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Abstract

The last decade has witnessed a surge of theoretical and computational models to describe the 

dynamics of complex gene regulatory networks, and how these interactions can give rise to 

multistable and heterogeneous cell populations. As the use of theoretical modeling to describe 

genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and 

physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and 

network theory to biological systems. This review aims at providing a clear overview of the most 

important methodologies applied in the field while highlighting current and future challenges. It 

also includes hands-on tutorials to solve and simulate some of the archetypical biological system 

models used in the field. Furthermore, we provide concrete examples from the existing literature 

for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight 

the similarities and differences between biochemical and regulatory networks and “classical” 

systems typically studied in non-equilibrium statistical and quantum mechanics.

1. Introduction

Despite sharing similar genetic information, cells in living organisms can diversify into 

many different cell types, each of whom carrying a distinct and unique function [1]. 

For example, cells in the human body differentiate into more than 200 different cell 
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types that can be distinguished based on the different profiles of molecular signatures 

[2]. The process of molecule production can be summarized at a very simplified level by 

stating that special sequences of the genome (genes) are used as templates to synthetize 

messenger RNA (mRNA) molecules, which are in turn translated into proteins by the cell’s 

machinery. Yet, transcription (gene to mRNA) and translation (mRNA to protein) are not 

independent processes, but rather happen in a complex cellular environment. For example, 

special molecules called transcription factors can regulate the production of other molecular 

species by binding to the DNA in proximity to genes and either facilitating or obstructing 

transcription [3]. This seemingly simple mechanism can give rise to a spectacular level of 

complexity when considering that living cells have tens of thousands of genes, and their 

mutual interactions are only partially understood [4,5].

The purpose of this review is to provide an overview of the mathematical strategies used 

to describe this complex phenomenon and predict how cellular heterogeneity emerges from 

the underlying regulatory dynamics. The fundamental assumptions connecting all these 

modeling strategies is that it is possible to describe, with some extent of success, the 

intricated interactions between genes and transcription factors with mathematical models 

(such as differential equations or logic circuits), and that the outputs of these models (such 

as probability distributions or attractors) can be related to the different states that cells can 

attain. We acknowledge the existence of other recent reviews that discuss the application 

of mathematical and physical concepts to chemical-reaction systems, stochastic events, 

and simulation strategies in biological systems [6–9]. Compared to these reviews, which 

explore the theoretical aspects in deeper details, we aim at presenting a more hands-on 

and simplified overview of the main theoretical strategies necessary to investigate the 

multistability and heterogeneity in biological systems, explicitly discussing examples and 

offering hands-on tutorials and simulations. With this approach, we aim to create a unifying 

ground not only for theoreticians interested in biological systems, but also for biologists who 

are interested in the theoretical tools to model complex biological systems. In this sense, 

this review can be seen as a set of suggestions to tackle gene regulation and biochemical 

interactions at different levels of complexity.

In the first section of the review, we introduce theoretical and computational methods 

to model the emerging dynamics of gene regulatory networks and their contribution 

in many biological open problems. First, we discuss discrete, stochastic frameworks to 

model transcription, translation, and interactions between transcription factors. Further, 

we introduce a continuous framework that allows to model larger circuits with several 

transcription factors, and discuss how to characterize multistable systems with the 

pseudopotential landscape, the “systems biology” analogy to the potential landscape. 

Finally, we discuss strategies to tackle large circuits, where missing information about 

the model’s parameters require approximation methods such as Boolean networks and 

parameter randomization, and provide an introduction to how gene regulatory networks can 

be inferred using high-resolution single cell sequencing data. This section also includes 

hands-on tutorials to simulate some of the simplest and most widely used circuit structures 

in the literature. In the second section of the review, we discuss in detail three specific 

biological examples where the application of these methods led to new and significant 

biological insights, including the epithelial-mesenchymal transition, differentiation of stem 
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cells, and cell-cell communication through Notch signaling. These examples, which were 

chosen not least due to the expertise of the authors, cannot fully do justice to the extensive 

available literature, and we would like to acknowledge the many outstanding works that 

could not be included here due to the limitation of space. While discussing these three 

examples, we introduce further mathematical tools that have been especially important 

in their respective fields, including: the modeling of non-coding RNA in the epithelial-

mesenchymal transition, the application of quantum many-body formalism in the modeling 

of stem cell differentiation, and spatial models with many cells in the description of cell-cell 

communication through Notch signaling.

2. Mathematical methods to study the multistability of regulatory 

networks

2.1 Discrete models of circuits: from reactions to the Chemical Master Equation

2.1.1. Construction of the CME for protein synthesis—In this first section, we 

start by analyzing theoretical approaches that aim at modeling the stochastic nature of 

individual molecular reactions. The basic steps in molecule production include transcription, 

where a messenger RNA (mRNA) transcript is created, and translation, when the final 

molecule is produced from the mRNA transcript. This working model can be formalized by 

assuming that a gene transcribes mRNA molecules with constant rate km. Moreover, each 

mRNA molecule translates into proteins with rate constant kp. Further, if mRNA and protein 

molecules degrade with rate constants γm, γp, we can write the following set of reactions

km
m

γmm
∅, (1a)

kpm
p

γpp
∅ . (1b)

Reactions (1a-b) are summarized in figure 1A. Starting from copy numbers of mRNA and 

protein m, p  at time t, the next reaction will move the system to a new configuration m′, p′
as shown in figure 1B. Since the rates in the reactions (1a-b) are either constant or depend 

linearly on m, p , the copy number of mRNA or protein can be increased or decreased only 

by one molecule at a time. This is not necessarily the case; in more complex processes 

molecules might bind or degrade as oligomer complexes, which cannot be described by 

linear rates; we will discuss this case in more details at a later point when introducing Hill 

functions. It is also interesting to note that, in eqs. (1a–b), four rates control the copy number 

of two molecular species. Therefore, infinite combinations of the parameters km, kp, γm, γp

can give rise to the same m, p  state. Recent studies using high throughput data suggest, 

however, that only certain parameter combinations are naturally observed as a result of 

balancing between transcription precision, which is achieved with large rate constants, and 

costs, which are minimized by low rate constants [10].

Starting from reactions (1a-b), we aim at constructing an equation to predict the probability 

to observe a certain combination of copy numbers m, p  at any given time. To construct 
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the Chemical Master equation (CME), we define a discrete, infinite set of probabilities 

P m, p, t , so that P m, p, t  describes the probability to observe m mRNA molecules and p
protein molecules at time t. These probabilities satisfy a normalization condition (i.e., they 

sum up to one at any time t)

∑
n = 0

+∞
∑

p = 0

+∞
P m, p, t = 1. (2)

Following the reaction scheme of Figure 1B, we can write an evolution equation for the set 

of probabilities

dP m, p
dt = km[P (m − 1, p) − P (m, p)] + γm[(m + 1)P (m + 1, p) − mP (m, p)]

+kpm P m, p − 1 − P m, p + γp p + 1 P m, p + 1 − pP m, p .
(3)

In eq. (3), all the positive and negative terms represent influx and outflux of probability. 

In other words, positive terms in eq. (3) are associated with reactions that bring the system 

to the m, p  state, whereas negative terms are associated with reactions that bring the 

system out of the m, p  state (see again the reactions in Fig. 1B). Moreover, eq. (3) can 

be further simplified with reasonable assumptions when different terms on the right-hand 

size are associated to well-separated timescales. Specifically, one common approximation 

is to assume a quasi steady state approximation (QSSA) for mRNA, whereby the variable 

m is substituted by its average value km/γm. In other words, the number of mRNAs can 

be treated as a constant if it equilibrates much faster than the protein. This assumption 

trades a more faithful description of the biological system for a reduction in complexity and 

computational time, and may or may not be accurate depending on the specific biological 

systems. For example, transcription and translation have similar rates in bacteria (about 

1 min/gene and 1 min/protein), thus making QSSA a poor approximation. Translation, 

however, is significantly slower in mammalian cells (about 10 min/protein) due to an 

intermediate reaction called “RNA splicing”, which will be discussed later in section 2.1.5, 

thus justifying transcription QSSA [11]. For comparison, protein loss due to degradation 

and/or cell division (typically referred to as “dilution”) has a typical timescale of hours to 

days depending on the organism[11], thus making it the slower reaction in eq. (3). The 

simplified CME after mRNA QSSA describes only the protein copy number p

dP p
dt = + k P p − 1 − P p + γp p + 1 P p + 1 − pP p , (4)

where k = kpm = kpkm/γm. Eq. (4) describes a birth-death process with rate constants (k, γp). 

The steady state solution of eq. (4) can be evaluated with different analytical, numerical or 

simulation methods that are explored in detail in the following section.

2.1.2 Solving and simulating the birth-death CME—The steady state solution of 

the CME (eq. 4) is the complete set Pn SS  obtained by solving dPn
SS

dt = 0. In this section, 

we discuss three methods that may be suitable to tackle different types of CMEs using the 
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birth-death process (eq. 4) as an example. The insight box 1 in section 2.1.4 offers the 

explicitly solution/implemented of the three methods. First, it is possible to find analytical 

solutions of the CME if when the number of variables is small and the reactions are zeroth 

or first order. Typically, one first takes advantage of the fact that the equation for P0 ss has a 

simpler form since n is strictly semipositive. Then, all the other Pn ss can be found iteratively. 

This method can be successfully applied to the birth-death process, yielding Pn = 1
n!

k
γ

n
e− k

γ

(see insight box 1).

Second, generating functions provide a more general framework to solve CMEs by 

converting the infinite-dimensional system of equations into the single differential equation. 

In the simple case of the birth-death process, this approach can be developed analytically 

(see insight box 1). Nonetheless, large number of variables and higher-order interaction 

terms typically prevent analytical solutions and potentially make numerical approaches 

expansive.

Finally, a third possibility to study the CME is to explicitly simulate the dynamics 

using algorithms such as non-rejective Monte Carlo, more commonly known as Gillespie 

algorithm [12,13]. In the Gillespie simulation scheme, chemical reactions are treated as 

independent events (see for example [14,15]). Under this assumption, the waiting time 

until the next realization of any given reaction with rate w is an exponentially distributed 

random variable with mean and standard deviation equal to 1/w. Therefore, an iteration of a 

Gillespie simulation with i = 1, …, M reactions includes the following steps. First, compute 

the individual reaction rates wi. Second, draw an exponentially distributed random variable 

τ  with rate parameter W = ∑i = 1
M wi that represents the waiting time until the next reaction 

occurs. Finally, draw a uniformly distributed random variable r  to select which reaction 

occurs. The probability of each reaction is given by its relative weight wi/W  (a pseudocode 

is presented in the insight box 1 for the birth-death process). The result of the simulation 

is a trajectory of the number of molecules n t  as a function of time starting from an initial 

condition specified by the user. In the long-time limit, the statistics of n t  will resemble 

closely and closely the steady-state distribution Pn obtained with iterative and generating 

function methods (provided that these approaches are feasible for the specific system under 

study). The long-time limit is identified as a timescale that is substantially larger than any 

typical timescale in the reaction scheme, and therefore depends on the parameters of the 

model (see the insight box 1 for this specific calculation in the birth-death process).

The steady state solution of the simplified birth-death process modeled by eq. (4) is a 

Poisson distribution with mean μp  and variance σp  both equal to kP /γP. However, as 

discussed in more detail by Tsimring [7], a full model that takes into account mRNA 

dynamics leads to a broader protein copy number distribution with variance equal to

σp = μp
kp

γp + γm
+ 1 . (5)

Experimentally, it is well known that mRNA and protein count distributions in cells can 

exhibit variances much larger than the predicted Poisson distribution of the birth-death CME 
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[16]. This effect arises due to the so-called transcriptional bursting. Namely, promoters 

do not transcribe mRNA molecules at a constant rate, but rather switch between ‘ON’ 

and ‘OFF’ periods, thus leading to bursts of mRNA molecule production on a typical 

timescale of a few minutes [16], thus leading to broader copy number distributions. The 

contribution of mRNA dynamics on protein copy number dispersion can be quantified 

with Gillespie simulations. The protein copy number distribution over the course of a 

long simulation is narrower in the simpler mRNA QSSA model, compared to the full 

mRNA-protein model (Fig. 2A). The relation between width of the distribution and mRNA 

QSSA can be quantified by testing the performance at different mRNA dynamics speed. The 

average, expected value of mRNA copy number is determined by the model’s parameters: 

mss = km/γm. Therefore, increasing both the mRNA production rate km and degradation rate 

γm by the same factor does not modify the expected mRNA copy number, but makes the 

mRNA equilibration dynamics faster, thus making mRNA QSSA more and more precise. As 

the value of these parameters is increased, the standard deviation of protein p  copy number 

in Gillespie simulations decreases, and finally becomes comparable to the QSSA standard 

deviation when the mRNA dynamics is sufficiently fast (Fig. 2B). Further discussion of 

transcriptional bursting and mathematical attempts to quantitatively capture model it are 

reviewed in [7,16].

Both the full and QSSA models of protein synthesis result in a distribution with a single 

peak, which can be identified as the state assumed by the system, corresponding to a 

specific cell phenotype (see Fig. 2A). More complex systems can instead exhibit multimodal 

distributions, where the different peaks can be interpreted as the different, co-existing states/

phenotypes available to a cell. By adding a self-activation loop, the probability distribution 

obtained with the Gillespie simulations becomes bimodal, with one peak corresponding to 

a low-expressing state and one peak corresponding to a high-expressing state (Fig. 3A). In 

the self-activation loop, the protein p acts as a transcription factor (TF) and activates the 

transcription of its own gene [17]. Furthermore, the simulated trajectory of protein copy 

number highlights transitions between the low-expressing and high-expressing states driven 

by the stochastic fluctuations (Fig. 3B). A detailed analysis of this circuit motif can be 

found in [17]. Despite its simplicity, the self-activating loop can describe realistic biological 

systems, as in the case of the cell fate differentiation in the developing fruit fly embryo 

based on the self-activation of the ftz gene, where the authors further test many parameter 

combinations and identify the conditions enabling bistability [18].

2.1.3 CME for the toggle switch and larger networks—The CME formalism can 

be extended to study the coupled dynamics of a network of interacting species. In this 

section, we will set up the CMEs to describe the toggle switch, a simple motif composed 

by two genes that mutually repress each other, which can be seen as a basic mechanism 

to model differentiation between two distinct cell types [19]. This method can serve as a 

general example to tackle more complex networks of interconnected biochemical species.

In the toggle switch, two genes (x and y) transcribe mRNA for the transcription factors (TF 

for brevity in the following) X and Y. We will follow the same strategy of the birth-death 

process of eq. (4) and assume QSSA for the mRNA species x and y to reduce the number of 

Bocci et al. Page 6

Rep Prog Phys. Author manuscript; available in PMC 2024 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



degrees of freedom and parameters. After being produced, TF X can inhibit the production 

of Y by binding to the promoter transcribing for gene y, and vice versa (see Figure 4A).

TFs do not necessarily bind and regulates the transcription of other species as single 

molecules; often, they first dimerize (or create higher-order oligomer complexes) and then 

bind to DNA. Here, we assume that both TFs X and Y dimerize with forward and backward 

rate constants kD, kM, as often assumed in existing mathematical modeling [20]. Molecular 

binding and unbinding that regulate TF dimerization have much shorter timescales compared 

to protein synthesis, thus providing a possibility to further simplify the model by assume 

QSSA for the dimerization/monomerization reactions[21] (see Figure 4A). Thus, the steady 

state concentrations of the dimers are X2 = kD/kM X2 and Y 2 = kD/kM Y 2. Following 

dimerization, the dimers bind and unbind to the DNA with rate constants k+, k−. Both 

TFs are produced at a rate k0 when their respective promoters are not bound; the rate, 

however, decreases to k1 < k0 when the promoters are bound to the dimerized form of the TF. 

Therefore, the toggle switch can be viewed as two separate birth-death processes where the 

final molecular products X and Y bind to the other protein’s gene to inhibit its production. 

All the considered reactions are depicted in Figure 4A.

The toggle switch can be characterized with four variables: two positive integer variables 

(n, m ) accounting for the number of molecules for species X and Y, respectively, and two 

Boolean variables SX, SY  that encode the state of the two promoters. Si = 0 implies that 

promoter of species i is unbound, while Si = 1 implies that promoter is bound, respectively. 

Thus, starting from a generic configuration n, m, Sx, Sy  at time t, a subsequent reaction can 

either modify the copy number of X and Y or change the state of one of the two promoters. 

All reactions and rates are illustrated in Figure 4B. Following the CME approach, we write 

an evolution equation for the probability P n, m, Sx, Sy . To write the CME in a compact form, 

we define the following functions. First, a generalized production rate function

k S = k0 1 − S + k1 S . (6)

This function assumes the value k0 when the promoter is unbound S = 0  and k1 when 

the promoter is bound S = 1 . Furthermore, a generalized rate function to describe binding/

unbinding of a promoter

f(S, k) = k−S + k+kD

kM
k2(1 − S) . (7)

This function returns the unbinding rate k− when the promoter is occupied S = 1  and the 

binding rate k+kD
kM

k2 if the promoter is free S = 0 . In this definition, k is the molecular copy 

number of the TF that inhibits the promoter. With these definitions, we can formally write 

the CME for the toggle switch by listing all the reactions depicted in Figure 4B
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dP n, m, Sx, Sy, t
dt

= − γn + γm + k Sx + k SY + f Sx, m + f Sy, n P n, m, Sx, Sy, t +
γ n + 1 P n + 1, m, Sx, Sy, t + γ m + 1 P n, m + 1, Sx, Sy, t +
k Sx P n − 1, m, Sx, Sy, t + k Sy P n, m − 1, Sx, Sy, t
+f 1 − Sx, m P n, m, 1 − Sx, Sy, t − f 1 − Sy, n P n, m, Sx, 1 − Sy, t .

(8)

In eq. (8), the first-row accounts for all the outflux terms from the configuration n, m, Sx, Sy , 

including degradation, production and change in the promoters’ states. The second-row 

accounts for influx due to degradation in configurations with higher molecule copy numbers; 

the third-row counts influx due to molecular production in configurations with lower copy 

numbers; and the fourth-row considers influx due to changes in the state of one of the 

promoters. This equation is far too complex for an exact solution with iterative methods; 

moreover, the relatively large number of variables makes eq. (8) stiff for generating function 

approaches. Simulations with the Gillespie algorithm, however, easily provide information 

about the relaxation dynamics and steady state (see for example [22,23]).

This treatment of the toggle switch can be considered as a footprint to tackle larger circuits 

of interconnected genes and transcription factors comprising transcription, translation, 

degradation, molecular binding and transcriptional regulation. As size of the circuits 

increases, understanding reasonable approximations to decrease the complexity of the model 

becomes crucial. Here, we applied some common approximations including QSSA for 

mRNA dynamics and protein-protein binding. In general, these approximations yield good 

results when timescales are well-separable. Therefore, depending on the parameters of the 

specific system of interest, QSSA might or might not be a suitable approximation.

2.1.4 Insight box 1: three ways to compute the steady state of the birth-death 
CME—In this insight box, we discuss three approaches to tackle the birth-death CME 

derived in section 2.1

dPn

dt = − kPn + kPn − 1 − γnPn + γ n + 1 Pn + 1 . (9)

Iterative solution of the CME: This infinite system of equations can be solved by taking 

advantage of the simplified form of the equation for P0 and then using induction. Since the 

copy number is strictly positive n ≥ 0

dP0

dt = − kP0 + γP1 . (10)

Steady state dP0/dt = 0 implies P1 = k/γ P0. Similarly, dP1/dt = 0 yields

P2 = 1
2γ kP1 − kP0 + γP1 = 1

2
k
γ

2
P0 . (11)

Bocci et al. Page 8

Rep Prog Phys. Author manuscript; available in PMC 2024 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Repeating the process iteratively to higher-order equations, one finds the general expression 

for Pn

Pn = 1
n!

k
γ

n
P0, (12)

Where the constant P0 can be calculated by imposing normalization of the total probability

∑
n = 0

∞
Pn = P0 ∑

n = 0

∞ 1
n!

k
γ

n
= P0e

k
γ = 1. (13)

Thus, the steady state set of probabilities follows a Poisson distribution with rate λ = k/γ

Pn = 1
n!

k
γ

n
e− k

γ . (14)

Generating functions: Generating functions advantageously transform an infinite-

dimensional problem into a one-dimensional problem. Given the set of probabilities 

Pn, n ∝ 0, ∞ , the generating function ϕ z  is defined as

ϕ(z) = ∑
n = 0

∞
Pnzn . (15)

From eq. (15), an equation for the temporal dynamics of ϕ z  can be obtained by taking a 

time derivative and substituting the actual expression of dPn dt. Then, the probabilities Pn are 

obtained by differentiation ϕ z

Pn = 1
n!

∂nϕ
∂zn z = 0 . (16)

Using the definition of ϕ z  of eq. (15), we write the single ODE that describes the temporal 

variation of ϕ z

dϕ(z)
dt = ∑

n = 0

∞ dPn

dt zn

= − k ∑
n = 0

∞
Pnzn + k ∑

n = 0

∞
Pn − 1zn − γ ∑

n = 0

∞
nPnzn + γ ∑

n = 0

∞
(n + 1)Pn + 1zn .

(17)

This equation can be tackled as follows. The first term on the RHS is simply −kϕ z . In the 

second term, we shift indexing to m = n − 1; then, it becomes apparent that the term equals 

+kzϕ z . In the third term, we can eliminate the factor n by exploiting d
dz zn = nzn − 1; then, 

the term can be rewritten as −γzdϕ z
dz . Finally, combining the tricks used for the second and 

third terms, the fourth term becomes γ dϕ z
dz . The long-time limit solution dϕ z

dt = 0 is then
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1 − z dϕ z
dz = 1 − z k

γ ϕ z . (18)

In any point z ≠ 1, this equation has the simple general solution ϕ(z) = C1e
k
γ z + C2. The 

probabilities Pn, n ∝ 0, ∞  are then obtained by differentiating the generating function

Pn = ϕn 0
n! = 1

n!
k
γ

n
C1 . (19)

This is the same expression found with the iterative method, with the parameter C1 in place 

of P0. Therefore, normalization of the probability set Pn  yields Pn = 1
n!

k
γ

n
e− k

γ .

Gillespie simulation: In the simple case of the birth-death process, starting from a generic 

configuration at time t with n molecules, two reactions are possible: birth of a new protein 

molecule with rate k and death of an existing molecule with rate γn. Below we provide the 

pseudocode for the implementation of the Gillespie scheme for the birth-death process.

Pseudocode: n = nin # set the initial number of molecules

t = 0  # start the simulation at t = 0

while t < T :

# compute total rate

W = k + γn

# sample an exponentially-distributed random variable with rate parameter 1/W

τ = exp_rnd 1/W

# sample a uniformly distributed random number in 0,1  to pick the reaction

# select birth reaction

if uniform([0,1]) < k
W :

n = n + 1

# select death reaction

else:

n = n − 1

# update time
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t = t + τ

In the birth-death process case, the birth rate is configuration-independent and always equal 

to k. The death rate, however, depends on protein number and is minimal at n = 1. Therefore, 

the simulation time T  required to obtain substantial information about the steady state must 

at least satisfy T ≫ max 1 k, 1 γ .

2.1.5 Explore further: RNA splicing—In this section, we mostly focused on 

transcription (production of mRNA) and translation (production of the finalized molecule) 

as the building blocks of cellular reaction systems. Newly transcribed RNA molecules, 

however, require a specific reaction where pre-determined portions of the RNA sequence 

are removed. This “splicing” reaction converts nascent to mature RNA, which can be then 

effectively translated into protein [24]. mRNA splicing has recently drawn interest in the 

systems biology field due to the development of new single cell sequencing technologies 

that now enable to precisely measure the amount of unspliced (nascent) and spliced (mature) 

RNA within individual cells [25,26]. This high-dimensional information has been used to 

build biochemical reaction models that infer interactions between chemical species and 

predict transitions between cellular states [27–29]. A detailed discussion of the mathematical 

approaches and consequences of splicing in the molecular dynamics can be found in [30,31].

2.2 Continuous models of regulatory networks

2.2.1 The chemical rate equation emerges as the average dynamics of the 
CME—In the previous section, we developed a probabilistic framework to account for the 

inherent stochasticity of biochemical reactions in regulatory networks. This probabilistic 

framework is especially important when the copy number of a protein is low within a 

cell, and thus stochastic fluctuations can substantially influence a biochemical circuit’s 

response and potentially play a role in cellular function. A well-known example of the role 

of fluctuations is the selection of a competent state for DNA uptake in Bacillus subtilis 
[32]. In the limit of large molecular copy number, however, one can assume that stochastic 

fluctuations become less and less relevant (also referred to as “thermodynamic limit”). In 

this limit, the concentration or copy number can be described as a continuous variable. 

In more practical terms, when moving from the CME to a continuous formalism, we 

coarse-grain the model of a biochemical network by describing each chemical species with a 

single, continuous variable, whose temporal dynamics can be described by a single ordinary 

differential equation (ODE), rather than an infinite-dimensional system of CMEs.

The relation between the CME and the continuous chemical rate equation can be understood 

in the simple case of a birth-death process presented in eq. 4 by considering the dynamics of 

the average number of proteins n t

d n(t)
dt = ∑

n = 0

+∞
nd Pn(t)

dt

= k ∑
n = 0

+∞
nPn − 1(t) − nPn(t) − γ ∑

n = 0

+∞
n2Pn(t) − n(n + 1)Pn ± 1(t) .

(20)
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After some manipulation of the summation indexes, eq. (20) can be simplified as

d n t
dt = k − γ n t . (21)

Therefore, the evolution of the average number of molecules, which is now a continuous 

variable, is described by a single ODE.

This approach facilitates the treatment of large networks with many interconnected 

regulations that would be unfeasible with the CME approach. In general, a circuit of N
interconnected species can be described as a dynamical system

ẋ = F x , (22)

where x = x1, x2, …, xN  is the vector of concentration/copy number of the N species in 

the circuit and the force field F x  describes their coupled dynamics and the possible 

interconnections between them. Therefore, all the prior knowledge on the circuit of interest 

is encoded by the choice of functions and parameters in the force field. The force field 

F x  captures all the relevant reactions, including transcription, translation, chemical binding 

and degradation. The continuous formulation of eq. (22) conveniently allows to apply all 

the tools of nonlinear dynamics, including linear stability analysis, phase diagrams and 

bifurcations that are usually applied to classical physical problems. In the following section, 

we will develop some of these methods in the study of the continuous toggle switch.

Finally, it is worth noting that significant deviations between CME and mean field modeling 

may arise when mean field models are pushed to the mesoscale where stochastic fluctuations 

become important. The presence of different states, or cell phenotypes, is represented in the 

CME formalism by multimodal probability distributions whereby each peak corresponds 

to a cell phenotype, as seen in the self-activating gene (Fig. 3). In the framework 

of deterministic ODE models, the accessible phenotypes are represented by the stable 

attractors. The correspondence between distribution peaks and stable attractors is generally 

good in the thermodynamic limit but discrepancies can arise in the low copy number limit 

(see [33,34] for detailed comparisons). In addition, deterministic models cannot capture 

the transitions between cell states guided by stochastic fluctuations. The effect of noise-

driven phenotype switching can be introduced in ODE-based modeling with the stochastic 

differential equation framework, which will be introduced in section 2.2.3. More detailed 

mathematical insight and a thorough comparison between the stochastic and mean field 

approaches can be found in[35].

2.2.2 Continuous model of the toggle switch—Following the parallel with the 

treatment of the CME, we develop a continuous formalism for the toggle switch system 

composed of two genes that mutually repress each other. We also exploit this example to 

present some common functions used to model transcriptional activation and inhibition in 

the gene regulatory network literature. In the CME, the mutual inhibition between two TFs 

was explicitly modeled by considering TF dimerization and binding to the DNA. The main 

challenge of the continuous version is to find a suitable force field F x  that effectively 

captures the same dynamics. This is typically achieved by introducing a continuous function 
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that modulates the transcription rate. First, we can introduce transcriptional regulation in the 

simpler case of the noise-free chemical rate equation of the birth-death process

dp
dt = k H R − γp . (23)

Here, R is the concentration of a transcription factor that inhibits or activates the production 

of p; H R  is a continuous function that modulates the production rate. In general, H R
must satisfy the condition H 0 = 1 so that the basal transcription rate k is recovered in 

the absence of external regulation. Then, H R  increases or decreases monotonically as a 

function of R depending on whether R activates or inhibits p. Assuming equilibration of both 

TF dimerization/multimerization and TF-DNA binding leads to the so-called Hill function, 

which was originally introduced in 1910 to describe the binding of oxygen to hemoglobin 

[36], and has been since applied to a variety of biological contexts [37]

H R =
1 + λ R

R0

n

1 + R
R0

n . (24)

The functional form of the Hill function in Eq. (24) is derived exactly from the underlying 

chemical reactions in the insight box 2. In this expression, R0 represents a threshold 

concentration that is related to the rate constants for TF-TF and TF-DNA binding (see 

insight box 2). Therefore, when R > R0 the regulatory effect of R becomes important. λ is 

a fold-change that represents the change in transcription rate due to R. In the limit R ≫ R0, 

the production rate relaxes to kλ. Therefore, 0 < λ < 1 indicates transcriptional inhibition 

and λ > 1 indicates transcriptional activation. Lastly, the Hill coefficient n indicates the 

cooperativity of the transcription factor. For instance, n = 1 indicates that R binds to 

the promoter of p as a single molecule, n = 2 indicates dimerization of the TF, and so 

forth. It is important to stress that a Hill-like relation between protein and TF does not 

necessarily imply TF cooperation and binding, as other biological processes upstream or 

downstream of transcriptional regulation that are not accounted for in the model can lead 

this nonlinear response of eq. (24). The insight box 2 (section 2.2.5) further discusses how 

these parameters can be fitted or inferred from experiment observations.

In this continuous formalism, the toggle switch can be thus described by a set of two ODEs 

of the form

dx
dt = k

1 + λ y
t0

n

1 + y
t0

n − γx, (25a)
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dy
dt = k

1 + λ x
t0

n

1 + x
t0

n − γy . (25b)

For simplicity, we assumed that both x and y are produced and degraded with the same 

rate constants. Furthermore, the system is completely symmetric as the Hill thresholds, 

fold-changes and coefficients are the same for the two species. The ODE system of eq. (25) 

can exhibit bistability between a (high X, low Y) and a (low X, high Y) states (Fig. 5A). A 

potential pitfall of this modeling approach is the uncertainty in the estimation of the model’s 

parameters. The dependence on the parameter choice can be investigated with parameter 

sensitivity approaches. Figure 5B shows the change of steady state X level in the (high X, 

low Y) state upon varying the model’s parameter one at a time by 5%. More sophisticated 

approaches to parameter sensitivity exist in the current literature that can be reviewed in 

references[38,39].

While the toggle switch represents a simple case of bistability of two opposite states, often 

the description of realistic biological processes requires more complex models, which can 

be achieved by increasing the number of nodes and interactions. For example, allowing both 

species to self-activate enables a third stable state with intermediate expression of both x and 

y. This self-activating toggle switch can describe the differentiation of an undecided stem-

like state into either one of two differentiate states that either express x or y [40], and will 

be further discussed in the context of stem cell differentiation (see section 3.2). Recently, 

a systematic network motif search by Ye and collaborators identified two large families of 

3-node networks that give rise to 4 stable cell states. In this study, the authors first sampled 

different network topologies defined as the sets of positive and negative interactions between 

nodes, and then developed a mathematical for each topology to determine the number of 

attractors. Finally, these multi-stable circuits were used to describe the differentiation of 

T-cells, where an undifferentiated progenitor transitions through several intermediate states 

before reaching a differentiated state[41].

2.2.3 Introducing noise in continuous circuits with the overdamped 
Langevin equation—We derived the continuous chemical rate equation as a noise-free 

approximation to the CME. In many situations, however, the continuous limit is utilized 

because the complexity and size of the circuit of interest prevents a treatment with discrete 

modeling. The effect of stochastic fluctuations, however, can be still incorporated in 

continuous models in a coarse-grained manner by considering the stochastic differential 

equation

ẋ = F x + ξ x, t . (26)

This equation describes the motion of a particle in the overdamped limit ẍ = 0  under the 

presence of a force F x  and a noise term ξ x, t  that satisfies ξ x, t ξ x, t′ = 2D D δ t − t′ . 

In other words, the noise term is a random variable whose intensity at any time t is 

completely uncorrelated to the intensity at any other given time. D is a constant with the 
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interpretation of an effective diffusion coefficient. In most of the current models of genetic 

circuits, the noise is assumed to be white. Thus, D is simply a unitary matrix. In other 

words, the noise term for each species has the form ξ x, y, t = σN 0,1 , where σ is the noise 

amplitude and N 0,1  is a Gaussian random variable with zero mean and unitary variance. 

In the case of the bistable toggle switch, white noise introduces stochastic fluctuations can 

induce transitions between the two stable states (Fig. 5C).

It is important to stress that stochastic fluctuations modeled in the previous section with 

Gillespie simulations depend on the models’ parameters. In other words, each chemical 

species had a distinct noise amplitude, which could furthermore depend on time as the 

different reaction rates may depend on many variables’ copy numbers. For this reason, the 

stochastic fluctuations arising from biochemical reactions and modeled with Gillespie-style 

simulations are referred to as ‘intrinsic noise’. Conversely, the so-called ‘extrinsic noise’ 

broadly captures all other perturbations related to other cellular components and/or external 

factors in the cell’s local microenvironment [42,43]. Modeling fluctuations with white 

noise implies that all species in a circuit are subjected to a fixed noise intensity. From 

a statistical perspective, the approximation of stochastic fluctuations with white noise can 

be motivated, in the thermodynamic limit, by the central limit theorem. For example, the 

protein distribution in the birth-death process is well-approximated by a Gaussian fit (see 

again Fig. 2A). On a more physical basis, white noise emerges, under specific conditions, 

whenever a system receives and dissipated energy from a “bath” (in this case, the rest of the 

cell) that is not explicitly included in the model [44,45]. This assumption, however, could 

become problematic when modeling species that are lowly expressed or near “extinction” 

points where all molecule copies are degraded. Protein copy numbers vary significantly 

across species and specific conditions. Copy numbers in human cells span as much as 7 

orders of magnitude, and low-expressed proteins can have less than 500 copies, whereas 

transcription factors in bacteria can have only tens of copies [46,47]. For example, the 

behavior of the λ-phage virus has been described using a toggle switch model between the 

repressors cl and cro whereby high cl implies lysogeny where the virus is incorporated into 

the host’s DNA while high cro implies lysis where the virus reproduces and kills the host 

cell [48]. Detailed mathematical analysis by Schultz and colleagues showed that a stochastic 

ODE model cannot correctly account for the bistability as cro can undergo “extinction” and 

“resurrection” events, where cro is temporarily absent before being produced again [49].

To bridge the gap at least partially between continuous and discrete model at low molecule 

copy numbers, other ways to model noise have been explored. One notable example is shot 

noise where D is a diagonal matrix with Dii = xi [44,45]. In other words, the intensity 

of noise for the i-th species is proportional to the square root of the variable’s copy 

number xi . Therefore, variables with higher copy number experience fluctuations with 

larger amplitude. On the other hand, the noise-to-signal ratio xi/xi = 1/xi is lower for high 

copy number species. As a practical example, a species with average copy number n = 102

molecules will have typical fluctuations of ∼10 molecules, or 10% of its average copy 

number. Conversely, the average fluctuations of a species with copy number of n = 104

will be larger in absolute intensity (~102 molecules) but will only correspond to 1% of 

the variable’s copy number. Thus, species with low copy number can be subjected to large 
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deviations somewhat similar to the bursting effect discussed in the context of the CME. 

As noted by Lu and collaborators, a combination of white and shot noise is likely a more 

precise way to model stochastic fluctuations in continuous, ODE model of biochemical 

regulatory networks as shot noise captures low copy number deviations while white noise 

captures external inputs [50].

2.2.4 Characterizing the landscape of multistable gene regulatory networks
—In general, a multistable circuit governed by the overdamped Langevin equation will 

exhibit multiple attractors and, as in the case of the bistable toggle switch, stochastic 

fluctuations introduce the possibility of transitions from one state to another. Landscape 

theory is a popular way to quantify the global stability in a multistable system by computing 

the equivalent of a potential function.

The idea that cells follow “paths” in some underlying, high-dimensional landscape that 

guide the transition toward new cell states was first formalized by Waddington. In 

Waddington’s epigenetic landscape, cells are visualized as marbles that roll through a 

downhill landscape where valleys and ridges define alternative routes leading to different 

cellular phenotypes characterized by distinct gene expression profiles and different sets of 

epigenetic interactions [51]. Here, the term “epigenetics” denotes the set of intracellular 

interactions between the genome, RNAs, transcription factors and enzymes, such as DNA 

methylation and phosphorylation, that modulate gene expression. Therefore, the differences 

in gene expression and protein concentration in cells belonging to different valleys is not 

a result of mutations in the genetic sequence, and rather arise from different epigenetic 

interactions operating on the same genome [52,53].

The construction of the landscape begins by mapping the Langevin dynamics onto a Fokker-

Planck (FP) equation describing the joint probability distribution p x1, x2, …xN, t

∂p x, t
∂t = − ∇ ⋅ F x p x, t + ∇2 D x p x, t , (27)

where F x  is the force field driving the Langevin dynamics and D x  is a diffusion tensor 

related to the noise amplitude by D x = σ X σt x /2. We will not discuss the derivation of 

the FP equation form the Langevin equation, which can be found in many textbooks on 

non-equilibrium statistical mechanics. The FP equation can be written more compactly in 

the form of a continuity equation

∂p x, t ∂t + ∇ ⋅ J = 0, (28)

where J x, t = F x p x, t − ∇ ⋅ D x p x, t . From eq. (28), it is evident that the steady 

state solution ∂p x, t / ∂t = 0 requires a divergence-free flux ∇ ⋅ J = 0. This condition can 

be satisfied in different ways. Systems that respect detailed balance satisfy the stringent 

condition J = 0; in this case, there is a clear relation between force, potential and 

equilibrium probability distribution. Indeed, enforcing J = 0 implies
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F (x) = ∇ ⋅ D(x)peq

peq
= D(x)∇PSS

PSS
+ ∇ ⋅ D(x) . (29)

Rewriting ∇Peq
Peq

= − ∇ log Peq  clarifies the relation between potential and the equilibrium 

probability distribution U = − log Peq . The dynamics of the system is completely determined 

by the gradient of the potential U (up to a shift due to local variation of the diffusion 

matrix ∇ ⋅ D(x) . In the simple case of white noise, the diffusion is uniform ∇ ⋅ D(x) = 0
and the correspondence between force and potential gradient is exact. Typically, force 

fields describing regulatory networks are constructed in a phenomenological manner to 

capture biochemical interactions such as transcription, binding or degradation with the use 

of functional forms such as Hill functions. For this reason, they cannot be derived from 

an underlying potential and do not satisfy J = 0. Therefore, at steady state, the force field 

can be written as the sum of two components. A gradient of the log-scaled steady-state 

probability distribution and flux term

F (x) = D(x) ⋅ ∇PSS

PSS
+ ∇D(x) + JSS

PSS
. (30)

The flux term JSS effectively quantifies the deviation from gradient-driven dynamics. Since 

there are no sources or sinks of probability in the domain of existence of x, JSS must be 

locally curled, and is therefore often referred to as the curl flux. As observed by Wang, the 

dynamics of ‘gradient’ dynamical systems that respect detailed balance can be compared 

to the motion of an electron in an electric field; conversely, the dynamics of ‘non-gradient’ 

systems such as gene regulatory networks is similar to the motion of an electron in an 

electromagnetic field [54].

Fig. 5D shows the pseudopotential landscape of the bistable toggle switch under the effect of 

white noise, which include two deep minima corresponding to the two stable fixed points of 

the deterministic system.

Therefore, in non-gradient systems such as coupled biochemical networks, the steady-state 

probability distribution p x, t  cannot be established a priori, but only from stochastic 

simulations of the Langevin equation or steady state solution of the FP equation.

Nonetheless, the steady-state probability distribution and curl flux provide key information 

about (1) the number of accessible states, (2) their relative stability, and (3) the deviation 

from gradient-driven dynamics.

As seen in the self-activating gene (Figure 3) and the toggle switch (Figure 5), noise can 

induce cell state transitions between attractors. While these transitions can be studied with 

long simulations of the overdamped Langevin equation (such as the trajectory in Fig. 5C), 

this approach is time consuming and often cannot provide large statistics because escape 

events from attractors are rare. The pseudopotential landscape offers a more general strategy 

to study transitions with methods based on the path integral formalism. These methods 
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have been widely applied to biochemical systems to reconstruct transition trajectories and 

compute transition rates in a more computationally efficient manner. Interesting examples of 

these approaches include [55,56], and are summarized in [57] for interested readers.

2.2.5 Insight box 2: Modeling transcriptional regulation with Hill functions—
In the simplest model of protein production, a gene transcribes mRNA at a constant rate km; 

in turn, mRNA molecules are translated into proteins with rate constant kp. Therefore, the 

copy number of mRNA (m) and protein (p) can be described by first order equations

dm
dt = kmD0 − γmm, (31a)

dp
dt = kpm − γpp, (31b)

where D0 is the total number of promoters transcribing for the protein p, and can be treated 

as a constant unless DNA is being replicated during cell division; γm and γp are degradation 

rate constants for mRNA and protein. Assuming fast equilibration of mRNA dm/dt = 0 , the 

mRNA copy number is m = kmD0/γm and the protein copy number directly depends on the 

number of genes D0

dp
dt = kD0 − γpp, (32)

where k = kmkp/γm. In presence of a transcriptional factor x that activates or inhibits gene 

expression, the mRNA production rate is modulated by a function km kmf x  (Figure A). 

First, we assume that the transcription factor can bind and unbind to DNA as a single 

molecule with rate constants k+, k−. Assuming fast equilibration of the TF-DNA binding, the 

fraction of genes that are unbound U  and bound B  to the transcription factor are

U = D0
1

1 + x
x0

, (33a)

B = D0 − U = D0

x
x0

1 + x
x0

, (33b)

where x0 = k+/k− represents the half-concentration so that U = B when x = x0. The mRNA 

is transcribed with rate constant ku by an unbound promoter and kb by a bound promoter, 

respectively. kb > ku implies that x is an activator while kb < ku implies that x is an inhibitor. 

The corresponding protein p  is then produced with rate kukp/γm U + kbkp/γm B. Thus, the 

dynamics of protein p is governed by the following equation
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dp
dt = kp

U
1

1 + x
x0

+ kp
B

x
x0

1 + x
x0

− γpp = kp
U

1 + λ x
x0

1 + x
x0

− γpp, (34)

where kp
U = kukp/γm  and kp

B = kbkp/γm . In the compact form on the right-hand side, 

λ = kp
B/kp

U represents a fold-change in the transcription of p due to the regulatory activity of 

x.

In the more complex case where the transcription factor dimerizes reversibly x + x x2

with dimerization and monomerization rate constants k2, k1, and binds and unbind to DNA 

only in its dimer form x2, the fractions of bound and unbound DNA become

U = D0
1

1 + x
x0

2 ,
(35a)

B = D0 − U = D0

x
x0

2

1 + x
x0

2 , (35b)

where x0 = k1k + /k2k−. The corresponding equation for protein p becomes:

dp
dt = kp

U

1 + λ x
x0

2

1 + x
x0

2 − γpp . (36)

In general, a transcription factor that binds to DNA as an n-oligomer is described by the n-th 

power of its monomeric concentration. If the transcription factor is an activator, it is often 

assumed that the transcription rate of the unbound gene is zero (i.e. ku = 0), hence

dp
dt = k

x
x0

n

1 + x
x0

n − γpp, (37)

where the concentration of DNA D0  has been absorbed into the production rate constant k. 

Similarly, if a transcription factor is a very effective inhibitor, no transcription is assumed for 

the bound genes (i.e. kb = 0), hence

dp
dt = k 1

1 + x
x0

n − γpp .
(38)

The expressions in eq. (37) and eq. (38) are referred to as positive and negative Hill 

functions, whereas the general form presented in eq. (36) is referred to as shifted 
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Hill function. Detailed data about TF oligomerization is not always available. The Hill 

coefficient, half-concentration and fold-change n, x0, λ , however, can still be inferred from 

an experiment describing protein concentration as a function of TF concentration (Figure 

6B). In this case, however, there is no guarantee that the inferred Hill coefficient truly 

reflects TF oligomerization, as other processes can modulate transcription and change the 

protein-TF relation.

2.2.6 Explore further: Time delay, molecular memory and noncanonical 
pathways to multistability—A key assumption of both the CME and Langevin modeling 

strategies is that all biochemical reactions are Markovian with a Poisson waiting time 

distribution. Several biochemical processes, however, do not satisfy these assumptions. 

Protein synthesis involves the sequential assembly of long molecules, wherein a multistep 

process is aggregated into a simpler, single-step reaction described by a single rate 

constant, thus effectively implying a minimal waiting time for transcription or translation 

to occur[58,59]. The idea that the synthesis or degradation of a macromolecule involves 

a cascade of multiple, sequential events is referred to as “molecular memory”[60]. 

Non-Markovian dynamics has been modeled in different ways, often leading to diverse 

mathematical behavior that could not be obtained under Markovian assumptions. The auto-

regulatory motif where a transcription factor (TF) inhibits its own transcription is a clear 

example that illustrates this concept. Experimentally, this motif can lead to oscillations in 

TF concentration, as the time required for TF synthesis and diffusion inside the cell nucleus 

introduces a temporal delay. This effect can be modeled by introducing a delay in the 

transcription rate: f TF t f TF t − τ . Thus, the transcription at time t is a function 

of TF concentration at time t − τ, where the specific values of delay and degradation 

rate parameters determines the period of the oscillations[61]. This modeling strategy 

has been applied to many models involving transcription factors such as p53[62], NF-

kB[63], and PAGE4[64], yielding a good description of the oscillatory behavior that could 

not be captured by a “standard” Markovian model including instantaneous transcription, 

translation, and repression. Moreover, spatial models of partial differential equations have 

been developed to describe in greater details the timescale arising from mRNA and protein 

diffusion within cells, thus avoiding the need to explicitly introduce delay terms in the 

model’s parameters[65]. Recent systematic studied of the mathematical conditions enabling 

oscillations in in gene regulatory networks can be found in[66,67].

Besides non-Markovian reactions, multistability can be achieved via “noncanonical” 

mechanisms that do not simply rely on transcriptional activation or inhibition. A first 

example is the action of microRNAs, specific RNA species that bind to messenger 

RNA to promote their degradation. Recently, a model of mRNA-microRNA interactions 

was used to explain the spatial segregation of transcription factors Hoxa5 and Hoxa8 

during spinal cord development[68]. In this context, a toggle-switch type mutual inhibition 

between Hoxa5 and Hoxa8, although theoretically suitable to explain the bistability, 

was disproven by experimental evidence suggesting unilateral inhibition from Hoxa8 

toward Hoxa5[68]. The detailed mathematical modeling of microRNA-assisted mRNA 

degradation will be discussed later (section 3.1.3) in the context of epithelial-mesenchymal 

transition. A second noncanonical pathway to bistability without transcriptional regulation 
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involves phosphorylation by enzymes. The activation of Mitogen-activated protein kinases 

(MAPK), a class of proteins that convert and process extracellular stimuli, requires two 

sequential phosphorylation events carried by different enzymes at two sites, whereby a 

first enzyme phosphorylates the first site and then releases the intermediate kinase before 

a second phosphorylation event occurs. Markevich and collaborators demonstrated that the 

competitive binding of different enzymes to the MAPK binding sites is sufficient to generate 

bistability without additional transcriptional regulation[69].

2.3 Large networks: Boolean models, parameter randomization and interfacing with data

In the previous two sections we discussed CME and continuous models that describe genetic 

and biochemical interactions in a mechanism-based, detailed manner. These approaches 

can become impractical when applied to large networks with dozens, or even hundreds, 

of chemical species. These considerations are becoming more and more relevant as 

detailed experimental techniques provides detailed insight into the organization of large 

regulatory networks, thus providing an opportunity to build and benchmark larger models 

of gene regulation. A first challenge, from a computational standpoint, is to perform 

long simulations on models with hundreds of reactions and/or ODEs. A second, more 

fundamental problem is the difficulty to precisely estimate all the parameters of the model. 

Quite often, only a qualitative relation can be established between species in a network, such 

as inhibition or induction. In this section, we discuss two classes of models that resolve 

these issues and allow the modeling of large networks. First, we discuss Boolean models 

where nodes can only be active or inactive, and transcriptional and biochemical interactions 

are described via logic operators. Second, we present parameter randomization approaches 

that assume the functional form of the interactions and test many different combinations of 

parameter values. Finally, we introduce how the problem of determining the gene regulatory 

network architecture and connections can be tackled by interfacing quantitative modeling 

and high-resolution single cell sequencing data.

2.3.1 Boolean Models—Boolean models perhaps represent the most coarse-grained 

approach to describe regulatory networks since they require a minimal amount of 

information including solely the circuit’s connections of positive or negative interactions 

among genes [70]. For this reason, Boolean approaches stand out as some of the first 

attempts to model gene regulation [71]. In Boolean models, each node can either be ON 

σ = 1  or OFF σ = 0 , thus representing a gene or molecular species that is active or 

inactive, respectively. Therefore, the state of a regulatory network of N genes at any given 

time t is specified by an array of N Boolean variables σ = σ1, σ2, …, σN . The value of each 

node i σi  is a function of all the incoming signal from nodes that directly regulate node i. 
These functions Bi are typically constructed in an ad hoc manner starting from experimental 

evidence and using the logic commands AND, OR and NOT. Similar to their continuous 

counterparts, Boolean networks can be represented graphically as a set of nodes and arrows 

to indicate mutual activation or inhibition, such as shown in figure 7A. It is important to 

stress that the functional form of the functions Bi cannot be inferred by simply looking at the 

schematic representation. For example, in the circuit of figure 7A, x and z both activate the 
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node y. Their input, however, can be combined in an AND or OR manner, which must be 

specified.

Starting from an initial configuration, the values of the nodes are updated according to an 

integration scheme. In particular, the synchronous scheme is the simplest update method on 

a Boolean network. Under this deterministic scheme, the state of each node i  at iteration 

t + 1 is the output of the Boolean function Bi computed at time t

σi t + 1 = Bi σ t . (39)

This method presents some important drawbacks. Specifically, reactions in regulatory 

networks can be time-separated, with given reactions evolving on faster timescales than 

others. A popular solution is given by asynchronous updating schemes, which can be 

considered as a Boolean equivalent of the Gillespie algorithm. With this method, any 

reaction in the network is associated with a typical timescale. At any updating step, one 

node is selected with a probability proportional to the frequency of that reaction. Therefore, 

faster reactions are more probable and thus selected more often. These reference timescales 

are not known a priori, so they must be inferred from literature and given as an additional 

input in the construction of the model. A more in-depth discussion and comparison between 

different integration schemes is provided in [72,73].

Starting from a given initial condition, a Boolean network relaxes to an attractor or limit 

cycle by following the update scheme. In figure 7A, we present a simple example of a 

3-nodes network originally proposed by Wang and collaborators [74] with the following 

Boolean functions

Bx = x OR NOT z , (40a)

By = x AND z, (40b)

Bz = y . (40c)

Three different initial conditions lead to three different steady states, including two stable 

attractors and a limit cycle (Figure 7B). More generally, a large Boolean network with N
nodes has 2N different initial conditions that can lead to multiple attractors and/or limit 

cycles. Typically, their basin of attraction is quantified with a large number of simulations 

starting from randomized initial conditions.

2.3.2 Parameter randomization—Boolean models overcome the insufficient 

knowledge of the model’s parameters by assuming more coarse-grained relationships 

between species based on logical operators, thus sacrificing the detailed description of 

biochemical reactions. An alternative approach is to hypothesize more detailed functional 

forms to describe the circuit’s reactions, such as hill functions for transcriptional regulation, 

and explore several parameter combinations.
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For example, random circuit perturbation (RACIPE) takes the topological information of 

a network (i.e., the list of positive and negative interactions between species) as the input 

and generates an ensemble of mathematical models[75]. Each mathematical model, also 

referred to as a RACIPE model, is simulated with the same set of chemical rate equations 

but with distinct sets of parameters. Each set of parameters are randomly sampled from 

a fixed distribution (uniform, Gaussian etc.) within their biologically reasonable ranges. 

For each RACIPE model, multiple (typically tens of thousands) initial conditions are used 

to perform the numerical simulation to solve all possible stable-state solutions. The stable-

state solutions from the ensemble RACIPE models and their corresponding parameters are 

collected for statistical analysis, by which the pattern of solutions and the differences in 

parameters leading to different solutions can be identified. RACIPE originally focuses on 

transcriptional regulatory networks and uses the shifted Hill function[76] to simulate the 

transcriptional regulations. The method RACIPE has been implemented as a free open 

source software which can be accessed in GitHub[77]. To reach convergence of RACIPE 

simulation results, there are two key parameters - the number of RACIPE models and the 

number of initial conditions for each model should be evaluated and decided. As the average 

simulation time of a RACIPE model is linearly proportional to the number of parameters of 

that model, RACIPE can be potentially applied to large gene networks. Notably, the main 

purpose of RACIPE is to determine the robust stable states enabled by the gene networks by 

considering the large variations in parameters. For example, parameter randomization of the 

toggle switch topology using RACIPE showed that, even though the toggle switch topology 

is typically associated with bistability, more than 75% of parameter combinations lead to a 

single stable fixed point[75].

To detect the stability of different stable states exhibited by the gene network, a method 

integrating RACIPE with stochastic analysis, referred to as SRACIPE, has been recently 

developed[78]. The SRACIPE employs a simulated annealing-based scheme to estimate 

the stability of different stable states resulting from various initial conditions. One 

interesting observation by applying SRACIPE to toggle-switch-like circuits is that high 

expression noise induced state merging. Recently, the Boolean and randomized approaches 

were compared on the same set of network topologies, showing that both methods can 

successfully recover the important dynamical features of the circuits[79].

2.3.3 Learning regulatory networks from single cell transcriptomics—So far, 

we have always assumed the existence of biological knowledge that serves as input to 

build GRN models. In many cases, however, the interactions between genes are not well 

known, and alternative, data-driven strategies are necessary. Over the last decade, many 

single cell Omics technologies have started to provide unprecedented resolution over gene 

regulation at the single cell level [80]. In this section, we focus specifically on single 

cell RNA sequencing (scRNA-seq), a technology capable to measure the copy number 

of tens of thousands of RNA species simultaneously within a cell [81]. The output of a 

scRNA-seq experiment can be intuitively understood as a count matrix where the rows 

identify individual cells, and the columns identify the genes in the cell’s genome. While this 

data can be very useful to investigate the gene expression patterns associated to different 

types of cells, recently several models have been proposed to infer the regulation between 
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genes [82,83]. Here, we briefly introduce the topic and focus on the emerging mathematical 

challenges. The inference of GRN from the scRNA-seq data introduces the challenge of 

inferring causal relationships from data that lacks temporal information. Generalizing the 

mathematical models of GRN developed in previous sections, the GRN inference problem 

can be generally set up as a nonlinear, high-dimensional system of the form

Ẋ = f(X). (41)

In eq. (24), X represents the vector of mRNA counts of the N genes in the cell, and f(X)
is a general nonlinear function that describes how genes mutually regulate each other. In 

most existing applications, the problem is further simplified by assuming linear interactions 

between genes and degradation

Ẋ = AX − γX, (42)

where A is a N × N matrix encoding linear interactions between genes, with the implicit 

assumption that the positive and negative coefficients A correspond to activation and 

inhibition, and γ is a degradation rate vector. Interestingly, the existing bioinformatics 

methods for GRN inference can be broadly divided into two main classes based on 

whether steady state is assumed in eq. (42), with both approaches exhibiting strengths and 

pitfalls. First, steady state methods assume that Ẋ = 0 [84,85]. Without further assumptions, 

however, this leads to the trivial, non-interacting solution A = Iγ, where I is the N × N
identity matrix. This problem is typically circumvented by eliminating self-interactions and 

setting the diagonal elements of A to zero. With this strategy, the off-diagonal elements of A
can be determined, one row at a time, by solving the regression problem

xi = ∑
j ≠ i

aijxj − γixi . (43)

Bocci and collaborators showed that this method can detect the presence of GRN edges 

(i.e., causal connections between genes), but might lead to inaccurate sign prediction [28]. 

Alternatively, eq. (42) can be interpreted as an out-of-equilibrium problem [86–88]. This 

approach, however, requires an estimation of the first derivative Ẋ from scRNA-seq data that 

typically does not have temporal information. Thus, physical time is typically substituted 

with pseudotime. Pseudotime (pst) inference is a cell lineage reconstruction technique based 

on cell-cell gene expression similarity, where the pseudotime coordinate approximates real 

time and indicates the positions of cells along the lineage [89,90]. For example, in a 

differentiation process from multipotent toward differentiated cells, stem cells will be at the 

beginning of the lineage and thus will have smaller pseudotime coordinates, whereas the 

terminal cells will be toward the end of the lineage and thus will have large pseudotime 

values. After substituting physical time with pseudotime in the RHS, eq. (42) can be solved 

for A. While pseudotime is a powerful tool to reveal the lineages of biological systems, there 

might be pitfalls when using it as a proxy for physical time. For example, in a scenario 

of multistability cells at different points of a differentiation trajectory coexist at the same 

physical time while exhibiting different pseudotime values. Interested readers can find more 
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in-depth description of GRN inference methods and their application to biological datasets 

in topical reviews [82,83].

3. Examples from various biological contexts

In this section, we examine examples where the tools to model multistable regulatory 

networks have been successfully applied and unraveled new biological functions. First, we 

consider the epithelial-mesenchymal transition (or EMT in short), a trans-differentiation 

process that regulates cell motility in physiological processes and diseases. In our 

description of EMT, we further review mathematical approaches to describe the regulation 

of non-coding RNAs which play an essential part in the control of EMT. Second, we review 

theoretical and computational models of stem cell differentiation, along with theoretical 

approaches that rephrase multistable gene regulatory networks as a many-body problem. 

Finally, we examine models of cell-cell communications through the Notch signaling 

pathway. These models introduce spatial patterning and multicellular communication that 

arise when cells can exchange information with their neighbors.

3.1 Intermediate states in the epithelial-mesenchymal transition

3.1.1. Epithelial-mesenchymal transition in development and cancer—The 

epithelial-mesenchymal transition (EMT) is a complex biochemical and biophysical process 

where epithelial cells, typically characterized by strong adhesion to neighboring cells and 

apicobasal polarity, loosen their adhesion and gain motility [91]. EMT and its reverse, 

MET, play a fundamental role in several developmental and physiological processes, such as 

organogenesis and wound healing, when cells need to transiently acquire motility to travel 

and rearrange their spatial organization. Moreover, EMT is implicated in several aspects of 

cancer progression, including metastasis and resistance to therapies [92,93]. A particularly 

interesting topic in EMT is the existence of intermediate cellular states separating the 

epithelial and mesenchymal phenotypes. These hybrid epithelial/mesenchymal cells (called 

E/M for short in the rest of the section) retain both cell-cell adhesion typical of epithelial 

cells and migration potential typical of mesenchymal cells. For this reason, these hybrid 

E/M states play an important role in collective cell migration in both physiological and 

pathological processes [94–96]. In recent years, theoretical modeling helped targeting 

several elusive questions about hybrid epithelial/mesenchymal states: is the EMT spectrum 

discretized in a set of intermediate states? Are these states truly stable or just metastable 

intermediates? Are they redundant or do they serve different biological functions? In this 

section we explore mathematical models that applied a wide array of methods to seek 

answers to these poignant questions.

3.1.2. Multistability predicted by continuous models of a core EMT 
regulatory network—Experiments have revealed intricated and interconnected network 

of genes, transcriptional factors and protein that regulate the epigenetic and biophysical 

transformations associated with EMT. Nonetheless, mathematical modeling has shown that 

some of the main aspects of EMT including the existence of intermediate cell states can be 

captured by a simple model of a core gene regulatory network including two micro-RNAs 

(miR-34 and miR-200) and two transcription factors (Zeb and Snail). In this core circuit, 
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miR-34 and miR-200 inhibit, and are in turn inhibited, by Zeb and Snail, respectively. 

Moreover, Zeb regulates its own activity, while Snail activates Zeb and self-inhibits (Figure 

8A). Zeb and Snail are typically activated when a cell undergoes EMT and are therefore 

associated with a mesenchymal phenotype. Conversely, miR-34 and miR-200 inhibit the 

action of Zeb and Snail and are therefore associated with an epithelial phenotype. A 

continuous framework proposed by Zhang and collaborators [97] models all these coupled 

interactions with Hill functions. Under this approximation, both the miR-34/Snail and 

miR-200/Zeb motifs behave as bistable toggle switches. Therefore, EMT is achieved by 

first flipping the miR-34/Snail switch from (high miR-34, low Snail) to (low miR-34, high 

Snail), and subsequently flipping the miR-200/Zeb switch from (high miR-200, low Zeb) 

to (low miR-200, high Zeb). The intermediate state with (low miR-34, high miR-200, high 

Snail, low Zeb) does not exhibit clear epithelial or mesenchymal signatures and is therefore 

interpreted as a hybrid E/M transition state (Figure 8B).

3.1.3. Micro-RNA based regulation of EMT—As we previously discussed, Hill 

functions can effectively model transcriptional activation/inhibition where a transcription 

factor binds to DNA - either alone, as a dimer, or as an oligomer, to enhance or repress 

the transcription of its target gene (see Insight box 2). Micro-RNAs such as miR-34 

and miR-200, however, inhibit their target at a post-translational stage by binding to the 

transcribed mRNA and facilitating its degradation. This reaction, which is always inhibitory, 

is therefore better described with an explicit model of microRNA-mRNA binding, rather 

than Hill functions [100,101]. Targeted mRNA molecules have a variable number n  of 

available binding sites for the micro-RNAs. The higher the number of micro-RNA molecules 

bound to the mRNA, the larger the degradation rate of the complex. Therefore, micro-RNAs 

inhibit their target by preventing translation of the mRNA into protein. Lu and collaborators 

[76] developed a model of EMT regulation with similar circuit topology but different 

functional form to describe the action of miR-34 and miR-200 [76,102]. The micro-RNA 

based chimeric circuit approach models the chemical binding between micro-RNA and 

target mRNA molecules and the possible translation and degradation rates as a function of 

number of occupied binding sites. This mathematical model is discussed in detail in the 

insight box 3.

Similar to the model of Zhang and collaborators [97], Lu and collaborators [76] predicted 

the existence of a hybrid E/M state. Different modeling assumptions on micro-RNA 

regulation, however, are reflected into distinct features of the hybrid E/M state. In the model 

of Lu and collaborators, the miR-200/Zeb circuit acts as a tristable switch with an additional 

stable fixed point with intermediate expression of both miR-200 and Zeb (Figure 8B). The 

miR-34/Snail circuit, conversely, is monostable, and was proposed to act as a buffer that 

filter noise and confers robustness to the miR-200/Zeb switch [76].

This models has been further extended to investigate the coupling with various ‘phenotypic 

stability factors’ that modify the topology of the core EMT circuit and increase the stability 

of the hybrid E/M phenotype [98,103–105]. This approach shifts the focus from the 

underlying biology characterizing a specific EMT regulator, and successfully predict its 

qualitative impact on EMT based on how it is connected to the core EMT gene regulatory 

network (Figure 8C–D).
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Interestingly, a study by Nordick and collaborators[106] recently demonstrated that the 

cooperative RNA degradation by microRNAs alone can generate intermediate EMT states. 

The combination of such cooperative RNA degradation with transcriptional regulation 

can give rise to a broader spectrum of up to 7 states, which could better represent the 

broader spectrum of EMT states/EMT continuum recently observed by high-throughput 

transcriptomics measurements[107].

3.1.4. Landscape and path integral analysis highlights EMT transition routes
—To gain further insights about the stability of the various EMT states and the transitions 

between them, Li and collaborators [99] studied the pseudopotential landscape of the 

EMT circuit of Lu and collaborators by explicitly solving the Fokker-Planck equation 

associated with the circuit. Specifically, the authors focused on the miR-200/Zeb switch that 

is responsible for the tristability of the circuit. This way, the pseudopotential can be easily 

visualized on a two-dimensional (miR-200, Zeb) space. The pseudopotential is obtained 

from the steady state probability U = − log pSS miR − 200, Zeb  and is shown in Figure 8E. 

As expected, the landscape features three attractors corresponding to epithelial, hybrid E/M, 

and mesenchymal phenotypes. The authors further identified the minimum action paths 

(MAPs) connecting the three states. As discussed previously, the transitions are determined 

by the pseudopotential as well as the curl flux arising from broken detailed balance. Due to 

the curl flux, the MAP connecting the E and M attractors does not pass through the saddle 

points of the landscape, thus deviating from the behavior of ‘classical’, gradient-driven 

physical systems. There are several interesting biological implications stemming from this 

observation. First, cells undergoing E-to-M transition do not necessarily pass through the 

hybrid E/M phenotype, because the action of the E-E/M-M path is higher than the action 

of the direct E-M path. Moreover, the paths for the E-M transition and its reverse, M-E, are 

different, hence making them irreversible (Figure 8E). This suggests that cells undergoing 

EMT and MET might exhibit different molecular signatures. Finally, the action required 

for the E-E/M-M transition is higher than the action of the irreversible E-M transition; the 

action required for the first step (E-E/M transition), however, is lower than that of the E-M 

transition. Therefore, the E-E/M transition path could be chosen when the cell is not exposed 

to enough stimulus to undergo a complete E-M transition.

3.1.5 Boolean networks identify biological regulators and intermediate states 
in EMT—While small circuits of a core regulatory network enable a detailed analysis of 

EMT, several molecular players and signaling pathways participate in the regulation of 

EMT. Steinway and collaborators [108] reconstructed a large EMT Boolean network with 70 

nodes and 135 connections by integrating experimental observations on known EMT factors 

and regulators from human hepatocellular carcinoma (HHC). To simulate the dynamics of 

EMT driven by TGF-β - a well-known EMT inducer - the authors initialized the network in 

an epithelial state and updated the model following a stochastic asynchronous scheme. To 

decrease the complexity of the network, they also applied reduction methods to eliminate 

‘redundant’ nodes and connections. Interestingly, they identified a reduced network with 19 

nodes and 70 connections with a very similar dynamical behavior (Fig. 9A). This reduced 

network enabled the identification of transition trajectories from the initial epithelial state to 

the final mesenchymal state, thus offering interesting information on the temporal ordering 
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in the activation and deactivation of relevant genes. Furthermore, the authors explored the 

effect of knockout and/or constitutive activation of nodes or combinations of nodes by 

artificially enforcing an ‘ON’ or ‘OFF’ state for certain nodes in the circuit [109]. Strikingly, 

some of these perturbations prevent EMT but do not reverse the transition to the original 

epithelial attractor; rather, alternative attractors with both epithelial and mesenchymal active 

genes become stable, which are identified as candidates for hybrid epithelial/mesenchymal 

states.

Font-clos and collaborators [110] described the same EMT network with a pseudo 

Hamiltonian based on the formalism of spin systems H = − ∑i, j Jijsisj. Compared to the 

Hamiltonian typically used to describe spin systems, here the si = 0, 1 describe an inactive 

or active gene, respectively, and the Jij describe inhibition Jij = − 1 , activation Jij = 1
or lack of interaction Jij = 0  from gene i to gene j. Thus, differently from standard spin 

system Hamiltonians, interactions are not symmetric (i.e., Jij ≠ Jji ) and therefore it is 

not guaranteed that the fixed points of the system correspond to the minima of H. The 

authors sampled the landscape of the network with a large number of stochastic simulations 

using the same update scheme originally used by Steinway and collaborators [108,109]. 

This analysis revealed two deep minima associated with the epithelial and mesenchymal 

states separated by a complex landscape with several local minima that are interpreted as 

intermediate, less stable states. On a two-dimensional PCA map, the distribution of steady 

states shows two dense regions corresponding to epithelial (E-cadherin node is ON) and 

mesenchymal (E-cadherin node is OFF), separated by a sparser region where E-cadherin 

can be ON or OFF (Fig. 9B–C). This distribution is reminiscent of frequencies and relative 

stabilities of epithelial, mesenchymal and hybrid epithelial/mesenchymal states as identified 

in multiple Boolean models of EMT regulatory networks [111].

3.1.6 Insight box 3: Describe micro-RNA mediated inhibition with mass 
action and chimeric circuits—Micro-RNAs (miRs) inhibit the expression of a protein 

by binding to the target mRNA molecules and degrade them before translation. Several 

models that describe miR-mediated inhibition employ the principles of mass action 

[100,101]. Suppose that mRNA of a given protein m  is transcribed with rate km and the 

corresponding molecule p  is translated with rate kp. Moreover, we consider a miR species 

μ  that is produced and degraded with rate constants kμ, γμ, respectively. μ binds and unbinds 

to m with rate constants kB and kU, respectively, and the mRNA-miR complex mμ  degrades 

with rate constant γmμ. The coupled dynamics of mRNA, miR, mRNA-miR complex and 

protein m, μ, mμ , p  is described by the following system of ODEs

dm
dt = km − kBm μ + kU mμ − γmm, (44a)

dμ
dt = kμ − γμμ, (44b)
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d mμ
dt = kBm μ − kU mμ − γmμ mμ , (44c)

dp
dt = kpm − γpp . (44d)

Various approximations can be made from this basic framework, for instance by assuming 

fast mRNA-miR binding and writing the loss term of m as a function that only depends on 

m and μ. Moreover, as discussed in the insight box 1, fast mRNA dynamics can be another 

valid approach. More details on this are provided in other reviews [100,101].

The general scheme of eqs. (44), however, assumes a 1-to-1 stoichiometry in the mRNA-

miR binding. Often, mRNA molecules have multiple binding sites, whose occupancy 

modulates translation and degradation rates (Figure 10). In the following, we discuss a 

generalization of eqs. (44) developed by Lu and collaborators that accounts for multiple 

miR binding sites that has been successfully applied to the gene circuit that regulates the 

epithelial-mesenchymal transition [76,102].

Similar to eqs. (44), let us consider a system with an mRNA species m  and an inhibiting 

miR μ . Moreover, let us assume that each mRNA molecule has n binding sites for miR 

molecules. miR molecules bind and unbind to the mRNA with rate constants rμ +  and rμ − , 

respectively. In the model, binding at different sites are treated as independent events due to 

the small size of the miR compared to the mRNA molecule. Assuming fast equilibration of 

mRNA-miR binding, the fraction of mRNA molecules with i occupied binding sites satisfies

rμ + μ mi = rμ − mi + 1 . (45)

Iteratively, mi  can be expressed as a function of m0 , i.e. the fraction of mRNAs without any 

occupied binding site

mi = μ
μ0

i
m0 , (46)

where μ0 = rμ − /rμ + . The set of concentrations mi , i = 0, 1, …n, must also satisfy:

∑
i = 0

n
Cn i mi = m, (47)

where Cn i = n!/i! n − 1 ! is the number of arrangements for i micro-RNA molecules on n
binding sites. Plugging eq. (46) into eq. (47) yields

m = m0 ∑
i = 0

n
Cn i μ

μ0

i
= m0 1 + μ

μ0

n
. (48)
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Thus, using eq. (46) and (48), the fraction of mRNA molecules with i miR bound mi  can 

be expressed as

mi = m
μ
μ0

i

1 + μ
μ0

n . (49)

Finally, we introduce sets of rate constants li , γmi  and γμi  that represent the translation rate 

of a mRNA molecule with i miR bound, the degradation rate of a mRNA molecule with i
miR bound, and the degradation rate of miR molecules associated with i −  bound mRNAs. 

Therefore, it is possible to write total translation and degradation terms

dm
dt = km − m ∑

i = 0

n
γmi Cn

iMn
i μ − γmm, (50a)

dμ
dt = kμ − m ∑

i = 0

n
γμi Cn

iMn
i μ − γμμ, (50b)

dp
dt = kpm ∑

i = 0

n
li Cn

iMn
i μ − γpp, (50c)

where Mni(μ) = μ
μ0

i
1 + μ

μ0

n
.

Compared to modeling inhibition with Hill functions or simpler mass-action dynamics, the 

chimeric circuit approach requires knowledge of more parameters which might or might not 

be readily accessible from experiments. In the case of the EMT circuit proposed by Lu and 

collaborators, the expression levels of translated protein with various number of occupied 

mRNA binding sites were used to calibrate the model’s parameters. Further information 

about this procedure can be found in the original publication [76].

3.2 Stem cell differentiation

It has been a continuing research interest to understand how stem cells accurately specify 

cell fates during differentiation, referred to as stemness regulation. Mathematical modeling 

approaches have been applied extensively to elucidate the gene regulatory mechanisms 

underlying stem cell differentiation.

3.2.1 A toggle switch topology regulates the differentiation of stem cells
—Mathematical models focusing on the acquisition of stable states representing cell 

phenotypes are often derived using chemical rate equations. Similar to the approaches 

discussed in EMT that focus on small circuits, the modeling of stem cell differentiation 

are often applied to the proposed “core” stemness regulatory networks that contain master 

stemness regulators.
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Huang and co-workers developed a continuous model focusing on the binary decision-

making during the lineage commitment of erythroid and myelomonocytic fates[112]. The 

model is derived to represent the temporal dynamics of a core circuit containing the 

two lineage specifying transcription factors (TFs) GATA1 and PU.1. GATA1 and PU.1 

exhibit mutual inhibition and auto-stimulation, which are modeled by Hill functions 

(Fig. 11A). Modeling analysis shows that the circuit can generate stable attractors 

corresponding to erythroid (GATA1 high, PU.1 low) and myelomonocytic (GATA1 low, 

PU.1 high) phenotypes, and a metastable state representing the “multilineage priming” 

stage, characterized by coexpression of both GATA1 and PU.1. This study describes a binary 

cell fate decision-making for a bipotent progenitor cell.

Another kinetic model of stemness regulation has been developed by Jolly and co-workers 

focusing on the LIN28/let-7 circuit[113]. LIN28 (an RNA-binding protein) and let-7 (a 

microRNA) are mutually inhibitory and self-excitatory (Fig. 11B). Two ordinary differential 

equations have been derived to represent the birth and death process of LIN28 and let-7. 

The shifted Hill functions are used to represent the let-7/LIN28 mediated inhibition and 

self-activation. The modeling analysis suggests that the LIN28/let-7 circuit can operate as 

a three-way switch enabling three stable states characterized by (high LIN28, low let-7), 

(high let-7, low LIN28) and (intermediate LIN28, intermediate let-7). As the experimental 

studies suggest that intermediate levels of OCT4 account for pluripotency and OCT4 is 

a downstream target of LIN28, this model proposes the stable state characterized by 

(intermediate LIN28, intermediate let-7) associates with pluripotency. From a theoretical 

perspective, this model highlights the effect of additional regulatory interactions on the 

“standard” toggle switch topology. While mutual inhibition typically leads to bistability, the 

additional self-activation of both LIN28 and let-7 introduces a third state with intermediate 

expression of both factors.

To elucidate the transcriptional dynamics of the master stemness regulatory TFs - OCT4, 

SOX2 and Nanog during stem cell differentiation, Chickarmane and co-workers developed 

a kinetic model to study the stemness circuit containing three master stemness regulatory 

TFs - OCT4, SOX2 and Nanog[114] (Fig. 11C). These three TFs play a critical role 

in positively regulating the stemness genes and negatively regulating the differentiation 

genes. The modeling analysis in this study shows that the OCT4/SOX2/Nanog circuit 

can function as a binary switch, and enable two stable states that are characterized by 

(high OCT4-SOX2, high Nanog) and (low OCT4-SOX2, low Nanog), respectively. Here 

OCT4-SOX2 is a heterodimer formed by OCT4 and SOX2 and can regulate OCT4, SOX2 

and Nanog individually. The stable state characterized by (high OCT4-SOX2, high Nanog) 

exhibits high expression of stemness genes and low expression of differentiation genes 

thus corresponding to stem cell phenotype. Conversely, the stable state characterized by 

(low OCT4-SOX2, low Nanog) corresponds to cells undergoing differentiation. Through 

bifurcation analysis, the study shows how stem cells - (high OCT4-SOX2, high Nanog) can 

maintain their stemness state upon removal of the stimulus signals that upregulate OCT4 and 

SOX2. Later Chickarmane and Peterson [115] extended their model by including additional 

stemness TFs (Cdx2, Gcnf, Gata-6) to elucidate the Trophectoderm and Endoderm lineage 

commitment. By performing perturbation analysis on the circuit, the study suggests 
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strategies to reprogram cells back to stemness state, such as activation of Nanog and 

suppression of Gata6.

3.2.2 Role of stochastic fluctuations in stem cell differentiation—While the 

deterministic models discussed in the previous section successfully capture the stem cells 

decision-making dynamics, it remains unclear how this differentiation is regulated in the 

fluctuating cellular environment. To capture the stochastic effects, Kalmar and co-workers 

developed a continuous model based on the Oct4/Nanog circuit[116]. The dynamics of the 

Oct4/Nanog circuit are represented by two coupled differential equations. The transcription 

noise (represented by Gaussian white noise) is incorporated into the differential equation 

representing the temporal dynamics of Nanog. This study sheds light on how cells can vary 

their Nanog level without losing their pluripotency. The study suggests an interesting view 

of pluripotency. The pluripotency, instead of being viewed as a stable state characterized by 

fixed amount of gene expression levels, can be viewed as a heterogenous population driven 

by transcriptional noise such as the noise during Nanog transcription.

To continue studying the mechanisms underlying the heterogenous levels of Nanog in 

mouse embryonic stem cells, Glauche and co-works developed an ODE model to simulate 

the Oct2/Sox2/Nanog circuit[117]. They showed that the experimental characteristics of 

Nanog variation can be recapitulated by the model via either adding a Gaussian white 

noise term in the ODE representing Nanog (noise-induced transition between Nanog low 

and Nanog high states) or including a transcriptional repressor of Nanog (oscillation). This 

study also shows how Nanog low cells can be more prone to differentiation relative to 

Nanog high cells. Another modeling study to elucidate the variation of Nanog levels in 

embryonic cells has been performed by Herberg and co-workers by integrating a negative 

feedback loop FGF4/Erk signaling with the Oct4/Sox2/Nanog/Rex1 circuit. The effect of the 

transcriptional noise, defined by the zero-mean Gaussian process, has been incorporated into 

the ODEs representing the temporal dynamics of Oct4-Sox2, Nanog and Rex1. The model 

shows a bimodal distribution of Nanog levels and blocking the Erk signaling pathway can 

lead to a merged Nanoga distribution[118].

3.2.3 Chemical master equation models characterize the role of Nanog 
during differentiation—The heterogeneous expression of Nanog in pluripotent cells has 

also been studied by applying master equations to describe the stochastic dynamics of a 

stemness network containing eight stemness TFs (Oct4, Sox2, Nanog, GATA6, Gcnf, Cdx2, 

Pbx1, Klf4) and one heterodimer (Oct4-Sox2) formed by Oct4 and Sox2[119]. The master 

equations for the stemness network were derived by considering both the concentration 

of proteins and the occupancy of the DNA sites. This study shows how the stemness 

network can enable up to five steady states, corresponding to two stem cell phenotypes 

expressing (high Oct4, high Sox2 and high Klf4), one primitive endoderm phenotype, 

one trophectoderm phenotype and one differentiated cell type. The stem cell steady states 

are differentiated by distinct levels of Nanog, which is consistent with its experimental 

characteristics. Through analyzing the most probable transition paths among the steady 

states, the study suggests a sequential transition path that Nanog high stem cell steady state 

first decreases the Nanog levels to enter a novel, Nanog low stem cell steady state, and then 
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transition to the primitive endoderm steady state. The modeling results support the critical 

role of Nanog in safeguarding stemness against differentiation.

Furthermore, to overcome the computational limitations of simulating large networks, 

Sasai and Wolynes described the stochastic gene expression and feedback interactions 

between transcription factors using the many-body approach typically employed in quantum 

statistical mechanics [20]. In the Insight box 4, we introduce this approach and show how 

the chemical master equation of an autoregulating transcription factor can be effectively 

mapped with this formalism. By extending this approach to an 8-gene circuit of embryonic 

stem cell development, they characterized the multistable landscape and the most probable 

transitions between attractors [119].

3.2.4 Landscape theory identifies the trajectories of differentiation and 
reprogramming—To quantify the kinetic flow during embryonic stem cell differentiation, 

epigenetic landscape approach has been applied. Li and Wang developed a global potential 

landscape for a stem cell development network containing fifty-two genes[120]. There are 

two basins of attractions identified on the landscape corresponding to a stem cell state 

and a differentiated state. The model shows the development process can be viewed as 

a transition from the stem cell attractor to the differentiated attractor. Interestingly, the 

reversed “reprograming” trajectory where differentiated cells acquire pluripotent traits can 

be different in the 52-gene expression space. Later, the authors applied the landscape and 

flux path approach to quantify the landscape for a reduced cancer stem cell (CSC) circuit 

that only contains six key genes (two microRNAs - miR200 and miR-145, four proteins 

- ZEB, P53, MDM2 and OCT4), to identify the basins of attractions and transition paths 

in between[121]. This study shows the CSC circuit enables four basins of attractions 

corresponding to a normal state, a normal stem cell state, a cancer state, a cancer stem 

cell state. Specifically, the study suggests that P53 activation promotes the transition from 

the cancer stem cell attractor to the normal cell attractor, which is consistent with the tumor 

suppressor role of P53.

To understand the large cell-to-cell variation of Nanog and other stemness TFs in embryonic 

stem cells, Sasai and co-workers developed an epigenetic landscape approach for a stemness 

regulatory network contains six genes - three stemness genes (Sox2, Oct4, Nanog), and three 

lineage-specific genes (Gata6, Cdx2, and Gcnf) [122]. One interesting prediction from this 

study is the distribution of time scales of the regulatory processes (binding/unbinding of 

TFs, histone modification etc.) is critical to determine the dynamic behaviors of the network. 

Specifically, the slow transcriptional switching of Nanog leads to large fluctuations among 

multiple transient states.

3.2.5 Parameter randomization on the stemness circuit—To identify the robust 

gene states during stem cell differentiation, parametric randomization methods have been 

applied to the stemness network. For example, RACIPE has been applied to a proposed 

core stemness regulatory network containing eight master regulatory TFs (Oct4, Sox2, 

Cdx2, Gata6, Gcnf, Pbx1, Klf4 and Nanog) [123]. The stemness regulatory network 

contains mostly transcriptional regulation with protein-protein interaction, i.e., the binding/

unbinding interactions between SoX2, Oct4 and the Oct4-Sox2 complex. Using exclusively 
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the topological information of the network as input, RACIPE generated an ensemble of 

mathematical models with various numbers of steady-state solutions that can be explored 

with statistical analysis. Hierarchical clustering results of the RACIPE solutions exhibit 

distinct gene expression patterns that can be associated with different development stages 

and match the single-cell mRNA expression data of mouse embryonic stem cells (ESCs). 

One intriguing result of this study is the multi-stable behaviors of the stemness GRN 

and the recapitulation of the experimentally measured gene expression patterns cannot be 

achieved by networks with randomized topologies, even though the randomized networks 

can have similar amount of mutual inhibitory and self-excitatory feedback loops relative to 

the stemness circuit. The results suggest that the stemness GRN may indeed contain some 

topological properties that are beyond the expectation based on the counting of the simple 

motifs. By analyzing the difference of the parameters that lead to different states, the key 

parameters whose variation can induce the transitions among different states are identified. 

The physiological representation of those parameters can be the stimuli that trigger the 

transition. Through systematically perturbing each gene and each regulatory link in the 

stemness GRN, RACIPE elucidates a hierarchical decision-making structure of the stemness 

GRN, with the OCT4/CDX2 motif functioning as the first decision-making module followed 

by the GATA6/Nanog module. By simulating the effect of external signals that perturb the 

TFs in the stemness GRN, RACIPE analysis results suggest that the presence of external 

signals often restrains the gene states that can be accessed instead of creating new states. 

The results suggest an alternative explanation of the Waddington landscape that the stem cell 

population, instead of being viewed as a fixed stable “stemness” state, can be regarded as a 

mixture of heterogeneous cell phenotypes. Along the differentiation, upon external signals, 

the cell population heterogeneity decreases partially because cells lose access to some stable 

states. In other words, cells are committed to specific phenotypes, therefore, differentiated.

3.2.6 Combing Landscape theory with random parametric perturbation—To 

calculate the landscape of stem cell networks by considering the large variation of 

parameters, Li developed an approach that combines landscape theory with random 

parameter perturbation, referred to as LRPP[124]. The LRPP approach contains the 

following steps: the time evolution of each gene in the stemness network is represented by 

ODEs; the modeling parameters are sampled from a range with either uniform or Gaussian 

distribution; multiple initial conditions are chosen to identify all possible steady states; 

the landscape is calculated using the self-consistent mean field approximation; repeat the 

aforementioned procedure for multiple times and Sum over the landscape of different sets of 

parameters to get the landscape for the ensemble models. By applying the LRPP approach 

to a stemness GRN that contain four stem cell marker genes OCT4, SOX2, NANOG, 

and KLF4 and three differentiation marker genes GCNF, CDX2, and GATA6, the author 

identifies three main stable basins of attractions corresponding to an embryonic stem cell 

state (high Nanog, low Gata6), a differentiate cell state (low Nanog, high Gata6) and 

an intermediate state (high Nanog, high Gata6). The intermediate state characterized by 

coexpression of stemness marker Nanog and differentiation marker Gata6 may account for 

the heterogeneity of these TFs observed during single-cell experiments, and may play a 

critical role in regulating stem cell plasticity.
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3.2.7 Insight box 4: spin-boson formalism for an autoregulatory gene—In this 

insight box, we discuss the application of spin-boson formalism to describe stochastic gene 

switches. Here, we only aim at giving the reader a flavor of this approach. Following Sasai 

and Wolynes, we examine a single autoregulatory gene (i.e., a gene that regulates its own 

transcription). An extensive review on the uses of quantum field theory in diffusion-reaction 

systems is offered by Mattis and Glasser[125].

The autoregulatory gene is described by the protein copy number n and a Boolean variable 

s = 0,1 describing whether the gene is bound or unbound.

We have previously developed the CME for a birth-death process (see insight box 1). In 

addition to production and degradation, produced molecules can bind to DNA and regulate 

their own transcription. Depending on whether molecules bind to DNA as monomers or 

oligomers, the protein-DNA binding rate depends on a power of protein level n (see insight 

box 2). Since we are not interested in solving a specific case but rather layout the mapping 

procedure, we assume a generic binding rate ℎ n . The DNA-protein unbinding rate is a 

constant f independent from n. The unbound and bound promoter produces molecules at 

rates g0 and g1, respectively. Similar to the birth-death process, we are condensing mRNA 

transcription and translation into a single production rate. Finally, protein molecules degrade 

with rate constant k. A set of two probabilities P1 n, t , P0 n, t  describes the probabilities 

to have n molecules and an unbound/bound promoter at time t, respectively. Combining all 

reactions, CMEs for P0 and P1 assume the form

dP0 n
dt = g0P n − 1, 0 − g0P n, 0 + k n + 1 P n + 1, 0 − knP n, 0

+fP n, 1 − ℎ n P n, 0 ,
(51a)

dP1(n)
dt = g1P (n − 1, 1) − g0P (n, 1) + k(n + 1)P (n + 1, 1) − knP (n, 1)

−fP n, 1 + ℎ n P n, 0 .
(51b)

To map this CME onto a many-body problem, the first step is to rearrange eqs. (51) as a 

single equation for the probability vector P n, t = P1 n, t , P0 n, t

∂
∂t P (n, t) =

g1 0
0 g0

[P (n − 1, t) − P (n, t)] + k[(n + 1)P (n + 1, t) − nP (n, t)]

+ −ℎ n f
ℎ n −f P (n, t) .

(52)

Further, we define a state vector ψ:

ψ = ∑
n = 0

+∞
P (n, t) n . (53)

To make the connection to the quantum many-body problem more evident, we introduce 

ladder operators[125]
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a* n = n + 1 , (54a)

a n = n n − 1 . (54b)

Notably, the ladder operators still satisfy the commutation relation a, a* = 1, but 

their definition slightly differ from the standard harmonic oscillator operators 

a* n = n + 1 n , a n = n n − 1 . This unconventional definition arises because the 

coefficients in the expansion of eq. (53) are probabilities, whereas typically probabilities 

correspond to the squared coefficients in ‘standard’ expansions of the wave function.

With these definitions in hand, the CME can be rewritten in the form

∂ψ
∂t = Ωψ, (55)

where all the information about chemical reactions is encoded by the operator Ω:

Ω = g‾ + δg σZ a+ − 1 + k a − a+a + μ+ −1 + σX + μ− −iσY − σZ . (56)

With the following definitions

g‾ = g1 + g0

2 , (57a)

δg = g1 − g0

2 , (57b)

μ+ = ℎ aa+ + f
2 , (57c)

μ− = ℎ aa+ − f
2 , (57d)

and the introduction of the matrices:

σX = 0 1
1 0 , (58a)

iσY = 0 1
−1 0 , (58b)

σZ = 1 0
0 −1 , (58c)
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Sasai and Wolynes further apply this formalism to a more complex 8-gene circuit of 

stemness transcription factors to predict stable attractors and transitions corresponding to 

differentiation. More details about this work can be found in reference [20].

3.3 From multistability to spatial patterning: cell communication through Notch signaling

So far, we have considered intracellular signaling networks that regulate cell-fate dynamics. 

In all these cases, the decision on cell fate was cell-autonomous, i.e., it did not depend on 

the signaling state of other cells in the surrounding environment. A cell population where 

cells can assume one of multiple states will exhibit heterogeneity according to the states’ 

relative stability but without any spatial organization. If cells exchange information with 

their neighbors, however, the cell-fate decision processes become correlated, thus giving rise 

to spatial organization. In this section, we consider the example of Notch signaling, one 

of the most well-conserved and studied signaling pathways that regulate both physiological 

and pathological processes [126,127]. Notch signaling operates via binding of ligands and 

receptors belonging to neighboring cells, thus serving as a nearest neighbor communication 

mechanism that couples cell-fate decisions in a spatially-dependent manner. Signaling 

through different classes of Notch ligands can lead to either converging or diverging cell 

states between neighbors, thus raising interesting parallels with the behavior of spin systems 

such as ferromagnets and antiferromagnets.

3.3.1 Notch signaling relays single cell multistability to spatial patterning—
Notch signaling is initiated when the extracellular domain of the Notch receptor binds to 

the transmembrane domain of a ligand at the surface of a neighboring cell. Mammalian 

species typically exhibit one class of receptors (Notch) and two classes of ligands (Delta 

and Jagged), which can be further divided into a variable number of subtypes with different 

molecular structures. Upon binding, pulling forces by endocytosis and sequential cleavage 

actions by assisting enzymes lead to the release of the Notch intracellular domain (NICD). 

The NICD is transported to the cell nucleus where it activates or inhibits the transcription 

of several target genes [126,128,129]. In particular, NICD transcriptionally activates Notch 

and Jagged while inhibiting Delta. Therefore, a cell with high expression of Delta ligands 

activates the Notch receptors in its neighbors, thus in turn implying the repression of 

Delta. Conversely, when a cell is exposed to low levels of Delta from its neighbors, the 

Notch receptor is not activated, thus allowing production of Delta. Hence, Notch-Delta 

signaling leads neighboring cells to divergent cell states: a (low Notch, high Delta) state 

typically referred to as Sender, and a (high Notch, low Delta) state typically referred to as 

Receiver. At the multicellular level, this patterning principle leads to alternation of Senders 

and Receivers, typically referred as “lateral inhibition”, which plays a crucial role in the 

differentiation of cell states in several physiological processes including somitogenesis, 

angiogenesis and neurogenesis [130–132]. Conversely, a cell with high expression of Jagged 

activates Notch receptors in its neighbors, which in turn activates the production of both 

Notch and Jagged. Therefore, Notch-Jagged signaling promotes a convergent (high Notch, 

high Jagged) state among neighbors that is often referred to as hybrid Sender/Receiver. On 

a multicellular level, this patterning principle leads to a homogeneous population of hybrid 

Sender/Receiver cells, or “lateral induction”, which is observed, for instance, in the spatial 

propagation of a pluripotent cell state during inner ear development [130,131,133]. In the 
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following paragraphs, we will review models that investigate how intracellular signaling 

and ligand-receptor binding relay cell-fate decisions in individual cells and multicellular 

patterning, the competition between lateral inhibition and lateral induction, and the role of 

stochastic fluctuations in enforcing or disrupting ordered patterns.

3.3.2 Notch-Delta lateral inhibition: a two-cell toggle switch—The first 

mathematical model of Notch signaling proposed by Collier and collaborators [134] directly 

generalizes the single cell toggle switch and focuses on lateral inhibition driven by Notch-

Delta signaling between neighboring cells (Figure 12A). It considers a two-dimensional 

lattice where the temporal dynamics of Notch and Delta in a cell p  is described by the set 

of ODEs

d Np/N0

dt = (Dp/D0)k

a + (Dp/D0)k − μ Np/N0 , (59a)

d Dp/D0

dt = 1
1 + b Np/N0

ℎ − ρ Dp/D0 , (59b)

where Dp = 1
c ∑p′ Dp′ is the average level of Delta ligand in the nearest neighbors; in 

this expression c is the number of nearest neighbors and the summation goes over all 

nearest neighbor cells p′ . N0 and D0 are typical levels of Notch and Delta used to 

scale the model while μ, ρ are dimensionless degradation rate constants. Compared to 

all the circuits reviewed so far, this model considers a multicellular lattice (typically two-

dimensional) where each individual cell is described by the Notch-Delta circuit, and circuits 

of neighboring cells are connected through the nearest neighbor summations in the Hill 

functions of eq. (59a).

Therefore, if neighbors of cell p are Senders with high Delta, cell p represses the production 

of Delta while increasing the production of Notch, hence assuming a (high Notch, low 

Delta), Receiver state. Conversely, if neighbors of cell p are Receivers with low Delta, Notch 

is weakly activated in cell p, thus maintaining a Sender state with (low Notch, high Delta) 

[132,134]. Therefore, if two neighboring cells start with very similar but not exactly equal 

levels of Notch and Delta at time t = 0, the mutual inhibition mechanism will amplify the 

small initial difference and ultimately differentiate between a Sender cell and a Receiver 

cell.

On an extended two-dimensional lattice, this model allows patterns where Sender cells are 

surrounded by Receiver cells. Specifically, on a square lattice, these interactions lead to a 

chessboard-like pattern with alternating Senders and Receivers [135]. On a hexagonal lattice 

that perhaps better represents the arrangement of cells in an epithelial tissue, however, a 

perfect alternation of Senders and Receivers cannot be achieved due to lattice frustration. 

Therefore, Sender cells are typically surrounded by six Receivers that are in contact with one 

another, leading to a 3-to-1 Receiver/Sender ratio (figure 12B). Indeed, Receiver cells can 

be in contact as they do not express Delta, and therefore do not actively regulate each other, 
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while Sender-Sender contacts give rise to mutual inhibition until one cell is converted to the 

Receiver state [136]. In other words, a contact between Receivers simply results in lack of 

cell-cell signaling, whereas a contact between Senders leads to the mutual inhibition that 

ultimately breaks the symmetry and forces one cell to the Receiver state. This mechanism 

is not flawless and sometimes patterning mistakes can be observed; in the last section of 

the chapter, we will discuss in more details the nature of these “defects”, their biological 

implications and the role of stochastic fluctuations in modulating these patterns.

3.3.3 Variable cell shape as an imprint to guide lateral inhibition—Notch 

receptors and ligands become available for signaling only once they reach the cell 

membrane. Therefore, the signaling between pairs of neighbors depends on the geometry 

of cell-cell contact and their shared membrane area. From a theoretical perspective, this 

observation offers the possibility to integrate aspects of cell biophysics into the ‘standard’ 

Notch-Delta signaling.

Shaya and collaborators [137] investigated the relation between cell size and cell fate 

by integrating experimental and computational methods. By introducing reports to track 

the activity of Notch and Delta, they showed that signaling between pairs of nearest 

neighbors correlates with their shared contact area. Including the role of cell shape 

requires a more detailed model that explicitly describes ligand-receptor binding as well 

as transcriptional regulation by the NICD thereafter [132,137–139]. This can be achieved by 

directly generalizing the model of eqs. (59) to explicitly include variable cell shapes. In this 

generalized model, a cell is described by a set of three ordinary differential equations for 

Notch, Delta and NICD

dNp

dt = gN

1 + λN
Ip
I0

nN

1 + Ip
I0

nN
− kNp ∑

j ∈ N(p)
IpjDj − μNp, (60a)

dDp

dt = gD

1 + λD
Ip
I0

nD

1 + Ii
I0

nD
− kDp ∑

j ∈ N(p)
IpjNj − μNp, (60b)

dIp

dt = kNp ∑
j ∈ N(p)

Dj − μIIp . (60c)

In eqs. (60a–b), the production of Notch and Delta is regulated by Hill functions that depend 

on the level of NICD, with λN > 1 and 0 < λD < 1 to capture transcriptional activation of 

Notch and transcriptional inhibition of Delta. Moreover, this model considers binding of 

Notch and Delta molecules of a given cell p  to ligands and receptors of neighboring cells 

j ; here, k represents a bimolecular binding rate constant between a ligand and a receptor at 

the surfaces of neighboring cells, and the summation spans over the nearest neighbors of cell 

p . Binding of Notch with external ligands leads to release of NICD and degradation of the 
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remaining molecular complex; therefore, the binding term results in a loss term in eq. (60a) 

and a corresponding production term in NICD’s equation (60c). Furthermore, the binding 

term of Notch receptors with external ligands in eq. (60a) is weighted by a contact area term 

Ipj  that describes the shared cell contact area between cells p and j. The limit of a regular 

lattice is achieved by imposing that all weightage terms are equal Ipj = 1/c .

On a disordered lattice with variable cell sizes, smaller cells with smaller contact area tend 

to acquire a Sender state while larger cells tend to acquire a Receiver state [137]. In the 

perfectly regular lattice, Senders are selected from a homogeneous initial condition simply 

due to spontaneous breaking of symmetry and amplification of small initial differences 

[134]. Instead, variation of cell size bias cell fate selection by weighting the amount of 

signaling between pairs of neighboring cells, and can be thus viewed as an imprint that 

guides the patterning by breaking the symmetry between cells. This prediction was directly 

validated in the context of chicken inner ear development, where smaller cells produce Delta 

at a high rate and eventually become hair cells, while larger cells generally committed to a 

non-hair, supporting phenotype [137,140].

3.3.4 Notch-Jagged signaling guides a transition between lateral inhibition 
and lateral induction—So far, we have reviewed models that primarily focus on 

Notch-Delta lateral inhibition. Ligands of the Jagged type, however, can give rise to a 

positive feedback between neighbors and thus promoting lateral induction of the (high 

Notch, high Jagged) hybrid Sender/Receiver phenotype. The conflicting effects of Delta 

and Jagged ligands on cell fate raise interesting questions about their competition in 

multicellular models where many cells collectively converge to diverse patterns. Boareto 

and collaborators [139,141] proposed a model of Notch-Delta-Jagged signaling based on 

the circuit schematic of Figure 13A that directly generalizes the Notch-Delta circuit of eqs. 

(60a–c) to include NICD transcriptional activation of Jagged and Notch-Jagged binding:

dNi

dt = gN

1 + λN
Ii
I0

nN

1 + Ii
I0

nN
− kNi ∑

j ∈ N i
Dj + Jj − μNi, (61a)

dDi

dt = gD

1 + λD
Ii
I0

nD

1 + Ii
I0

nD
− kDi ∑

j ∈ N i
Nj − μNi, (61b)

dJi

dt = gJ

1 + λJ
Ii
I0

nJ

1 + Ii
I0

nJ
− kJi ∑

j ∈ N i
Nj − μJi, (61c)

dIi

dt = kNi ∑
j ∈ N j

Dj + Jj − μIIi . (61d)
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In this model, a cell behaves as a three-way switch that can assume a Sender, Receiver, 

or hybrid Sender/Receiver state based on initial conditions, parameters and state of the 

neighbors. In the limit of a dominant Notch-Delta signaling gD ≫ gJ , this model recovers 

a lateral inhibition pattern with alternated Senders and Receivers. In the opposite limit of a 

dominant Notch-Jagged signaling gD ≪ gJ , however, there is a homogeneous solution where 

all cells are hybrid Sender/Receivers with (high Notch, high Jagged).

Therefore, a single cell exposed to a fixed level of external Notch receptors and ligands 

can be monostable S, R or S/R, or fall in a regime of multistability based on the levels 

of external Delta and Jagged (Figure 13B). In a two cells scenario, this model undergoes 

a sharp transition from lateral inhibition to lateral induction triggered by an increasing 

production rate of Jagged (Figure 13C). This transition has been used to explain how 

TNF-α, and inflammatory signal that activates Jagged, prevents physiological angiogenesis 

that relies on Notch-Delta lateral inhibition [142]. On a one-dimensional chain of cells with 

periodic boundary conditions, intermediate conditions where both Notch-Delta and Notch-

Jagged ‘modes’ of the signaling are relevant gD ≈ gJ  give rise to disordered configurations 

with mixtures of Senders, Receivers and hybrid Sender/Receivers [139] reminiscent of 

partially disordered configurations in a spin system (Figure 13D).

Interestingly, both mathematical models and experimental observations suggest a dual role 

for Jagged. While a strong Notch-Jagged signaling promotes homogeneous patterns of 

hybrid Sender/Receiver cells, as observed during inner ear development and angiogenesis, 

a weaker expression of Jagged assists Notch-Delta signaling to organize a precise lateral 

inhibition. In the context of inner ear development, Petrovic and collaborators [143] showed 

experimentally that Jagged ligands help refine the pattern of Senders and Receivers by 

competing with Delta over Notch receptors. This leads to even more NICD, and thus an 

even stronger inhibition of Delta, in the Receivers. Similarly, a weak activation of Jagged 

improves Notch-Delta-driven angiogenesis in an in vitro model developed by Kang and 

collaborators [142].

3.3.5 Stochastic fluctuations lead to optimal lateral inhibition patterning—
While the standard paradigm of Notch-Delta lateral inhibition assumes a precise patterning 

of alternated Senders and Receivers, it is reasonable to assume that spatial constraints might 

lead to frustrated patterns, in analogy with the relaxation of spin systems. Evidence of 

patterning mistakes was recently quantified in the context of Tip-Stalk differentiation during 

sprouting angiogenesis, where Tip cells are occasionally separated by multiple Stalk cells 

[144,145]. Galbraith and collaborators studied the relaxation of a multicell Notch-Delta 

system under the effect of white and shot noise, respectively [135]. First, the authors 

showed that a deterministic Notch-Delta multicell model on a square lattice equilibrates 

to the “standard”, lateral inhibition alternate pattern only for a small set of well-defined 

initial conditions, such as the “seeding” of a single Sender cell, while typically reaching 

disordered patterns when starting from more randomized initial conditions. By quantifying 

the patterning order based on the fraction of correct Sender-Receiver contacts, they 

demonstrated that intermediate levels of stochastic fluctuations help achieving more ordered 

patterns, independently of the specific type of noise. The authors suggested an analogy with 
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the navigation of rugged energy landscapes of spin glass systems. The highly ordered salt-

and-pepper configuration can be interpreted as a low energy attractor, or global minimum, in 

a complex, high-dimensional landscape. Conversely, more disordered configurations can be 

interpreted as local minima with higher energy. Therefore, the relaxation of the Notch-Delta 

systems is characterized by two timescales. First, on a shorter timescale, the equilibration 

of the chemical reaction terms leads to the closest local minimum. Second, on a longer 

timescale, stochastic fluctuations allow a more thorough exploration of the landscape, finally 

leading to the global minimum with ordered pattern. Intermediate stochastic fluctuations are 

key to achieve an ordered pattern because low noise levels are not sufficient to escape local 

minima and navigate the landscape and, conversely, strong fluctuations in the high noise 

regime become larger than the typical barrier height separating attractors, thus preventing 

relaxation toward any specific attractor [135].

4. Final remarks and future challenges

In this review, we have provided a general overview of modeling and computational 

strategies to study the dynamics of gene regulatory networks at various scales and levels 

of detail, ranging from stochastic simulations of individual chemical reactions up to 

coarse-grained Boolean descriptions of large networks. In particular, our main goal was to 

showcase tools to study complex biochemical systems that can give rise to multistability, 

or, in biological terms, the coexistence of multiple states that can be associated with 

different cell phenotypes. We urge to point out that there is not an intrinsically better 

approach, but rather different biological questions require choosing the most suitable tools. 

For example, stochastic models based on the chemical master equation might be suitable 

to investigate the dynamics of smaller, well-defined circuits where prior knowledge is 

available about the reaction parameters. More coarse-grained approaches such as continuous 

models, parameter randomization or Boolean circuits might be more appropriate to study the 

emerging dynamics of larger circuits where an informed guess of the model’s parameters is 

unfeasible. Throughout the review, we have demonstrated how some of these strategies can 

be implemented using small, archetypical systems, such as a single transcribing gene and the 

bistable toggle switch.

Furthermore, we have provided three specific examples to showcase how the “basic” 

biological building blocks including transcription and translation can be complemented 

and generalized to include additional biological processes. In the case of the epithelial-

mesenchymal transition, mathematical models that only focus on the transcriptional 

interactions between genes and transcription factors might not be sufficient to fully capture 

the biology, as post-translational regulation of non-coding RNAs follow a different dynamic 

and thus requires different mathematical formulations (see section 3.1 and insight box 

3). Moreover, the discussion of stem cell differentiation provided an example of how 

methodologies originally developed for more traditional physical problems, such as quantum 

mechanics, can be successfully applied to biology, in this case to capture the stochastic 

fluctuations of an auto-regulatory gene (see section 3.2 and insight box 4). Finally, while 

most of the existing modeling efforts tend to focus on the dynamics of individual cells, the 

discussion of Notch signaling showed how these models can be applied to multicell, spatial 
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models, thus raising interesting connections between regulation of cell fate and spatial 

patterning (see section 3.3).

In conclusion, we stress that, while existing methodologies reviewed here and elsewhere 

provide an exhaustive framework to describe gene regulation, many open questions and 

challenges lie ahead. For example, the fast development of transcriptomics methods has 

radically improved our resolution on gene regulation at the single cell level [25]. Single cell 

RNA sequencing (scRNA-seq) allows to estimate the number of transcripts of each RNA 

species in individual cells[81]. Some computational methods have been proposed recently 

to infer the interactions between genes from scRNA-seq data by coupling modeling and 

statistical regression [28,82,146]. Furthermore, it is becoming increasingly clear that the 

decision-making of cell fate specification does not solely rely on regulatory interactions 

between genes. For example, in both the cases of EMT and Notch signaling, phenotypic 

transitions also imply changes in the cell’s mechanical properties, which in turn regulate the 

transcriptional signaling, thus giving rise to mechano-chemical feedbacks[96]. Therefore, 

the integration of chemical and mechanical regulation in cell-fate specification represents a 

novel and intriguing challenge for theoretical and computational modeling. Tackling these 

exciting open questions will require an even stronger combination of existing and new 

physical and mathematical concepts towards the description of complex biological systems.
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Figure 1. Circuit and reactions for transcription-translation chain.
(A) mRNA molecules are transcribed from the promoter with constant rate km. Each mRNA 

molecule is translated into proteins with rate constant kp. Both mRNA and protein degrade 

with degradation rates γm, γp. (B) Schematic representation of all the possible reactions 

leading to or out of the configuration with m mRNA transcripts and p proteins.
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Figure 2. Testing the mRNA Quasi Steady State Approximation in protein synthesis.
(A) The distribution of protein copy number for the full model presented in eq. (3) (blue) 

and for mRNA QSSA corresponding to eq. (4) (red). Solid lines indicate Gaussian fit. 

(B) Blue: The standard deviation of protein p  distribution for increasingly fast mRNA 

dynamics. The dashed black line indicates the parameters used in panel (A). Red: standard 

deviation for mRNA QSSA. The code to simulate protein synthesis is available in our 

protein synthesis tutorial.
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Figure 3. Bimodal dynamics of the self-activating gene.
(A) The bimodal copy number distribution in the self-activating gene. (B) A sample of 

simulation trajectory highlights the transitions between low expression and high expression.
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Figure 4. Circuit and reactions in a CME model of the toggle switch.
(A) In the toggle switch, gene x encodes for protein X (red blocks). X can dimerize and 

bind to DNA to inhibit the production of Y . Similarly, Y  dimerizes and inhibits X. The 

dimerization reactions are fast compared to protein production and can thus be treated 

as instantaneously equilibrated. (B) Schematic of all the possible reactions leading to or 

out of the configuration n, m, Sx, Sy . For convenience, reactions are separated into two 

groups: changes in molecule copy number and changes in the state of activity of one of the 

promoters.
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Figure 5. 
The deterministic and stochastic toggle switch. (A) The phase space of the toggle switch 

described in eq. (25) including nullclines and fixed points. (B) Local sensitivity analysis of 

the toggle switch parameter around the (high X, low Y ) stable fixed point. (C) A temporal 

trajectory for the stochastic toggle switch. (D) The pseudopotential landscape of the toggle 

switch. The white noise level is fixed to σ = 2 in panels C, D. The source code to reproduce 

these results is available in our toggle switch tutorial.
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Figure 6. Derivation and fitting of the Hill function.
(A) The derivation of the Hill function considers a case where the regulator can dimerize 

(or create a higher-order oligomer) and then bind to DNA. (B) The parameters of the Hill 

functions can be inferred from experimental data reporting the expression of the molecule p
as a function of transcription factor concentration.
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Figure 7. 
(A) Example of a three-node Boolean model. (B) Three different initial conditions that lead 

to oscillations between two configurations
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Figure 8. Continuous models of EMT.
(A) A core EMT gene regulatory network comprising the epithelial microRNAs miR-34, 

miR-200 and the mesenchymal transcription factors Zeb, Snail. (B) In the model by Zhang 

and collaborators [97], the transition state with (low miR-34, high miR-200, high Snail, low 

Zeb) is identified as the hybrid E/M. Conversely, in the model by Lu and collaborators [76], 

the hybrid E/M state has intermediate expression of all nodes. (C) Example of ‘phenotypic 

stability factor’ motifs that increase the stability of the hybrid E/M state by coupling to the 

core EMT circuit. (D) The stabilizing action of the PSF NRF2 is evaluated with a bifurcation 

diagram of miR-200 as a function of EMT inducer (adapted from Bocci and collaborators 

[98]); PSFs extend the hybrid E/M branch. (E) Pseudopotential landscape of the EMT circuit 

adapted from Li and collaborators [99]. E, P  and M indicate the locations of the epithelial, 

hybrid E/M (partial) and mesenchymal attractors. White and purple continuous lines indicate 
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the minimum action paths (MAPS) of EMT and MET, while the dashed lines indicate the 

EMT and MET MAPs that pass through the hybrid E/M attractor.
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Figure 9. Boolean models of EMT.
(A) A large EMT network used by Steinway and collaborators [109]. Yellow areas highlight 

the motifs that are found to stabilize the epithelial state. White-colored nodes are active in 

the epithelial state while black-colored nodes are inactive. Nodes with blue background are 

predicted as sensible knockout targets that suppress EMT. (B) Density of steady states on 

the PCAO-PCA1 plane in the model of Font-Clos and collaborators [110]. Green and purple 

color shading indicate high or low probability that E-cadherin is on in the steady state. 

(C) Clustering and correlation of 500 steady state solutions in the model of Font-Clos and 

collaborators.
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Figure 10. Schematic representation of microRNA-based regulation in the chimeric circuit 
model.
A mRNA molecule (large white-filled rectangle) can bind to multiple microRNA molecules 

(small blue rectangles). mRNA-microRNA binding does not depend on the number of 

already occupied binding sites (same binding and unbinding rate constants in the different 

pictures). The more microRNA molecules bound, the higher the complex degradation rate 

(indicated by brighter red arrow from leftmost to rightmost panel) and the lower the mRNA 

translation rate (indicated by lighter blue arrow from leftmost to rightmost panel).
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Figure 11. Core regulatory circuits to model stem cell differentiation.
(A) Huang and coworkers [112] modeled stem cell differentiation via mutual inhibition 

between GATA1 and PU.1. (B) The stemness circuit constructed by Jolly and collaborators 

[113]. to model the acquisition of cancer stem cell traits in cancer. (C) The circuit developed 

by Chickarmane and co-workers [114] focuses in the stemness regulators OCT4, SOX2 and 

Nanog.
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Figure 12. Lateral inhibition and patterning of Senders and Receivers in the Notch-Delta system.
(A) Schematic of the model proposed by Collier and collaborators in a system of two cells 

[134]. Pointing arrows indicate Delta-mediated activation of Notch in neighboring cells, 

while t-shaped arrows indicate Notch-mediated inhibition of Delta within the same cell. 

(B) On a hexagonal lattice, Notch-Delta lateral inhibition gives rise to a pattern where high-

Delta Senders (green hexagons) are surrounded by high-Notch Receivers (red hexagons).
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Figure 13. Lateral inhibition and lateral induction patterns in the Notch-Delta-Jagged model.
(A) Schematic of the Notch-Delta-Jagged circuit in the model of Boareto and collaborators 

[139]. Dotted arrows summarize production and transport to cell membrane of Notch, Delta 

and Jagged molecules. (B) Phase diagram of single cell exposed to constant external levels 

of Delta and jagged ligands (DEXT and JEXT). (C) Phase diagram of a 2-cell system as a 

function of cellular production rate of Jagged and Delta (gJ and gD). (D) Typical patterns 

observed in a 1D-chain of cells with periodic boundary conditions. Green, orange and purple 

squares indicate Sender, Receiver and hybrid Sender/Receiver cells, respectively. Panels B, 

D are adapted from Boareto and collaborators [139]; panel C is adapted from Kang and 

collaborators [142].
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