowding operation on T ∈ SVT(λ) as follows. First identify the
topmost row r in T with a multicell. Let x be the largest letter in row r that lies in a multicell;
remove x from the cell and perform RSK row bumping with x into the rows above. The resulting
tableau, whose shape differs from λ by the addition of one cell, is the output of this operation.

The uncrowding map on set-valued tableaux

(3.1) USVT : SVT(λ) −→
⊔

µ⊇λ

SSYT(µ)×F(µ/λ)

is defined as follows. Let T ∈ SVT(λ) with leg excess ℓ.

(1) Initialize P0 = T and Q0 = F0, where F0 is the unique flagged increasing tableau of shape
λ/λ.

(2) For each 1 6 i 6 ℓ, Pi is obtained from Pi−1 by applying the uncrowding operation. Let C
be the cell in shape(Pi)/shape(Pi−1). If C is in row r′, then Fi is obtained from Fi−1 by
adding cell C with entry r′ − r.

(3) Set USVT(T) = (P,F) := (Pℓ, Fℓ).

It was proved in [Buc02, Section 6] that USVT in (3.1) is a bijection. Monical, Pechenik and
Scrimshaw [MPS21] proved that USVT intertwines with the crystal operators on set-valued tableaux
(see also [MPPS20]). A similar uncrowding algorithm for multiset-valued tableaux was given
in [HS20, Section 3.2].

3.2. Uncrowding map on hook-valued tableaux. In [HS20], the authors ask for an uncrowding
map for hook-valued tableaux which intertwines with the crystal operators. Here we provide such
an uncrowding map by uncrowding the arm excess in a hook-valued tableaux to obtain a set-valued
tableaux. An alternative obtained by uncrowding the leg excess first is given in Section 3.4.

Definition 3.2. The uncrowding bumping Vb : HVT → HVT is defined by the following algorithm:

(1) Initialize T as the input.
(2) If the arm excess of T equals zero, return T.
(3) Else, find the rightmost column that contains a cell with nonzero arm excess. Within this

column, find the cell with the largest value in its arm. (In French notation this is the
topmost cell with nonzero arm excess in the specified column.) Denote the row index and
column index of this cell by r and c, respectively. Denote the cell as (r, c), its rightmost arm
entry by a, and its largest leg entry by ℓ.

(4) Look at the column to the right of (r, c) (i.e. column c + 1) and find the smallest number
that is greater than or equal to a.

• If no such number exists, attach an empty cell to the top of column c+1 and label the
cell as (r̃, c+ 1), where r̃ is its row index. Let k be the empty character.

6 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

• If such a number exists, label the value as k and the cell containing k as (r̃, c+1) where
r̃ is the cell’s row index.

We now break into cases:
(a) If r̃ 6= r, then remove a from AT (r, c), replace k with a, and attach k to the arm of

AT (r̃, c+ 1).
(b) If r̃ = r then remove (a, ℓ] ∩ LT (r, c) from LT (r, c) where (a, ℓ] = {a + 1, a + 2, . . . , ℓ},

remove a from AT (r, c), insert (a, ℓ] ∩ LT (r, c) into LT (r̃, c+ 1), replace the hook entry
of (r̃, c+ 1) with a, and attach k to AT (r̃, c+ 1).

(5) Output the resulting tableau.

See Figures 1 and 2 for illustration.

−
−− a
−
−
−
−−

−
−

Vb−→

−
−−
−
− a
−
−−

−
−

−
−− a

−
−−

−
k
−

Vb−→

−
−−

−
−−

−
a
− k

Figure 1. When r̃ 6= r. Left: (r̃, c+ 1) is a new cell; Right: (r̃, c+ 1) is an existing cell.

ℓ
∗
−
− − a

Vb−→ −
−−

ℓ
∗
a

ℓ
∗
−
− − a

−
−
k

Vb−→
−
−−

−
−
ℓ
∗
a k

Figure 2. When r̃ = r. Left: (r, c + 1) is a new cell; Right: (r, c + 1) is an existing cell.

Lemma 3.3. The map Vb is well-defined. More precisely, for T ∈ HVT we have Vb(T) ∈ HVT.

Proof. It suffices to check that Vb preserves the semistandardness condition of both the entire hook-
valued tableau and the filling within each cell. We break into two cases depending on whether
Step (4)a or (4)b in Definition 3.2 is applied.

Case 1: Assume Step (4)a is applied. To verify semistandardness within each cell, it suffices
to check cells (r, c) and (r̃, c+1). The semistandardness within cell (r, c) is clearly preserved
as the only change to the hook-shaped tableau in cell (r, c) is that an entry was removed
from AT (r, c). We now check the semistandardness condition within cell (r̃, c+1). We have
that Vb either created the cell (r̃, c+1) and inserted the number a in it or Vb replaced k with
a and appended k to the arm of cell (r̃, c+1). In both cases, the tableau in cell (r̃, c+1) is a
semistandard hook-shaped tableau. In the second case this is true since k is weakly greater
than HT (r̃, c+ 1) and k is the smallest number weakly greater than a in column c+ 1.

We now check the semistandardness of the entire tableau. Note that it suffices to check
the semistandardness in row r̃ and column c+ 1. Since r̃ < r, the semistandardness in row
r̃ is preserved as a is larger than every number in (r̃, c) and k remains in the same cell.
Also, the semistandardness in column c + 1 is preserved as k is chosen to be the smallest
number in column c+ 1 that is weakly greater than a.

Case 2: Assume Step (4)b is applied. The semistandardness within cell (r, c) is clearly pre-
served as the only change to (r, c) is that entries from LT (r, c) and AT (r, c) are removed.
We now check the semistandardness condition within cell (r, c + 1). If (a, ℓ] ∩ LT (r, c) = ∅,

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 7

then a is weakly larger than all elements of (r, c). In this case, the semistandardness within
cell (r, c + 1) follows from the argument in Case 1. If (a, ℓ] ∩ LT (r, c) 6= ∅, then a is not
weakly larger than all elements of (r, c). After applying Vb the semistandardness condition
in the leg of (r, c + 1) will still hold as a < x < z for all x ∈ (a, ℓ] ∩ LT (r, c), where z is
the smallest value in LT (r, c + 1). Similarly, the semistandardness condition in the arm of
(r, c+1) holds as a < k or k is the empty character. Thus, the semistandardness condition
in each cell is preserved. The semistandardness of row r is preserved as all numbers strictly
greater than a in (r, c) are moved to (r, c+1) along with a. The semistandardness condition
within column c+ 1 is preserved as every number in (r + 1, c+ 1) is strictly greater than ℓ
and every number in (r − 1, c+ 1) is strictly less than a.

�

Definition 3.4. The uncrowding insertion V : HVT → HVT is defined as V(T) = Vd
b (T), where the

integer d > 1 is minimal such that shape(Vd
b (T))/shape(V

d−1
b (T)) 6= ∅ or Vd

b (T) = Vd−1
b (T).

A column-flagged increasing tableau is a tableau whose transpose is a flagged increasing tableau.
Let F̂ denote the set of all column-flagged increasing tableaux. Let F̂(µ/λ) denote the set of all
column-flagged increasing tableaux of shape µ/λ.

Definition 3.5. Let T ∈ HVT(λ) with arm excess α. The uncrowding map

U : HVT(λ) →
⊔

µ⊇λ

SVT(µ)× F̂(µ/λ)

is defined by the following algorithm:

(1) Let P0 = T and let Q0 be the column-flagged increasing tableau of shape λ/λ.
(2) For 1 6 i 6 α, let Pi+1 = V(Pi). Let c be the index of the rightmost column of Pi containing

a cell with nonzero arm excess and let c̃ be the column index of the cell shape(Pi+1)/shape(Pi).
Then Qi+1 is obtained from Qi by appending the cell shape(Pi+1)/shape(Pi) to Qi and filling
this cell with c̃− c.

Define U(T) = (P (T), Q(T)) := (Pα, Qα).

Example 3.6. Let T be the hook-valued tableau

8
67
5
4
233 66

1
2
11

7
5

Then, we obtain the following sequence of tableaux V i
b(T) for 0 6 i 6 2 = d when computing the

first uncrowding insertion:

8
67
5
4
233 66

1
2
11

7
5

→

8
67
5
4
233 6

1
2
11

6
57

→

8
67
5
4
233 6

1
2
11

6
5 7

= V(T).

8 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

Continuing with the remaining uncrowding insertions, we obtain the following sequences of tableaux
for the uncrowding map:

8
67
5
4
233 66

1
2
11

7
5

→

8
67
5
4
233 6

1
2
11

6
5 7

→

8
67
5
4
233 6

1 1
2
1

6
5 7

→

6
8
7

5
4
233 6

1 1
2
1

6
5 7

→

6
8
7

23

5
4
3 6

1 1
2
1

6
5 7

→

6
8
7

2 3

5
4
3

1 1
2
1

6
5 6 7

= P (T),

→

2

→

2 3

→

1

2 3

→

1

2

2 3

→

1

2

2 3 5

= Q(T).

Corollary 3.7. Let T ∈ HVT. Then P (T) is a set-valued tableau.

Proof. By Lemma 3.3 and Definition 3.4, we have that V(T) is a hook-valued tableau. Note that
if the arm excess of T is nonzero, then the arm excess of V(T) is one less than that of T . Since
P (T) = Vα(T), where α is the arm excess of T , we have that the arm excess of P (T) is zero. Thus,
P (T) is a set-valued tableau. �

Definition 3.8. Let T ∈ HVT and let d be minimal such that V(T) = Vd
b (T). The insertion path

p of T → V(T) is defined as follows:

• If d = 0, set p = ∅.
• Otherwise, let (r0, c0) be the rightmost and topmost cell of T containing a cell with nonzero
arm excess. For all 1 6 j 6 d, let cj = c0 + j and let rj = r̃ be r̃ in Definition 3.2 when Vb

is applied to Vj−1
b (T). Set p = ((r0, c0), (r1, c1), . . . , (rd, cd)).

Lemma 3.9. Let T ∈ HVT. Then Q(T) is a column-flagged increasing tableau.

Proof. By construction, the positive integer entries in column i of Q(T) are at most i−1. Let m be
the smallest nonnegative integer such that Vm(T) = P (T). Let pi = ((ri0, c

i
0), (r

i
1, c

i
1), . . . , (r

i
di
, cidi))

for 0 6 i < m be the insertion path of V i(T) → V i+1(T). Since ci+1
0 6 ci0 for all 0 6 i < m, the

entries in each row of Q(T) are strictly increasing. To check that the entries in each column of
Q(T) are strictly increasing, it suffices to show that if ci+1

0 = ci0 then pi+1 lies weakly below pi.

In other words, it suffices to check that ci+1
0 = ci0 implies that ri+1

j 6 rij for all 0 6 j 6 di. We

prove this by induction on j. Note that ri+1
0 6 ri0 by the definition of U . Assume by induction

that ri+1
j 6 rij . This implies that the a when applying Vb to Vj

b (V
i(T)) is weakly smaller than the

a when applying Vb to Vj
b (V

i−1(T)). Thus, we must have ri+1
j+1 6 rij+1. �

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 9

3.3. Properties of the uncrowding map. Let T be a hook-valued tableau. Define Ri(T) as
the induced subword of R(T) consisting only of the letters i and i+ 1. In the next lemma, we use
the same notation as in Definition 3.2. Furthermore, two words are Knuth equivalent if one can be
transformed to the other by a sequence of Knuth equivalences on three consecutive letters

xzy ≡ zxy for x 6 y < z, yxz ≡ yzx for x < y 6 z.

Lemma 3.10. For T ∈ HVT, Ri(T) = Ri(Vb(T)) unless T satisfies one of the following three
conditions:

(a) a = i or a = i+ 1 and column c+ 1 contains both an i and an i+ 1,
(b) r̃ = r, i ∈ (a, ℓ] ∩ LT (r, c), k = i, and column c+ 1 contains an i+ 1,
(c) r̃ = r, a = i, i+ 1 ∈ (a, ℓ] ∩ LT (r, c), and (r, c) contains another i besides a.

Moreover, Ri(T) is Knuth equivalent to Ri(Vb(T)).

Proof. Let Ri(T) = r1r2 . . . rm. We break into cases based on the value of a.

Case 1: Assume a 6= i, i+ 1.
Assume Step (4)a is applied by Vb. If k 6= i, i + 1, then Ri(T) = Ri(Vb(T)) as the position of all
letters i and i + 1 remains the same. Let k = i. We have that k is the only i in column c + 1.
Hence, when k gets bumped from LT (r̃, c + 1) and appended to AT (r̃, c + 1), the relative position
of k to the other letters i and i + 1 in Ri(T) does not change. Thus, Ri(T) = Ri(Vb(T)). Let
k = i + 1. Note that column c + 1 cannot have a cell containing an i as k is the smallest number
weakly greater than a. Hence, moving k from LT (r̃, c + 1) to AT (r̃, c + 1) will not change Ri(T).
Therefore, we once again have that Ri(T) = Ri(Vb(T)).

Assume Step (4)b is applied by Vb. Consider the subcase when (a, ℓ]∩ LT (r, c) = ∅. By a similar
argument to the previous paragraph, we have that Ri(T) = Ri(Vb(T)). Next, consider the subcase
when i+ 1 ∈ (a, ℓ] ∩ LT (r, c). This implies that a < i and the only time i+ 1 occurs in column c is
in LT (r, c). Note that if an i exists in column c, it must be contained in LT (r, c). We also have that
k > i + 1 or k is the empty character and no cell in column c + 1 contains an i. Thus, removing
(a, ℓ] ∩ LT (r, c) from LT (r, c), replacing k with (a, ℓ] ∩ LT (r, c) in LT (r, c + 1), and appending k to
AT (r, c + 1) does not change Ri(T). Therefore Ri(T) = Ri(Vb(T)). Let i ∈ (a, ℓ] ∩ LT (r, c) and
i+ 1 6∈ (a, ℓ] ∩ LT (r, c). Note that the only place i+ 1 can occur in column c is as HT (r+ 1, c) and
the only place i can occur in column c is in LT (r, c). This implies that removing (a, ℓ] ∩ LT (r, c)
from LT (r, c), replacing k with (a, ℓ] ∩ LT (r, c) in LT (r, c + 1) and appending k to AT (r, c + 1) will
not change Ri(T) unless both i+1 and i show up in column c+1. This can only occur when k = i
which implies that Ri(T) = r1 . . . i i+1 k . . . rm and Ri(Vb(T)) = r1 . . . i+1 i k . . . rm. We see that
Ri(T) and Ri(Vb(T)) only differ by a Knuth relation implying they are Knuth equivalent. Assume
that i, i+1 6∈ (a, ℓ]∩LT (r, c) 6= ∅. If a > i+1 the positions of all letters i and i+1 remain the same
after Vb is applied. If a < i, then the positions of all letters i and i+1 also remain the same unless
k = i or k = i+1. In both of these special subcases, it can be checked that still Ri(T) = Ri(Vb(T)).

Case 2: Assume a = i.
Assume Step (4)a is applied by Vb. If column c + 1 does not contain both an i and an i + 1,
then we have Ri(T) = Ri(Vb(T)). However, if both an i and an i + 1 are in column c + 1, then
Ri(T) = r1 . . . i i+ 1 i . . . rm and Ri(Vb(T)) = r1 . . . i+ 1 i i . . . rm which are Knuth equivalent.

Assume Step (4)b is applied by Vb. Consider the subcase when (a, ℓ]∩ LT (r, c) = ∅. By a similar
argument to the previous paragraph, we have that Ri(T) = Ri(Vb(T)) unless both an i and an
i+ 1 are in column c+ 1 in which case Ri(T) and Ri(Vb(T)) are only Knuth equivalent. Consider
the subcase given by i + 1 ∈ (a, ℓ] ∩ LT (r, c). Note that no cell in column c + 1 can contain an i,
the only cell that could contain an i+ 1 in column c+ 1 is (r, c + 1), and the only cell containing
letters i or i + 1 in column c is (r, c). This implies that it suffices to look at the changes to (r, c)
and (r, c + 1). We see that Ri(T) = r1 . . . i + 1 i . . . i a

︸ ︷︷ ︸
γ

. . . rm and Ri(Vb(T)) = r1 . . . i . . . i︸ ︷︷ ︸

γ−1

i + 1 a

10 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

where γ > 1 is the number of letters i in cell (r, c) including a. We see that Ri(T) and Ri(Vb(T))
are Knuth equivalent. Consider the subcase when i+1 6∈ (a, ℓ]∩ LT (r, c) 6= ∅. We have that both i
and i+ 1 cannot be in a cell in column c + 1 and an i+ 1 cannot be in column c. Thus applying
Vb does not change Ri(T) giving us that Ri(T) = Ri(Vb(T)).

Case 3: Assume a = i+ 1.
Assume Step (4)a is applied by Vb. If column c + 1 does not contain both i and i + 1, then
we have that Ri(T) = Ri(Vb(T)). However, if both i and i + 1 occur in column c + 1, then
Ri(T) = r1 . . . i+1 i+1 i . . . rm and Ri(Vb(T)) = r1 . . . i+1 i i+1 . . . rm which are Knuth equivalent.

Assume Step (4)b is applied by Vb. If (a, ℓ] ∩ LT (r, c) = ∅, then Ri(T) = Ri(Vb(T)) unless both
i and i+ 1 occur in column c+ 1. In this exceptional case, we have that Ri(T) and Ri(Vb(T)) are
only Knuth equivalent by a similar argument to the previous paragraph. If (a, ℓ] ∩ LT (r, c) 6= ∅,
then k > i + 1 or k is the empty character and no cell in column c + 1 contains an i + 1. Thus
applying Vb does not change Ri(T) giving us that Ri(T) = Ri(Vb(T)). �

Remark 3.11. In general, the full reading words are not Knuth equivalent under the uncrowding
map. For example, take the following hook-valued tableau T , which uncrowds to a set-valued tableau
S:

T =

4
3
2
12

5
4

→ 2
1

4
3
2

5
4

= S.

The reading word changed from 4321254 to 2143254, which are not Knuth equivalent.

Proposition 3.12. Let T ∈ HVT.

(1) If fi(T) = 0, then fi(P (T)) = 0.
(2) If ei(T) = 0, then ei(P (T)) = 0.

Proof. Since P (T) = Vs
b (T) for some s ∈ N and Knuth equivalence is transitive, we have that Ri(T)

is Knuth equivalent to Ri(P (T)) by the previous lemma. As fi(T) = 0, we have that every i in
Ri(T) is i-paired with an i + 1 to its left. This property is preserved under Knuth equivalence
giving us that fi(P (T)) = 0. The same reasoning implies (2). �

Lemma 3.13. Let T ∈ HVT.

(1) If fi(T) 6= 0, then fi(Vb(T)) = Vb(fi(T)) 6= 0.
(2) If ei(T) 6= 0, then ei(Vb(T)) = Vb(ei(T)) 6= 0.

Proof. We are going to prove (1). Part (2) follows since ei and fi are partial inverses.
Let a, ℓ, k, r, c, and r̃ be defined as in Definition 3.2 when Vb is applied to T . Similarly,

define a′, ℓ′, k′, r′, c′, and r̃′ for when Vb is applied to fi(T). Let Ri(T) = r1r2 . . . rm and
Ri(Vb(T)) = r′1r

′
2 . . . r

′
m be the corresponding reading words. Let (r̂, ĉ) denote the cell containing

the rightmost unpaired i in T , where r̂ and ĉ are its row and column index respectively. We break
into cases based on the position of (r̂, ĉ) to (r, c).

Case 1: Assume (r̂, ĉ) = (r, c). We break into subcases based on how fi acts on T .
• Assume that (r + 1, c) contains an i+ 1.
As every entry in (r, c) must be strictly smaller than the values in (r + 1, c) and (r, c)
must contain an i, we have that ℓ = i or a = i. If ℓ = i, then ℓ is i-paired with the
i+1 in (r+1, c). Hence a is always equal to i and a must correspond to the rightmost
unpaired i of T . Thus, fi acts on T by removing a from (r, c) and appending an i+1 to
AT (r + 1, c). Note that (a, ℓ] ∩ LT (r, c) = ∅ implying Vb acts on T by removing a from
AT (r, c), replacing k in (r̃, c+ 1) with a, and appending k to AT (r̃, c+ 1) where r̃ 6 r.
We break into subcases based upon where the values of i and i+1 are in column c+1
utilizing the fact that column c+1 cannot contain an i without an i+1 (since the arm

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 11

excess of cell (r + 1, c) is zero and cell (r, c) contains the rightmost unpaired i).

Assume that column c+1 does not contain an i. Since a corresponds to the rightmost
unpaired i in T and column c + 1 does not contain an i, we have that the rightmost
unpaired i in Vb(T) is precisely a in the cell (r̃, c+1). Note that (r̃+1, c+1) does not
contain an i+ 1 in Vb(T) as k > i+ 1 or k is the empty character. Similarly, we have
that (r̃, c+ 2) does not contain an i. Thus, fi acts on Vb(T) by changing a to an i+ 1
in (r̃, c + 1). We now consider Vb(fi(T)). When applying Vb to fi(T), a

′ is precisely
the i + 1 appended to AT (r + 1, c) and k′ is the same as k. Since r̃′ = r̃ < r + 1, we
have that Vb acts on fi(T) by removing i+1 from Afi(T)(r+1, c), replacing k with an
i+1 in (r̃, c+1), and appending k to Afi(T)(r̃, c+1). We see that fi(Vb(T)) = Vb(fi(T)).

Assume that column c+ 1 contains both an i and an i+ 1 in the same cell. Note that
this implies that k = i. Since a is the rightmost unpaired i in T and the only cell in
column c + 1 that contained an i + 1 or an i is (r̃, c + 1), we have that the rightmost
unpaired i in Vb(T) is the i appended to AT (r̃, c+1). Since (r̃, c+1) contains an i+1,
we have that (r̃ + 1, c + 1) cannot contain an i + 1 and (r̃, c + 2) cannot contain an
i. Thus, fi acts on Vb(T) by changing the i in AVb(T)(r̃, c + 1) to an i + 1. We now

consider Vb(fi(T)). When applying Vb to fi(T), a
′ is precisely the i + 1 appended to

AT (r + 1, c) and k′ is the i + 1 in (r̃, c + 1). Since r̃′ = r̃ < r + 1, we have that Vb

acts on fi(T) by removing i+ 1 from Afi(T)(r + 1, c), replacing i+ 1 in (r̃, c+ 1) with
the i+ 1 from Afi(T)(r + 1, c), and appending an i+ 1 to Afi(T)(r̃, c+ 1). We see that
fi(Vb(T)) = Vb(fi(T)).

Assume that column c+1 contains both an i and an i+1 in different cells. Note that
this implies that k = i. Since a corresponds to the rightmost unpaired i in Ri(T) and
the only i+1 and i in column c+1 are in cells (r̃+1, c+1) and (r̃, c+1) respectively,
we have that the rightmost unpaired i in Ri(Vb(T)) corresponds to the i appended
to AT (r̃, c + 1). By assumption, we have that (r̃ + 1, c + 1) contains an i + 1. Thus,
fi acts on Vb(T) by removing the i from AVb(T)(r̃, c + 1) and appending an i + 1 to

AVb(T)(r̃ + 1, c + 1). We now consider Vb(fi(T)). When applying Vb to fi(T), a
′ is

precisely the i + 1 appended to AT (r + 1, c) and k′ is the i + 1 in cell (r̃ + 1, c + 1).
If r̃′ = r + 1, then i + 1 is weakly larger than every value in (r + 1, c). Thus, either
(a′, ℓ′]∩ Lfi(T)(r+1, c) = ∅ or r̃′ < r+1. This implies that Vb acts on fi(T) by remov-
ing i+ 1 from Afi(T)(r + 1, c), replacing the i+ 1 in Hfi(T)(r̃ + 1, c+ 1) with the i+ 1
removed from Afi(T)(r + 1, c), and appending an i + 1 to Afi(T)(r̃ + 1, c + 1). We see
that fi(Vb(T)) = Vb(fi(T)).

• Assume that (r + 1, c) does not contain an i+ 1 and (r, c + 1) contains an i.
Under these assumptions, we have that no cell in column c can contain an i+ 1. This
implies that column c + 1 must contain an i + 1. The cell (r + 1, c + 1) cannot have
an i + 1 as this would force (r + 1, c) to also have an i + 1. Thus, (r, c + 1) must
contain an i+ 1 in its leg. By our assumption we have that fi acts on T by removing
the i from (r, c + 1) and appending an i + 1 to LT (r, c). We break into subcases ac-
cording to where the rightmost unpaired i sits inside the cell (r, c). If the rightmost
unpaired i is in HT (r, c), then a > i which would either contradict the hook entry
being the rightmost unpaired i or cell (r, c+1) containing an i. Thus, we only need to
consider the subcases where the rightmost unpaired i is either in the leg or arm of (r, c).

12 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

Assume that the rightmost unpaired i is in LT (r, c) for this entire paragraph. This
implies that ℓ = i. Since (r, c + 1) contains an i, we have that a < i. If r̃ < r, then Vb

acts on T by removing a from (r, c), replacing k with a in (r̃, c+1), and appending k to
AT (r̃, c+1). Since a, k < i, we have that Vb does not change position of the rightmost
unpaired i. Note that (r + 1, c) still does not contain an i + 1 while (r, c + 1) still
contains an i. Thus, fi acts on Vb(T) by removing the i from (r, c+ 1) and appending
an i + 1 to LVb(T)(r, c). We now consider Vb(fi(T)). Note that (r′, c′), a′, and k′ are
the same as (r, c), a, and k respectively. Thus, Vb acts in the same way as before.
This gives us that fi(Vb(T)) = Vb(fi(T)). If r̃ = r, then k is precisely the i in cell
(r, c + 1). We see that Vb acts on T by removing (a, i] ∩ LT (r, c) from LT (r, c) and a
from AT (r, c), replacing k with ((a, i] ∩ LT (r, c))∪{a}, and appending k to AT (r+1, c).
Since there is an i + 1 in LVb(T)(r, c + 1), we see that the rightmost unpaired i in
Vb(T) is precisely k in AVb(T)(r, c + 1). Note that (r + 1, c + 1) does not contain an
i + 1 and (r, c + 2) does not contain an i because (r, c + 1) contains an i + 1. Thus,
fi acts on Vb(T) by changing the i in AVb(T)(r, c + 1) to an i + 1. We now consider
Vb(fi(T)). We have that a′ is the same as a and k′ is the i + 1 in (r, c + 1). We have
(a′, ℓ′]∩Lfi(T)(r

′, c′) = {i+1}∪ ((a, i]∩LT (r, c)). This implies that Vb acts on fi(T) by
removing {i+ 1} ∪ ((a, i] ∩ LT (r, c)) from Lfi(T)(r, c) and a from Afi(T)(r, c), replacing
i + 1 with {i + 1} ∪ ((a, i] ∩ LT (r, c)) ∪ {a} in (r, c + 1), and appending an i + 1 to
Afi(T)(r, c+ 1). We see that fi(Vb(T)) = Vb(fi(T)).

Assume that the rightmost unpaired i is in AT (r, c). This implies that a = i and forces
a to correspond to the rightmost unpaired i. We also have that k is the i in (r, c+ 1).
Since i is weakly greater than all values in (r, c), we have that (a, ℓ]∩LT (r, c) = ∅. Thus,
Vb acts on T by removing a from (r, c), replacing k with a in (r, c+1), and appending k
to AT (r, c+1). Since a was the rightmost unpaired i in T and cell (r, c+1) contains an
i+1 in its leg, we have that the rightmost unpaired i in Vb(T) is k in AVb(T)(r, c+1). As
i+1 is in (r, c+1), we have that (r+1, c+1) cannot contain an i+1 and (r, c+2) cannot
contain an i. This implies that fi acts on Vb(T) by changing the i in AVb(T)(r, c+1) to

an i+ 1. We now consider Vb(fi(T)). We have that a′ is the same as a and k′ is equal
to the i + 1 in (r, c + 1). Note that (a′, ℓ′] ∩ LT (r, c) = {i + 1}. This implies that Vb

acts on fi(T) by removing i+ 1 from Lfi(T)(r, c) and a from Afi(T)(r, c), replacing the
i + 1 in (r, c + 1) with {i + 1, a}, and appending an i + 1 to Afi(T)(r, c + 1). We see
that fi(Vb(T)) = Vb(fi(T)).

• Assume that (r + 1, c) does not contain an i+ 1 and (r, c + 1) does not contain an i.
We break into subcases based on where the rightmost unpaired i sits inside (r, c).

Assume that the rightmost unpaired i is in the hook entry of (r, c) for the remainder
of this paragraph. Note that this implies that a > i and the rightmost unpaired i in
Vb(T) is still the hook entry of (r, c). We see that Vb does not insert an i + 1 into
(r+1, c) nor an i into (r, c+1). This implies that fi acts on T and Vb(T) in the same
way by changing the hook entry of (r, c) into an i+1. Next, we note that (r′, c′), a′, k′,
and (a′, ℓ′] ∩ Lfi(T)(r

′, c′) are the same as (r, c), a, k, and (a, ℓ] ∩ LT (r, c) respectively.
Thus, Vb acts on T and fi(T) in the same manner without affecting the hook entry
of (r, c). Therefore, we have that the actions of fi and Vb on T are independent and
fi(Vb(T)) = Vb(fi(T)).

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 13

Assume that the rightmost unpaired i is in the leg of (r, c) for the remainder of this
paragraph. This implies that a 6= i. First, we assume that a > i or r̃ < r. Under
this extra assumption, we observe that the action of Vb does not change the position
of the rightmost unpaired i. Also, Vb does not insert an i + 1 into (r + 1, c) nor an
i into (r, c + 1). We see that fi acts on T and Vb(T) in the same way by changing
the i in the leg of (r, c) into an i + 1. Next, we note that (r′, c′), a′, and k′ are the
same as (r, c), a, and k respectively. If a > i, we have that a > i + 1 implying that
(a′, ℓ′]∩Lfi(T)(r

′, c′) = (a, ℓ]∩LT (r, c). Thus, either (a
′, ℓ′]∩Lfi(T)(r

′, c′) = (a, ℓ]∩LT (r, c)
or r̃ < r. This implies that Vb acts on T and fi(T) in the same manner and does not
affect the i or i+1 in the leg of (r, c). Therefore, we have that the actions of fi and Vb

on T are independent and fi(Vb(T)) = Vb(fi(T)). Next, assume that r̃ = r and a < i.
This implies that (a, ℓ] ∩ LT (r, c) 6= ∅ as i ∈ (a, ℓ] ∩ LT (r, c). We have that Vb acts
on T by removing (a, ℓ] ∩ LT (r, c) from LT (r, c) and a from AT (r, c), replacing k with
((a, l] ∩ LT (r, c)) ∪ {a} in (r, c + 1), and appending k to AT (r, c + 1). By assumption,
there was no i in (r, c+1) to begin with. Thus, we have that the rightmost unpaired i
of Vb(T) is the i in (r, c+1) that replaced k. Since k > i+1 or k is the empty character,
we have that the cell (r + 1, c + 1) does not contain an i + 1 and the cell (r, c + 2)
does not contain an i. Hence, fi acts on Vb(T) by replacing the i in LVb(T)(r, c + 1)
with an i+1. We now consider Vb(fi(T)). We have that fi acts on T by changing the
i in LT (r, c) to an i + 1. We see that a′ and k′ are the same as a and k respectively.
Since i > a, we have that i + 1 > a or in other words i + 1 ∈ (a′, ℓ′] ∩ LT (r, c). This
implies that (a′, ℓ′] ∩ Lfi(T)(r

′, c′) = (((a′, ℓ′] ∩ LT (r, c)) ∪ {i + 1}) − {i}. We have Vb

acts on fi(T) by removing (a′, ℓ′] ∩ Lfi(T)(r, c) from Lfi(T)(r, c) and a from Afi(T)(r, c),
replacing k with (a′, ℓ′] ∩ Lfi(T)(r, c) in (r, c + 1), and appending k to Afi(T)(r, c + 1).
We see that fi(Vb(T)) = Vb(fi(T)).

Assume that the rightmost unpaired i is in AT (r, c) and r̃ < r or (a, ℓ]∩LT (r, c) = ∅ for
this entire paragraph. Under this assumption, fi acts on T by changing the rightmost i
in the arm of (r, c) to an i+1. Also, Vb acts on T by removing a from AT (r, c), replacing
k in (r̃, c+ 1) with a, and appending k to AT (r̃, c + 1). First, we make the additional
assumption that i < a. Since we assume the rightmost unpaired i is in the arm of (r, c)
and i < a, we have the rightmost unpaired i in Vb(T) is in the same position as in T .
Note that the cell (r + 1, c) still does not contain an i + 1 and the cell (r, c + 1) still
does not contain an i. Thus, we have that fi acts on Vb(T) by changing the rightmost
i in AVb(r, c) into an i + 1. We now consider Vb(fi(T)). We see that a′ and k′ are
the same as a and k respectively. This implies that Vb acts on fi(T) by removing a
from (r, c), replacing k with a in (r̃, c), and appending k to Afi(T)(r̃, c + 1). We see
that fi(Vb(T)) = Vb(fi(T)). Next, we make the assumption that a = i and column
c + 1 does not contain both an i and an i + 1. We have that the rightmost unpaired
i in Vb(T) is precisely the i that replaced k in (r̃, c + 1). We also have that k > i + 1
or k is the empty character implying that the cell (r̃ + 1, c + 1) does not contain an
i + 1 and the cell (r̃, c + 2) does not contain an i. This implies that fi acts on Vb(T)
by changing the i in L+Vb(T)(r̃, c + 1) to an i + 1. We now consider Vb(fi(T)). We see

that a′ is the i + 1 in (r, c) created by appying fi and k′ is the same as k. Thus, Vb

acts on fi(T) by removing the i+ 1 from (r, c), replacing k with an i+ 1 in (r̃, c), and
appending k to Afi(T)(r̃, c + 1). We see that fi(Vb(T)) = Vb(fi(T)). Next, we assume
that a = i and column c + 1 contains both an i and an i + 1 in the same cell. Note
that this implies that k = i. Since a corresponded to the rightmost unpaired i in T
and the only cell in column c + 1 that contains an i + 1 or an i is (r̃, c + 1), we have

14 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

that the rightmost unpaired i in Vb(T) corresponds to the i appended to AT (r̃, c+ 1).
Since (r̃, c + 1) contains an i+ 1 in Vb(T), we have that (r̃ + 1, c + 1) cannot contain
an i + 1 and (r̃, c + 2) cannot contain an i. Thus, fi acts on Vb(T) by changing the i
in AVb(T)(r̃, c+ 1) to an i+ 1. We now consider Vb(fi(T)). We see that a′ is the i+ 1
in (r, c) obtained after applying fi and k′ is the i + 1 in cell (r̃, c + 1). This implies
that Vb acts on fi(T) by removing the i + 1 from (r, c), replacing k′ with an i + 1 in
(r̃, c + 1), and appending k′ to Afi(T)(r̃, c + 1). We see that fi(Vb(T)) = Vb(fi(T)).
Finally, we make the assumption that a = i and column c+ 1 contains both an i and
an i + 1 but in different cells. We once again have that k = i, but now we have that
(r̃ + 1, c + 1) contains an i + 1. We have that the rightmost unpaired i in Vb(T) is
the i that was appended to AT (r̃, c + 1). Since (r̃ + 1, c + 1) contains an i + 1, we
have that fi acts on Vb(T) by removing the i from AVb(T)(r̃, c + 1) and appending an
i + 1 to AVb(T)(r̃ + 1, c + 1). We now consider Vb(fi(T)). We see that a′ is the i + 1
in (r, c) obtained after applying fi and k′ the i + 1 in cell (r̃ + 1, c + 1). This implies
that Vb acts on fi(T) by removing the i + 1 from (r, c), replacing k′ with an i + 1 in
(r̃+1, c+1), and appending k′ to Afi(T)(r̃+1, c+1). We see that fi(Vb(T)) = Vb(fi(T)).

Assume that the rightmost unpaired i is in the arm of (r, c), r̃ = r, and (a, ℓ]∩LT (r, c) 6=
∅ for this entire paragraph. First, we make the additional assumption that i < a. This
gives us that Vb(T) is attained from T by removing (a, ℓ]∩ LT (r, c) from LT (r, c) and a
from AT (r, c), replacing k in cell (r, c+ 1) with ((a, ℓ] ∩ LT (r, c)) ∪ {a}, and appending
k to AT (r, c + 1). Since k, a > i, we have that the rightmost unpaired i in Vb(T)
remains the same as in T . We also have that the cell (r + 1, c) does not contain an
i+ 1 and the cell (r, c + 1) does not contain an i. Thus, fi acts on Vb(T) by changing
the rightmost i in AVb(T)(r, c) to an i + 1. We now consider Vb(fi(T)). We have that

fi acts on T by changing the rightmost i in AT (r, c) to an i + 1. We see that a′, k′,
and (a′, l′] ∩ Lfi(T)(r

′, c′) are the same as a, k, and (a, ℓ] ∩ LT (r, c) respectively. This
implies that Vb acts on fi(T) by removing (a, ℓ] ∩ LT (r, c) from Lfi(T)(r, c) and a from
Afi(T)(r, c), replacing k in cell (r, c + 1) with ((a, l] ∩ LT (r, c)) ∪ {a}, and appending k
to Afi(T)(r, c+1). We see that fi(Vb(T)) = Vb(fi(T)). Next, we assume that a = i and
(r, c) contains an i+1. Since a = i, the i+1 in (r, c) must be in its leg. Also as a is the
rightmost unpaired i of T , we must have that (r, c) contains another i besides a. This
gives us that Vb(T) is attained from T by removing (a, ℓ]∩ LT (r, c) from LT (r, c) and a
from AT (r, c), replacing k in cell (r, c+ 1) with ((a, ℓ] ∩ LT (r, c)) ∪ {a}, and appending
k to AT (r, c+1). Note that the i inserted into (r, c+1) becomes i-paired while an i in
(r, c) becomes unpaired. This implies that the rightmost unpaired i in Vb(T) still sits
in the cell (r, c). We see that the cell (r+1, c) still does not contain an i+1; however,
the cell (r, c + 1) now contains an i. This implies that fi acts on Vb(T) by removing
the i from the cell (r, c + 1) and appending an i + 1 to LVb(T)(r, c). We now consider

Vb(fi(T)). We have that fi acts on T by changing a into an i+1. We have that a′ is the
i+1 obtained from applying fi and k′ is the same as k. We see that (a′, ℓ′]∩Lfi(T)(r

′, c′)
is the same as (a, ℓ] ∩ LT (r, c) excluding the i + 1. We have that Vb acts on fi(T) by
removing (a′, ℓ′] ∩ Lfi(T)(r

′, c′) from Lfi(T)(r, c) and i + 1 from Afi(T)(r, c), leaving the
i + 1 in Lfi(T)(r, c), replacing k in (r, c + 1) with ((a′, ℓ′] ∩ Lfi(T)(r

′, c′)) ∪ {a′}, and
appending k to Afi(T)(r, c+1). We see that fi(Vb(T)) = Vb(fi(T)). Finally, we assume
that a = i and i + 1 is not in the cell (r, c). This gives us that Vb(T) is attained
from T by removing (a, ℓ] ∩ LT (r, c) from LT (r, c) and a from AT (r, c), replacing k in
cell (r, c + 1) with ((a, ℓ] ∩ LT (r, c)) ∪ {a}, and appending k to AT (r, c + 1). Since
k > j > i + 1 for all j ∈ (a, ℓ] ∩ LT (r, c), we have that the i inserted into the cell

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 15

(r, c+1) is the rightmost unpaired i in Vb(T). Note that the cell (r+1, c+1) does not
contain an i + 1 and the cell (r, c + 2) does not contain an i. Thus, fi acts on Vb(T)
by changing the i in (r, c + 1) to an i + 1. We now consider Vb(fi(T)). We have that
fi acts on T by changing a into an i + 1. We have that a′ is the i + 1 obtained from
applying fi and k′ is the same as k. We see that (a′, ℓ′]∩Lfi(T)(r

′, c′) = (a, ℓ]∩LT (r, c).
We have that Vb acts on fi(T) by removing (a, ℓ] ∩ LT (r, c) from Lfi(T)(r, c) and i + 1

from Afi(T)(r, c), replacing k in (r, c + 1) with ((a, ℓ] ∩ LT (r, c)) ∪ {a′}, and appending
k to Afi(T)(r, c + 1). We see that fi(Vb(T)) = Vb(fi(T)).

Case 2: Assume that r̂ < r and ĉ = c.
Note that a > i. By Lemma 3.10 we have that Ri(T) = Ri(Vb(T)) unless a = i + 1 and
column c+1 contains both an i and an i+1. However, even in this special case, we see that
the rightmost unpaired i of Vb(T) is in the same position as the rightmost unpaired i of T .
We also see that Vb(T) does not change whether or not cell (r̂ + 1, c) contains an i+ 1 and
whether or not cell (r̂, c+1) contains an i. Thus, fi acts on the same i and in the same way
for both T and Vb(T). Since a > i, we have that k′ is the same as k. Note that the only
way for fi to affect the cell (r, c) in T is if r̂ = r − 1 and (r, c) contains an i+ 1. However,
even in this special case, we see that (r′, c′), a′, l′, and (a′, ℓ′]∩ Lfi(T)(r

′, c′) are the same as
(r, c), a, ℓ, and (a, ℓ] ∩ LT (r, c). Thus, Vb acts on T and fi(T) in the same way. Therefore,
we have that the actions of fi and Vb on T are independent and fi(Vb(T)) = Vb(fi(T)).

Case 3: Assume that ĉ < c.
Let ĩ denote the rightmost unpaired i of T . From the proof of Lemma 3.10, we have that
Vb does not change whether or not the i’s to the right of ĩ in Ri(T) are i-paired. Thus,
the rightmost unpaired i in Ri(T) and Ri(Vb(T)) are in the same position. As Vb does not
affect any column to the left of column c, we have that the rightmost unpaired i for Vb(T)
is in the same position as the rightmost unpaired i for T . Note that Vb also does not affect
whether or not cell (r̂ + 1, ĉ) contains an i + 1 and whether or not cell (r̂, ĉ + 1) contains
an i. Thus, fi acts on the rightmost unpaired i in T and Vb(T) in exactly the same way.
Next, we note that (r′, c′), a′, k′, and (a′, ℓ′] ∩ Lfi(T)(r

′, c′) are the same as (r, c), a, k, and
(a, ℓ] ∩ LT (r, c) respectively. Thus, Vb acts on T and fi(T) in the same way. Therefore, we
have that the actions of fi and Vb on T are independent and fi(Vb(T)) = Vb(fi(T)).

Case 4: Assume that r̂ 6 r and ĉ = c+ 1.
Under this assumption, we have that column c+ 1 does not contain an i+ 1 and a 6= i+ 1
since the cells in column c+ 1 do not contain any arms. We break into subcases.

• Assume that k 6= i. This implies that the rightmost unpaired i in Vb(T) is in the same
position as the rightmost unpaired i in T . We see that Vb does not change whether
or not cell (r̂ + 1, c + 1) contains an i + 1 and whether or not cell (r̂, c + 2) contains
an i. Thus, fi acts on the rightmost unpaired i in T and Vb(T) in exactly the same
way. We also observe that (r′, c′), a′, ℓ′, k′, and (a′, ℓ′] ∩ Lfi(T)(r

′, c′) are the same
as a, ℓ, k, and (a, ℓ] ∩ Lfi(T)(r, c) respectively. Thus, Vb acts on T and fi(T) in the
same way. Therefore, we have that the actions of fi and Vb on T are independent and
fi(Vb(T)) = Vb(fi(T)).

• Assume that k = i. We see that the rightmost unpaired i in Vb(T) is the i that was
appended to AT (r̂, c+1). Note that Vb does not change whether or not cell (r̂+1, c+1)
contains an i+1 and whether or not cell (r̂, c+2) contains an i. We first make the extra
assumption that (r̂, c+2) in T contains an i. This implies that fi acts on Vb(T) and T in
the same way by removing the i from the hook entry of (r̂, c+2) and appending an i+1
to the leg of (r̂, c+1). We also have that (r′, c′), a′, ℓ′, k′, and (a′, ℓ′]∩ Lfi(T)(r

′, c′) are
equal to (r, c), a, ℓ, k, and (a, ℓ]∩Lfi(T)(r, c) respectively. Thus, Vb acts on T and fi(T)
in the same way. Therefore, we have that the actions of fi and Vb on T are independent
and fi(Vb(T)) = Vb(fi(T)). We now assume that (r̂, c+2) does not contain an i. This

16 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

implies that fi acts on Vb(T) by changing the i in AVb(T)(r̂, c+ 1) to an i+ 1 and acts
on T similarly by changing the i in LVb(T)(r̂, c + 1) to an i + 1. Note that (r′, c′), a′,

ℓ′, and (a′, ℓ′]∩ Lfi(T)(r
′, c′) are equal to (r, c), a, ℓ, and (a, ℓ] ∩ Lfi(T)(r, c) respectively

while k′ is the i + 1 in Lfi(T)(r̂, c + 1). Thus, besides the value of the number that is
bumped from the leg of (r̂, c + 1) to its arm, we have Vb acts on T and fi(T) in the
same way. Looking at fi(Vb(T)) and Vb(fi(T)), we see that fi(Vb(T)) = Vb(fi(T)).

Case 5: Assume that r̂ > r and ĉ = c or c+ 1.
Under this assumption, we have that Vb does not change the cells (r̂, ĉ), (r̂ + 1, ĉ), and
(r̂, ĉ + 1). We also have that Ri(T) = Ri(Vb(T)) implying that the rightmost unpaired i
in Vb(T) is in the same position as the rightmost unpaired i in T . Thus, fi acts on the
rightmost unpaired i in Vb(T) and T in the same way. Note that i+1 cannot be in column
ĉ implying that fi can only make changes to the legs and hook entries of (r̂, ĉ) and (r̂, ĉ+1).
Since these changes only affect the legs and hook entries of cells outside of the possible cells
that Vb can change, we have that Vb acts on T and fi(T) in the same way. Therefore, we
have that the actions of fi and Vb on T are independent and fi(Vb(T)) = Vb(fi(T)).

Case 6: Assume that ĉ > c+ 2.
Let ĩ denote the rightmost unpaired i of T . From the proof of Lemma 3.10, we have that
Vb does not change whether or not the i + 1’s to the left of ĩ are i-paired. Thus, the
rightmost unpaired i in Ri(T) and Ri(Vb(T)) are in the same position. As Vb does not
affect any column to the right of column c + 1, we have that the rightmost unpaired i for
Vb(T) is in the same position as the rightmost unpaired i for T . Note that Vb also does
not affect whether or not cell (r̂ + 1, ĉ) contains an i+ 1 and whether or not cell (r̂, ĉ + 1)
contains an i. Since the cells that fi and Vb could change are different and the rightmost
unpaired i does not change, we have that the actions of fi and Vb on T are independent
and fi(Vb(T)) = Vb(fi(T)).

�

Theorem 3.14. Let T ∈ HVT.

(1) If fi(T) 6= 0, we have fi(P (T)) = P (fi(T)) and Q(T) = Q(fi(T)).
(2) If ei(T) 6= 0, we have ei(P (T)) = P (ei(T)) and Q(T) = Q(ei(T)).

Proof. Part (2) follows from part (1) since ei and fi are partial inverse. We prove part (1) here.
Let T ∈ HVT with arm excess α such that fi(T) 6= 0 for some i. Then fi(P (T)) = P (fi(T))

follows from Lemma 3.13, as P (T) is obtained by successive applications of V on T and each
application of V is a string of applications of Vb.

Since crystal operators do not change arm excess, we may employ the notation in Definition 3.5
and denote the pair of insertion and recording tableaux produced at the j-th step for 0 6 j 6 α of
the uncrowding map U for T and fi(T) as (Pj(T), Qj(T)) and (Pj(fi(T)), Qj(fi(T))), respectively.
As crystal operators do not change the shape of T , we have shape(Pj(fiT)) = shape(fi(Pj(T))) =
shape(Pj(T)) for all 0 6 j 6 α. Hence
(3.2)
shape(Pj+1(T))/shape(Pj(T)) = shape(Pj+1(fi(T)))/shape(Pj(fi(T))) for all 0 6 j 6 α− 1.

Next we show Qj(T) = Qj(fi(T)) for all 0 6 j 6 α by induction. When j = 0, Q0(T) =
Q0(fi(T)) since shape(P0(T)) = shape(P0(fi(T))) = shape(T).

Suppose Qj(T) = Qj(fi(T)) for a given j > 0. It suffices to show that the cells

shape(Qj+1(T))/shape(Qj(T)) = shape(Pj+1(T))/shape(Pj(T)) and

shape(Qj+1(fi(T)))/shape(Qj(fi(T))) = shape(Pj+1(fi(T)))/shape(Pj(fi(T)))

in Qj+1(T) and Qj+1(fi(T)) are at the same position with the same entry. By (3.2), the cells are
in the same position, say in column c̃. By Definition 2.5, fi does not move elements in the arm

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 17

to a different column, so the columns in which we start the uncrowding insertion V on Pj(T) and
Pj(fi(T)) are the same, say c, by Definition 3.5. Hence the cells shape(Qj+1(T))/shape(Qj(T))
and shape(Qj+1(fi(T)))/shape(Qj(fi(T))) are at the same position with entry c̃− c. The theorem
follows. �

Hawkes and Scrimshaw [HS20, Theorem 4.6] proved that HVTm(λ) is a Stembridge crystal by
checking the Stembridge axioms. This also follows directly from our analysis above.

Corollary 3.15. The crystal HVTm(λ) of Definition 2.5 is a Stembridge crystal of type Am−1.

Proof. According to [MPS21], SVTm(µ) is a Stembridge crystal of type Am−1. By Theorem 3.14,
the map

U : HVTm(λ) →
⊔

µ⊇λ

SVTm(µ)× F̂(µ/λ),

is a strict crystal morphism (see for example [BS17, Chapter 2]). The statement follows. �

3.4. Uncrowding map on multiset-valued tableaux. The uncrowding map on hook-valued
tableaux described above turns out to be a generalization of the uncrowding map on multiset-
valued tableaux by Hawkes and Scrimshaw [HS20, Section 3.2]. We will prove that this is indeed
the case in this section. Let us recall the definition of the uncrowding map in [HS20, Section 3.2].

Definition 3.16. Let T ∈ MVT(λ). The uncrowding map

Υ : MVT(λ) →
⊔

µ⊇λ

SSYT(µ)× F̂(µ/λ)

sends T to a pair of tableaux using the following algorithm:

(1) Set Uλ1+1 = ∅ and Fλ1+1 be the unique column-flagged increasing tableau of shape ∅/∅.
(2) Let 1 6 k 6 λ1 and assume that the pair (Uk+1, Fk+1) is defined. The pair (Uk, Fk) is

defined recursively from (Uk+1, Fk+1) using the following two steps:
(a) Define Uk as the RSK row insertion tableau from the word

R(Ck)R(Ck+1) · · ·R(Cλ1),

where Cj is the j-th column of T for every 1 6 j 6 λ1. In other words, if we denote
by T>k the tableau formed by the columns weakly to the right of the k-th column of T ,
Uk is obtained by performing the RSK row insertion using the column reading word of
T>k.

(b) Form the tableau Fk of shape shape(Uk)/shape(T>k) as follows. Shift Fk+1 by one
column to the right and fill the boxes in the same positions into Fk; for every unfilled
box in the shape shape(Uk)/shape(Uk+1), label each box in column i with entry i− 1.

Define Υ(T) = (U,F) := (U1, F1).

Example 3.17. Let T be the multiset-valued tableau

T =

45

233 345

1 11 4
.

18 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

Then, we obtain the following pairs of tableaux for the uncrowding map Υ:

(U4, F4) = (∅, ∅)

(U3, F3) =
(

4 ,
)

(U2, F2) =




3 5

1 1 4 4
,

1

2 3





(U1, F1) =










4 5

2 3 3 5

1 1 1 3 4 4

,
1

1 3

2 3 5










= (U,F) = Υ(T).

Proposition 3.18. Let T ∈ MVT(λ). Then U(T) = Υ(T). In other words, the uncrowding map as
defined in Definition 3.5 is equivalent to the uncrowding map of Definition 3.16 in [HS20, Section
3.2].

Proof. Recall from Definition 3.5, that the pair of uncrowding and recording tableaux for U(T) is
denoted by (P (T), Q(T)) = U(T). Similarly, let us denote (U(T), F (T)) := Υ(T).

Assume that S ∈ MVT(λ) is highest weight, that is, ei(S) = 0 for i > 1. By [HS20, Proposition
3.10], row i of S only contains the letter i. Thus its weight is some partition µ = (µ1, µ2, . . . , µℓ) if
λ = (λ1, λ2, . . . , λℓ). By Proposition 3.12 and Theorem 3.14, P (S) ∈ SSYT is highest weight. As
weights of tableaux are preserved under uncrowding, the weight of P (S) is equal to µ. By a similar
argument using [HS20, Theorem 3.17], U(S) ∈ SSYT is also highest weight with weight µ. Since
highest weight semistandard Young tableaux are uniquely determined by their weights, we have
P (S) = U(S).

Recall that as long as fiT 6= 0 for T ∈ MVT(λ), we have U(fiT) = fiU(T) by [HS20, Theorem
3.17] and P (fiT) = fiP (T) by Theorem 3.14. Now let T ∈ MVT(λ) be arbitrary. Then T =
fi1 · · · fik(S) for some sequence of i1, . . . , ik and S highest weight. Hence,

P (T) = P (fi1 · · · fikS) = fi1 · · · fikP (S) = fi1 · · · fikU(S) = U(fi1 · · · fikS) = U(T).

It remains to show that Q(T) = F (T) for all T ∈ MVT(λ). To do this, we show that the newly
created boxes of the uncrowding map up to a specified column in Definition 3.16 are in the same
positions as those for the uncrowding insertion in Definition 3.5. For every Y ∈ MVT(µ) and for
every 1 6 j 6 µ1, denote by Y>j the tableau formed by the rightmost j columns of Y ; here Y>µ1+1

is the empty tableau.
Let T ∈ MVT(λ) be arbitrary. For 1 6 k 6 λ1+1, let P (k) be the tableau obtained by performing

the uncrowding map U on T on the columns from right to left up to and including the k-th column
of T ; here P (λ1+1) = T . In other words, P (k) = Vαk(T) as in Definition 3.4, where αk is the arm
excess of T>k. As the entries to the left of column k of T are untouched by the uncrowding insertion

in Definition 3.4, for every 1 6 k 6 λ1+1, we have (P (k))>k = P (T>k) = U(T>k). It follows that for

every 1 6 k 6 λ1, up to horizontal shifts, the newly formed boxes in shape(P (k))/shape(P (k+1)) =

shape[(P (k))>k+1]/shape[(P
(k+1))>k+1] and shape([U(T>k)]>k+1)/shape([U(T>k+1)]>k+1) are in the

same positions. Since the entries in these boxes both record the difference in column indices relative
to the k-th column for each 1 6 k 6 λ1 and since the recording tableaux for both maps are formed
from the union of these boxes, we conclude that Q(T) = F (T), completing the proof. �

3.5. Crowding map. In this section, we give a description of the “inverse” of the uncrowding
map.

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 19

We begin by introducing some notation. Let F ∈ F̂ with e entries. For each cell (r, c) in F
with entry F (r, c), define the corresponding destination column to be d(r, c) = c− F (r, c). Define
the crowding order on F by ordering all the cells in F with a filling, first determined by their
destination column (smallest to largest) and then by column index (largest to smallest). Denote
the order by (r1, c1), (r2, c2), . . . , (re, ce). Set α(F) = (α1, α2, . . . , αe), where αi = F (ri, ci). Let the
arm excess for a column of a hook-valued tableau be the sum of arm excesses of all its cells.

Definition 3.19. Let h ∈ HVT and let (r, c) be a cell in h with c > 1 and with at most one element
in Ah(r, c). If Ah(r, c) is empty, we also require that the cell (r, c) is a corner cell in h. Then we
define the crowding bumping Cb on the pair [h, (r, c)] by the following algorithm:

(1) If Ah(r, c) is nonempty, set m to be the only element in Ah(r, c) and b = max{x ∈ L+h (r, c) |
x 6 m}. Otherwise, set m = Hh(r, c) and b = max(L+h (r, c)).

(2) Find the largest r′ such that Hh(r
′, c − 1) 6 b. If r′ = r, set q = Hh(r, c). Otherwise, set

q = b. In either case, append q to Ah(r
′, c− 1).

(3) (a) If r′ from Step 2 equals r, perform either of the following:
(i) If Ah(r, c) is nonempty, move the set {x ∈ Lh(r, c) | q < x 6 m} from Lh(r, c)

to Lh(r
′, c − 1) and keep it strictly increasing. Remove m from Ah(r, c) and set

Hh(r, c) = m.
(ii) Otherwise, Ah(r, c) is empty, so move Lh(r, c) into Lh(r

′, c− 1) and keep it to be
strictly increasing. Remove cell (r, c) from h.

(b) Otherwise, r′ 6= r and perform either of the following:
(i) Suppose that Ah(r, c) is nonempty. Replace q in L+h (r, c) with m. Remove m from

Ah(r, c).
(ii) If instead Ah(r, c) is empty, then remove cell (r, c) from h.

Denote the resulting (not necessarily semistandard) hook-valued tableau by h′. We write Cb([h, (r, c)]) =
[h′, (r′, c − 1)]. We also define the projections p1 and p2 by p1 ◦ Cb([h, (r, c)]) = h′ and p2 ◦
Cb([h, (r, c)]) = (r′, c− 1). See Figures 3 and 4 for illustration.

−
−−

−
b
∗
q m

Cb−→

b
∗
−
−− q

−
m

−
−−

b
∗
m

Cb−→

b
∗
−
− −m

Figure 3. When r′ = r. Left: (i) Ah(r, c) 6= ∅. Right: (ii) Ah(r, c) = ∅.

−
−−

−
−−

−
b
−m

Cb−→

−
−− b

−
−−

−
m
−

−
−−
−
−

∗
m

−
−−

−
−

Cb−→

−
−−m
−
−
−
−−

−
−

Figure 4. When r′ 6= r. Left: Ah(r, c) 6= ∅. Right: Ah(r, c) = ∅.

Example 3.20. We compute Cb in two examples:

T =

5

1 1

5
4
3
2 4

, Cb([T, (1, 2)]) = [

5
4
3
1 1 2

5
4

, (1, 1)] = [T ′ , (1, 1)].

20 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

S =
3
2
1

3
2

, Cb([S, (1, 2)]) = [
33
2
1

, (2, 1)] = [S′ , (2, 1)].

Remark 3.21. In Definition 3.19,

• if r′ = r, then h′ is always semistandard and has the same weight as h;
• if r′ 6= r and Ah(r, c) is empty, then h′ might have fewer letters than h. In Example 3.20, S
contains 5 letters while S′ only contains 4. This happens precisely when Lh(r, c) is nonempty.

In principle, the arm in cell (r′, c − 1) could be greater than the q that is to be inserted. However,
we only consider the cases as defined in the order described by the next paragraph. We refer to
Proposition 3.27 which states that all tableaux we deal with in this section are indeed semistandard
hook-valued tableaux.

Let (S,F) ∈ SVT(µ) × F̂(µ/λ) with crowding order (r1, c1), (r2, c2), . . . , (re, ce) and α(F) =

(α1, α2, . . . , αe). For all 0 6 j 6 e − 1 and for all 0 6 s 6 αj+1, define T
(s)
j recursively by setting

T
(0)
0 := S and

T
(s)
j :=

{

p1 ◦ Cb([T
(s−1)
j , (rj+1, cj+1)]) when s > 0,

T
(αj)
j−1 when s = 0 and j > 0.

Additionally, define T
(0)
e := T

(αe)
e−1 .

Thus we obtain the following sequence

S = T
(0)
0

p1◦ C
α1
b−−−−→

(r1,c1)
T
(0)
1

p1◦ C
α2
b−−−−→

(r2,c2)
T
(0)
2

p1◦ C
α3
b−−−−→

(r3,c3)
. . .

p1◦ C
αe
b−−−−→

(re,ce)
T (0)
e .

Remark 3.22. The tableaux T
(s)
j are well-defined. We check the conditions in Definition 3.19. Let

h = T
(s)
j for some 0 6 j 6 e− 1 and for some 0 6 s < αj+1, with cell (r, c).

• Since F ∈ F̂ , we always have c > 1.

• The case that Ah(r, c) is empty can only occur in T
(0)
j−1 for some j > 0. In this case,

(r, c) = (rj , cj), which is a corner cell.

• Consider the αj steps in T
(0)
j−1

p1◦ C
αj

b−−−−→
(rj ,cj)

T
(0)
j . We first delete cell (rj, cj), which has no arm.

Then at every step after that, we move leftward one column at a time. Before we reach
column d(rj , cj), there is exactly one column with arm excess being 1 and the rest has zero
arm excess among columns to the right of d(rj , cj) since recall that the cells (rj, cj) are
ordered from smallest to largest destination column. Once we reach column d(rj , cj), the
cell there may contain more than one arm element, but we then go to (rj+1, cj+1), which is
a corner cell instead. Thus there is at most one element in Ah(r, c).

Definition 3.23. With the same notation as above, define the insertion path of T
(0)
j−1 → T

(0)
j for

1 6 j 6 e to be

pathj :=
(

(r
(0)
j , c

(0)
j), (r

(1)
j , c

(1)
j), . . . , (r

(αj)
j , c

(αj)
j)

)

,

where (r
(s)
j , c

(s)
j) := p2 ◦ C

s
b ([T

(0)
j−1, (rj , cj)]) for 0 6 s 6 αj.

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 21

Example 3.24. Consider the following pair of tableaux (S,F) ∈ HVT((5, 3, 2))×F̂ ((5, 3, 2)/((3, 2, 1))),

S =

5
4 5

2 3
4
3

1 1
2
1 4 4

, F =
1

1

3 4

.

The crowding order is (1, 5), (1, 4), (3, 2), (2, 3). The insertion path and destination column for each
of them are:

path1 = ((1, 5), (1, 4), (2, 3), (2, 2), (2, 1)), d(1, 5) = 1,

path2 = ((1, 4), (2, 3), (2, 2), (3, 1)), d(1, 4) = 1,

path3 = ((3, 2), (3, 1)), d(3, 2) = 1,

path4 = ((2, 3), (2, 2)), d(2, 3) = 2.

We obtain the sequence from the algorithm:

5
4 5

2 3
4
3

1 1
2
1 4 4

p1◦ C4b−−−−→
(1,5)

5
4 5

23
4
3 4

1 1
2
1 4

p1◦ C3b−−−−→
(1,4)

5
44 5

23
4
3 4

1 1
2
1

p1◦ Cb−−−→
(3,2)

5
445

23
4
3 4

1 1
2
1

p1◦ Cb−−−→
(2,3)

5
445

23
4
34

1 1
2
1

.

Lemma 3.25. If d(rj , cj) = d(rj+1, cj+1), then pathj+1 is weakly above pathj .

Proof. By the definition of crowding order, d(rj , cj) = d(rj+1, cj+1) implies cj > cj+1. Set zj :=

cj − cj+1. Then we have c
(s+zj)
j = cj − zj − s = cj+1 − s = c

(s)
j+1 for 0 6 s 6 αj+1. We need to show

that r
(s)
j+1 > r

(s+zj)
j for 0 6 s 6 αj+1. Computing T

(s)
j−1 from T

(s−1)
j−1 for 1 6 s 6 αj , we denote b and

q in Step 1 and Step 2 of Definition 3.19 by b
(s)
j and q

(s)
j .

Since (rj+1, cj+1) is a corner cell in T
(zj)
j−1 , we have r

(0)
j+1 > r

(zj)
j . We prove that, for 1 6 s 6 αj+1,

we have that q
(s)
j+1 > q

(s+zj)
j , which implies b

(s)
j+1 > b

(s+zj)
j and thus r

(s)
j+1 > r

(s+zj)
j .

We prove q
(s)
j+1 > q

(s+zj)
j by induction on s. First we check the case k = 1. If r

(0)
j+1 > r

(zj)
j , then

it is obvious that q
(1)
j+1 > q

(zj+1)
j . Otherwise if r

(0)
j+1 = r

(zj)
j , we consider the following cases. q

(zj)
j is

the only element in A
T

(zj)

j−1

(rj+1, cj+1). Let x = H
T

(zj)

j−1

(rj+1, cj+1), y = max(L
T

(zj)

j−1

(rj+1, cj+1)) and

y′ = max{z ∈ L+

T
(zj)

j−1

(rj+1, cj+1) | z 6 q
(zj)
j }. See Figure 5 for illustration.

Case (1): If r
(zj+1)
j = r

(zj)
j , then q

(zj+1)
j = x. If r

(1)
j+1 = r

(0)
j+1, then q

(1)
j+1 = q

(zj)
j . If r

(1)
j+1 6= r

(0)
j+1,

then q
(1)
j+1 equals y when y > y′ and q

(zj)
j when y = y′. In both cases q

(1)
j+1 > x = q

(zj+1)
j .

Case (2): If r
(zj+1)
j 6= r

(zj)
j , then q

(zj+1)
j = y′. In this case we have H

T
(zj)

j−1

(rj+1+1, cj+1−1) 6 y′ 6 y.

Since H
T

(0)
j

(rj+1 + 1, cj+1 − 1) is smaller or equal to y′, we have that r
(1)
j+1 6= r

(0)
j+1. Therefore q

(1)
j+1

equals y when y > y′ and q
(zj)
j when y = y′. In this case q

(1)
j+1 > y′ = q

(zj+1)
j .

Now we have proved the base case s = 1. Next, suppose it holds for some s > 1 that q
(s)
j+1 > q

(s+zj)
j

and r
(s)
j+1 > r

(s+zj)
j . The statement is similar to the argument of the base case. If r

(s)
j+1 > r

(zj+s)
j , it is

22 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

y
−
y′

∗

x q
(zj)
j

y
−

q
(zj)
j

y
−

q
(zj)
j

∗
x

Figure 5. Cell (r
(0)
j+1, c

(0)
j+1) = (r

(zj)
j , c

(zj)
j) in T

(zj)
j−1 (left);

in T
(0)
j , case(1) (middle), case(2) (right).

obvious that q
(s+1)
j+1 > q

(s+1+zj)
j and thus r

(s+1)
j+1 > r

(s+1+zj)
j . If r

(s)
j+1 = r

(zj+s)
j , we discuss the follow-

ing cases. q
(s+zj)
j is the only element in A

T
(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j). Let x = H

T
(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j),

y = max(L
T

(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j)) and y′ = max{z ∈ L+

T
(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j) | z 6 q

(s+zj)
j }. See

Figure 6 for illustration.

Case (1): If r
(s+1+zj)
j = r

(s+zj)
j , then q

(s+1+zj)
j = x. If r

(s+1)
j+1 = r

(s)
j+1, then q

(s+1)
j+1 = q

(s+zj)
j > x. If

r
(s+1)
j+1 6= r

(s)
j+1, then q

(s+1)
j+1 = max{z ∈ L+

T
(s)
j

(r
(s)
j+1, c

(s)
j+1) | z 6 q

(s)
j+1} > q

(s+zj)
j > x. So in either case

we have q
(s+1)
j+1 > q

(s+1+zj)
j .

y
−
y′

∗

x q
(s+zj)
j

y
−

q
(s+zj)
j q

(s)
j+1

y
−

q
(s+zj)
j

∗

x q
(s)
j+1

Figure 6. Cell (r
(s)
j+1, c

(s)
j+1) = (r

(s+zj)
j , c

(s+zj)
j) in T

(s+zj)
j−1 (left);

in T
(s)
j , case(1) (middle), case(2) (right).

Case (2): If r
(s+1+zj)
j 6= r

(s+zj)
j , then q

(s+1+zj)
j = y′. In this case we have H

T
(s+zj)

j−1

(r
(s+zj)
j +

1, c
(s+zj)
j − 1) 6 y′ 6 q

(s+zj)
j . Since H

T
(s)
j

(r
(s)
j+1 + 1, c

(s)
j+1 − 1) is smaller or equal to q

(s+zj)
j , we have

that r
(s+1)
j+1 6= r

(s)
j+1. Therefore q

(s+1)
j+1 = max{z ∈ L+

T
(s)
j

(r
(s)
j+1, c

(s)
j+1) | z 6 q

(s)
j+1}. By induction we have

q
(s+zj)
j 6 q

(s)
j+1, thus q

(s+1)
j+1 > q

(s+zj)
j > y′ = q

(s+1+zj)
j . This completes the proof. �

Lemma 3.26. With the notations as above, let 0 6 j 6 e− 1, 0 6 s < αj+1 and Cb([T
(s)
j , (r, c)]) =

[T
(s+1)
j , (r′, c − 1)] for some r, c, r′. Then in T

(s+1)
j , column c − 1 is the rightmost column with

nonzero arm excess and (r′, c− 1) is the topmost cell in column c− 1 with nonzero arm excess.

Proof. In any pathj , consider the arm excess of its columns. Those with column index c such that
d(rj , cj) < c < cj started with arm excess 0, then changed to arm excess 1 when the insertion path
passed through that column, and immediately decreased to 0.

Thus the q
(s)
j that is being moved to cell (r′, c− 1) is always at the rightmost column containing

nonzero arm excess. When c−1 > d(rj , cj), the arm excess of the column c−1 is exactly 1, (r′, c−1)

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 23

is also the topmost cell containing an arm. For c − 1 = d(rj , cj), the path pathj has reached its
destination. At that point, any column to the right of d(rj , cj) has 0 arm excess. It follows from

Lemma 3.25 that the cell (r
(αj)
j , c

(αj)
j) is also the topmost cell containing an arm. �

Proposition 3.27. The tableau T
(s+1)
j is a semistandard hook-valued tableau for all 0 6 j 6 e− 1

and for all 0 6 s < αj+1.

Proof. We only need to check that the q in Step 2 of Definition 3.19 is greater or equal to the hook
entry and arm of the cell q is to be inserted into. When q is the only arm element, it is obvious
that q is greater or equal to the hook entry.

The case when q is not the only arm element can only happen when we reach the destination

column of the path. By the proof of Lemma 3.25, we have that for q
(s)
j+1 > q

(s+zj)
j for s > 1 and for

j such that d(rj , cj) = d(rj+1, cj+1). Hence the statement follows by setting k = αj+1. �

Before we define the “inverse” of the uncrowding map U : HVT(λ) → ⊔µ⊇λSVT(µ)×F̂(µ/λ), we

need to restrict our domain to a subset Kλ of ⊔µ⊇λSVT(µ)× F̂(µ/λ), as the image of U is not all

of ⊔µ⊇λSVT(µ)× F̂(µ/λ). We define:

Kλ(µ) :={(S,F) ∈ SVT(µ)× F̂(µ/λ) | weight(T
(s)
j) = weight(S),∀ 0 6 j 6 e− 1,∀ 0 6 s 6 αj+1},

Kλ :=
⊔

µ⊇λ

Kλ(µ).

Remark 3.28. From the perspective of the uncrowding map, the set-valued tableau S in Exam-
ple 3.20 cannot be obtained from a shape (1, 1) hook-valued tableau via the uncrowding map as
explained in Remark 3.21. We say the cell (1, 2) in S practices social distancing. In this case,





3
2
1

3
2

,
1



 /∈ K(1,1).

The (S,F) in Example 3.24 is in K(3,2,1)(5, 3, 2).

Definition 3.29. We can now define the crowding map C for any partition λ as follows,

C : Kλ −→ HVT(λ)

(S,F) 7→ T (0)
e .

Proposition 3.30. The image of the uncrowding map U : HVT(λ) → ⊔µ⊇λSVT(µ)× F̂(µ/λ) is a
subset of Kλ. Moreover, we have C ◦ U = 1HVT(λ).

Proof. We show that if h̃ = Vb(h), where h ∈ HVT, Vb is as defined in Definition 3.2 and h̃ is
obtained by moving some letter(s) from the cell (r, c) to (r̃, c+ 1) (potentially adding a box), then

Cb([h̃, (r̃, c+ 1)]) = [h′, (r′, c)] satisfies [h′, (r′, c)] = [h, (r, c)].
We follow the notation used in Definitions 3.2 and 3.19. Thus a = max(Ah(r, c)). We have that

Hh(r̃, c) 6 a. If cell (r + 1, c) is in h, then Hh(r + 1, c) > a.

Case (1): r̃ 6= r.

Case (1A): If cell (r̃, c+ 1) is not in h, then h′ is obtained by adding cell (r̃, c+ 1) and moving a
from Ah(r, c) to Hh(r̃, c+ 1). Under the action of Cb, by Step 1, b = a and r′ = r. Cb appends a to
Ah̃(r, c) and removes cell (r̃, c+ 1), which recovers h.

Case (1B): If cell (r̃, c + 1) is in h, then k ∈ L+h (r̃, c + 1) is the smallest number that is greater
than or equal to a in column c+ 1. h′ is obtained by removing a from Ah(r, c), replacing k with a,
and attaching k to Ah(r̃, c + 1). Under the action of Cb, by Step 1, we can see that m = k, b = a

24 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

−
−− a
−
−
−
−−

−
−

Vb−→

−
−−
−
− a
−
−−

−
−

−
−− a

−
−−

−
k
−

Vb−→

−
−−

−
−−

−
a
− k

Figure 7. Left: case (1A): (r̃, c+ 1) is not in h. Right: case (1B): (r̃, c+ 1) is in h.

and r′ = r. By Step 3(b)i, q = b = a, and a is appended to Ah̃(r, c) and q = a in Lh̃(r̃, c + 1) is
replaced with m = k. In the end, m is removed from Ah̃(r̃, c+ 1). We recover h.

Case (2): r̃ = r. Let ℓ = max(L+h (r, c)).

Case (2A): If cell (r, c + 1) is not in h, Vb adds cell (r, c + 1), removes the part of Lh(r, c) that is
greater than a to Lh(r, c+ 1) and moves a from Ah(r, c) to Hh(r, c+ 1). Under the action of Cb, by
Step 1, m = a and b = ℓ. Thus r′ = r. By Step 3(a)ii, we move Lh̃(r, c + 1) into Lh̃(r, c) and we
recover h.

ℓ
∗
−
− − a

Vb−→ −
−−

ℓ
∗
a

ℓ
∗
−
−− a

−
−
k

Vb−→
−
−−

−
−
ℓ
∗
a k

Figure 8. Left: Case (1A): (r, c + 1) is not in h. Right: Case (1B): (r, c+ 1) is in h.

Case (2B): If cell (r, c+1) is in h, h̃ is obtained by moving the part of Lh(r, c) that is greater than
a to Lh(r, c+1), moving a from Ah(r, c) to Hh(r, c+1), and appending k to Ah(r, c+1). Under the
action of Cb, by Step 1, m = k and b = ℓ. Then r′ = r and q = a. By Step 3(a)i, we move the set
{x ∈ Lh̃(r, c) | a < x 6 k} from Lh̃(r, c + 1) into Lh̃(r, c), which is the set that was moved from cell
(r, c) by Vb. Removing k from Ah̃(r, c+ 1) and setting Hh̃(r, c + 1) = k, we recover h.

Now we have proven Cb([h̃, (r̃, c + 1)]) = [h′, (r′, c)] = [h, (r, c)]. It follows that for any (S,F) =

U(h), we have that T
(s)
j is semistandard and has the same weight as S for all 0 6 j 6 e− 1, for all

0 6 s 6 αj+1. Thus image(U) ⊂ Kλ and C ◦ U = 1HVT(λ). �

Proposition 3.31. Kλ is a subset of the image of U : HVT(λ) → ⊔µ⊇λSVT(µ)×F̂ (µ/λ). Moreover,
U ◦ C = 1Kλ

.

Proof. Let (S,F) ∈ Kλ, then for all 0 6 j < e and for all 0 6 s < αj+1, Cb([T
(s)
j , (r, c)]) =

[T
(s+1)
j , (r′, c − 1)] for some r, c, r′. We show that Vb(T

(s+1)
j) = T

(s)
j for all 0 6 j < e and for all

0 6 s < αj+1. Following the notation in Definition 3.2, we first locate the rightmost column that
contains nonzero arm excess, then determine the topmost cell in row r̃ in that column with nonzero
arm excess. We denote by a the largest arm element in that cell.

By Lemma 3.26, in T
(s+1)
j , column c − 1 is the rightmost column with nonzero arm excess and

(r′, c− 1) is the topmost cell in column c− 1 with nonzero arm excess.

Case (1): r′ = r. In this case either cell (r+1, c−1) does not exist in T
(s)
j , or H

T
(s)
j

(r+1, c−1) > b.

Case (1A): A
T

(s)
j

(r, c) = ∅. m = H
T

(s)
j

(r, c) and b = max(L+
T

(s)
j

(r, c)). Since r′ = r, q = m, T
(s+1)
j is

obtained by appending m to A
T

(s)
j

(r, c− 1), moving L
T

(s)
j

(r, c) into L
T

(s)
j

(r, c− 1), and removing cell

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 25

(r, c) from T
(s)
j . Note that everything in L

T
(s)
j

(r, c) is greater than m and everything in L
T

(s)
j

(r, c−1)

is smaller or equal to m.
For the Vb action, we have a = m and b is the greatest letter in L

T
(s+1)
j

(r, c − 1). Since every

letter in T
(s+1)
j (r′′, c) is smaller than m for r′′ < r, we have r̃ = r. Vb acts on T

(s+1)
j by adding

the cell (r, c), setting the hook entry to be m, and moving (m, b] ∩ L
T

(s+1)
j

(r, c − 1) to L
T

(s+1)
j

(r, c).

Then we recover T
(s)
j .

−
−−

b
∗
m

Cb−→

b
∗
−
− −m

−
−−

−
b
∗
q m

Cb−→

b
∗
−
− − q

−
m

Figure 9. Left: Case (1A): A
T

(s)
j

(r, c) = ∅. Right: Case (1B): A
T

(s)
j

(r, c) 6= ∅.

Case (1B): A
T

(s)
j

(r, c) 6= ∅. m is the only element in A
T

(s)
j

(r, c), q = H
T

(s)
j

(r, c) and b = max{x ∈

L+
T

(s)
j

| x 6 m}. T
(s+1)
j is obtained by appending q to A

T
(s)
j

(r, c − 1), setting H
T

(s)
j

(r, c) to be m,

deleting A
T

(s)
j

, and moving {x ∈ L
T

(s)
j (r,c)

| q < x 6 m} to L
T

(s)
j

(r, c − 1).

For the Vb action, a = q and b is the greatest letter in L
T

(s+1)
j

(r, c − 1). Since every letter

in T
(s+1)
j (r′′, c) is smaller than q for r′′ < r and m > q, r̃ = r. Vb acts on T

(s+1)
j by setting

H
T

(s+1)
j

(r, c) = q, A
T

(s+1)
j

(r, c) = m, and moving (q, b] ∩ L
T

(s+1)
j

(r, c − 1) to L
T

(s+1)
j

(r, c). We recover

T
(s)
j .

Case (2): r′ 6= r.

Case (2A): A
T

(s)
j

(r, c) = ∅. Note that in this case, Cb will move m somewhere else and remove the

cell (r, c). Since weight(T
(s+1)
j) = weight(T

(s)
j), we must have that L

T
(s)
j

(r, c) = ∅. So b = q = m.

T
(s+1)
j is obtained from T

(s)
j by appending m to A

T
(s)
j

(r′, c− 1) and removing the cell (r, c).

For the Vb action, a = m. Since every letter in T
(s+1)
j (r′′, c) is smaller than m for r′′ < r, a new

cell (r, c) is added, r̃ = r. Vb acts on T
(s+1)
j by moving m to H

T
(s+1)
j

(r, c). We recover T
(s)
j .

−
−−
−
− m
−
−−

−
−

Cb−→

−
−−m
−
−
−
−−

−
−

−
−−

−
−−

−
b
−m

Cb−→

−
−− b

−
−−

−
m
−

Figure 10. Left: case (2A): A
T

(s)
j

(r, c) = ∅. Right: case (2B): A
T

(s)
j

(r, c) 6= ∅.

Case (2B): A
T

(s)
j

(r, c) 6= ∅. m is the only element in A
T

(s)
j

(r, c), q = b = max{x ∈ L+
T

(s)
j

(r, c) | x 6

m}. T
(s+1)
j is obtained by appending b to A

T
(s)
j

(r′, c − 1), replacing b in L
T

(s)
j

(r, c) with m, and

removing m from A
T

(s)
j

(r, c).

26 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

For the Vb action, a = b. Since every letter in T
(s+1)
j (r′′, c) is smaller than b for r′′ < r, m is the

smallest letter that is greater or equal to b in column c. Hence r̃ = r. Vb acts on T
(s+1)
j by removing

b from A
T

(s+1)
j

(r′, c − 1), replacing m in L
T

(s+1)
j

(r, c) with b, and attaching m to A
T

(s+1)
j

(r, c). We

recover T
(s)
j .

Therefore we have Vb(T
(s+1)
j) = T

(s)
j for all 0 6 j 6 e−1, for all 0 6 s < αj , and V(T

(0)
j+1) = T

(0)
j .

It follows that we also recover the recording tableau F . Thus U(T
(0)
e) = (S,F). �

Corollary 3.32. The uncrowding map U is a bijection between HVT(λ) and Kλ with inverse C.

3.6. Alternative uncrowding on hook-valued tableaux. In Section 3.2, we defined an un-
crowding map sending hook-valued tableaux to pairs of tableaux with one being set-valued and the
other being column-flagged increasing. As hook-valued tableaux were introduced as a generaliza-
tion of both set-valued tableaux and multiset-valued tableaux, it is natural to ask if there is an
uncrowding map taking hook-valued tableaux to pairs of tableaux with one being multiset-valued.
In this section we provide such a map.

Definition 3.33. The multiset uncrowding bumping Ṽb : HVT → HVT is defined by the following
algorithm:

(1) Initialize T as the input.
(2) If the leg excess of T equals zero, return T.
(3) Find the topmost row that contains a cell with nonzero leg excess. Within this column,

find the cell with the largest value in its leg. (This is the rightmost cell with nonzero leg
excess in the specified row.) Denote the row index and column index of this cell by r and c,
respectively. Denote the cell as (r, c), its largest leg entry by ℓ, and its rightmost arm entry
by a.

(4) Look at the row above (r, c) (i.e. row r + 1) and find the leftmost number that is strictly
greater than ℓ.

• If no such number exists, attach an empty cell to the end of row r+1 and label the cell
as (r + 1, c̃), where c̃ is its column index. Let k be the empty character.

• If such a number exists, label the value as k and the cell containing k as (r+1, c̃) where
c̃ is the cell’s column index.

We now break into cases:
(a) If c̃ 6= c, then remove ℓ from LT (r, c), replace k with ℓ, and attach k to the leg of

LT (r + 1, c̃).
(b) If c̃ = c then remove [ℓ, a]∩AT (r, c) from AT (r, c) where [ℓ, a]∩AT (r, c) is the multiset

{z ∈ AT (r, c) | ℓ 6 z 6 a}. Remove ℓ from LT (r, c), insert [ℓ, a] ∩ AT (r, c) into
AT (r + 1, c̃), replace the hook entry of (r + 1, c̃) with ℓ, and attach k to LT (r + 1, c̃).

(5) Output the resulting tableau.

Definition 3.34. The multiset uncrowding insertion Ṽ : HVT → HVT is defined as Ṽ(T) = Ṽd
b (T),

where the integer d > 1 is minimal such that shape(Ṽd
b (T))/shape(Ṽ

d−1
b (T)) 6= ∅ or Ṽd

b (T) =

Ṽd−1
b (T).

Definition 3.35. Let T ∈ HVT(λ) with leg excess α. The multiset uncrowding map

Ũ : HVT(λ) →
⊔

µ⊇λ

MVT(µ)×F(µ/λ)

is defined by the following algorithm:

(1) Let P̃0 = T and let Q̃0 be the flagged increasing tableau of shape λ/λ.

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 27

(2) For 1 6 i 6 α, let P̃i+1 = Ṽ(P̃i). Let r be the index of the topmost row of P̃i containing

a cell with nonzero leg excess and let r̃ be the row index of the cell shape(P̃i+1)/shape(P̃i).

Then Q̃i+1 is obtained from Q̃i by appending the cell shape(P̃i+1)/shape(P̃i) to Q̃i and filling
this cell with r̃ − r.

Define Ũ(T) = (P̃ (T), Q̃(T)) := (P̃α, Q̃α).

Example 3.36. Let T be the hook-valued tableau

T =

79

233
8
78

1
3
223

7
4

.

Then, we obtain the following sequence of tableaux Ṽ i
b(T) for 0 6 i 6 2 = d when computing the

first multiset uncrowding insertion:

79

233
8
78

1
3
223

7
4

→

9
78
233 78

1
3
223

7
4

→

9
78
233 78

1
3
223

7
4

= Ṽ(T).

Continuing with the remaining multiset uncrowding insertions, we obtain the following sequences
of tableaux for the multiset uncrowding map:

79

233
8
78

1
3
223

7
4

→

9
78
233 78

1
3
223

7
4

→

9
78 8
233 77

1
3
223 4

→

9
8
77 8
233 337
1 22 4

= P̃ (T),

→

2

→

2

2
→

4

2

2 = Q̃(T).

Proposition 3.37. Let T ∈ HVT. Then Ũ(T) is well-defined.

Proof. The statement follows from a similar argument to the proofs found in Corollary 3.7 and
Lemma 3.9. �

Similar to the uncrowding map U , the multiset uncrowding map Ũ interwines with the corre-
sponding crystal operators.

Theorem 3.38. Let T ∈ HVT.

(1) If fi(T) = 0, then fi(P̃ (T)) = 0.

(2) If ei(T) = 0, then ei(P̃ (T)) = 0.

(3) If fi(T) 6= 0, we have fi(P̃ (T)) = P̃ (fi(T)) and Q̃(T) = Q̃(fi(T)).

(4) If ei(T) 6= 0, we have ei(P̃ (T)) = P̃ (ei(T)) and Q̃(T) = Q̃(ei(T)).

Proof. The proof follows similarly to those found in Proposition 3.12, Lemma 3.13, and Theo-
rem 3.14. �

28 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

4. Applications

In this section, we provide the expansion of the canonical Grothendieck polynomials Gλ(x;α, β)
in terms of the stable symmetric Grothendieck polynomials Gµ(x;β = −1) and in terms of the dual
stable symmetric Grothendieck polynomials gµ(x;β = 1) using techniques developed in [BM12].
We first review the basic definitions and Schur expansions of the two polynomials.

Recall from (1.1), that the stable symmetric Grothendieck polynomial is the generating function
of set-valued tableaux

Gµ(x;−1) =
∑

S∈SVT(µ)

(−1)|S|−|µ|xweight(S).

Its Schur expansion can be obtained from the crystal structure on set-valued tableaux [MPS21]

Gµ(x;−1) =
∑

S∈SVT(µ)
ei(S)=0 ∀i

(−1)|S|−|µ| sweight(S).

Definition 4.1. The reading word word(S) = w1w2 · · ·wn of a set-valued tableau S ∈ SVT(µ) is
obtained by reading the elements in the rows of S from the top row to the bottom row in the following
way. In each row, first ignore the smallest element of each cell and read all remaining elements in
descending order. Then read the smallest elements of each cell in ascending order.

Example 4.2. The reading word of P (T) in Example 3.6 is word(P (T)) = 8675423362111567.

Example 4.3. The highest weight set-valued tableaux of shape (2) are

1 1 ,
1

2
1

,
1

3
2
1

,

1

4
3
2
1

, . . . ,

which gives the Schur expansion

G(2)(x;−1) = s2 − s21 + s211 − s2111 ± · · · .

The dual stable symmetric Grothendieck polynomials gµ(x; 1) are dual to Gµ(x;−1) under the
Hall inner product on the ring of symmetric functions.

Definition 4.4. A reverse plane partition of shape µ is a filling of the cells in the Ferrers diagram
of µ with positive integers, such that the entries are weakly increasing in rows and columns. We
denote the collection of all reverse plane partitions of shape µ by RPP(µ) and the set of all reverse
plane partitions by RPP.

The evaluation ev(R) of a reverse plane partition R ∈ RPP is a composition α = (αi)i>1, where
αi is the total number of columns in which i appears. The reading word word(R) is obtained by
first circling the bottommost occurrence of each letter in each column, and then reading the circled
letters row-by-row from top to bottom and left to right within each row.

Example 4.5. Consider the reverse plane partition

R =
1 2

1 1 3
∈ RPP((3, 2)).

By circling the bottommost occurrence of each letter in each column, we obtain

R =
1 2

1 1 3
, ev(R) = (2, 1, 1), word(R) = 2113.

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 29

Lam and Pylyavskyy [LP07] showed that the dual stable symmetric Grothendieck polynomials
gµ(x; 1) are generating functions of reverse plane partitions of shape µ

gµ(x; 1) =
∑

R∈RPP(µ)

xev(R).

They also provided the Schur expansion of the dual stable symmetric Grothendieck polynomi-
als [LP07, Theorem 9.8]

gµ(x; 1) =
∑

F

sinnershape(F),

where the sum is over all flagged increasing tableaux whose outer shape is µ.

Example 4.6. When µ = (µ1) is a partition with only one row, we have g(µ1)(x; 1) = s(µ1).
The flagged increasing tableaux of outer shape (2, 1, 1) are

,

1

,

2

,

2

1

.

Hence g211(x; 1) = s211 + 2s21 + s2.

According to [BM12], a symmetric function fα over the ring R is said to have a tableaux Schur
expansion if there is a set of tableaux T(α) and a weight function wtα : T(α) → R so that

fα =
∑

T∈T(α)

wtα(T)sshape(T).

Furthermore, any symmetric function with such a property has the following expansion in terms of
Gµ(x;−1) and gµ(x; 1).

Theorem 4.7. [BM12, Theorem 3.5] Let fα be a symmetric function with a tableaux Schur ex-
pansion fα =

∑

T∈T(α) wtα(T)sshape(T) for some T(α). Let S(α) and R(α) be defined as sets of

set-valued tableaux and reverse plane partitions, respectively, by

S ∈ S(α) if and only if P (word(S)) ∈ T(α), and

R ∈ R(α) if and only if P (word(R)) ∈ T(α),

where P (w) is the RSK insertion tableau of the word w. We also extend wtα to S(α) and R(α) by
setting wtα(X) := wtα(P (word(X))) for any X ∈ S(α) or R(α). Then we have

fα =
∑

R∈R(α)

wtα(R)Gshape(R)(x;−1), and

fα =
∑

S∈S(α)

wtα(S)(−1)|S|−|shape(S)|gshape(S)(x; 1).

Proposition 4.8. The canonical Grothendieck polynomials have a tableaux Schur expansion.

Proof. Recall the uncrowding map on set-valued tableaux of Definition 3.1

USVT : SVT(µ) −→
⊔

ν⊇µ

SSYT(ν)×F(ν/µ).

By Corollary 3.32, we have a bijection

U : HVT(λ) → Kλ =
⊔

µ⊇λ

Kλ(µ).

30 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

Note that Kλ ⊆
⊔

µ⊇λ SVT(µ)× F̂(µ/λ). Denote

φλ(S) = |{F ∈ F̂ | (S,F) ∈ Kλ}|.

Note that sometimes φλ(S) = 0.

Given H ∈ HVT(λ), we have U(H) = (S,F) ∈ SVT(µ)× F̂(µ/λ) for some µ ⊇ λ and |µ| = |λ|+
a(H). We can also obtain USVT(S) = (T,Q) ∈ SSYT(ν)×F(ν/µ) for some ν ⊇ µ and |ν| = |H|. The
weights ofH,S and T are the same. WhenH is highest weight, that is ei(H) = 0 for all i, then S and
T are also of highest weight and weight(H) = shape(T). Denote by HVTh(λ),SVTh(λ),SSYTh(λ)
the subset of highest weight elements in HVT(λ),SVT(λ),SSYT(λ), respectively.

Applying [HS20, Theorem 4.6] and the above correspondence, we obtain

Gλ(x;α, β) =
∑

H∈HVTh(λ)

αa(H)βℓ(H)sweight(H) =
∑

µ⊇λ

∑

(S,F)∈Kλ(µ)

α|µ|−|λ|β|S|−|µ|sweight(S)

=
∑

µ⊇λ

∑

S∈SVTh(µ)

φλ(S)α
|µ|−|λ|β|S|−|µ|sweight(S)

=
∑

µ⊇λ

∑

ν⊇µ

∑

T∈SSYTh(ν)

∑

Q∈F(ν/µ)

φλ(U
−1
SVT(T,Q))α|µ|−|λ|β|ν|−|µ|sweight(T)

=
∑

µ⊇λ

∑

ν⊇µ

∑

T∈SSYTh(ν)

α|µ|−|λ|β|ν|−|µ|
∑

Q∈F(ν/µ)

φλ(U
−1
SVT(T,Q))sshape(T)

=
∑

T∈T(λ)

wtλ(T)sshape(T),

where T(λ) = {T ∈ SSYTh(ν) | ν ⊇ λ} and

wtλ(T) =
∑

µ:λ⊆µ⊆shape(T)

α|µ|−|λ|β|shape(T)|−|µ|
∑

Q∈F(shape(T)/µ)

φλ(U
−1
SVT(T,Q)).

�

Note that Proposition 4.8 in particular implies that the canonical Grothendieck polynomials are
Schur positive. This was known from [HS20], but here an explicit tableaux formula is given.

Corollary 4.9. The canonical Grothendieck polynomials have Gµ(x;−1) and gµ(x; 1) expansions:

Gλ(x;α, β) =
∑

R∈R(λ)

wtλ(R)Gshape(R)(x;−1),

Gλ(x;α, β) =
∑

S∈S(λ)

wtλ(S)(−1)|S|−|shape(S)|gshape(S)(x; 1).

Example 4.10. We compute the first two terms in G(2)(x;α, β) = s2+βs21+2αs3+2αβs31+ · · · .
The semistandard Young tableaux involved are

T((2)) =






1 1

,
2

1 1
,

1 1 1
,

2

1 1 1
, . . .






.

UNCROWDING ALGORITHM FOR HOOK-VALUED TABLEAUX 31

Labelling the tableaux T1, T2, T3, T4, . . . , we have wt(2)(T1) = 1,wt(2)(T2) = β,wt(2)(T3) = 2α,wt(2)(T4) =
2αβ. Next we compute the elements in R((2)) and S((2)) that correspond to T1 and T2:

{R ∈ R((2)) | P (word(R)) = T1} =
{

1 1
,

1

1 1
,

1 1

1 1
,

1

1

1 1
, . . .

}

{R ∈ R((2)) | P (word(R)) = T2} =
{ 2

1 1
,

1 2

1 1
,

2

1

1 1
,

2

2

1 1
, . . .

}

{S ∈ S((2)) | P (word(S)) = T1} =
{ 1 1 }

{S ∈ S((2)) | P (word(S)) = T2} =
{ 2

1 1
,
1

2
1

}
.

Applying the expansion formulas, we obtain

G(2)(x;α, β) =(G(2)(x;−1) +G(21)(x;−1) +G(22)(x;−1) +G(211)(x;−1) + · · ·)

+ β(G(21)(x;−1) +G(22)(x;−1) + 2G(211)(x;−1) + · · ·) + · · ·

G(2)(x;α, β) =g(2)(x; 1) + β(g(21)(x; 1) − g(2)(x; 1)) + · · · .

References

[BM12] Jason Bandlow and Jennifer Morse. Combinatorial expansions in K-theoretic bases. Electron. J. Combin.,
19(4):Paper 39, 27, 2012.

[BS17] Daniel Bump and Anne Schilling. Crystal bases. World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2017. Representations and combinatorics.

[Buc02] Anders Skovsted Buch. A Littlewood-Richardson rule for the K-theory of Grassmannians. Acta Math.,
189(1):37–78, 2002.

[CP21] Melody Chan and Nathan Pflueger. Combinatorial relations on skew Schur and skew stable Grothendieck
polynomials. Algebr. Comb., 4(1):175–188, 2021.

[Ful97] William Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 1997. With applications to representation theory and geometry.

[GZJ20] Ajeeth Gunna and Paul Zinn-Justin. Vertex models for canonical Grothendieck polynomials and their
duals. arXiv preprint arXiv:2009.13172, 2020.

[HK02] Jin Hong and Seok-Jin Kang. Introduction to quantum groups and crystal bases, volume 42 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

[HS20] Graham Hawkes and Travis Scrimshaw. Crystal structures for canonical Grothendieck functions. Algebraic
Combinatorics, 3(3):727–755, 2020.

[Len00] Cristian Lenart. Combinatorial aspects of the K-theory of Grassmannians. Ann. Comb., 4(1):67–82, 2000.
[LP07] Thomas Lam and Pavlo Pylyavskyy. Combinatorial Hopf algebras and K-homology of Grassmannians.

Int. Math. Res. Not. IMRN, (24):Art. ID rnm125, 48, 2007.
[LS83] Alain Lascoux and Marcel-Paul Schützenberger. Symmetry and flag manifolds. In Invariant theory (Mon-

tecatini, 1982), volume 996 of Lecture Notes in Math., pages 118–144. Springer, Berlin, 1983.
[MPPS20] Jennifer Morse, Jianping Pan, Wencin Poh, and Anne Schilling. A crystal on decreasing factorizations in

the 0-Hecke monoid. Electron. J. Combin., 27(2):Paper 2, 29, 2020.
[MPS21] Cara Monical, Oliver Pechenik, and Travis Scrimshaw. Crystal structures for symmetric Grothendieck

polynomials. Transform. Groups, 26(3):1025–1075, 2021.
[Pat16] Rebecca Patrias. Antipode formulas for some combinatorial Hopf algebras. Electron. J. Combin., 23(4):Pa-

per 4, 30, 2016.
[RTY18] Vic Reiner, Bridget E. Tenner, and Alexander Yong. Poset edge densities, nearly reduced words, and

barely set-valued tableaux. J. Combin. Theory, Ser. A, 158:66–125, 2018.
[Yel17] Damir Yeliussizov. Duality and deformations of stable Grothendieck polynomials. J. Algebraic Combin.,

45(1):295–344, 2017.

32 J. PAN, J. PAPPE, W. POH, AND A. SCHILLING

(J. Pan) Department of Mathematics, UC Davis, One Shields Ave., Davis, CA 95616-8633, U.S.A.,

current address: Department of Mathematics, NC State University, Raleigh, NC 27695-8205, U.S.A.

Email address: jpan9@ncsu.edu

(J. Pappe) Department of Mathematics, UC Davis, One Shields Ave., Davis, CA 95616-8633, U.S.A.

Email address: jhpappe@ucdavis.edu

(W. Poh) Department of Mathematics, UC Davis, One Shields Ave., Davis, CA 95616-8633, U.S.A.

Email address: wpoh@ucdavis.edu

(A. Schilling) Department of Mathematics, UC Davis, One Shields Ave., Davis, CA 95616-8633, U.S.A.

Email address: anne@math.ucdavis.edu

	1. Introduction
	Acknowledgments

	2. Hook-valued tableaux
	2.1. Hook-valued tableaux
	2.2. Crystal structure on hook-valued tableaux

	3. Uncrowding map on hook-valued tableaux
	3.1. Uncrowding map on set-valued tableaux
	3.2. Uncrowding map on hook-valued tableaux
	3.3. Properties of the uncrowding map
	3.4. Uncrowding map on multiset-valued tableaux
	3.5. Crowding map
	3.6. Alternative uncrowding on hook-valued tableaux

	4. Applications
	References

