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Abstract

Antimicrobial peptides are a class of membrane-active peptides that form a critical component of 

innate host immunity and possess a diversity of sequence and structure. Machine learning 

approaches have been profitably employed to efficiently screen sequence space and guide 

experiment towards promising candidates with high putative activity. In this mini-review, we 

provide an introduction to antimicrobial peptides and summarize recent advances in machine 

learning-enabled antimicrobial peptide discovery and design with a focus on a recent work Lee et 
al. Proc. Natl. Acad. Sci. USA 113 48 13588–13593 (2016). This study reports the development of 

a support vector machine classifier to aid in the design of membrane active peptides. We use this 

model to discover membrane activity as a multiplexed function in diverse peptide families and 

provide interpretable understanding of the physicochemical properties and mechanisms governing 

membrane activity. Experimental validation of the classifier reveals it to have learned membrane 

activity as a unifying signature of antimicrobial peptides with diverse modes of action. Some of 

the discriminating rules by which it performs classification are in line with existing “human 

learned” understanding, but it also unveils new previously unknown determinants and 

multidimensional couplings governing membrane activity. Integrating machine learning with 

targeted experimentation can guide both antimicrobial peptide discovery and design and new 

understanding of the properties and mechanisms underpinning their modes of action.
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1. Structure of this mini-review

The tandem expansion of experimental databases of antimicrobial peptides (AMPs) and 

maturation of robust machine learning algorithms has led to profitable synergies in which 

computational models trained on large and high-quality data sets can perform high-

throughput “virtual screening” to guide the discovery and design of novel AMPs. Predictive 

computational models can serve as fast and inexpensive pre-screening tools to efficiently 

traverse the combinatorially vast sequence space and direct time, labor, and cost-intensive 

experimentation towards promising candidates with high putative activity. Beyond 

computational hit finding, machine learning models can also furnish new understanding of 

the underlying peptide properties underpinning antimicrobial activity and inform 

experiments to validate and calibrate these predictions. In this mini-review we provide an 

introduction to antimicrobial peptides and recent advances in machine learning-enabled 

AMP design, with a particular focus on a recent publication reporting the development of 

machine learning classifiers designed not only to aid in peptide discovery but also provide 

new understanding of the common physicochemical determinants underpinning the activity 

of this diverse group of peptides [1]. The present mini-review foregrounds the computational 

aspects of this work; another recent invited mini-review takes a more experimental vantage 

[2]. We first discuss the new insights furnished by the machine learning model, some 

consistent with existing “human learned” understanding and some entirely new. We then 

demonstrate its utility in efficiently screening the combinatorially vast sequence space to 

design new non-natural membrane-active peptides and discover membrane activity in 

diverse families of peptides with established primary functions. We close with an outlook 

and perspective for this rapidly evolving field.
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2. Antimicrobial peptide structure and function

Antimicrobial peptides are a class of short peptides with the capacity to disrupt and/or 

penetrate microbial membranes and induce cell death [3, 4, 5, 6, 7, 8]. In excess of 2,000 

naturally occurring and synthetic AMPs have been experimentally defined, with a large 

fraction forming part of the innate immune response [3, 4, 5, 6, 7, 8, 9, 10, 11]. AMPs tend 

to be short (<50 amino acids), positively charged (+2 to +9), and facially amphipathic [3, 4, 

5, 6, 7, 8]. There is evidence for a variety of modes of action by which AMPs disrupt the 

membrane – including the barrel stave, toroidal pore, and carpet mechanisms [4, 12, 13, 14, 

15] – and effect their microbicidal activity – including membrane depolarization, leakage of 

cell contents, disruption of intracellular function, and immunomodulation [4, 8, 16, 17, 18, 

19, 20, 21, 22]. Regardless of the precise mode of action, membrane activity is a critical 

prerequisite to antimicrobial activity. In general, AMPs tend to bind to prokaryotic cell 

membranes due to strong Coulombic attractions between cationic peptide residues and 

anionic lipid head groups. Their amphipathic character and relatively small size permits 

them to embed into the lipid bilayer with the hydrophobic face favorably interacting with the 

lipid tails and hydrophilic face with the head groups. Ultimately, this leads to membrane 

disruption, membrane permeation, and/or peptide translocation resulting in cell death [13]. 

However, the enormous diversity in sequence, secondary structure [3, 8], and modes of 

action [16, 17, 18, 19, 20, 21, 22] makes it challenging to define more precise determinants 

of antimicrobial activity to serve as actionable precepts for AMP design. Machine learning 

models trained to recognize antimicrobial activity can be of great value in advancing 

understanding and accelerating AMP discovery.

3. Prior applications of machine learning to antimicrobial peptide discovery

Machine learning models of AMP activity come in many forms and employ diverse 

mathematical approaches. All techniques have the same fundamental goal of predicting 

antimicrobial activity (y) based on properties of the peptide (x). As such, they fall under the 

umbrella of quantitative structure-activity relationship (QSAR) models. Regression models 

seek to predict the strength of the antimicrobial activity – measured by, for example, the 

minimum inhibitory concentration (MIC) – whereas classification models seek to distinguish 

candidates as either hits or misses – based, for example, on some threshold in the MIC. In 

contrast to physical models, machine learning models are data-driven in the sense that they 

seek to infer a relationship between x and y by statistical learning over characterized 

experimental databases. Training models over datasets in this manner in which inputs and 

outputs are known is known as supervised learning [23]. To be useful as a predictive model, 

four criteria must be satisfied. First, a relationship between the peptide properties x– the 

features or descriptors in machine learning parlance – and the antimicrobial activity y – the 

response variable – must exist and must be detectable by the training algorithm. In general, 

care must be taken not to neither underfit the data, as this results in overly simplistic models 

with poor predictive capacity, nor overfit, as this results in overly complex models with poor 

generalizability. This can be framed as a bias-variance tradeoff. Underfitted models contain 

high bias and low variance, whereas overfitted models possess low bias and high variance 

[23]. In general, one employs some from of cross-validation to tune the model parameters to 

minimize the error over a hold-out data subset to optimize this tradeoff [23]. Second, 
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sufficiently large databases containing candidates representative of the distribution in the 

population must exist over which to conduct model training and validation. While it is 

difficult to predict a priori how big is big enough, post hoc testing of the model against a 

hold out set can typically inform expected model performance. Third, the trained machine 

learning model must provide useful predictions, where “useful” is dependent on the context 

and intended application of the model. In some machine learning applications high accuracy 

is required (e.g., self-driving cars), whereas in others it may be sufficient to simply do better 

than average to provide a competitive edge (e.g., financial predictions). Alternatively, high 

sensitivity is required where the intended goal requires a low frequency of false negatives 

(type II errors). High sensitivity tests allow the user to confidently rule out the occurrence of 

an event upon showing a negative result (e.g., a pregnancy test). Conversely, high specificity 
is the priority where the application requires a low frequency of false positives (type I 

errors). High specificity tests allow the operator to confidently rule in the occurrence of an 

event upon showing a positive result (e.g., confirming the presence of disease). Fourth, the 

descriptors should be cheaper and faster to compute and/or measure than the response 

variable itself, or otherwise the QSAR model is typically rendered redundant.

Enabled by the advent of robust machine learning algorithms and large AMP databases 

(www.camp.bicnirrh.res.in/exLinks.php) [24, 9, 10, 11], a body of work emerged beginning 

in the mid-2000’s reporting the development of high-performance QSAR models to predict 

AMP activity. The preponderance of these studies have focused on the development of 

predictive models to perform efficient in silico screening of large ensembles of peptide 

sequences to identify candidates with high putative activity. A number of machine learning 

algorithms have been deployed for this purpose, although there is no clear consensus of the 

superiority of any one algorithm. Lata et al. reported an approach based on an artificial 

neural network (ANN), support vector machine (SVM), and quantitative matrix (QM) model 

to classify AMPs based on C- and N-terminal residues [25]. Fjell et al. employed a hidden 

Markov model (HMM) to discover a novel bovine AMP [26]. Cherkasov et al. and Fjell et 
al. trained ANNs to perform in silico screening of 100,000 peptide candidates to discover 

two peptides with higher potency against multi-drug resistant “superbugs” than existing 

antibiotic therapies and AMPs in clinical trials [27, 28]. Wang et al. integrated BLASTP 

sequence alignment with amino acid composition descriptors to develop an AMP classifier 

with ~80% prediction accuracy [29], and Torrent et al. developed an 8-descriptor SVM 

classifier with up to 90% accuracy [30]. Xiao et al. developed a fuzzy k-nearest neighbor (k-

NN) classifier to identify AMPs and bin them into one or more of ten sub-categories: 

antibacterial, anticancer, antifungal, anti-HIV, antiviral, antiparasital, anti-protist, 

chemotactic, insecticidal, and spermicidal [31]. Maccari et al. trained a random forest (RF) 

to design and experimentally validate two de novo AMPs, enhance the activity of an existing 

AMP and engineer a novel AMP containing non-natural amino acids [32]. Giguere et al. 
developed a graph-based approach to identify and test four peptides with high in vitro 
activity [33]. Schneider et al. reported a two-step process wherein a self-organizing map 

(SOM) was used to perform nonlinear dimensionality reduction over 147 peptide descriptors 

as a preprocessing step prior to ANN classification [34].

In our own recent work, we developed a SVM classifier to predict α-helical AMP activity 

with ~90% accuracy [1]. In a departure from the typical goals of QSAR model development, 
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our intent was to develop a machine learning classifier that not only had high predictive 

accuracy and specificity (i.e., low false positive rate) but to also provide interpretable insight 

into the underlying physicochemical determinants of antimicrobial activity. To this end, we 

purposefully selected a linear SVM classifier as our QSAR model for its transparent 

interpretability in linking the descriptors with the predicted response. We performed rigorous 

filtering and embedded feature selection over an initial candidate set of 1588 

physicochemical descriptors to distill those 12 most predictive of antimicrobial activity. 

Some of these features are in line with previously “human learned” determinants of AMP 

activity, while others provide new understanding. We compared our classifier predictions 

against small angle X-ray scattering (SAXS) experiments to both validate its predictions and 

connect the identified physicochemical peptide properties with induced structural changes in 

the target membranes and thus the AMP mode of action. Unexpectedly, these guided 

experiments exposed our classifier not to have learned to predict antimicrobial activity based 

on physicochemical signatures of “antimicrobialness”, but rather membrane activity as a 

unifying property of AMPs with diverse modes of action. This result provides a clear 

illustration that the rules learned during QSAR training may be adjacent to those initially 

intended, and that calibrating experiments are essential in both validating classifier 

performance and revealing its mechanistic basis. We subsequently exploited our model in 

light of this new understanding to identify novel membrane active peptides and discover 

membrane activity in diverse peptide families with other putative primary functions. In the 

remainder of this mini-review, we offer a fuller examination and appraisal of this work.

4. Training a support vector machine to distinguish antimicrobial activity

4.1. Introduction to support vector machines

A support vector machine (SVM) classifier is a machine learning algorithm designed to 

perform deterministic classification of data into one of two distinct categories [35, 36]. The 

essence of the approach is to project each data point into a m-dimensional Euclidean space 

in which its location is defined by a list of m ordered features. The SVM is trained to define 

a (m − 1)-dimensional hyperplane that optimally partitions the data into the two distinct 

classes by maximizing the distance (i.e., margin) from the closest point in each class to the 

separating hyperplane. This optimal hyperplane is known as the maximum-margin 
hyperplane and is determined by supervised training of the SVM classifier over a labeled set 

of training data in which the features and classifications of the data are known. An schematic 

illustration of a linear SVM classifier for m = 2 is presented in Fig. 1.

Mathematically, a data point i in the m-dimensional feature space can be represented by an 

m-element vector xi. A (m − 1)-dimensional hyperplane in the feature space is defined by its 

surface normal vector w and offset from the origin b/||w||. This plane comprises the locus of 

points x satisfying the relation w.x − b = 0. A data point i is classified by which side of the 

hyperplane upon which it falls, defined as a “hit” if w.xi − b > 0 and a “miss” if w.xi − b < 0. 

The margins around the hyperplane are defined by the parallel hyperplanes w.x+ − b = +1 

containing the closest “hit(s)” and w.x− − b = −1 containing the closest ”miss(es)”. The size 

of the gap is defined by the projection of the vector (x+ − x−) onto the unit vector ŵ = w/||

w||,
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w . (x+ − x−) = 1
‖w‖(w . x+ − w . x−) = 1

‖w‖[(w . x+ − b) − (w . x− − b)] = 1
‖w‖[1 − ( − 1)

] = 2
‖w‖ .

(1)

The maximum margin hyperplane maximizes this gap and the corresponding maximum-

margin SVM classifier is defined by the following optimization [35, 23, 37],

argmin
w, b

1
2‖w‖ subject to yi (w . xi − b) ≥ 1, i = 1…n . (2)

This formulation assumes that the data are linearly separable such that each point may be 

correctly classified, and is known as a hard margin SVM. In general, the data may not admit 

perfect linear separation and we appeal to the soft margin formulation that allows for 

classification errors [35, 23, 37], argmin

argmin
w, b

1
2‖w‖ + λ1

n ∑
i = 1

n
L1 (yi, xi) , L1 (yi, xi) = max (0, 1 − yi (w . xi − b)), (3)

where L1 (yi, xi) defines a hinge loss function that penalizes points that fall into or beyond 

the margin (i.e., those with yi (w.xi − b) < 1) in linear proportion to how far across the 

margin they reside, and λ is a hyperparameter controlling the relative weighting between 

maximizing the margin and incorrect predictions that is typically tuned by cross-valuation 

[23, 37]. The minimization in Eqn. 3 is known as the primal problem, and training of the 

SVM classifier amounts to determining the values of w and b that minimize the objective 

function over all training points i = 1. . . n. In practice, it is convenient to reformulate this 

problem using Lagrangian multipliers to obtain an equivalent dual problem that admits 

efficient solutions by quadratic programming [23].

SVMs are an inherently linear classification technique that discriminate class membership 

based on a hyperplane separator. This linearity is advantageous in providing intuitive 

understanding of the classification rationale and the relative importance and relationship 

between the features of the data. We exploited this attractive feature to aid in our 

interpretation of the underlying physicochemical determinants discovered by the classifier 

[1]. Nevertheless, SVMs can perform poorly on data sets that are not linearly separable. 

Nonlinear generalizations exist in which the data are projected by the so-called “kernel 

trick” into a high-dimensional (or even infinite-dimensional) space and a linear hyperplane 

constructed in this transformed feature space [36, 38, 23]. If the transformation is nonlinear, 
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then the separating hyperplane is a nonlinear surface in the original space that can provide 

greater flexibility in separating the data. Finally, we note that generalizations of SVMs exist 

to handle multi-class data, typically through nested binary classifications [39, 40], which 

may be beneficial in sub-categorizing AMPs as demonstrated by Xiao et al. [31].

4.2. Curation of training data

The positive data set for training of our linear SVM comprised 286 AMPs downloaded from 

the Antimicrobial Peptide Database (http://aps.unmc.edu/AP) [9, 10, 11] for which 

microbicidal activity had been experimentally confirmed by plate killing or broth 

microdilution. The negative data set comprised 286 membrane active proteins reported to 

possess no antimicrobial activity that were downloaded from the Protein Data Bank of 

Transmembrane Proteins (http://pdbtm.enzim.hu) [41, 42, 43]. Both datasets comprised 

peptides of length 8–60 residues and α-helical secondary structure. We randomly selected 

85% of each of the positive and negative datasets to define a balanced training set 

comprising 243 AMPs and 243 decoys for use in SVM classifier training and cross-

validation. The remaining 15% of each dataset defined a balanced blind test set of 43 AMPs 

and 43 decoys that was used only to evaluate the performance of the final classifier and not 

used at any stage of classifier training, tuning, or feature selection.

There are no hard-and-fast rules for the optimal split between training and test data, since 

this can depend strongly on the total number of observations, the complexity of the models 

to be fit, and the level of noise in the samples [23]. A good rule of thumb is to reserve 40–

80% of the data for training, erring towards larger fractions for larger datasets and lower 

signal-to-noise ratios [23, 44, 45]. For classification problems, one must also pay attention to 

the proportions of the two (or more) classes within the data. While one might be inclined to 

assemble training sets with a class balance matching that of the population at large [46], 

great care must be taken in training over imbalanced datasets [47, 48]. In particular, 

classification accuracy can be a misleading training objective for highly imbalanced datasets 

since high performance can just reflect the underlying distribution. It is advisable to balance 

the data by resampling, collecting additional samples, or generating synthetic samples, and 

to consider the use of alternative performance measures such as the sensitivity or positive 

predictive value [47, 48]. In general, the training and testing partitions should maintain the 

same class balance [45].

4.3. Descriptor generation and embedded feature selection

The goal of our machine learning classifier is to predict whether a candidate peptide is an 

AMP from its amino acid sequence. In principle, one could compute the similarity of the 

candidate sequence space to those in the training data according to some proximity metric 

(e.g., Hamming, Jukes-Cantor) and make an assignment based on the classification of its 

nearest neighbors using a k-nearest neighbor (k-NN) classification protocol [23]. In practice, 

this approach will tend to perform poorly for query peptides possessing little sequence 

similarity with those in the training data, and is particularly ill-suited for AMP classification 

due to the large diversity of peptide lengths and sequences [25, 49]. An alternative approach 

instead makes classifications based on a set of features derived from the peptide sequence 

that are potentially relevant determinants of antimicrobial activity [50, 51]. In the case of 
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peptides, these features typically comprise physicochemical descriptors (e.g., charge, 

hydrophobicity) and patterns in amino acid composition (e.g., prevalence of contiguous 

residue pairs, correlated distributions of residues with similar properties) that may be readily 

calculated directly from the peptide sequence without additional experimental knowledge 

[52, 53]. Large numbers of these derived descriptors may be generated, and feature selection 
conducted to systematically identify an optimal subset of descriptors [54, 55]. By excluding 

irrelevant or confounding descriptors, feature selection is beneficial in improving model 

performance, reducing the time and cost of descriptor generation, improving model 

generalization, and enhancing interpretability of the model [54, 55].

In this work, we employed the propy Python package [52, 53] to generate 1588 descriptors 

for each peptide in the training set and then conducted two rounds of feature selection. First, 

we filtered the features to eliminate two irrelevant descriptors that were invariant over the 

training data, and 257 redundant descriptors that were highly correlated with one or more 

other descriptors. The remaining 1329 descriptors were then Z-scored by subtracting out 

their mean and dividing by their standard deviation over the training data. This linear 

transformation is a standard pre-processing step to place all features on an even 

mathematical footing by rendering each descriptor dimensionless and standardized to zero 

mean and unit variance [54]. Second, we performed a form of embedded feature selection 

based on an elegant approach developed by Bi et al. that simultaneously performs on-the-fly 

feature selection and model training by modifying of the standard SVM classifier objective 

function [56]. This approach replaces the soft margin minimization defined in Eqn. 3 by, 

argmin

argmin
w, b

1
2‖w‖1 + C 1

n ∑
i = 1

n
L2 (yi, xi) , L2 (yi, xi) = [ max (0, 1 − yi (w . xi − b))]2, (4)

where ||w||1 is the ℓ1-norm of w, and L2 (yi, xi) is a squared hinge loss. Similar to the LASSO 

method [57], the ℓ1-norm serves as a numerically efficient proxy for the ℓ0-norm that enforces 

sparsity in the w vector. Geometrically, the classification hyperplane is perpendicular to 

those descriptors with zero-value elements in w, meaning that these descriptors do not play a 

role in classification and may be discarded. The parameter C controls the tradeoff between 

sparsity and classification errors penalized according to the square of their distance from the 

margin [56]. We solve this minimization over the n = 486 training points using the scikit-

learn Python machine learning library [37], and determine the optimum value of C = 0.0995 

using k = 15 rounds of stratified shuffled cross validation to maximize the prediction 

accuracy of the sparse model trained over 80% of the training data on a 20% validation 

partition [56, 23]. The particular descriptors selected vary between the sparse models, and 

we stabilize feature selection by bootstrap aggregation (bagging) [58] to identify those m = 

12 descriptors retained in all k = 15 rounds of cross validation. These descriptors comprise 

the terminal ensemble identified by our feature selection procedure and are listed in Table 1.
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4.4. Classifier training, validation, and performance

The m = 12 descriptors identified by our feature selection procedure (Table 1) were then 

used to train a linear SVM classifier by minimizing the objective function in Eqn. 3 over the 

n = 486 peptides in the training set to determine the optimal values of w and b. Training was 

conducted using the scikit-learn Python machine learning library [37], and the optimal value 

of λ = 0.0127 determined by maximizing the accuracy of the classifier trained over 80% of 

the training data on a 20% validation partition over k = 15 independent rounds of stratified 

shuffled cross validation. The elements of the optimal w vector corresponding to each 

descriptor are provided in Table 1.

We evaluated the performance of the trained classifier over the blind test set of 43 AMPs and 

43 decoy peptides according to the following five metrics, where TP is the number of true 

positives, TN the number of true negatives, FP the number of false positives, and FN the 

number of false negatives [50, 60]:

• accuracy = (TP + TN) / (TP + FP + TN + FN) = 91.9%

• specificity = TN/ (TN + FP) = 93.0%

• sensitivity = TP/ (TP + FN) = 90.7%

• positive predictive value (PPV) = TP/ (TP + FP) = 92.9%

• negative predictive value (NPV) = TN/ (TN + FN) = 90.9%

The classifier exhibits excellent performance in excess of 90% along all metrics. For the 

purposes of high throughput in silico screening of peptide sequence space, typically one 

wishes to prioritize specificity and positive predictive accuracy such that false positive rate is 

very low and positive classifications trusted with high confidence. Our classifier exhibits this 

desirable performance with 92.9% of positive classifications expected to be true positives. 

High sensitivity and negative predictive value (i.e., low false negative rate) are typically less 

of a priority for virtual screening. The size of the accessible sequence space is so large that 

failure to correctly identify all positive candidates is not critical, since we are typically able 

to generate far more putative hits than can be experimentally synthesized. Nevertheless, our 

classifier also performs well along these metrics, with 90.9% of negative predictions 

expected to be true negatives. We also computed a strong Matthews correlation coefficient 

(MCC) – also known as the phi coefficient – of 0.837, revealing a strong correlation between 

the predicted and observed classifications [61]. The classifier was trained for predictive 

accuracy in both positive and negative predictions to attain 91.9% accuracy. However, the 

offset of the hyperplane from the origin (i.e., the b value) can be increased (decreased) to 

increase (decrease) the threshold for a positive prediction. This allows the classifier to be 

tuned to meet the requirements of a particular application by enhancing the specificity and 

PPV (sensitivity and NPV) at the expense of overall accuracy. The computed area under the 

receiver operating characteristic (AUROC) of 0.981 indicates that our classifier possesses 

excellent sensitivity-specificity trade-off [60].

We compared the performance of this 12-descriptor linear SVM classifier against a 1329-

descriptor linear classifier employing all of the original 1588 descriptors excluding those 

259 determined to be irrelevant or redundant, and against 12-descriptor and 1329-descriptor 
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nonlinear SVM classifiers employing optimized polynomial and radial basis function kernels 

[36, 23, 1]. In all cases we found the performance of the 12- descriptor linear SVM to be as 

good or superior to the more complicated variants with the added benefits of clearer 

mechanistic interpretability and faster computation times. This illustrates the value and 

success of rigorous feature selection in developing robust and high performance classifiers. 

Computationally, calculation of the 12 descriptors and classification by the trained SVM 

requires only 0.14 s per peptide on a 2.13-GHz Intel Core 2 Duo processor. Classification of 

large peptide libraries can be performed by deploying multiple independent copies of the 

classifier in parallel, facilitating accurate and efficient in silico screening of peptide 

sequence space.

5. Calibration and interpretation of classifier predictions

5.1. The classifier predicts membrane activity, not antimicrobial activity

The distance σ of a candidate peptide in the 12-dimensional feature space from the 

separating hyperplane of the trained classifier possesses a clear geometric interpretation and 

serves as the discriminating metric to classify a peptide as an AMP (“hit”, σ ≥ 0) or not 

(“miss”, σ < 0). It is also possible to convert σ into a probability of membership in the “hit” 

class P(+1) by performing logistic regression over the training data to define a monotonic 

mapping between σ and P(+1) [37]. We initially hypothesized that distance from the 

separating hyperplane would be correlated with antimicrobial activity, defining an inverse 

relationship between σ and the in vitro minimum inhibitory concentration (MIC). 

Accordingly, we expected potent antimicrobial peptides to be located far from the margin on 

the “hit” side of the hyperplane, peptides with no microbicidal activity far from the margin 

on the “miss” side, and peptides with weak microbicidal activity close to the hyperplane. To 

test this hypothesis, we collated a list of 478 AMPs active against Staphylococcus aureus for 

which standardized MIC values are known (http://www.antistaphybase.com) [62] and ran 

them through our SVM classifier to compute the predicted σ values. The Spearman 

correlation coefficient between σ and MIC revealed no significant correlation, with the 95% 

confidence intervals spanning zero and an insignificant p-value (ρSpearman = −0.06 [−0.15, 

0.03]; p = 0.19, two-tailed bootstrap significance test with n = 10,000 trials) (Fig. 2a). This 

result does not support the hypothesis that the classifier has learned to distinguish AMPs 

based on antimicrobial potency. This negative result may be understood by the diverse 

mechanisms of microbicidal activity in addition to membrane activity. For example, there 

are peptides within the set of 478 AMPs considered that mediate their antimicrobial activity 

through inhibition of DNA synthesis, inhibition of macromolecular synthesis, and 

immunomodulation [2]. Due to these confounding factors it is perhaps not surprising in 

retrospect that we should see no correlation between σ and MIC. What, then, is the 

mechanistic basis by which the SVM classifier has learned to make its AMP/non-AMP 

classification predictions?

We developed a new hypothesis that the SVM did not learn to distinguish AMPs based on 

antimicrobial activity, but rather membrane activity as a uniting property of AMPs that 

possess diverse modes of action. In prior work, we have shown AMPs that effect their 

microbicidal activity through membrane permeation to generate a specific type of membrane 
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curvature known as negative Gaussian curvature (NGC) [63, 64, 65, 66, 67]. Induction of 

NGC has also been observed for other classes of membrane active peptides, including cell-

penetrating peptides [68] and viral fusion peptides [69, 70], and is a necessary requirement 

of a number of membrane destabilization mechanisms including portion, blebbing, and 

budding [12, 71, 72, 73, 74, 75, 1]. Geometrically, NGC possesses a clear mathematical and 

geometric interpretation [76, 2]. At each point on a surface we can define the curvature κ 
along an arbitrary tangent vector as the reciprocal of the signed radius R of the 

corresponding kissing circle. The radius is defined to be positive if the vector connecting the 

point on the surface to the center of the kissing circle points in the same direction as the 

surface normal, and negative otherwise. The principal curvatures κ1 = 1/R1 and κ2 = R2 are 

respectively defined by the kissing circles that give maximum and minimum values of the 

curvature. The mean curvature of the surface is given by the arithmetic mean of the principal 

curvatures H = (κ1 + κ2)/2, and the Gaussian curvature is given by their product K = κ1κ2. 

Positive Gaussian curvature (K >0) is indicative of a dome-like shape (either convex or 

concave), whereas negative Gaussian curvature (K <0) is indicative of a saddle-like 

topography (Fig. 2b).

We tested our hypothesis by synthesizing 16 α-helical peptides with varying degrees of 

homology to known AMPs that were positively classified by the SVM (σ > 0) with a range 

of σ values. We characterized their capacity to induce NGC by incubating the peptides with 

small unilamellar vesicles as artificial mimics of bacterial cell membranes, and interrogated 

the membrane structure using synchrotron small angle X-ray scattering (SAXS). The peak 

positions in the integrated scattering intensity as a function of scattering vector I(q) revealed 

that 14 of the 16 peptides reorganized the membranes into Pn3m or Im3m cubic phases 

replete with NGC (Fig. 2c). To quantify the degree of induced NGC, we inferred the best-fit 

cubic lattice parameter a for each cubic phase and combined it with the Euler characteristic 

χ and surface area per unit cell A0 (χ = −4 and A0 = 2.345 for Im3m, χ = −2 and A0 = 

1.919 for Pn3m) to compute the average NGC in the phase |〈K〉| = 2πχ/A0a2 [1, 69, 77, 78]. 

Correlating |〈K〉| with σ, we find a strong and statistically significant positive correlation 

(ρSpearman = 0.65 [0.23, 0.89]; p = 0.006, two-tailed bootstrap hypothesis test with n = 

10,000 trials) (Fig. 2d). As a negative control, we synthesized three additional peptides 

negatively classified by the SVM (σ < 0), and found all three unable to generate NGC (i.e., |

〈K〉| = 0 Å −2). These results provide strong support for our hypothesis, unveiling the 

mechanistic basis for the predictions of the SVM classifier as the capacity of the peptides to 

generate NGC in bacterial membranes. It somewhat remarkable that a SVM classifier trained 

over only 12 physicochemical descriptors generated from sequence information alone can 

learn a rule based on an intrinsically geometric and topological mechanism of action. Our 

use of calibrated experimentation informed by the machine learning model to define this 

relationship presents a compelling illustration of the synergies between these two modes of 

investigation.

5.2. Interpretation of selected features and comparison with human learning

By defining a separating hyperplane in the m-dimensional feature space spanned by the 

input descriptors (cf. Fig. 1), linear SVM classifiers define a relatively transparent 

relationship between the input features and classification prediction. The relationship is 
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encoded in the elements of the w vector defining the surface normal of the separating 

hyperplane. Geometrically, large magnitude elements of w indicate that the surface normal 

of the hyperplane possesses a large component oriented along the corresponding feature 

axis, and that this feature is an important determinant in classification. Positive values 

indicate a positive association between the corresponding descriptor and membrane activity, 

and negative values a negative association. The w vector elements associated with each of 

the m = 12 descriptors rank-ordered by magnitude is presented in Table 1.

The predictive performance of a machine learning classifier is, of course, independent of any 

post hoc analysis of its mathematical structure, and the multidimensional relationships it 

embodies cannot always be straightforwardly translated into mechanistic understanding. In 

particular, care must be taken in resolving univariate trends with respect to single descriptors 

without accounting for the full multidimensionality of the classification function [23]. 

Nevertheless, the relative interpretability of the SVM classifier, together with targeted 

experimentation informed by its predictions, reveal that the classifier has learned (at least) 

four peptide properties with a comprehensible mechanistic link to the determinants of 

membrane activity.

Charge—The top-ranked feature possessing the most discriminatory weight is the peptide 

net charge, possessing a w vector element of +0.80, which is >65% larger in magnitude than 

that for any of the remaining 11 features. The positive sign of the weight indicates that 

positive charge is positively associated with positive classification. This is consistent with 

the well-known cationic nature of AMPs that mediates an attractive Coulombic attraction 

with positively-charged lipid head groups in bacterial cell membranes [6]. Without providing 

any physical model of AMP action, the classifier identified positive charge as a principal 

determinant of membrane activity.

Amphipathicity—Another hallmark of membrane active peptides is a facially amphipathic 

nature that can mediate membrane disruption through a number of proposed mechanisms 

including the barrel stave, toroidal pore, and carpet models [4, 79, 12, 13, 14, 15]. Our SVM 

classifier also learns facial amphipathicity as a defining signature of membrane activity, with 

fully one third (4 of 12) of the descriptors identified in our feature selection procedure 

associated with this property. Specifically, the 2nd, 3rd, and 6th-ranked descriptors possessing 

positive weights of 0.48, 0.36, and 0.20 favor positive classification of a peptide as an AMP 

if residues separated by 2, 9, and 30 positions tend to have opposing physicochemical 

character. The 8th ranked descriptor possessing a negative weight of −0.17 favors positive 

classification if residues separated by 4 positions tend to have similar physicochemical 

character. Trained over peptides with α- helical secondary structure, the classifier has 

identified and exploited physicochemical periodicity within the 3.6-residue period of the 

helix as a discriminating classification rule (Fig. 3). Specifically, facially amphipathic α-

helical candidates are scored highly by our classifier along these four features due to the 

physicochemical similarity of the residues residing on each of the hydrophilic and 

hydrophobic faces.

Dipeptide incidence—The feature selection procedure identified five contiguous residue 

pairs as important discriminants of membrane activity. The contiguous pairs AE, LW, and 
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NK possess positive w weights (0.18, 0.17, 0.13), indicating that an elevated prevalence of 

these pairs favors positive classification, and DP and FC negative weights (−0.12, −0.04) 

such that a reduced prevalence favors positive classification. To investigate this trend, we 

conducted univariate logistic regression over the length-normalized prevalence of each of 

these five residue pairs over our curated library of 286 AMP and 286 decoy peptides 

(Section 4.2). We constructed a least-squares fit of the function log
Phit(η)

Pmiss(η) = β0 + β1η, 

where η is the per residue incidence rate of a particular contiguous dipeptide pair, Phit(η) is 

the probability of a peptide being an AMP given a particular value of η, Pmiss(η) = 1 − Phit 

(η), and 
Phit(η)

Pmiss(η)  is the odds. Performing the logistic regressions reveals AE, LW, and NK to 

have positive values of the regression coefficient on the length-normalized incidence (β1 = 

23.7, 22.2, 35.7) that reach statistical significance (p = 4.5×10−9, 1.2×10−9, 8.9×10−7, Wald 

test). Conversely, DP and FC possess negative coefficients (β1 = −15.2, −2.45) that do not 

reach significance (p = 0.48, 0.89, Wald test). Accordingly, the classifier has indeed 

identified that the pairs of amino acids AE, LW, and NK tend to appear contiguously at a 

statistically significant higher prevalence in AMPs. Classic analyses of individual amino 

acid incidences in AMPs vs. non-AMPs show that cationic amino acids like lysine (K) and 

hydrophobic amino acids like leucine (L) and tryptophan (W) appear more commonly in 

AMPs. However, to the best of our knowledge, this discovery of important dipeptide motifs 

in AMPs is a novel finding for which the physicochemical basis remains unclear. This result 

illustrates the value of interpretable machine learning models in spurring and informing new 

inquiry, and suggests an avenue for future studies to resolve the physicochemical root of 

these elevated dipeptide prevalences. This interplay of statistical learning and 

experimentation can assist in mapping the “linguistic” tendencies of AMPs.

Saddle splay selection rule—The combination of cationic charge, hydrophobicity, and 

amphipathicity is central to the recognizability and mechanism of action of AMPs [80, 81]. 

In prior work, we established the so-called “saddle splay selection rule” that codified a 

trade-off between mean peptide hydrophobicity and the relative proportions of the positively 

charged arginine and lysine residues [82, 65, 83, 84]. Hydrophobic residues can induce 

positive membrane curvature by steric displacement of phospholipids in the membrane [85]. 

Cationic peptides can generically induce negative mean membrane curvature due to 

electrostatic attraction and wrapping of the membrane around the peptide [65, 68]. By 

doubly coordinating phosphate head groups, arginine can by itself induce NGC, whereas 

singly-coordinating lysine can only generate negative mean curvature [65]. Accordingly, 

arginine-rich AMPs (and cell-penetrating peptides) can rely on their arginine content alone 

to simultaneously induce both positive and negative curvature and produce the conditions 

required for NGC. In contrast, AMPs whose cationic content is largely provided by lysine 

residues typically also contain a number of highly hydrophobic residues to cooperatively 

generate NGC. We have previously shown the peptides within the AMP database to obey the 

saddle splay selection criterion [82, 9], and wished to determine if this rule was also learned 

by our SVM classifier.
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To test this hypothesis, we generated for consideration by our classifier an ensemble of 

242,110 peptide candidates of length 20–25 residues by a directed traversal of sequence 

space. We collated the 76 AMPs in the training and test data within the size range of interest, 

and added to these the 33,079 sequences formed by making all single point mutations. We 

then supplemented these with 208,955 sequences generated by a Markov Chain Monte Carlo 

(MCMC) procedure that biased sampling towards high-σ candidates. We initialized 10 

MCMC runs with a randomly selected AMP from the database and performed 25,000 

rounds of random point mutation, insertion, and deletion. Proposed transitions were 

accepted or rejected according to a Metropolis acceptance criterion,

Paccept = min {1, exp ((σtrial − σcurrent)/T)}, (5)

where σcurrent is the distance from the hyperplane assigned by the SVM classifier to the 

current peptide sequence in the MCMC chain, σtrial is that for the trial peptide, and T = 0.8 

is a fictitious “temperature” that controls the acceptance ratio [86, 87, 88]. Within this 

ensemble of 242,110 candidates, we identified the set of optimal candidates against which to 

test the saddle splay selection rule. To do so, we defined a multi-objective optimization to 

simultaneously maximize (i) distance from the hyperplane σ, (ii) degree of α- helical 

structure assessed using the PSIPRED secondary structure prediction algorithm [89, 90] 

implemented in the PROTEUS2 program [91], and (iii) minimum sequence homology to any 

known AMP measured by the Jukes-Cantor distance. In doing so we select those candidates 

that are not only predicted by our classifier to possess a high probability of possessing 

membrane activity, but also possess the correct secondary structure, and share sequence 

similarity with existing AMPs. We solve this optimization problem to identify those Pareto 
optimal sequences for which no one criterion can be improved without diminishing another 

[92, 93]. To guard against unwarranted extrapolations of our classifier into regions of feature 

space not observed during classifier training we also restrict our analysis to those candidates 

among the 242,110 peptides for which the 12 descriptors used by the classifier lie no more 

than 10% outside the range spanned by the training peptides [27]. We present in Fig. 4a a 

scatterplot of the 242,110 candidates considered by our search procedure within which we 

have highlighted the 13 Pareto optimal candidates. Fig. 4b illustrates that these 13 peptides 

obey precisely the the hydrophobicity versus proportion of arginine and lysine tradeoff 

defined by the saddle splay selection rule as the AMPs present in the AMP database [82, 9]. 

It is somewhat remarkable that this relatively complex determinant of membrane activity 

was discovered by the classifier precisely in line with existing understanding.

6. Discovery of multiplexed membrane activity in peptide families with 

other primary functions

To employ a recently-coined neologism to express the frequently enormous size of genomics 

data sets, peptide sequence space is “genomically” large in that it comprises 20N possible 

sequences for an N-residue protein [95]. Computationally efficient QSAR models can 

perform high-throughput in silico screening of sequence space to sieve through orders of 
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magnitude larger numbers of candidates than would be possible by experiment [26, 27, 28, 

32, 33]. Nevertheless, for peptides longer then a few amino acids the sequence space 

remains too large to screen exhaustively. The Monte-Carlo search procedure described in 

Section 5.2 presents a means to perform a guided traversal of space that biases sampling 

towards promising candidates while simultaneously preventing trapping of the search 

procedure in local optima by adjusting the fictitious “temperature” T in the Metropolis 

acceptance criterion (Eqn. 5). Tuning T → 0 results in the acceptance only of those moves 

that improve σ but risks trapping in local maxima and poor sampling of sequence space. 

Conversely, tuning T → ∞ results in acceptance of all trial moves to produce a random 

walk through sequence space that disregards the location of the SVM hyperplane. In 

practice, we find tuning T ≈ 0.8 provides a good balance between sampling and bias towards 

candidate sequences ranked highly by the classifier. The computationally screened 

candidates may then be hierarchically ranked along any number of metrics by computing a 

series of nested Pareto frontiers [92, 93], and a subset of the top-ranked candidates – along 

with low-ranked controls – put forward for experimental testing. We observe that more 

sophisticated temperature control approaches to direct sampling may be implemented by 

appealing to the vast literature in simulated annealing [96], simulated tempering [97], 

parallel tempering [98], expanded ensembles [99], and J-walking [100].

Here we remark on an alternative application of QSAR models not to discover novel highly 

functional candidates, but rather detect multiplexed functionality in existing peptide families. 

We employed our SVM classifier as an experimentally-validated predictor of membrane 

activity to analyze a diversity of proteins from the Protein Data Bank (www.rcsb.org) [101] 

to search for membrane activity in a variety of peptide families with established primary 

function [1]. Despite sharing very little homology with any known AMP, our classifier 

situates a number of peptides close to the Pareto frontier of the 242,110 candidates generated 

in our in silico screen (Fig. 4a). Specifically, we predict membrane activity in proteins 

belonging to diverse functional families, including endocytosis/exocytosis peptides (brown 

stars), membrane anchor proteins (green stars), membrane-permeating protein fragments 

(blue stars), and topogenic peptides (pink stars). More interestingly, we identify membrane 

activity within neuropeptides, suggesting potential intracellular regulation targets (purple 

stars), viral fusion proteins, indicative of a role for membrane deformations within the viral 

life cycle (yellow stars), and calcitonin, as a hormone involved in calcium regulation but also 

part of the amyloid family of which other members have been reported to aggregate on and 

permeabilize lipid membranes [102, 103]. This analysis illustrates the utility of trained and 

validated QSAR models in helping to understand modes of peptide action and in guiding 

new experimental inquiry.

7. Conclusions and outlook

In this mini-review, we have examined a recent piece of work in which a machine learning 

classifier was developed to aid in the design of membrane active peptides, discover 

membrane activity in diverse peptide families, and provide interpretable understanding of 

the underlying mechanisms by which membrane activity is effected [1]. Our introduction to 

support vector machines exposes the elegant simplicity of their mathematical foundations 

that can provide interpretable QSAR models that can inform mechanistic understanding. 
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Frequently one must trade off model simplicity with predictive accuracy, but we 

demonstrated that judicious and rigorous variable selection procedures coupled with 

sufficiently large and high quality training data can produce simple, interpretable, low-

dimensional models with performance equal to or exceeding their more complex cousins. 

The trained model illuminated a number of machine-learned discriminatory rules precisely 

in line with human understanding, but also other features – and multidimensional couplings 

between them – that were not previously known. Furthermore, this work illustrates the 

imperative importance of experiment to furnish high-quality training and test data, validate 

the classifier, and calibrate its predications to ascertain what rules have actually been 

learned. In this case, these experiments revealed – to our initial consternation – that the 

classifier had not learned a rule to discriminate antimicrobial peptides based on 

antimicrobial activity, but rather membrane activity as a unifying prerequisite of AMPs 

possessing diverse modes of action. We subsequently exploited our classifier to perform a 

high throughput directed computational search of sequence space, and identify membrane 

activity as a multiplexed function within diverse peptide families.

Looking to the future, we see an increasing role for modes of investigation comprising 

tightly coupled and mutually reinforcing experimentation and machine learning. Human-

directed experimental trial-and-error searches of the “genomically” large peptide sequence 

space can frequently lead to highly inefficient deployment of resources. Integrating machine 

learning with targeted experimentation to guide experimentation and provide new data to 

improve model performance establishes a mutually beneficial cycle providing savings in 

money, time, and labor to massively accelerate peptide discovery and design. Furthermore, 

we see great potential in developing and combining multiple classifiers to engineer 

multiplexed peptide activity. The machine learning models described in this work are 

extremely generic and extensible, permitting them to be straightforwardly translated to the 

classification of peptides and proteins – not just membrane proteins – with arbitrary 

functions, including intra-cellular transport, immunomodulation, signaling, vesicle fusion, or 

toxicity. For example, combining our membrane activity classifier with another designed to 

screen for immunomodulatory peptides could be used to design peptides with both functions 

encoded either modularly within distinct domains or combined within multifunctional 

sequences. Finally, we emphasize the value of “white box” or “grey box” machine learning 

models (e.g., linear support vector machines, decision trees) wherein the mathematical 

underpinnings are sufficiently interpretable to not only deliver high predictive performance, 

but also expose and inform mechanistic understanding.
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AMP antimicrobial peptide
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ANN artificial neural network

AUROC area under the receiver operating characteristic

HMM hidden Markov model

k-NN k-nearest neighbor

MCC Matthews correlation coefficient

MCMC Markov Chain Monte Carlo

MIC minimum inhibitory concentration

NGC negative Gaussian curvature

NPV negative predictive value

PPV positive predictive value

QM quantitative matrix

QSAR quantitative structure-activity relationship

RF random forest

SAXS small angle X-ray scattering

SOM self-organizing map

SVM support vector machine
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Figure 1. 
Schematic illustration of a support vector machine (SVM) classifier operating in a feature 

space of dimensionality m = 2. Data points x are represented in this space by their m = 2-

dimensional feature vetors. The maximum margin hyperplane defines a (m−1)-dimensional 

surface that maximally separates the two classes “hits” (red crosses) and “misses” (blue 

circles). Mathematically, the hyperplane is defined by the locus of points x satisfying w.x − b 
= 0, where w is the (possibly non-unit) surface normal, ŵ = w/||w|| is the corresponding unit 

vector, and ŵ.x = b/||w|| is the offset of the hyperplane from the origin. The margin is 

defined by the two parallel hyperplanes satisfying w.x − b = +1 and w.x − b = −1, and the 

SVM is trained by maximizing the width of the margin w . (x+ − x−) = 2
‖w‖ , where x+ is the 

closest “hit” to the hyperplane separator and x− the closest “miss”. For data that are not 

linearly separable, the hard margin formulation (Eqn. 2) is supplanted by the soft margin 

(Eqn. 3) version that allows for classification errors.
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Figure 2. 
Physical interpretation of the distance to hyperplane σ predicted by the trained SVM 

classifier. (a) A scatterplot of σ against in vitro minimum inhibitory concentration (MIC) for 

478 AMPs active against Staphylococcus aureus reveals no significant correlation (ρSpearman 

= −0.06 [−0.15, 0.03], p = 0.19). (b) Schematic illustration of a surface possessing negative 

Gaussian curvature (NGC) wherein principal curvatures of opposing sign give rise to a 

saddle-shaped topography. (c) Illustration of the Pm3m and Im3m cubic phase space groups 

that are rich in NGC. (d) A scatterplot of σ against average NGC |〈K〉| induced in artificial 

mimics of bacterial cell membranes for 16 peptides selected for synthesis and experimental 

characterization reveals a strong and statistically significant positive correlation (ρSpearman = 

0.65 [0.23, 0.89], p = 0.006). Panels a, c, and d are adapted from Lee et al. Proc. Natl. Acad. 
Sci. USA 113 48 13588–13593 (2016) [1].
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Figure 3. 
Helical wheel plot showing the relative residue locations along the α-helical backbone. Our 

classifier favors positive classification of peptides in which residues separated by 2, 9, and 

30 positions are of opposing physicochemical character (i.e., those located on opposing 

faces of the helix; red bold lines) and those separated by 4 positions tend to have similar 

character (i.e., those located on the same face; green bold line). Facially amphipathic 

peptides are therefore scored highly by the classifier over these four features, and it has 

learned these patterns as a discriminating rule with which to distinguish membrane activity. 

Image adapted from Lee et al. Proc. Natl. Acad. Sci. USA 113 48 13588–13593 (2016) [1].

Lee et al. Page 26

Bioorg Med Chem. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Directed search of sequence space and adherence of Pareto optimal candidates to the saddle 

splay selection rule. (a) Projection of the 242,110 peptide candidates considered in our 

directed traversal of sequence space into the minimum sequence homology to any known 

AMP measured by the Jukes-Cantor distance and classifier distance to hyperplane σ. 

Highlighted are the 85 Pareto optimal candidates within the three dimensional search space 

of [σ, degree of α-helical structure, sequence homology to a known AMP] (orange 

diamonds), and the 13 Pareto optimal candidates subject to the additional condition that the 

12 descriptors employed by the classifier (Table 1) lie no more than 10% outside the range 

of the training data (green diamonds). Peptides from families with other putative primary 

functions are situated close to the Pareto frontier and are positively classified by the SVM (σ 
> 0) suggesting that they possess membrane activity as part of a multiplexed functionality 

(colored stars). (b) Optimal peptide candidates identified in a guided traversal of sequence 

space by the SVM classifier obey the previously identified saddle splay selection rule 

governing a trade-off between peptide hydrophobicity and proportion of arginine and lysine 

residues. NK and NR respectively denote the number of lysine and arginine residues in the 

peptide. The mean hydrophobicity is defined as the mean value of the Eisenberg consensus 

hydrophobicity averaged over all residues in the peptide [94]. The 13 physicochemical 

restricted Pareto optimal peptides identified within our directed search of 242,110 peptide 

candidates (green diamonds) fall precisely on the saddle splay selection rule trend defined 

by the α-helical AMPs extracted from the AMP database (black circles) [9]. We plot all 299 

α-helical peptides harvested from the database clustered into 31 bins according to mean 

hydrophobicity in order to smooth the distribution and improve visual clarity. Panels a and b 

are adapted from Lee et al. Proc. Natl. Acad. Sci. USA 113 48 13588–13593 (2016) [1].
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Table 1

The 12 descriptors identified by feature selection protocol. We provide a brief physical interpretation of each 

descriptor; full details are provided in Ref. [1]. The descriptors are rank ordered according to their weights in 

the trained SVM classifier (i.e., the value of their corresponding element in the w vector). Positive weights 

indicate a positive association with antimicrobial activity, and negative weights a negative association.

Rank Feature Description Weight (wi)

1 netCharge Net peptide charge 0.80

2
τ2
G

Length-normalized sequence order coupling number measuring physicochemical correlations 
between residues separated by two positions (i, i+2) measured by the Grantham chemical 
distance matrix [49, 59]

0.48

3
p29

G
Pseudo amino acid composition generalization at tier k = 9 measuring pairwise correlations 
of the physicochemical properties of residues separated by nine positions (i, i+9) measured 
by the Grantham chemical distance matrix [49, 59]

0.36

4 SolventAccessD1025 Fraction of the peptide length containing 25% of the buried amino acid residues 
A,L,F,C,G,I,V,W

−0.24

5 pc(M,K) Relative fraction of M residues to K residues −0.21

6
p50

G
Pseudo amino acid composition generalization at tier k = 30 measuring pairwise correlations 
of the physicochemical properties of residues separated by 30 positions (i, i+30) measured by 
the Grantham chemical distance matrix [49, 59]

0.20

7 AE Fraction of contiguous AE residue pairs 0.18

8
τ4
G

Length-normalized sequence order coupling number measuring physicochemical correlations 
between residues separated by four positions (i, i+4) measured by the Grantham chemical 
distance matrix [49, 59]

−0.17

9 LW Fraction of contiguous LW residue pairs 0.17

10 NK Fraction of contiguous NK residue pairs 0.13

11 DP Fraction of contiguous DP residue pairs −0.12

12 FC Fraction of contiguous FC residue pairs −0.04
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