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Learning Branching Heuristics for Propositional
Model Counting

Pashootan Vaezipoor1,*, Gil Lederman2,*, Yuhuai Wu1,3, Chris J. Maddison1,3,
Roger Grosse1,3, Edward Lee2, Sanjit A. Seshia2, Fahiem Bacchus1

1University of Toronto, 2UC Berkeley, 3Vector Institute

Abstract

Propositional model counting or #SAT is the problem of computing the number
of satisfying assignments of a Boolean formula and many discrete probabilistic
inference problems can be translated into a model counting problem to be solved
by #SAT solvers. Generic “exact” #SAT solvers, however, are often not scalable
to industrial-level instances. In this paper, we present Neuro#, an approach for
learning branching heuristics for exact #SAT solvers via evolution strategies (ES)
to reduce the number of branching steps the solver takes to solve an instance. We
experimentally show that our approach not only reduces the step count on similarly
distributed held-out instances but it also generalizes to much larger instances from
the same problem family. The gap between the learned and the vanilla solver on
larger instances is sometimes so wide that the learned solver can even overcome
the run time overhead of querying the model and beat the vanilla in wall-clock time
by orders of magnitude.

1 Introduction

Propositional model counting is the problem of counting the number of satisfying solutions to a
Boolean formula. When the Boolean formula is expressed in conjunctive normal form (CNF), this
problem is known as the #SAT problem [15]. #SAT is a #P-complete problem, and by Toda’s theorem
[38] any problem in the polynomial-time hierarchy (PH) can be solved by a polynomial number of
calls to a #SAT oracle. This means that effective #SAT solvers, if they could be developed, have the
potential to help solve problems whose complexity lies beyond NP, from a range of applications.
The tremendous practical successes achieved by encoding problems to SAT and using modern SAT
solvers [24] demonstrates the benefits of such an approach.

Figure 1: Cactus plots comparing Neuro# to SharpSAT on the grid_wrld(10, 12) benchmark. For any point t
on the y axis, the plot shows the number of benchmark problems that are individually solvable by the solver,
within t steps (left) and seconds (right).

* Equal contribution (correspondence to <pashootan@cs.toronto.edu>).
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Modern exact #SAT solvers are based on the DPLL [10, 11] algorithm and have been successfully
applied to solve certain problems, e.g., inference in Bayes Nets [4, 23, 31, 13] and bounded-length
probabilistic planning [12]; however, many applications remain out of reach of current solvers. For
example, in problems such as inference in Markov Chains, which have a temporal structure, exact
model counters are still generally inferior to earlier methods such as Binary Decision Diagrams
(BDDs). In this paper we show that machine learning methods can be used to greatly enhance the
performance of #SAT solvers, potentially making a wider range of applications feasible.

In particular, we learn the branching heuristic of the state of the art DPLL-based #SAT solver:
SharpSAT. We cast the problem as a Markov Decision Process (MDP) in which the agent has to
select the best literal for SharpSAT to branch on next. We use a Graph Neural Network (GNN) [33]
to represent the part of the input formula the solver is currently working on. The model is trained
end-to-end using an Evolution Strategies algorithm, with the objective of minimizing the mean
number of branching decisions required to solve instances from a given distribution of problems. We
call this augmented solver Neuro#.

We found that Neuro# can generalize to unseen problem instances from the same distribution as
well as to instances that were much larger than those trained on. Furthermore, despite the run
time overhead of querying the model, that Neuro# has to overcome, on some problem domains our
approach achieved orders of magnitude improvements in the solver’s wall-clock run time (Figure 1).
This is quite remarkable in the context of prior related work [45, 35, 5, 14, 19, 17, 22], where using
ML to improve combinatorial solvers had at best yielded modest wall-clock time improvements (less
than than a factor of two) and positions this line of research as a viable path to improve the run time
performance of exact model counters.

The rest of the paper is organized as follows: In Section 2 we provide some needed background and
fix the terminology. We describe the learning approach in Section 3, and compare it to related work
in Section 4. Section 5 details our dataset generation process that we later use in our experiments in
Section 6. We conclude with a short discussion in Section 7.

2 Background

2.1 #SAT

A propositional Boolean formula consists of a set of propositional (true/false) variables composed
by applying the standard operators “and” (∧), “or” (∨) and “not” (¬). A literal is any variable v or
its negation ¬v. A clause is a disjunction of literals

∨n
i=1 li. A clause is said to be a unit clause if it

contains only one literal. Finally, a Boolean formula is in Conjunctive Normal Form (CNF) if it is a
conjunction of clauses. We denote the set of literals and clauses of a CNF formula φ by L(φ) and
C(φ), respectively. We will assume that all formulas are in CNF.

A truth assignment for any formula φ is a mapping of its variables to {0, 1} (false/true). Thus there
are 2n different truth assignments when φ has n variables. A truth assignment π satisfies a literal `
when ` is the variable v and π(v) = 1 or when ` = ¬v and π(v) = 0. It satisfies a clause when at
least one of its literals is satisfied. A CNF formula φ is satisfied when all of its clauses are satisfied
under π in which case we call π a satisfying assignment for φ.

The #SAT problem for φ is to compute the number of satisfying assignments. If ` is a unit clause
of φ then all of φ’s satisfying assignments must make ` true. If another clause c′ = ¬` ∨ `′ is in φ,
then every satisfying assignment must also make `′ true since ¬` ∈ c′ must be false. This process of
finding all literals whose truth value is forced by unit clauses is called Unit Propagation (UP) and is
used in all SAT and #SAT solvers. Such solvers traverse the search tree by employing a branching
heuristic. This heuristic selects an unforced literal and branches on it by setting it to, in turn, to true
and false. When a literal ` is set to true the formula φ can be reduced by finding all forced literals
using UP (this will include ` and its negation), removing all clauses containing a true literal, and
finally removing all false literals from all clauses. The resulting formula is denoted by UP(φ, `).

Two sets of clauses are called disjoint if they share no variables. A component C ⊂ C(φ) is a subset
of φ’s clauses that is disjoint from its complement C(φ)− C. A formula φ can be efficiently broken
up into a maximal number of disjoint components C1, . . . , Ck. Although most formulas initially
consist of only one component, as variables are set by branching decisions and clauses are removed,
the reduced formulas will often break up into multiple components. Components are important for
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improving the efficiency of #SAT solving as each component can be solved separately and their
counts multiplied: COUNT(φ) =

∏k
i=1 COUNT(Ci). In contrast, solving the formula as a monolith

takes 2Θ(n) where n is the number of variables in the input formula, and so not efficient for large n.

A formula φ can be represented by a literal-clause incidence graph (LIG). This graph contains a
node for every clause and a node for every literal of φ (i.e., v and ¬v for every variable v). An edge
connects a clause node nc and a literal node n` if and only if ` ∈ c. Figure 2 shows an example. Note
that every component of φ forms a disconnected sub-graph of the LIG.

Figure 2: The Literal-Clause Incidence Graph
of the formula: (x1 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2) ∧
(x3 ∨ x5).

Algorithm 1 Component Caching DPLL
1: function #DPLLCache(φ)
2: if inCache(φ) then
3: return cacheLookUp(φ)
4: Pick a literal ` ∈ L(φ)
5: #` = CountSide(φ, `)
6: #¬` = CountSide(φ, ¬`)
7: addToCache(φ, #` + #¬`)
8: return #` + #¬`

9: function CountSide(φ, `)
10: φ` = UP(φ, `)
11: if φ` contains an empty clause then
12: return 0
13: if φ` contains no clauses then
14: k = # of unset variables
15: return 2k

16: K = findComponents(φ`)
17: return

∏
κ∈K #DPLLCache(κ)

Both exact [37, 30, 26] and approximate [9, 25] model
counters have been developed. In this paper, we focus
on the former, using the state of the art exact model
counter SharpSAT [37]. SharpSAT and other modern
exact #SAT solvers are based on backtracking search
DPLL [10, 11] augmented with clause learning and
component caching [3, 2]. A simplified version of the
algorithm with the clause learning parts omitted is given
in Algorithm 1. A more detailed version along with
more elaborate analysis is provided in Appendix A.

The #DPLLCache algorithm works on one component
at a time. If that component’s model count has already
been cached it returns the cached value. Otherwise it
selects a literal to branch on (line 4) and computes the
model count under each value of this literal by call-
ing CountSide(). The sum of these two counts is
the model count of the passed component φ, and so is
stored in the cache (line 7). The CountSide function
first unit propagates the input literal. If an empty clause
is found, then the current formula φ` is unsatisfiable and
has zero models. Otherwise, φ` is divided into its com-
ponents which are independently solved. The product
of sub-component model counts is returned. Critical
to the performance of the algorithm is the choice of
which literal from the current formula φ to branch on.
This choice affects the efficiency of clause learning and
the effectiveness of component generation and caching
lookup success. SharpSAT uses the VSADS heuris-
tic [32] which is a linear combination of a heuristic
aimed at making clause learning effective (VSIDS) and
a count of the number of times a variable appears in the
current formula.

2.2 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural networks used for representation learning over
graphs [16, 33]. Utilizing a neighbourhood aggregation (or message passing) scheme, GNNs map the
nodes of the input graph to a vector space. Let G = (V,E) be an undirected graph with node feature
vectors h(0)

v for each node v ∈ V . GNNs use the graph structure and the node features to learn an
embedding vector hv for every node. This is done through iterative applications of a neighbourhood
aggregation function. In each iteration k, the embedding of a node h(k)

v is updated by aggregating
the embeddings of its neighbours from iteration k − 1 and passing the result through a nonlinear
aggregation function A parameterized by W (k):

h(k)
v = A

(
h(k−1)
v ,

∑
u∈N (v)

h(k−1)
u ;W (k)

)
, (1)

where N (v) = {u|u ∈ V ∧ (v, u) ∈ E}. After K iterations, h(K)
v is extracted as the final node

embedding hv for node v. Through this scheme, v’s node embedding at step k incorporates the
structural information of all its k-hop neighbours.

3



2.3 Evolution Strategies

Evolution Strategies (ES) are a class of zeroth order black-box optimization algorithms [7, 42].
Inspired by natural evolution, a population of parameter vectors (genomes) is perturbed (mutated)
at every iteration, giving birth to a new generation. The resulting offspring are then evaluated by a
predefined fitness function. Those offspring with higher fitness score will be selected for producing
the next generation.

We adopt a version of ES that has shown to achieve great success in the standard RL benchmarks [29]:
Let f : Θ→ R denote the fitness function for a parameter space Θ, e.g., in an RL environment, f
computes the stochastic episodic reward of a policy πθ. To produce the new generation of parameters
of size n, [29] uses an additive Gaussian noise with standard deviation σ to perturb the current
generation: θ(i)

t+1 = θt + σε(i), where ε(i) ∼ N (0, I). We then evaluate every new generation with
fitness function f(θ

(i)
t+1) for all i ∈ [1, . . . , n]. The update rule of the parameter is as follows,

θt+1 = θt + η∇θEθ∼N (θt,σ2I)[f(θ)]

≈ θt + η
1

nσ

n∑
i

f(θ
(i)
t+1)ε(i),

where η is the learning rate. The update rule is intuitive: each perturbation ε(i) is weighted by the
fitness of the corresponding offspring θ(i)

t+1. We follow the rank-normalization and mirror sampling
techniques of [29] to scale the reward function and reduce the variance of the gradient, respectively.

3 Method

3.1 Learning Branching Heuristic as a Markov Decision Process (MDP)

We formalize the problem of learning the branching heuristic for #DPLLCache as an MDP. In our
setting, the environment is SharpSAT, which is deterministic except for the initial state, where an
instance (CNF formula) is chosen randomly from a given distribution. A time step t is equivalent to
an invocation of the branching heuristic by the solver (Algorithm 1: line 4). At time step t the agent
observes state st, consisting of the component φt that the solver is operating on, and performs an
action from the action space At = {l|l ∈ L(φt)}. The objective function is to reduce the number
of decisions the solver makes, while solving the counting problem. In detail, the reward function is
defined by,

R(s) =

{
1 if s is a terminal state with “instance solved” status,
rpenalty otherwise.

If not finished, episodes are aborted after a predefined maximum number of steps, without receiving
the termination reward.

Training with Evolution Strategies. With the objective being defined, we observe that for our task,
the potential action space as well as the horizon of the episode can be quite large (up to 20,000 and
1,000, respectively). As [41] shows, the exploration complexity of an action space-exploration RL
algorithm (e.g, Q-Learning, Policy Gradient) increases with the size of the action space and the
problem horizon. On the other hand, a parameter space-exploration algorithm like ES is independent
of these two factors. Therefore, we choose to use a version of ES proposed by [29] for optimizing
our agent.

3.2 SharpSAT Components as GNN

As the task for the neural network agent is to pick a literal l from the component φ, we opt for a
literal-clause incidence graph representation of the CNF formula (see Section 2 for details). We use
GNNs to compute a literal selection heuristic based on the LIG graph. The LIG representation is
similar to the one used by [36, 14, 22], in contrast to the variable-clause incidence graph of [45]. In
detail, given the literal-clause incidence graph G = (V,E) of a component φ, we denote the set of
all clause nodes as C ⊂ V , and the set of all literal nodes as L ⊂ V , V = C ∪ L. The initial vector
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representation is denoted by h(0)
c for each clause c ∈ C and h(0)

l for each literal l ∈ L. Both are
learn-able model parameters. We run the following message passing steps iteratively:

Literal to Clause: h(k+1)
c = A

(
h(k)
c ,
∑
l∈c

[h
(k)
l , h

(k)

l̄
];W

(k)
C

)
, ∀c ∈ C,

Clause to Literal: h
(k+1)
l = A

(
h

(k)
l ,

∑
c,l∈c

h(k)
c ;W

(k)
L

)
, ∀l ∈ L,

where A is a nonlinear aggregation function, parameterized by W (k)
C for clause aggregation and W (k)

L

for literal aggregation at the kth iteration. Following [36, 22], to ensure the graph representation is
invariant under negating every literal (negation invariance), we also concatenate the literal representa-
tions corresponding to the same variable h(k)

l , h
(k)

l̄
when running literal-to-clause message passing.

After K iterations, we obtain a d-dimensional vector representation for every literal in the graph.
We pass each literal representation through a policy network, a Multi-Layer Perceptron (MLP), to
obtain a score, and choose the literal with the highest score. Recently, Xu et al. [43] developed a
simple GNN architecture named Graph Isomorphism Network (GIN), and proved that it achieves
maximum expressiveness among the class of GNNs. We hence choose GIN for the parameterization
of the aggregation function A. Specifically, A(x, y;W ) = MLP((1 + ε)x + y;W ), where ε is a
hyperparameter. Architectural details are included in Appendix C.

3.3 Semantic Features

In practice, CNF formulas are encoded from a higher level problem in some other domain, with its
own semantics. These features of the original problem domain, which we call semantic features, are
all but lost during the encoding process. Classical constraint solvers only process CNF formulas, and
so their heuristics by definition are entirely independent of any specific problem domain, and only
consider internal solver properties, such as variable activities. These internal solver properties are a
function of the CNF representation and internal solver dynamics, and quite detached from the original
problem domain. Thus, it is not unreasonable that semantic features of the original problem domain
could contain additional useful structure that can be exploited by the low-level solver heuristic.

One such semantic feature that often naturally arises in real-world problems is time. Many problems
are iterative in nature, with a distinct temporal dimension to them, e.g., dynamical systems, bounded
model checking. At the original problem domain, there is often a state that is evolved through time
via repeated applications of a state transition function. A structured CNF encoding of such problems
usually maps every state st to a set of variables, and adds sets of clauses to represent the dynamical
constraints between every transition (st, st+1). As explained, this process removes all temporal
information. In contrast, with a learning-based approach, the time step feature from the original
problem can be readily incorporated as additional input to the network, effectively annotating each
variable with its time-step. In our experiments, we represented time by appending to each literal
embedding a scalar value (representing the normalized time-step t) before passing it through the
output MLP. We perform an ablation study to investigate the impact of this additional feature in
Section 6.

4 Related Work

The first successful application of machine learning to propositional satisfiability solvers was the
portfolio-based SAT solver SATZilla [44]. Equipped with a set of standard SAT solvers, a classifier
was trained offline that could map a given SAT instance to the solver from the set that was best suited
to solve that instance. Considering that each solver from the set can be regarded as a configuration of
a set of heuristics, this method was effectively performing a heuristic selection task.

Recent work has been directed along two paths: heuristic improvement [35, 21, 22, 45], and purely
ML-based solvers [36, 1]. In the former, a model is trained to replace a particular solver heuristic in a
standard solver, thus it is embedded as a module within the solver’s framework and guides the search
process. In the latter approach, the aim is to train a model that acts as a stand-alone “neural” solver.
These neural solvers are inherently stochastic and often incomplete, meaning that they can only
provide an estimate of the satisfiability of a given instance. This is often undesirable in applications
of SAT solvers (e.g., formal verification) where an exact answer is required. In terms of functionality,
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our work is analogous to the first group, in that we aim at improving the branching heuristics of a
standard solver. To our knowledge, no prior work has applied ML to improve exact model counters.
More concretely, our work is similar to [45], which used Reinforcement Learning (RL) and graph
neural networks to learn branching heuristics of a local search-based SAT solver WalkSAT [34].
Since the scope of local-search solvers is limited to small problems, their method does not scale to
industrial-size instances. Our method is also related to [22] and [14], where similar techniques were
used in solving quantified Boolean formulas and mixed integer programs, respectively. In contrast to
[22], which incorporates a large set of hand-crafted, solver-specific features, our approach requires
no prior knowledge about the dynamics of the solver.

5 Data Generation

To evaluate the versatility of our method, we generated a diverse set of problems from various
domains to test on. Unlike other works in this area which often experiment on small random instances
(e.g., random graphs [45, 36, 21]), we chose our problems from either known SAT benchmarks or
real-world applications:

sudoku(n, k): Randomly generated partially filled n × n Sudoku problems (n ∈ {9, 16}) with k
squares revealed (lower is harder). We allow our Sudoku problems to have more than one solution.
The #SAT problem then is to count the number of solutions.

cell(R,n, r)1: Elementary (i.e., one-dimensional, binary) Cellular Automata are simple systems of
computation where the cells of an n-bit binary state vector are progressed through time by repeated
applications of a rule R (seen as a function on the state space). Figure 4a shows the evolution grid
of rules 9, 35 and 49 for 20 iterations. Reversing Elementary Cellular Automata was proposed as a
benchmark problem in SAT Competition 2018 [18]. To generate an instance, we randomly sample a
state T . The problem is then to compute the number of initial states I that would lead to terminal
state T in r applications of R, i.e.,

∣∣{I : Rr(I) = T}
∣∣. The proposed CNF encoding in [18] encodes

the entire r-step evolution grid by mapping each cell to a single Boolean variable, n × r in total.
The clauses impose the constraints between cells of consecutive rows as given by the rule R. The
variables corresponding to T (last row of the evolution grid) are assigned as unit clauses.

grid_wrld(s, t): This dataset is based on encoding a grid world with different types of squares (e.g.,
lava, water, recharge), and a formal specification such as “Do not recharge while wet”, or “avoid
lava” [39, 40]. We randomly sample a grid world of size s and a random starting position I for an
agent. At each step, the agent chooses to move uniformly at random between the 4 available directions.
We encode the following problem to CNF: “Count the number of trajectories of length t beginning
from I that always avoid lava”. This number can be used to compute the probability of satisfaction
of the agent policy, which can be used for example to infer specifications from demonstrations (see
[39, 40] for details).

bv_expr(n, d, w): For this dataset we randomly generate arithmetic sentences of the form e1 ≺ e2,
where ≺∈ {≤,≥, <,>,=, 6=} and e1, e2 are expressions of maximum depth d over n binary vector
variables of size w, random constants and operators (+,−,∧,∨,¬,XOR, | · |). The problem is to
count the number of integer solutions to the resulting relation in ([0, 2w] ∩ Z)n.

6 Experiments

To evaluate our method, we designed experiments to answer the following questions: 1) I.I.D.
Generalization: Can a model trained on instances from a given distribution generalize to unseen
instances of the same distribution? 2) Upward Generalization: Can a model trained on small
instances generalize to larger ones? 3) Wall-Clock Improvement: Can the model improve the run
time substantially? 4) Interpretation: Does the sequence of actions taken by the model exhibit any
discernible pattern at the problem level? Additionally, we studied the impact of the trained model
on a variety of solver-specific quality metrics (e.g., cache-hit rate, . . . ), the results of which are in
Appendix D. Our baseline is SharpSAT’s heuristic.

1The parameters of the cellular automata dataset in a previous version of this paper were slightly different,
causing small discrepancies in the results values while not affecting the overall conclusion.
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Table 1: Neuro# generalizes to both i.i.d. test problems as well as larger, non-i.i.d. ones, sometimes achieving
orders of magnitude improvements over SharpSAT’s heuristics. All episodes are capped at 100k steps.

i.i.d. Upward Generalization

# vars
# clauses

Sha
rpS

AT

Neu
ro#

# vars
# clauses

Sha
rpS

AT

Neu
ro#

sudoku(9, 25) 182 3k 220 195(1.1x) sudoku(16, 105) 1k 31k 2,373 2,300 (1.03x)
cell(9, 20, 20) 210 1k 370 184(2.0x) cell(9, 40, 40) 820 4k 53,349 42,325(1.2x)
cell(35, 128, 110) 6k 25k 353 198(1.8x) cell(35, 192, 128) 12k 49k 21,166 1,668 (12.5x)

cell(35, 256, 200) 25k 102k 26,460 2,625 (10x)
cell(35, 348, 280) 48k 195k 33,820 2,938 (11.5x)

cell(49, 128, 110) 6k 25k 338 206(1.6x) cell(49, 192, 128) 12k 49k 24,992 1,829 (13.6x)
cell(49, 256, 200) 25k 102k 30,817 2,276 (13.5x)
cell(49, 348, 280) 48k 195k 37,345 2,671 (13.9x)

grid_wrld(10, 5) 329 967 195 66(3.0x) grid_wrld(10, 10) 740 2k 13,661 367 (37x)
grid_wrld(10, 12) 2k 6k 93,093 1,320 (71x)
grid_wrld(10, 14) 2k 7k 100k≤ 2,234 (–)
grid_wrld(12, 14) 2k 8k 100k≤ 2,782 (–)

bv_expr(5, 4, 8) 90 220 328 205(1.6x) bv_expr(7, 4, 12) 187 474 5,865 2,139 (2.7x)

(a) cell(49) (b) grid_wrld

Figure 3: Neuro# generalizes well to larger problems. Compare the robustness of Neuro# vs. SharpSAT as the
problem sizes increase. Solid and dashed lines correspond to SharpSAT and Neuro#, respectively. All episodes
are capped at 100k steps.

The grid_wrld problem was a natural candidate for testing the effect of adding the time feature
(Section 3.3), so we report the results for that problem with time feature included and later in this
section we perform an ablation study on that feature.

Experimental Protocol. For each dataset, we sampled 1,800 instances for training and 200 for
testing. We trained for 1000 ES iterations. At each iteration, we sampled 8 formulas from the training
set and 48 perturbations with σ = 0.02. With mirror sampling, we obtained in total 96 = 48 · 2
perturbations. For each perturbation, we ran the agent on the 8 formulas (in parallel), to a total of
768 = 96 · 8 episodes per parameter update. All episodes, unless otherwise mentioned, were capped
at 1000 steps during training and 100,000 during testing. The agent received a negative reward of
rpenalty = −10−4 at each step. We used the Adam optimizer [20] with default hyperparameters
and a learning rate of 0.01. We used a weight decay of 0.005 and used the same architectural
hyperparameters for our model for all datasets (details in Appendix C).

6.1 Results

I.I.D. Generalization. Table 1 summarizes the results of the i.i.d. generalization over the four
problem domains of Section 5. We report the average number of branching steps on the test set.
Neuro# outperformed the baseline across all datasets. Most notably, on grid_wrld, it reduced the
number of branching steps by a factor of 3.0, from 195 down to 66. On cell, it reduced it by an
average factor of 1.8 over the three different cellular rules. Similar improvement held for bv_expr.
We observed less improvements on sudoku; we conjecture this is due to the dense structure of the
problem. The sudoku encoding is global, in that every square is 1 hop away on the LIG from all
other relevant squares, and there is no local problem structure to exploit. Appendix B.1 includes
cactus plots comparing the performance of SharpSAT to Neuro# across all datasets.
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(a) (b) (c) (d)

Figure 4: Contrary to SharpSAT, Neuro# branches earlier on variables of the bottom rows. (a) Evolution of
a bit-vector through repeated applications of Cellular Automata rules. The result of applying the rule at each
iteration is placed under the previous bit-vector, creating a two-dimensional, top-down representation of the
system’s evolution; (b) The initial formula simplification on a single formula. Yellow indicates the regions of the
formula that this process prunes; (c) & (d) Variable selection ordering by SharpSAT and Neuro# averaged over
the entire dataset. Lighter colours show that the corresponding variable is selected earlier on average.

Upward Generalization. Directly training on challenging #SAT problems of enormous size is
computationally infeasible, as the agent’s exploration during training can take forever. We tackled
this issue by training Neuro# on small problem instances and relying on generalization to solve the
more challenging instances from the same problem domain. We created instances of larger sizes (up
to an order of magnitude more clauses and variable) for each of the datasets in Section 5. We took
the models trained from the previous i.i.d. setting and directly evaluated on these larger instances
without further training.

The evaluation results are shown in the right half of Table 1. We see that Neuro# generalized to the
larger instances across all datasets and in almost all of them achieved substantial gains compared to
the baseline as we increased the instance sizes. Figure 3 shows this effect for multiple sizes of cell(49)
and grid_wrld by plotting the percentage of the problems solved within a number of steps (plots for
other problems are included in Appendix B.2). The gaps get more pronounced once we remove the
cap of 105 steps, i.e., let the episodes run to completion. In that case, on grid_wrld(10, 12), Neuro#
took an average of 1,320 branching decisions, whereas SharpSAT took 809,408 (613x improvement).

Wall-Clock Improvement. Improvements of this scale in step count on large instances are significant
enough for Neuro# to beat SharpSAT in wall-clock time, as evident in Figure 1 for grid_wrld and in
Figure 5 for cell(49). Note that this is in spite of the imposed overhead of querying the model that
limits the number of steps Neuro# can take per second compared to SharpSAT. For example, while
solving cell(49, 256, 200), SharpSAT took 331 steps/sec on average whereas Neuro# was only able
to take 17. We expect that this overhead could be greatly reduced, as our implementation is far from
optimized: it calls an out of process Python code from within the solver’s main loop (in C++), does
not utilize a GPU nor does it perform any optimizations on the neural network’s inference.

Figure 5: Cactus plots comparing Neuro# to SharpSAT on the cell(49, 256, 200) benchmark (lower and to
the right is better). For any point t on the y axis, the plot shows the number of benchmark problems that are
individually solvable by the solver, within t steps (left) and seconds (right).

8



Figure 6: Full-sized variable selection heatmap on dataset cell(35, 348, 280). Lighter colours show that the
corresponding variable is selected earlier on average across the dataset. We show the 99th percentile for each
row of the heatmap in the last column. Notice Neuro#’s tendency towards selecting variables of the bottom rows
earlier.

Problem-Level Interpretation. Encodings to CNF can be quite removed from the original problem
domain. Consider grid_wrld: the problems are encoded to a state machine, then to a circuit, and
finally to CNF, and many new variables are created along this process. In contrast, cell has a
straightforward encoding that directly relates the CNF representation to an easy-to-visualize evolution
grid which coincides with the standard representation of Elementary Cellular Automata. This allows
for interpretation of Neuro#’s policy in the original problem domain.

Our conjecture was that the model will learn to solve the problem from the bottom up. On the
evolution grid, the known terminal state T is the bottom row, and the task is to count the number of
distinct top rows I compatible with T . The natural way to decompose this problem is to start from
the known state T and continue assigning variables to "guess" the preimage, row by row from bottom
up. Different preimages can be computed independently upwards, and indeed, this is how a human
would approach the problem.

Heat maps in Figure 4 (c) and (d) depict the behaviour under SharpSAT and Neuro# respectively.
The heat map aligns with the evolution grid, with the terminal state T at the bottom. For each dataset,
the hotter coloured cells indicate that, on average, the corresponding variable tends to be branched on
earlier by the policy. The cooler colours show that the variable is often selected later or not at all,
meaning that its value is often inferred through UP either initially or after some variable assignments.
That is why the bottom row T and adjacent rows are completely dark, because they are simplified
by the solver before any branching happens. We show the effect of this early simplification on a
single formula per dataset in Figure 4 (b). Notice that in cell(35) and cell(49) the simplification
shatters the problem space into few small components (dark triangles), while in cell(9) which is a
more challenging problem, it only chips away a small region of the problem space, leaving it as a
single component. Regardless of this, as conjectured, we can see a clear trend with Neuro# focusing
more on branching early on variables of the bottom rows in cell(9) and in a less pronounced way
in cell(35&49). Moreover, as more clearly seen in the heatmap for the larger problem in Fig 6, the
learned heuristics actually branches early according to the pattern of the rule.

Figure 7: Ablation study on the impact of
the “time” feature on upward generalization
on grid_wrld(10, 12).

Time Feature. We tested the degree to which the “time”
feature contributed to the upward generalization perfor-
mance of grid_wrld. We compared three architectures
with SharpSAT as the baseline: 1. GNN: The standard
architecture proposed in Section 3.2, 2. GNN+Time: Same
as GNN but with the variable embeddings augmented with
the “time” semantic feature (Section 3.3) and 3. Time:
Where no variable embedding is computed and only the
“time” feature is fed to the policy network.

As can be seen in Figure 7, we discovered that the “time”
feature is responsible for most of the improvement over
SharpSAT. This fact is encouraging, because it demon-
strates the potential gains that could be achieved by simply
utilizing problem-level data, such as “time”, that otherwise
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would have been lost during the CNF encoding. More elaborate ablation studies can be found in
Appendix E.

7 Conclusion

We studied the feasibility of enhancing the variable branching heuristic in propositional model
counting via learning. We used the branching steps that the solver makes as a measure of its
performance and trained our model to minimize that measure. We demonstrated experimentally
that the resulting model not only is capable of generalizing to the unseen instances from the same
problem distribution, but also maintains its lead relative to SharpSAT on larger problems. For certain
problems, this lead widens to a degree that the trained model achieves wall-clock time improvement
over the standard heuristic, in spite of the imposed run time overhead of querying the model. This is
exciting as it positions this line of research as a potential path towards building better model counters
and hence broadening their application horizon.
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A #SAT Algorithms

Algorithm 2 DPLL extended to count all so-
lutions (CDP)

1: function CDP(φ)
2: if φ contains an empty clause then
3: return 0
4: if φ contains no clauses then
5: k = # of unset variables
6: return 2k

7: Pick a literal l ∈ φ
8: return CDP(UP(φ, l)) + CDP(UP(φ, ¬l))

Algorithm 3 Using Components
1: function Relsat(φ)
2: Pick a literal l ∈ φ
3: #l = CountSide(φ, l)
4: #¬l = CountSide(φ, ¬l)
5: return #l + #¬l

6: function CountSide(φ, l)
7: φl = UP(φ, l)
8: if φl contains an empty clause then
9: return 0

10: if φl contains no clauses then
11: k = # of unset variables
12: return 2k

13: K = findComponents(φl)
14: return

∏
κ∈K Relsat(κ)

In this section we provide some more details about
exact algorithms for solving #SAT, see [2] for the full
formal details including all proofs.

The simplest algorithm for #SAT is to extend the
backtracking search DPLL algorithm to make it ex-
plore the full set of truth assignments. This is the
basis of the CDP solver presented in [8], shown in
Algorithm 2. In particular, when the current formula
contains an empty clause it has zero models, and
when it contains no clauses each of the remaining k
unset variables can be assigned true or false so there
are 2k models (line 6).

This algorithm is not very efficient, running in time
2Θ(n) where n is the number of variables in the input
formula. Note that the algorithm is actually a class of
algorithms each determined by the procedure used to
select the next literal to branch on. The complexity
bound is strong in the sense that no matter how the
branching decisions are made, we can find a sequence
of input formulas on which the algorithm will take
time exponential in n as the formulas get larger.

Breaking the formula into components and solv-
ing each component separately is an approach sug-
gested by Bayardo and Pehoushek [6] and used in
the Relsat solver. This approach is shown in Algo-
rithm 3. This algorithm works on one component at
a time and is identical to #DPLLCache (Algorithm 1)
except that caching is not used.

Breaking the formula into components can yield considerable speedups depending on n0, the number
of variables needed to be set before the formula is broken into components. If we consider a
hypergraph in which every variable is a node and every clause is a hyperedge over the variables
mentioned in the clause, then the branch-width [27] of this hypergraph provides an upper bound on
n0. As a result we can obtain a better upper bound on the run time of Relsat of nO(w) where w
is the branch-width of the input’s hypergraph. However, this run time will only be achieved if the
branching decisions are made in an order that respects the branch decomposition with width w. In
particular, there exists a sequence of branching decisions achieving a run time of nO(w). Computing
that sequence would require time nO(1)2O(w) [28], hence a run time of nO(w) can be achieved.

Finally, if component caching is used we obtain Algorithm 1 which has a better upper bound of 2O(w).
Again this run time can be achieved with a nO(1)2O(w) computation of an appropriate sequence of
branching decisions.

In practice, the branch-width of most instances is very large, making a run time of 2O(w) infeasible.
Computing a branching sequence to achieve that run time is also infeasible. Fortunately, in practical
instances unit propagation is also very powerful. This means that making only a few decisions ( < w)
often allows unit propagation to set w or more variables thus breaking the formula apart into separate
components. Furthermore, most instances are falsified by a large proportion of their truth assignments.
This makes clause learning an effective addition to #SAT solvers, as with it the solver can more
effectively traverse the non-solution space.

In sum, for #SAT solvers the branching decisions try to achieve complex and sometimes contradictory
objectives. Making decisions that split the formula into larger components near the top of the search
tree (i.e., after only a few decisions are made) allows greater speedups, while generating many small
components near the bottom of the search trees (i.e., after many decision are made) does not help the
solver. Making decisions that generate the same components under different branches allows more
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(a) sudoku (b) cell(9) (c) cell(35)

(d) cell(49) (e) grid_wrld (f) bv_expr

Figure 8: Cactus Plot – Neuro# outperforms SharpSAT on all i.i.d benchmarks (lower and to the right is better).
A cut-off of 100k steps was imposed though both solvers managed to solve the datasets in less than that many
steps.

effective use of the cache. And making decisions that allow the solver to learn more effective clauses
allows the solver to more efficiently traverse the often large space of non-solutions.

B More on the Results

In this section we present a more elaborate discussion of our results. Aggregated measures of
performance, such as average number of decisions (Table 1) only give us an overall indication of
Neuro#’s lead compared to SharpSAT and as such, they are incapable of showing whether it is
performing better on easier or harder instances in the dataset. Cactus plots are the standard way
of comparing solver performances in the SAT community. Although typically used to compare
the wall-clock time (Figure 1b), here we use them to compare the number of steps (i.e., branching
decisions).

B.1 I.I.D. Generalization

Figure 8 shows cactus plots for all of the i.i.d. benchmark problems. Unsurprisingly, the improvements
on sudoku are relatively modest, albeit consistent across the dataset. On all cell datasets, and
grid_wrld, an exponential growth is observed with Neuro#’s lead over SharpSAT as the problems
get more difficult (moving right along the x axis). Lastly, on bv_expr, Neuro# does better almost
universally, except near the 100 problems mark and at the very end (3 most difficult problems).

B.2 Upwards Generalization

On some datasets, namely cell(49) and grid_wrld, the Neuro#’s lead over SharpSAT becomes more
pronounced as we test the upwards generalization (using the model trained on smaller instances and
testing on larger ones). Cactus plots of Figure 9&10 show this effect clearly for these datasets. In
each figure, the i.i.d. plot is included as a reference on the left and on the right the plots for test sets
with progressively larger instances are depicted.

The upward generalization lead is less striking, although still significant, on bv_expr (2.7x up from
1.6x). On sudoku and cell(9) Neuro#’s lead is still maintained but it becomes less prominent on more
difficult datasets. Figure 11 summarizes these points by comparing the percentage of the problems
solvable by SharpSAT vs. Neuro# under a given number of steps. Notice the robustness of the
learned model in cell(35&49) and grid_wrld. As these datasets get more difficult, SharpSAT either
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cell(49, 128, 110) cell(49, 192, 128) cell(49, 256, 200) cell(49, 348, 280)
(a) (b)

Figure 9: Cactus Plot – cell(49): Neuro# maintains its lead over SharpSAT on larger datasets (lower and to the
right is better). A cut-off of 100k steps was imposed. (a) i.i.d. generalization on cell(49, 128, 110); (b) Upward
generalization of the model trained on cell(49, 128, 110) over larger datasets.

grid_wrld(10, 5) grid_wrld(10, 10) grid_wrld(10, 12) grid_wrld(10, 14)
(a) (b)

Figure 10: Cactus Plot – grid_wrld: Neuro# maintains its lead over SharpSAT on larger datasets (lower and
to the right is better). A cut-off of 100k steps was imposed. (a) i.i.d. generalization on grid_wrld(10, 5); (b)
Upward generalization of the model trained on grid_wrld(10, 5) over larger datasets.

takes more steps or completely fails to solve the problems altogether, whereas Neuro# relatively
sustains its performance.

B.3 Discussion

Many dataset attributes may lead to the upward generalization success of the aforementioned datasets,
but one of the main contributing factors is the model’s ability to observe similar components many
times during training. In other words, if a problem gets shattered by the initial simplification (unit
propagation) into smaller components, there is a high chance that the model’s behaviour learns
to solve such components. If larger problems of the same domain also break down into similar
components, then Neuro# can generalize well on them. In Section 6.1, we discussed this phenomena
for cell via heat maps. In Figure 12 we provide full heat maps for larger datasets of both cell(35) and
cell(49). Not only the “shattering” effect is evident from these plots, we can also observe that in both
datasets Neuro# branches on variables from the bottom going up. This matches with our conjecture
presented in Section 6.1.

C Architecture Details

Both our literal and clause embeddings are of size 32. GNN messages are implemented by an
MLP with ReLU non-linearity. Clause-to-literal messages are of dimensions 32 × 32 × 32, and
literal-to-clause messages are of dimension 64 × 32 × 32 (as described in Section 3 we “tie” the
literals to achieve negation-invariance, hence the doubled first dimension). We use 2 iterations in
the GNN, and final literal embeddings are passed through the MLP policy network of dimensions
32× 256× 64× 1 to get the final score. When using the extra time feature, the first dimension of the
decision layer is 33. The initial (iteration 0) embeddings of both literals and clauses are trainable
model parameters. In Appendix E, where we augment the literal features with “variable scores”
we start with a feature vector of size 2 for each literal, and pass it through an MLP of dimensions
2× 32× 32 to get the initial literal embedding.
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(a) sudoku (b) cell(9)

(c) cell(35) (d) cell(49)

(e) grid_wrld (f) bv_expr

Figure 11: Neuro# generalizes well to larger problems on almost all datasets (higher and to the left is better).
Compare the robustness of Neuro# vs. SharpSAT as the problem sizes increase. Solid and dashed lines
correspond to SharpSAT and Neuro#, respectively. All episodes are capped at 100k steps.

D Trained Policy’s Impact on Solver Performance Measures

In this section we analyze the impact of Neuro# on solver’s performance through the lens of a set of
solver-specific performance measures. These measures include: 1. Number of conflict clauses that the
solver encounters while solving a problem (num conflicts), 2. Total (hit+miss) number of cache
lookups (num cache lookups), 3. Average size of components stored on the cache (avg(comp
size stored)), 4. Cache hit-rate (cache hit-rate) and 5. Average size of the components that
are successfully found on the cache (avg(comp size hit)).

A conflict clause is generated whenever the solver encounters an empty clause, indicating that the
current sub-formula has zero models. Thus the number of conflict clauses generated is a measure of
the amount of work the solver spent traversing the non-solution space of the formula. Cache hits and
the size of the cached components, on the other hand, give an indication of how effectively the solver
is able to traverse the formula’s solution space. In particular, when a component with k variables is
found in the cache (a cache hit) the solver does not need to do any further work to count the number
of solutions over those k variables. This could potentially save the solver 2O(k) computations. This
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(a) cell(35, 192, 128) (b) cell(49, 192, 128)

Figure 12: Clear depiction of Neuro#’s pattern of variable branching. The “Units” plots show the initial formula
simplification the solvers. Yellow indicates the regions of the formula that this process prunes. Heatmaps show
the variable selection ordering by SharpSAT and Neuro#. Lighter colours show that the corresponding variable
is selected earlier on average across the dataset.

2O(k) worst case time is rarely occurs in practice; nevertheless, the number of cache hits, and the
average size of the components in those cache hits give an indication of how effective the solver is in
traversing the formula’s solution space. Additional indicators of solver’s performance in traversing
the solution space are the number of components generated and their average size. Every time the
solver is able to break its current sub-formula into components it is able to reduce the worst case
complexity of solving that sub-formula. For example, when a sub-formula of m variables is broken
up into two components of k1 and k2 variables, the worst case complexity drops from 2O(m) to
2O(k1) + 2O(k2). Again the worst case rarely occurs (as indicated by the fact that #SAT solvers do
not display worst case performance on most inputs), so the number of components generated and
their average size provide only an indication of the solver’s effectiveness in traversing the formula’s
solution space.

In Figure 13 we plot these measures for cell(49, 256, 200) and grid_wrld(10, 12). Looking at
the individual performance measures, we see that the Neuro# encounters fewer conflicts (larger
1/num conflicts), meaning that it is traversing the non-solution space more effectively in both
datasets. The cache measures, indicate that the standard heuristic is able to traverse the solution
space a bit more effectively, finding more components (num cached lookups) of similar or larger
average size. However, Neuro# is able to utilize the cache as efficiently (with comparable cache
hit rate) while finding components in the cache that are considerably larger than those found by the

(a) cell(49, 256, 200) (b) grid_wrld(10, 12)

Figure 13: Radar charts showing the impact of each policy across different solver-specific performance
measures.
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Figure 14: Cactus Plot – Ablation study on the impact of the “time” and VSADS features over upward
generalization on grid_wrld(10, 12) (lower and to the right is better). A termination cap of 100k steps was
imposed on the solver.

standard heuristic. In sum, the learnt heuristic finds an effective trade-off of learning more powerful
clauses, with which the solver can more efficiently traverse the non-solution space, at the cost of a
slight degradation in its efficiency traversing the solution space. The net result in an improvement in
the solver’s run time.

E Ablation Study

Variable Score We mentioned in Section 2 that SharpSAT’s default way of selecting variables is
based on the VSADS heuristic which incorporates the number of times a variable v appears in the
current sub-formula, and (a function of the) number of conflicts it took part in. At every branching
juncture, the solver picks a variable among the ones in the current component with maximum score
and branches on one of its literals (see Algorithm 1). As part of our efforts to improve the performance
of our model, we performed an additional ablation study over that of Section 6.1. Concretely, we
measured the effect of including the variable scores in our model (as detailed in Appendix C) and
tested on the grid_wrld(10, 12) and cell(49, 256, 200) datasets (Figures 14 & 15). For both datasets,
the inclusion of the variable scores produced results inferior to the ones achieved without them! This
is surprising, though consistent with what was observed in [22].

Random Policies As an essential sanity check, we tested how a “random policy” performs com-
pared to the trained model, in order to assure that our model’s performance improvements are not
trivially attainable without training. To that end, we tested on cell(35, 128, 110) dataset two such
random policies: 1) Random Literal: which chooses a literal uniformly at random; 2) Random
Network: where we randomly set our model’s weights instead of training. Both of these policies
were inferior to the SharpSAT’s results of 353 steps (Table 1), achieving an average of 867 and 740,
respectively.

Figure 15: Cactus Plot – Inclusion of VSADS score as a feature hurts the upward generalization on
cell(49, 256, 200) (lower and to the right is better). A termination cap of 100k steps was imposed on the
solver.
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