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The lumbar spine anatomy, degeneration, and 
low back pain 

Intervertebral discs (IVD) have a complex structure (Figure 1A), 
whereby a central nucleus pulposus (NP) is surrounded by 
layers of annulus fibrosus (AF). In young adults with healthy 
IVDs, the NP has high water and glycosaminoglycan 
contents, which provide resistance to compression. AF 
naturally has low water content, but it is high in collagen 
content from concentric lamellar sheets of collagen 
fibers. Between an IVD and a vertebral body (Figure 1B),  
or the disco-vertebral junction (DVJ), there exists a ~1 mm  
thin layer of connective tissue known as cartilaginous 
endplate (CEP). The normal CEP in adults consists of  
~0.1 mm thick calcified and thicker uncalcified cartilage 

layers, whose roles include attachment of the IVD to the 
vertebral body, and facilitation of transport of solutes 
into and out of the IVD via an adjacent bed of capillaries 
within the bony vertebral endplate (1). The vertebral body, 
consisting of cortical and trabecular bone along with bone 
marrow, is another integral part of the lumbar spine.

Low back pain afflicts a large number of people (2) 
and may involve degeneration or injury in a number of 
components of the lumbar spine, along with back muscle 
injury. These may include IVD degeneration (3), fracture 
of the vertebral body due to compression (4), fracture at 
the DVJ developing into Schmorl’s node (5), as well as 
bone marrow Modic changes (6,7). Cartilaginous and bony 
endplates near the DVJ are also likely to be pain sources, 
given rich nerve endings in the region (8), and increased 
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density of nerve fibers in the DVJ observed in painful 
patients (9).

There is a need to evaluate multiple components of the 
lumbar spine non-invasively. This article covers a number of 
techniques available to evaluate the lumbar spine, including 
conventional and novel morphologic and quantitative 
sequences, as well as considerations for analyzing and post-
processing MR images for quantitative evaluation.

Conventional morphologic MR imaging of the 
lumbar disc

The anatomy of the lumbar spine can be partially evaluated 
by conventional MR techniques. Using spin echo sequences 
with different weighting, a number of components of the 
spine can be observed directly, unlike images from the 

plain film or computed tomography. In clinical settings, 
T2- and T1-weighted spin-echo images taken in sagittal 
(Figure 2A,B) and axial (Figure 2B,C) planes may be used 
to evaluate spinal conditions including disc degeneration, 
disc herniation, and abnormalities of the vertebral bones, 
bone marrow and the spinal cord. T2-weighted images are 
sensitive to disc hydration (10), and shows NPs of relatively 
normal discs with high signal intensity (Figure 2A, L2/L3 
and L3/L4, arrowheads), and NPs of degenerated discs 
with low signal intensity (Figure 2A, L1/L2 and L5/S1, 
arrows). The degenerated disc at L5/S1 also has a posterior 
protrusion with a high signal intensity zone (Figure 2A,B, 
curved arrow). On the axial images, the shape of the 
protrusion (Figure 2C,D, curved arrows) is seen as broad-
based, covering 25 to 50% of disc circumference. 

Morphologic grading systems have been devised to 

Figure 1 Sectional anatomy of lumbar spine in the mid-sagittal 
plane. (A) Components including the vertebral body (VB), 
intervertebral disc (IVD), and the interface between the two, 
discovertebral junction (DVJ), are shown. Vasculature is also 
shown; (B) close-up schematic of the DVJ, showing components 
of the IVD including annulus fibrosus (AF) and nucleus pulposus 
(NP), DVJ including uncalcified cartilaginous endplate (ucCEP), 
calcified cartilaginous endplate (cCEP), and bony vertebral 
endplate (VEP). 

Figure 2 Sagittal (A) T2- and (B) T1-weighted spin echo images 
of a lumbar spine, demonstrating both normal (arrowheads) 
and degenerated (arrows) discs. Degenerated disc at L5/S1 level 
exhibits a posterior protrusion (curved arrow) with high signal 
intensity zone. Axial (C) T2- and (D) T1-weighted images taken 
at L5/S1 showing the morphology of the protruding disc (curved 
arrow). 
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determine severity and morphology of IVD degeneration 
visible on conventional MR images. The Pfirrmann 
grading looks at disc structure, signal intensity and 
disc height (11,12) in sagittal T2-weighted spin echo 
images, to grade IVDs from 1 (normal) to 5 (complete 
collapse). These grading systems have been adapted to 
evaluate efficacy of disc therapeutics in animals (13,14). 
Additionally, other features such as annular tears and 
fissures, vertebral body marrow changes, shape of disc 
herniation in the sagittal and axial planes can be evaluated 
per established classification (15) and nomenclature (16) 
schemes with high accuracy (17,18).

Conventional quantitative MRI of the lumbar 
discs

In an effort to supplement the conventional methods, and 
to provide more objective biomarkers for spine health, 
several quantitative MR techniques have been implemented. 
Quantitative MR measures of the disc have been shown 
to correlate with biochemical content (19), biomechanical 
function (20), and even discogenic pain (21), which may 
supplement conventional MR evaluation. Potential 
applications include the early detection of disc degeneration 
and evaluation of the efficacy of disc treatment. 

T1 relaxation constant is the rate of the regrowth 
of longitudinal magnetization, and techniques such as 
inversion recovery (22), saturation recovery (23), and 
variable flip angle (24) method are available. It has 
been reported that T1 decreases with disc degeneration 

(10,25), disc herniation (26), and water loss (10,25,27). 
T1 measurement has also been demonstrated useful when 
used in conjunction with the delayed gadolinium-enhanced 
MRI of cartilage (dGEMRIC) technique (28), which uses 
negatively charged contrast agents that distribute inversely 
proportional to GAGs and decreases T1 value. Using this 
technique Vaga et al. (29) reported that ΔT1 (T1 value 
without contrast minus T1 value with contrast) values 
correlated inversely with GAG content in discectomy 
tissues; ΔT1 was higher where there was less GAG. 

T2 relaxation is another fundamental MR behavior, 
and it refers to the decay of transverse magnetization. T2 
value is often determined by obtaining multiple images at 
constant repetition time (TR) while varying echo times 
(TE), and fitting the signal intensity to an exponential 
signal decay model (Figure 3). Most scanners nowadays 
offer product sequences such as multi echo spin echo, which 
obtains multiple T2-weighted images in one scan (30, 31), 
and create color maps of T2 values of the disc (Figure 3,  
insert). While as few as two images with different T2-
weighting can be used to created color maps, additional 
images improve the accuracy in the presence of random 
noise. T2 values also correlate with water and proteoglycan 
contents of the disc such that T2 decreases with water loss 
(10,25,27,32) and proteoglycan loss (27,32). T2 values are 
also found to be lower in herniated discs from symptomatic 
subjects (33), suggesting correlation with pain, although 
the causality is not clear. T2 mapping may be useful when 
following the efficacy of biologic treatments (34), where 
subtle biochemical or cellular changes are expected, rather 
than marked morphologic and signal changes.

More recently, T1rho techniques have been used 
to evaluate slowly moving macromolecules such as 
proteoglycans in the NP by measuring transverse relaxation 
in the presence of a spin-locking pulse (35). In most 
implementations, reviewed in (36), T1rho preparation pulses 
with varying spin lock times are applied, followed by image 
acquisition with a set TR and TE. The resulting images 
are T1rho-weighted, to which an exponential fitting is 
performed to obtain T1rho maps. It has been reported that 
T1rho decreases with water and proteoglycan loss (19,37) 
and it has also been correlated with discogenic pain (21). 
Both the T2 (Figure 4A,B) and T1rho (Figure 4C,D) values 
are sensitive to disc degeneration, and correlate strongly 
with each other when measured on the same sample (38,39). 
However, there are subtle differences in spatial distribution 
of T2 and T1rho values (Figure 4, arrows), even when 
considering that T1rho values are higher than T2 values in 

Figure 3 An illustration of exponential fitting and color mapping 
of T2 or T2* relaxation values in an intervertebral disc. Images 
are obtained at multiple echo times (n=4 in this example), and 
signal intensity of each voxel is fit to an exponential decay model to 
obtain T2 or T2* value of the voxel to create a color map (insert).
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general. In addition, it has been reported that T1rho values 
have greater dynamic range and are more sensitive to clinical 
indices (38) than T2 values. However, the published data 
is still limited, and additional work is needed to establish 
which quantitative techniques are best suited to evaluate 

disc degeneration. Additionally, T1rho sequence are not yet 
widely available, limiting the use to translational research.

MR imaging of the CEP and other short T2 
tissues with UTE techniques

While the conventional MR techniques are useful for 
evaluation of IVD and other soft tissues visible on 
conventional MR images, several other components of 
the lumbar spine appear dark and cannot be examined 
directly. These include the CEP (Figure 1B), longitudinal 
ligaments (Figure 5A, curved arrow) and ligamentum 
flavum. Additionally, due to the lack of contrast between 
the CEP and bony vertebral endplate (Figure 5A, arrows), 
sclerosis and other subtle bony endplate changes cannot be 
discerned on conventional images. The low signal intensity 
from these tissues is due in part to their intrinsically short 
T2 characteristics. Their T2 values can range from less than  
1 ms in the bone (40) to about 2 to 4 ms in the ligaments (41)  
and the CEP (42). Given relatively long TE values in 
conventional spine imaging such as spin echo techniques 

Figure 4 Comparison of (A,B) T2 and (C,D) T1rho color maps of 
mild (A,C) and moderately (B,D) degenerated disc samples in the 
sagittal plane. Note overall higher values of T1rho than T2, as well 
as differences in spatial distribution of the values (arrows). 

Figure 5 Sagittal MR images of a lumbar disc segment obtained with (A) conventional spin echo sequence at TR of 2,000 ms and TE of 80 ms,  
2-D UTE sequence at TR of 400 ms and TE of (B) 0.008 ms and (C) 5 ms, and (D) digital subtraction of UTE images (1st TE image minus 
2nd TE image). On the spin echo image (A), structures including cartilaginous endplates (CEP) (arrows) and anterior longitudinal ligament 
(curved arrow) exhibit low signal intensity. After digital image subtraction (D), these short T2 tissues (arrows, curved arrow) are seen with 
high signal intensity and distinct from adjacent tissues.
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(typically 10 to over 100 ms), MR signals from these short 
T2 tissues decay too rapidly to be captured. While it is 
possible to capture signal from uncalcified CEP using 
gradient echo techniques employing shorter TE of 2 to  
4 ms (43), the image contrast for the CEP may be suboptimal, 
and it may not capture signal from calcified layers of the 
CEP with even shorter T2 values, likely less than 1 ms. 

MR sequences have been developed (44-51) in order 
to image tissues with very short T2 by utilizing the 
ultrashort TE (UTE) in the order of several microseconds. 
In certain UTE techniques, the minimum TE can be 
reduced to as short as 0.008 ms (40). When imaged with 
a two-dimensional UTE technique (40), a lumbar disc 
segment can be seen with high signal intensity throughout  
(Figure 5B), since the MR signal from both long and short 
T2 tissues are captured at the same time. To modulate 
image contrast, specifically to suppress long T2 signal while 
preserving short T2 signals of interest, a simple technique 
of digital image subtraction (52,53) can be used. Here, 
two images at different echo times are acquired; the first 
image is obtained at the minimum UTE, and the second 
image is obtained at longer TEs, typically greater than 
a few ms. The first image contains MR signal from both 
short and long T2 tissues (Figure 5B), while the second 
image contains the signal largely from the long T2 tissues  
(Figure 5C) since the short T2 signals have decayed 
markedly. Therefore, subtracting the second image from 
the first image can produce an image that accentuates only 
the short T2 tissues (Figures 5D). Using different TEs (by 
varying the second TE usually), short T2 contrast can be 
optimized (54). Other techniques to suppress long T2 signal 
includes inversion nulling of water (55,56), nulling of water 
and fat using dual adiabatic inversion recovery (57), and long 
T2 water saturation (46,58). In addition, short T2 tissues 
often have short T1 values. NP has a long T1 value over 
1000 ms, while T1 value of the CEP is about half of that (43). 
Therefore, the signal intensity from short T2 tissues can be 
accentuated by changing TR and flip angle utilizing such T1 
differences (43,59). While promising, these techniques have 
not yet seen a wide-spread use clinically, due to the lack of 
commercial availability on all platforms, as well as additional 
cost for the sequence.

Quantitative analysis: MR relaxation fitting

As described earlier, quantitative MR techniques can 
provide objective and sensitive biomarkers for biochemical 
contents of tissues and disc health. Quantitative MR 

relaxation constants can be measured by acquiring series of 
images with different weighting, and by fitting the signal 
intensity to an appropriate relaxation model. For example, 
in order to estimate T2 values for a specific voxel of tissue, 
multiple T2-weighted images are acquired at different 
TEs, and then decaying MR signal for each voxel is fitted 
to a mono-exponential relaxation model, with or without a 
noise constant, to determine the T2 values and create color 
maps (Figure 6A). A noise constant is an important factor 
for accurate estimation of T2 values, especially when the 
T2 value is small and signal-to-noise ratio (SNR) is low. 
SNR is defined by the ratio of signal strength (or intensity) 
to noise strength (or noise standard deviation, σ). When the 
SNR is low, the noise introduced in the acquired MR image 
is persistent regardless of scanning parameters (e.g., at long 
TE), which makes fitting inaccurate. Overestimation of T2 
is often observed in this case. To correct for noise, a noise 
constant may be included in the fitting algorithm (60,61). 
When the noise strength (σ) can be reliably estimated in 
the magnitude MR images, these noise-corrected methods 
result in accurate T2 estimation even when SNR is as low  
as 20 (61). If SNR is over 100, the noise statistics 
approximates to a zero-mean Gaussian distribution and an 
uncorrected fitting without a noise constant can still result 
in an accurate estimation of T2 values.

It has been evident from nuclear magnetic resonance 
(NMR) spectroscopic studies that certain biological tissues 
exhibit a mixed relaxation behavior from multiple T2 
components (62). With sufficient SNR (for both long and 
short T2 components), and number of images, MR imaging 
could also be used to determine multiple T2 or T2* values 
at a voxel. In musculoskeletal systems, the advent of UTE 
techniques has enabled acquisition of short T2* signal 
and facilitated multicomponent analysis of bony (63),  
ligamentous (63), and cartilaginous (63-65) tissues. An 
example of multi-component T2* mapping of a lumbar 
segment is shown in Figure 6, illustrating large proportion 
of long T2* component in the NP (Figure 6D, square) and 
a small proportion of short T2* component in the CEP  
(Figure 6D, arrow). While promising, multi-component 
analyses of MR images are difficult since non-unique 
solutions may exist for a given MR data, especially when 
SNR is low and substantial noise is present in the images. 
Many limitations of multi-component analyses have been 
described (66,67). 

Because multicomponent fitting is sensitive to SNR, 
certain types of constraints are generally used in the fitting 
procedure. For example, the total number of components 
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Figure 6 Comparison of a single component vs. bicomponent 
T2* analysis of a lumbar intervertebral disc. (A) Single component 
and (B,C,D) bi-component analysis of UTE T2* data. In the NP 
(square), (A) single T2* and (B) long T2* values are similar, and (C) 
there is little variation in short T2* values or (D) their fraction. In 
the CEP (arrows), however, both (B) long and (C) short T2* values 
vary in distribution and (D) fraction.

Figure 7 Comparison of a bicomponent analysis vs. a distributed 
T2 spectrum analysis. (A) Bicomponent simulation was performed 
with a short T2 component (T2short =2 ms, short fraction =50%)  
and a long T2 component (T2long =50 ms, long fraction =50%),  
showing a noiseless decay signal (solid line) and noisy signal 
with signal-to-noise ratio of 50 (open circle); (B) distributed T2 
spectrum analysis of the noisy data, performed using regularized 
non-negative least square method with a smoothness constraint, 
shows both short and long T2 components as spectra. The fraction 
of short and long T2 component can be obtained from the areas 
under each curve around the peaks.
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could be limited to 2, representing a short T2* and a longer 
T2* bi-components in a single voxel. Since the MR images 
are generally produced as a sum of squares of the real and 
imaginary signal measurements, the noise has a non-zero 
value which may act as a long relaxation component in 
the signal and affect the fitting accuracy (68). Therefore, 
the noise is also usually included in the fitting model as a 
constant. The noise constant can be estimated in a separate 
procedure (63,69,70), or estimated as a parameter during 
the fitting process (71-73). Care must be taken when the 
magnitude MR images are obtained with multichannel 
coils and parallel imaging techniques since these conditions 
change the noise statistics (74). 

In addition to fitting data to models that assume two or 
more discrete T2 components, models have been developed 
that assume a distributed T2 components or a continuous 
T2 spectrum (75). In this approach, a distribution of T2 
components (i.e., T2 spectrum) are included in the decay 
signal model, which is fitted using non-linear algorithms 
such as a non-negative least squares (NNLS) algorithm (76). 
Since there are too many unknown parameters (spectrum 
magnitudes) to be estimated and the problem is ill-posed (77),  
a constraint is usually incorporated to smooth the magnitudes 
of the neighboring T2 values (i.e., regularize) (75).  
This approach does not require a prior information on 
the number of components, and provides a distribution of 
T2 components in a tissue. Figure 7 shows an example of 

multicomponent fitting performed with a bicomponent 
model (Figure 7A) and a distributed model (Figure 7B). 
Regularized NNLS algorithms provide resilient fitting 
results, but biases can occur depending on the SNR and 
noise types (68). Several variations of the NNLS technique 
have also been described (78-81). These fitting approaches 
may be useful when the number of components cannot be 
determined a priori. 

Quantitative analysis: MR image post-processing

After acquisition of MR images, quantitative analyses often 
require segmentation of the images (82) to define appropriate 
regions of interest. For the lumbar spine, automated 
segmentation of the vertebral body and the IVD have been 
challenging due their irregular shape and heterogeneous 
signal intensity, especially for degenerated discs (83). 
Nonetheless, a number of segmentation techniques based on 
post-processing has been proposed, including thresholding 
(84,85), edge-detection (86), graph-cut based methods 
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(87,88), and atlas-based methods (89, 90). 
Edge detection is a simple but an effective technique 

that detects an edge based on spatial gradient of signal 
intensities (91). When applied to a proton-density weighted 
(TR =2,000 ms, TE =10 ms) MR images (Figure 8A), edge 
detection could effectively segment the vertebral body 
(Figure 8B) and the IVD (Figure 8C). In this example, 
the canny edge detection method (91) was used. For 
segmentation of vertebral body, voxel intensities were 
evaluated radially from the center of the ROI outward to 
detect rapidly changing intensity due to the cortical shell. 
The outermost boundary edges, disconnected focally, are 
then connected through erosion and dilation process (86) 
to complete the segmentation. Difficulties arise when the 
image contains irregular and disconnected bony boundaries, 
or when bone marrow changes result in irregular internal 
signal intensities. The segmentation of the IVD in this 
example relied upon successful segmentation of the 
vertebral body for the superior and inferior boundaries, 
and additional edge detection for the anterior and posterior 
boundaries. Distortion of geometry and signal intensity 
due to conditions such as disc herniation may degrade the 
segmentation performance.

The graph-cut method, a relatively recent development 
that gained popularity, performs segmentation by making 
“cuts” that have associated energies that can be minimized. 
As an example, a variation of graph-cut method (92) was 
applied to a spine MR data. This method finds an energy 
cost for making cuts between a set of nodes that are on the 
radial lines extending from the center of the vertebral body 

outward, to efficiently search a square-shaped structure such 
as the vertebral body. The algorithm has also been extended 
to 3-D (93), which uses a cuboid search region and the rays 
that extend radially in a sphere. Graph-cut methods are being 
advanced by including spatial information (94) to improve 
robustness (overcome noise) and accuracy. Limitations of 
this technique includes variable performance that depends on 
the position of seed point, as well as lower spatial resolution 
of the segmentation when the boundary of the segmented 
region is far from the seed point. Additionally, the technique 
is not well-suited for segmenting thin objects, or multiple 
regions of interest simultaneously (95).

Yet another approach is atlas-based segmentation, 
involving the creation of an atlas (or a template) of a region 
of interest based on a training data, and applying the atlas to 
the target data. This approach may be useful for analyzing 
the NP and AF of the intervertebral disc separately, 
especially in degenerated discs that lack defined NP  
(Figure 2A, arrow). In one implementation (89), an atlas 
of NP and AF was created from MR images of grade 1 
discs (that had distinct NPs) and registered (96) against 
the AF boundary of the target images, for the purposes 
of determining average T2 values of the NP and AF on 
color maps. In another implementation (90), a probabilistic 
atlas was used to overcome the partial volume effect and 
the overlapping problems of gray-level values. However, 
the performance of this method depends on the amount 
and quality of images of discs which form the probabilistic 
atlas (i.e., training data) and showed reduced accuracy for 
degenerated cases.

Figure 8 Segmentation of vertebral body and intervertebral disc on MR data. (A) Proton density weighted image was analyzed using a 
Canny edge detection technique to perform (B) vertebral body segmentation, and subsequently, (C) intervertebral disc segmentation. 

A B C



751Quantitative Imaging in Medicine and Surgery, Vol 6, No 6 December 2016

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2016;6(6):744-755qims.amegroups.com

Conclusions

In conclusion, quantitative MR sequences and UTE 
sequences offer additional ways for evaluation of health 
and injury of the lumbar spine to supplement conventional 
clinical MR imaging. Sensitivity of quantitative MR measures 
to degeneration of IVD have been well-established in 
literature, facilitated by techniques to segment regions of 
interest and to determine accurate MR measures from the 
regions using different relaxation models with consideration 
for noise. UTE sequences offer a unique contrast mechanism 
useful for previously unevaluated discovertebral junction 
of the spine, creating new opportunities to diagnose and 
characterize the tissue. Combined with continuing basic 
research on pathophysiology of spine diseases, along with 
advancements in techniques to accurately localize and 
quantitatively evaluate different regions of the lumbar spine, 
a wider-spread in quantitative and novel MR techniques may 
be realized. 
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