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ABSTRACT 

In recent years, the use of composite materials has helped achieve ever-increasing performance 

requirements in marine, aerospace, and civil structures. A parallel interest in the structural health 

monitoring (SHM) of composites has developed to further improve performance by reducing overall life-

cycle costs. In this work, a network of embedded fiber Bragg gratings (FBG) is employed as part of a 

damage detection system for an impact damage scenario in a composite laminate material system. 

Delamination damage is incrementally introduced into the laminate via repeated impacts with a drop 

weight pendulum system. Using vibration time histories between impacts from a simulated, pseudorandom 

operational loading, damage sensitive features were extracted and placed within a Mahalanobis distance-

based discrimination framework. The statistical modeling for hypothesis testing is also presented to give a 

full, systems-level approach to a damage detection system from data acquisition to ultimate decision 

making.  
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1. INTRODUCTION 

 

Fiber reinforced polymer (FRP) composite material systems are becoming increasingly desirable for 

high-performance structures because of their attractive strength and stiffness properties and corrosion 



resistance, among other properties. One of the disadvantages offsetting these performance benefits is the 

existence of failure modes (e.g., delamination, disbonding, fiber breakage, matrix cracking, and bearing 

damage in connections) that do not always have correlated visual damage cues and do not have well-

established failure genesis or historical data records. Other methods of damage assessment like ultrasonic 

testing (UT) are costly and require that the structure be removed from service, precipitating considerable 

research and development in the implementation of structural health monitoring (SHM) systems for the 

purposes of performance/operations optimization, maintenance planning and overall life cycle cost 

reduction[1]. 

This work employs a network of internally embedded fiber Bragg gratings in a passive sensing 

approach to vibration-based damage detection. Thorough reviews of vibration-based SHM have been 

performed by other researchers over many years[2-3]. Passive sensing systems rely on ambient excitation of 

the structure and, therefore, generally assume that the input is unknown or otherwise immeasurable. The 

technical literature presents several successful implementations of passive damage detection systems using 

a variety of sensing modalities and damage sensitive features[4-6]. Fiber Bragg gratings, in particular, are an 

attractive sensing choice because of several advantages over traditional strain sensors including light 

weight, corrosion resistance, impermeability to liquid absorption, immunity to electromagnetic 

interference, and the ability to be multiplexed on a single fiber[7-10]. Although several studies have been 

performed regarding the use of optical sensors in the health monitoring of composites[11-13], larger-scale 

dense deployments are quite rare in the literature. This work attempts to bridge this gap by discussing data 

acquisition, feature extraction, and decision making within a simulated damage detection scenario using 

embedded FBGs to measure the strain response in a composite panel subjected to incrementally increased 

impact damage. Thus, the full “data-to-decision” implementation of SHM is presented. 

 

 

2. SYSTEM DESIGN AND EXPERIMENTAL SETUP 

 

A monolithic composite panel having uniform thickness was designed and fabricated for 

experimentation.  The glass-epoxy prepreg used in the fabrication was Axiom AX-3201S/EL (woven glass 

fiber with toughened epoxy matrix) with a target thickness of 12.7 mm (16 plies) to provide a specimen 

representing the intended application that may be employed in a fleet application. The panel was outfitted 

with a network of 40 embedded FBGs with 10 sensors multiplexed on 4 separate fibers. The FBGs were 

placed at 6.25% of the panel thickness, closer to the surface away from the impact face, during the prepreg 

layup. The panel was cured in a vacuum oven at 93.3 °C under constant pressure. Surrogate model finite 

element simulation was used to determine eigenmodes to aide in designing the placement of sensors within 

the laminate such that significant strain magnitudes would result from expected impact locations. Figure 1 

presents the routing paths of the multiplexed FBG arrays and establishes the sensor naming convention 

used throughout the study. 



 

 
 

Figure 1: Sensor layout (left) and naming convention and placement measurements, in inches (right) 

 

 

A test fixture fabricated with aluminum rectangular bars was used to support the panel and introduce 

damage using a drop weight pendulum impact hammer. The fixture had a 111.76 cm x 111.76 cm free span 

and provided a clamped (fixed) boundary condition along each panel edge. The impact head was outfitted 

with a Piezo-based dynamic load cell for measuring impact force history and a photogate system was used 

to measure the actual velocity at impact. A steel cable with a pneumatic release mechanism was used to 

hoist the pendulum for repeatable impact energies. A surrogate, un-instrumented panel was first installed in 

the test fixture for system calibration and to assist in establishing damage characterization and associated 

energy levels. This surrogate panel and the test fixture are presented in Figure 2.  

 



 

Figure 2: Extruded aluminum test figure 

 

 

The instrumented specimen was installed in the frame using c-clamps to simulate a fixed-fixed 

boundary condition, as shown in Figure 2. On the back side, an electromechanical shaker was suspended 

from the frame and attached to the panel using a steel stinger rod. The shaker was powered with an MB 

Dynamics power amplifier and provided the simulated pseudorandom excitation. Impact damage in the 

form of delamination was introduced through repeated impacts of the panel with the impact head. As 

repeated impacts were performed, the impact location was moved slightly to continue growing the 

delamination and avoid through-penetration of the panel. Although impact damage, in a field deployment, 

would occur at random, all impacts in this study were focused on a single location because one of the main 

objectives of the study is to explore the detectability threshold as a function of damage size. In between 

impact events, the shaker was attached to the panel and actuated for 2 minutes with band-limited white 

noise (BLWN). The excitation signal ranged from 10 Hz to 2500 Hz. The upper bound was governed by 

the Nyquist sampling limitations of the optical interrogation hardware and the lower bound was selected to 

exclude very low frequency components near the oscillation frequency of the suspended shaker. Each 120-

second time history was windowed and segmented into 2-second tests for a total of 58 individual tests at 

each of the 12 discrete damage levels. The following figure describes the impact protocol for incrementally 

growing the delamination in the panel and Table 1 describes the accumulation of delamination damage in 

the panel. 

 



 
 

Figure 3: Impact locations for the test article 

 

 

Figure 4: Testing Flow 

 

 

Table 1: Impact methodology and 

accompanying delamination 

 

 

 

Damage
Location

Impact
Number

Delamination
Size

(sq. cm.)

1 1.86

2 5.18

3 8.90

4 33.29

5 55.55

6 80.32

7 111.42

8 150.26

9 176.13

10 208.45

11 253.03

E 12 304.84

A

B

C

D



The vibration time histories induced by the shaker were recorded with a Micron Optics si155 fiber optic 

interrogator at a sampling frequency of 5 kHz. The testing methodology can be visualized in Figure 4 and 

the delamination growth following each impact has been illustrated (based on photos taken after each 

impact) in Figure 5. Delaminations were measured by importing actual scale photographs of the damage 

into CAD software and using standard area measurement tools. 

 

 

 

 

 

 

Figure 5: Illustration of damage progression 



3. FEATURE EXTRACTION 

 

A foundational component of the SHM paradigm is the extraction of damage sensitive features 

from the dynamic data. Here, damage is defined as changes to the material and/or geometric properties of a 

system which adversely affect the current or future performance of the system[14]. An idealized damage 

sensitive feature would be a quantity, in general multivariate, that is highly sensitive to damage but 

unresponsive to changes in the operational environment of the structure. This work stems from a previous 

study by the authors[15] in which shifts in prominent peaks of the power spectral densities of vibration time 

histories were used as the damage sensitive feature. The underlying assumption motivating a frequency 

domain feature is that damage will be manifested in the structure as changes in fundamental structural 

properties, mainly stiffness, and this loss in stiffness will result in a change in the fundamental vibration 

characteristics of the structure. One of the limitations of using the power spectral density as the foundation 

for a damage sensitive feature in a passive sensing application is that the input is, in general, unknown 

which makes it difficult to discern if changes in the spectrum are due to damage or a result of immeasurable 

changes in the input. In this study, a more robust frequency domain feature has been employed that was 

first proposed by Farrar et al[16] to detect structural changes in a bridge subjected to ambient excitation. The 

feature comes from the cross power spectral density (CPSD) between sensor pairs and is given by the 

following equation: 

 

  , (1) 

 

where the  operator signifies an ensemble average of the Fourier transforms  and . 

From this definition, it is evident that the quantity will be maximally correlated at global structural resonant 

maxima. The prominent peaks are selected from the CPSD and their shifts were tracked as a multivariate 

feature set i.e., 

 

 , (2) 

 

where  and  represent the CPSDs for the ith and jth sensor for the baseline and unknown structural 

states respectively. The frequency values  and  are the arguments that maximize  and  

respectively. A set of reference peak values are set as the peaks of an average of several baseline tests. 

Figure 6 plots representative CPSD spectra for illustration purposes. In the figure, the blue curve is the 

averaged CPSD of several baselines and it’s peaks serve as the reference peaks. The red curve is a CPSD 
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for a representative sensor pair from the damaged panel. The shift in each of the peaks, , is our 

damage sensitive feature vector for the mth test and the pth sensor pair. The feature vectors along the m 

dimension will all be of equal dimension because a set number of peaks are tracked for a given sensor pair 

throughout the test, based on the number of prominent peaks in the reference CPSD. In general, however, 

dimension of the vectors can change along the p dimension because different sensor pair combinations will 

have CPSDs with different shape and peak prominence.  

 

 

Figure 6: Representative CPSD spectra for sensor pair 1 and 5 

 

Finally, this multivariate feature set was reduced to a scalar distance metric, the Mahalanobis 

distance[17], by 

 

   (3) 

 

			xm,p
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where  is a feature vector for an unknown structural state of test m and sensor pair p, is the mean 

of feature vectors from the baseline training set for pair p, and  is the covariance matrix of the baseline 

training set. The baseline training set is an ensemble of strain responses of the test article before any 

damage was introduced. Because sensor pairs are being used to generate the cross spectra, and there are 40 

sensors (though only 39 are operable since one failed during fabrication), there are 780 possible sensor pair 

combinations. Searching all 780 sensor pairs, however, is computationally expensive and overly redundant 

for the purpose of this study, so a random selection of 100 sensor pairs was generated as the set of time 

histories that were used to generate all cross-spectra. The following figure presents the results for 4 

randomly selected sensor pairs. 

 

 

 

 

Figure 7: Mahalanobis distances for CPSD feature for 4 sensor pairs 
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In Figure 7, the data points to the left of the solid vertical line are from baseline (undamaged) tests, and the 

dashed vertical lines represent the different damage levels. For the purpose of this study, only the smallest 

delamination (1.86 cm2) from the first impact will be considered in the damage detection scenario. It is 

assumed that if damage can be detected with reasonable confidence at the lowest damage level, then 

damage detection at higher levels is increasingly robust, under the fundamental observation that damage 

levels will monotonically (though not necessarily linearly) increase outlier counts. 

 

 

3. STATISTICAL MODEL DEVELOPMENT 

 

An important underlying assumption is that the feature vectors that are extracted from the raw 

time histories are multivariate normal. If this is true, then the squared Mahalanobis distance will follow a 

chi-square distribution with k degrees of freedom[18] where k is the dimension of the feature vector: 

   (4) 

 

where is the multivariate feature vector,  and  are the mean and covariance of the sample,  is the 

squared Mahalanobis distance and is a chi-square distribution with k degrees of freedom. This 

assumption is validated by plotting a histogram of the baseline Mahalanobis distances for a given sensor 

pair and overlaying a chi-square distribution of the appropriate degrees of freedom. Figure 8 shows this for 

the pair of sensors 15 and 29. It is evident that the Mahalanobis squared distances follow a chi-square 

distribution, which strongly supports the assumption of Gaussianity for the feature vectors. 

 

 
Figure 8: Baseline Mahalanobis distances for sensor pair 15 & 29 compared with a chi-square distribution 

with 5 degrees of freedom (implying there were 5 prominent peaks in the CPSD) 
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 Given this statistical model, a detection hypothesis test may be constructed. The most common 

detection hypothesis employed in structural health monitoring is often binary, i.e., the question asked 

becomes, “Is the system critically damaged or not?” In this work, “critical damage” was defined to be the 

lowest level of damage (1.86 cm2 delamination). Figure 9 shows the baseline data compared to the smallest 

damage level, including the chi-square distribution applied to the baseline; the filled points are being tested 

(compared) against the open circles via the test 

 

   (5) 

 

where “0” indicates the null hypotheses and “A” indicates the alternate hypothesis. The hypothesis test is 

applied to each of the 100 sensor pairs in consideration independently (since the number of degrees of 

freedom can change from pair to pair in accordance with cross spectral peak identification), and then a 

simple voting scheme may be employed across the network to arrive at a final decision. 

 

 
 

Figure 9: Comparison of baseline to damaged Mahalanobis distances. The fitted chi-square distribution is 

given by the blue curve 

 

Figure 10 shows a number of different sensor pair comparisons, for illustrative purposes. For the 

indicated sensor pair number, the histogram corresponds to the Mahalanobis distances of the baseline data 

for that particular sensor pair which forms the probability density function (PDF) for a chi-square 

distribution with k degrees of freedom. Recall that k is originally determined by the number of prominent 

peaks in the CPSD, and therefore, the dimension of the feature vector. The green curve is the theoretical chi 

square distribution, and the red points represent the Mahalanobis distances of the damaged data from the 
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first delamination. In any binary hypothesis test, the decision of which hypothesis to select depends upon a 

threshold that must be set, and this threshold depends on the application; in this test, a 95% confidence was 

selected, resulting in the individual black dashed lines drawn upon each distribution in Figure 10. This 

figure serves as a way to visualize the binary hypothesis test, in that any red point to the right of the vertical 

dashed line would correctly be diagnosed as damaged, while any point to the left of the vertical dashed line 

would result in a false-negative. 

 

 

 

 

Figure 10.  Specific hypothesis test visualization for 4 different sensor pair combinations. 

 

 Considering each possible sensor pair means that there will be 100 true/false test results for each 

potential outlier, as the experiment was set up using 100 random sensor pair combinations. The simple 

sensor fusion strategy is a voting scheme in which if a majority (>50) of the sensor pairs choose an outlier, 

then the point is labeled an outlier, and the null hypothesis is rejected. If a point, in reality, comes from a 

damaged structural state but is labeled undamaged, a false-negative is the result. A false-positive implies 

the opposite: that a data point is actually from an undamaged structure but is given a damaged assignment. 

Finally, a blind test is conducted to assess the performance of the SHM algorithm. A random assortment of 

290 baseline data points is used to create the baseline chi-square distribution, leaving 58 data points that 

are, in reality, undamaged and 58 points that came from the damaged structure. The aforementioned binary 

hypothesis then attempts to accurately discern between damaged and undamaged data points. All data 



processing and statistical treatments were implemented using tool available in the MATLAB Statistics and 

Machine Learning Toolbox.  

The results after final sensor fusion via voting are shown in Table 2. The first row represent results 

for the binary test as stated, i.e., detecting the lowest damage level. No false negatives were reported, and 

about 11% false positives, which is consistent with the statistical model threshold.  The same baseline was 

also applied to some higher damage levels, and the results are shown on subsequent rows. For any 

delamination 33.29 cm2 and larger, there was 100% correct classification. Although this particular study 

employed a fairly dense sensor network, the data in the presented figures suggests that a much more sparse 

network of sensors could be used. Figure 10 suggests that even with only 2 sensors in the entire panel, 

detection performance would be high. The dense network provides more robust statistics and, therefore, 

better detection. Another important note is that the damage sensitive feature has its origins in the CPSD 

which speaks to the global dynamic characteristics of the structure. This implies that the proximity of 

damage to any sensor in the network does not play a roll in the detection performance. Lastly, the feature is 

blind to the actual geometry of the structure since the feature stems from the global governing dynamics so 

the method should scale to complex geometries and more sparse sensor networks. 

 

Table 2: Hypothesis test and sensor fusion voting scheme results for the binary detection problem. 

 
 

 

It is important to note that the damage detection scenario constructed in this experiment attempts to model 

an unsupervised learning scenario in which the probability distribution functions of the damaged 

Mahalanobis distances would be unknown. In this type of application the decision threshold will be 

established somewhat arbitrarily as it was for this experiment. Figure 11 presents the prediction results 

along with the false-negatives and false positives for a range of potential threshold choices. 

 

Delamination 

Area

(sq. cm)

Correct Prediction

Percentage

False Negatives

(Out of 116)

False Positives

(Our of 116)

1.86 89% 0 13

5.18 92% 0 9

8.9 98% 0 2

33.29 100% 0 0



 
Figure 11: Outcomes of varying confidence threshold selections. The solid line represents overall correct 

detection percentage (left vertical axis), the dashed and dotted lines represent the false-positives and false-

negatives respectively (right vertical axis) 

 

According to the figure, a decision threshold of around 83% would appear to be the best choice for a 

decision threshold because it yields the best prediction results and minimizes the occurrences both the 

false-negatives and false-positives. It is important to remember, however, that in many structural health 

monitoring applications, a false-negative diagnosis will have significantly higher life safety implications 

than a false positive (and thus, consequences). This practical consideration justifies the more conservative 

choice of 95% as the decision threshold used in this experiment.  

 

4. CONCLUSIONS 

 

This work considered the detection of impact-induced delamination in a glass-epoxy material system. 

Sensing was performed with embedded fiber Bragg gratings. The detection was implemented in a simulated 

operational condition by exciting the structure between impacts with pseudo-random noise and extracting 

peaks from the cross-spectral densities estimated between sensor pairs. Using the peaks as features, the 

Mahalanobis distance metric was computed in order to set up an unsupervised learning application whereby 

baseline data were modeled as a chi-square distribution. A blind hypothesis test on the data showed 

excellent statistical decision performance for detecting delamination damage as small as 1.86 cm2.  
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