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Abstract Here we present several refinements to
a model of feedback control for the suppression
of epileptic seizures. We utilize a stochastic partial
differential equation (SPDE) model of the human cor-
tex. First, we verify the strong convergence of numer-
ical solutions to this model, paying special attention
to the sharp spatial changes that occur at electrode
edges. This allows us to choose appropriate step sizes
for our simulations; because the spatial step size must
be small relative to the size of an electrode in order to
resolve its electrical behavior, we are able to include a
more detailed electrode profile in the simulation. Then,
based on evidence that the mean soma potential is not
the variable most closely related to the measurement of
a cortical surface electrode, we develop a new model
for this. The model is based on the currents flowing
in the cortex and is used for a simulation of feedback
control. The simulation utilizes a new control algorithm
incorporating the total integral of the applied electrical
potential. Not only does this succeed in suppressing
the seizure-like oscillations, but it guarantees that the
applied signal will be charge-balanced and therefore
unlikely to cause cortical damage.

Action Editor: Steven J. Schiff

B. A. Lopour · A. J. Szeri (B)
Department of Mechanical Engineering,
University of California, Berkeley, CA 94720, USA
e-mail: aszeri@me.berkeley.edu

B. A. Lopour
e-mail: bethlopour@berkeley.edu

Keywords Epilepsy · Seizure · Feedback · Control ·
Electrocorticogram · Human

1 Introduction

The recurrent, unprovoked seizures associated with
epilepsy can have a devastating effect on those with
this disorder. Basic parts of every day life such as
driving and obtaining employment become very
difficult. While many people with epilepsy can control
their seizures with medication, roughly thirty percent
do not respond to this type of treatment and therefore
seek out alternatives such as surgery (The Epilepsy
Foundation 2009). The surgical procedure involves re-
secting the seizing portion of the brain, often part of
the cortex, while avoiding any areas that provide vital
functions such as speech, memory, and vision (The
Epilepsy Foundation 2009). Because this is a very inva-
sive procedure that does not guarantee success, other
alternatives are being investigated. One of these is
automatic feedback control, where subdural electrodes
on the cortical surface would detect the seizure and
apply an electrical signal to disrupt the abnormal elec-
trocorticogram (ECoG) activity.

This method of treatment is currently being studied
by experimentalists. It has been shown that the applica-
tion of electric fields to rat cortex in vitro can modulate
the behavior of seizure-like waves (Richardson et al.
2005). In vivo experiments on rats demonstrated that
stimulation via proportional feedback can temporarily
suppress seizure activity (Gluckman et al. 2001). A
subsequent set of experiments showed that an increase
in the amplitude of the proportional control feedback
gain corresponds to decreases in both seizure amplitude
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(measured as a reduction in the amplitude variance)
and Teager energy (Colpan et al. 2007). The Teager
energy can be reduced by a decrease in the amplitude
of a signal or a lowering of the frequencies in its power
spectrum.

While these experiments suggest further exploration,
they are all restricted to animal implementation. There-
fore, to gain insight into the feasibility of human use,
we turn first to mathematical models. The stochas-
tic partial differential equation (SPDE) model of the
cortex used here can support seizure-like oscillations
that are qualitatively and quantitatively similar in fre-
quency of maximum power and propagation speed to
those seen in humans with epilepsy (Kramer et al.
2005). We previously demonstrated that various meth-
ods of feedback control can suppress these simulated
seizures (Kramer et al. 2006), and we added the capa-
bility of looking at spatial properties of feedback con-
trol, such as electrode size and spacing (Lopour and
Szeri 2008).

Our aim in the present work is to make this model
more biologically relevant by refining the represen-
tation of feedback control. This will facilitate future
comparison with experimental data. There are four key
improvements in our approach that are presented in
this article:

1. We verify the strong convergence of the numerical
solution to the SPDE model.

2. Based on the studies of convergence, we utilize
a smaller step size in our simulations, thereby al-
lowing the inclusion of a more detailed electrode
profile.

3. We develop a better motivated model of the signal
measured by an electrode on the cortical surface.
This model is used to calculate the applied electri-
cal signal for feedback control.

4. Feedback control is performed with a new algo-
rithm incorporating an integral component. This
ensures that the applied signal is charge-balanced,
which is thought to minimize damage of cortical
tissue.

The organization of the paper is as follows. We
first briefly review the SPDE cortical model that will
be used in our simulations (Section 2), and then we
discuss the convergence of its numerical solutions
(Section 3). Next, we present the new model for elec-
trode measurements (Section 4). Finally, we incorpo-
rate these improvements into simulations of feedback
control, while implementing a new integral control law
(Section 5).

2 Cortical model

To model the electrical activity of the human cortex,
including seizure waves, we choose a set of stochastic
PDEs that has been developed and adapted over the
past decade (Liley et al. 1999, 2002; Steyn-Ross et al.
2003). The mesoscale nature of this model makes it
well-suited to EEG-based applications such as epilepsy,
sleep (Wilson et al. 2006), and anesthesia (Steyn-Ross
et al. 2004) because it is based on length scales similar to
commercial electrode arrays. It is a mean-field model,
meaning that all of its variables represent spatially
averaged properties of populations of neurons. This is
similar to the manner in which an electrode provides a
measurement based on the collective behavior of many
neurons.

In 2006, the equations were restated in a dimension-
less form by Kramer et al. (2007). This is the formula-
tion of the model we will use here; it is a system of eight
coupled nonlinear PDEs with stochastic inputs:
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All variables are dimensionless and are functions of
time (t̃ ) and one spatial dimension (x̃). The h̃ state
variable is the mean soma potential for a neuronal pop-
ulation, while Ĩ represents postsynaptic activation due
to local, long-range, and subcortical inputs, and φ̃ is a
long-range (corticocortical) input. The subscripts e and
i denote affiliation with the excitatory and inhibitory
neuron populations, respectively; variables with two
subscripts represent the transmission of information
from one population to another, e.g. Ĩie is the postsy-
naptic activation of the excitatory population due to
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Table 1 Dimensionless variables and parameters of the SPDE cortical model

Symbol Definition Description Typical value

h̃e,i he,i/hrest Spatially averaged soma potential for neuron populations –
Ĩee,ei Iee,eiγe/(Ge exp(1)Smax) Postsynaptic activation due to excitatory inputs –
Ĩie,ii Iie,iiγi/(Gi exp(1)Smax) Postsynaptic activation due to inhibitory inputs –
φ̃e,i φe,i/Smax Long-range (corticocortical) input to e and i populations –
t̃ t/τ Time (dimensionless) –
x̃ x/(τ ṽ) Space (dimensionless) –

�e,i
Ge,i exp(1)Smax

γe,i|hrev
e,i − hrest| Influence of synaptic input on mean soma potential 1.42 × 10−3, 0.0774

h0
e,i hrev

e,i /hrest Reversal potential −0.643, 1.29
Te,i τγe,i Neurotransmitter rate constant 12.0, 2.6
λe,i τ ṽ
ee,ei Inverse length scale for corticocortical connections 11.2, 18.2
Pee,ei pee,ei/Smax Subcortical input from excitatory population 11.0, 16.0
Pie,ii pie,ii/Smax Subcortical input from inhibitory population 16.0, 11.0
Nα

e,i – Number of distant (corticocortical) connections from 4,000, 2,000
excitatory populations to e and i populations

Nβ

e,i – Number of local synaptic connections from e and i populations 3,034, 536

g̃e,i ge,ihrest Slope at inflection point of sigmoid function S̃e −19.6, −9.8
θ̃e,i θe,i/hrest Inflection point for sigmoid function S̃e 0.857, 0.857

Values were taken from Kramer et al. (2007). For descriptions and values of the dimensional variables please refer to Steyn-Ross
et al. (2003)

inputs from the inhibitory population. In Eq. (1) we
have added the variable u to represent the signal
applied by a cortical surface electrode for feedback
control. This will be discussed further in Section 5.
For descriptions of all model variables and parameters,
please refer to Table 1.

To appreciate the model as a whole, let us first
look at the equations governing the excitatory neuron
population, depicted graphically in Fig. 1. Equation (1)
for h̃e is reminiscent of the leaky integrate-and-fire
model of a neuron, where the derivative of the mem-
brane potential equals the resting potential minus the
membrane potential plus any existing current inputs

(Dayan and Abbott 2001). Here, the resting potential
is “1” due to the dimensionless nature of the system.
The inputs are Ĩee and Ĩie, which evolve according to (3)
and (5), respectively, based on three types of synaptic
input: local, long-range, and subcortical.

– Local inputs, such as those from within the same
macrocolumn, are represented by terms of the
form Nβ

e S̃e[h̃e], where S̃e is a dimensionless sigmoid
function:

S̃e
[
h̃e

] = 1

1 + exp
[ − g̃e

(
h̃e − θ̃e

)] (9)

Fig. 1 Flow chart representation of model Eqs. (1), (3), (5), and
(7), which govern the excitatory population. The boxes describe
the physiological significance of the model variables and parame-
ters listed beneath them. Note that feedback occurs through the

sigmoid function S̃e, which is a function of h̃e. This population
is also coupled to the inhibitory population through local inputs
described by S̃i[h̃i]. For a cell-based depiction of the model, see
Steyn-Ross et al. (1999)
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This converts the mean soma potential of the exci-
tatory population to its mean firing rate.

– Long-range inputs represent signals from other cor-
tical macrocolumns and are defined by φ̃e. The be-
havior of this variable is governed by (7). Note the
similarity of this equation to the standard PDE wave
equation; the idea that cortical tissue can support
wave propagation is central to our simulation of
epileptic seizures.

– Subcortical inputs are predominantly from the
thalamus and contain both constant (Pee) and sto-
chastic (�̃1) parameters. We define the stochastic
term by

�̃1 = αee

√
Pee ξ1

[
x̃, t̃

]
, (10)

where αee is a constant and ξ1 is zero mean, Gaussian
white noise in time and one spatial dimension.
When the SPDEs are solved numerically, the cu-
mulative effect of this stochastic process will be
Brownian motion. To ensure that the properties of
this signal remain constant regardless of step size,
we scale the discrete randomly generated numbers
R(m, n) by the simulation time step:

ξ1
[
x̃, t̃

] = R(m, n)√
t̃

. (11)

The variables m and n are indices of space and time,
so a single point is represented by spatial position
x̃ = mx̃ at time t̃ = nt̃. Note that the discrete
update form of (11) is

ξ1
[
x̃, t̃

]
t̃ =

√
t̃ R(m, n) , (12)

which will be used in all numerical experiments.

Thus, Eqs. (1), (3), (5), and (7) govern the excitatory
population, while the remaining equations represent
the inhibitory population and have exactly the same
form. Together they compose the full cortical model.

There are several parameters that are especially rele-
vant to the following numerical studies. The parameter
Pee represents input from the population of subcortical
excitatory neurons (such as those in the thalamus), and
�e denotes the influence of synaptic input on the mean
soma potential. Changes in these parameters allow for
transition between normal cortical function (Pee = 11.0
and �e = 1.42 × 10−3) and the hyperexcited “seizure”
state of the SPDE model (say, Pee = 548.0 and �e =
0.8 × 10−3). At low levels of excitation corresponding
to low levels of Pee, the mean soma potential of the
excitatory neurons h̃e produces random fluctuations
similar to those seen in an EEG measurement. How-
ever, at increased levels of subcortical excitation, the
simulated cortex develops large amplitude seizure-like

oscillations. Our goal is to suppress this pathological
behavior via feedback control consisting of measure-
ments from the cortical surface and the application of
a potential based on those measurements.

3 Strong convergence of numerical solutions

Before performing simulations of feedback control,
we must ensure that we can obtain accurate numeri-
cal solutions to this system of SPDEs. We will use a
predictor-corrector algorithm written in MATLAB, so
the accuracy of the solution will be determined by our
choice of step sizes in space and time. In addition to
considering the system equations and solution method,
we shall assume that a typical cortical surface electrode
is of order 1 cm in diameter. While the previously used
step size of 7 mm (Lopour and Szeri 2008; Kramer
et al. 2006) may have accurately solved the differential
equations, it was not small enough for sufficient spatial
resolution of the behavior of the cortical tissue under-
neath the electrodes. We will use much smaller step
sizes in order to achieve both of these objectives.

3.1 Method

To determine the magnitude of these step sizes, we
will examine the strong convergence of solutions to
the cortical model. This will be accomplished by gen-
erating equivalent Brownian paths at several step sizes
and demonstrating that the solutions converge as the
step size decreases (note that this differs from weak
convergence, which looks at the expected value of the
solution over all possible Brownian paths) (Higham
2001). This task will be complicated by the fact that
both the stochastic inputs and the numerical solutions
vary in space and time.

Recall from (12) that the grid of stochastic inputs
is defined by R, which consists of M independent
Brownian paths, each of length N. This corresponds
to M points in space at a reference step size of x =
x0 and N points in time at a reference step size of
t = t0. Therefore, we denote individual points by
R(m, n), ∀m = 1, . . . , M and ∀n = 1, . . . , N. Then we
can represent the same Brownian paths at a coarser
step size 2t0 by adding together every two adjacent
elements in time:

R̃(m, n) = R(m, 2n − 1) + R(m, 2n) , (13)

where n = 1, . . . , N/2 (Gaines 1995). We do not need
any special scaling factors here because this combi-
nation of neighboring terms is consistent with the
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definition of a Brownian path. Similarly, we can rep-
resent the stochastic input at step size 2x0 by adding
together adjacent elements in space and scaling to keep
the variance constant (Gaines and Lyons 1997):

R̃(m, n) = 1√
2

(R(2m − 1, n) + R(2m, n)) , (14)

where m = 1, . . . , M/2. The factor 1/
√

2 is necessary
because the stochastic inputs are independent in the
spatial direction; it will be used for the relative scaling
of the inputs at different step sizes for the purpose of
determining convergence, but will not be present in a
typical simulation of feedback control.

Now we can directly compare numerical solutions
at decreasing step sizes (e.g. x = 4x0, 2x0, x0)
under equivalent stochastic inputs. We want to verify
that the solution converges as we approach x0.

3.2 Results

First, we look at the convergence in time using the
method described above. We remove the spatial terms
from the cortical model to reduce it to an ODE and
then perform simulations with decreasing values of the
time step. These indicate that the solution converges
around t = 5 × 10−4 s (Fig. 2). The two smallest time
steps in the figure, t = 5 × 10−4 and 2.5 × 10−4 s give
very similar results for he.

0 0.1 0.2 0.3 0.4 0.5
−53.5

−53

−52.5

−52

−51.5
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−50.5

Time [s]

h e [m
V
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Fig. 2 Convergence of numerical solutions as the time step is
decreased using the method described in Section 3.1. Here the
spatial terms in the model have been removed to reduce it to
an ODE. We used t0 = 2.5 × 10−4 s, and we plotted the solu-
tions for t = 8t0, 4t0, 2t0, and t0. The two smallest time
steps give overlapping results, indicating that the solution has
converged. This study was done with typical excitation Pee = 11.0
and �e = 1.42 × 10−3

Next, we study the convergence in space. We be-
gin with a x that is smaller than 1 cm because we
desire to resolve the solution across an electrode. As
x decreases, we see that the accuracy of the solu-
tion improves; however, this does not give us a clear
indication of which step size to choose. The amount
of improvement seems to be the same for each reduc-
tion in x. We solve this problem by looking at the
numerical worst-case scenario—a sharp transition be-
tween uncontrolled cortex and a single electrode with
proportional feedback. We then choose x based on
its ability to resolve this sharp spatial change (Fig. 3).
While this figure shows that the differences between
the step sizes are still subtle, it seems that the largest
one, x = 0.448 mm, does not provide enough detail to
show the sharp transition between cortex and electrode.
The smaller step sizes appear to be more accurate and
provide very similar solutions. Because it will be less
computationally intensive to use x = 0.224 mm (or
x̃ = 0.0008 dimensionless), we choose this as the step
size for our simulations.

In order to verify this in the typical case with no feed-
back control, we plot numerical solutions with x =
0.448, 0.224, and 0.112 mm (Fig. 4). Because the spatial
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Fig. 3 Convergence of numerical solutions over an electrode
nonlinearity as the spatial step size is decreased using the method
from Section 3.1. The full simulation spanned 22.4 mm, but
here we show only 3 mm of uncontrolled cortex and 2 mm of
cortex underneath an electrode while proportional feedback is
applied. This figure shows solutions for x = 4x0 (dashed),
2x0 (solid), and x0 (solid), where x0 = 0.112 mm. Note
that the two smallest time steps give very similar, overlap-
ping solutions for h̃e, while 4x0 gives an inaccurate result.
Therefore, we choose the step size x = 2x0 = 0.224 mm as
a balance between accuracy and simulation cost. Other relevant
parameters were t = 2 × 10−6 s, N = 80,000, Pee = 548.0, and
�e = 0.8 × 10−3
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Fig. 4 Convergence of numerical solutions as the spatial step
size is decreased using the method described in Section 3.1.
Here we used x0 = 0.112 mm, and we plotted the solutions
for x = 4x0 (dashed), 2x0 (solid), and x0 (solid). The two
smallest time steps give very similar results, indicating that the
solution has converged; this justifies our choice of step size,
x = 0.224 mm. This figure was created with typical excitation
Pee = 11.0 and �e = 1.42 × 10−3, and N = 80,000 time steps were
used at t = 2 × 10−6 s

solution appears to have converged at these step sizes,
our choice of x = 0.224 mm is valid. The last task is to
choose a value of t. We would like to use the largest
time step for which the solution converges because this
will result in the shortest computation time; this value
is t̃ = 0.0001 (dimensionless) or t = 4 × 10−6 s. Be-
cause we already showed that accurate solutions can
be obtained with much larger values of t, this is an
acceptable choice.

Therefore, the step sizes used in all of the following
cortical simulations will be x = 0.224 mm and t =
4 × 10−6 s.

4 Model of feedback control

Our previous simulations of feedback control (Kramer
et al. 2006; Lopour and Szeri 2008) utilized two key
assumptions: 1) the signal measured by an electrode
on the cortical surface is proportional to he, the mean
soma potential of the excitatory neuron population, and
2) a voltage applied to the surface of the cortex via
electrode directly affects the average soma voltage in
that region. The first assumption allows us to define
the control effort u in terms of h̃e (in this case, h̃e

would represent the measured voltage), and the second
assumption implies that the expression for u can be
added directly to the SPDE model in Eq. (1). While the

latter assumption appears to be valid, there is evidence
that we cannot write u as an explicit function of h̃e

as the first assumption suggests. It is likely that the
voltage sensed by a surface electrode is different than
the averaged soma voltage, h̃e.

First, it is important to realize that the signal mea-
sured by an electrode is a function of the extracellular
currents in the tissue, rather than the intracellular so-
matic potential (Nunez and Srinivasan 2006). We define
the signal sensed at a point on the cortical surface to
be h̃m. Then, to understand the difference between h̃e

and h̃m, we consider a pyramidal neuron in the cortex
with one excitatory synapse as shown in Fig. 5. Say
that the pyramidal neuron receives excitatory input due
to a proximal synapse in layer 4 (Fig. 5(a)); this will
cause intracellular flow of ions that will induce a current
dipole with sources (+) on the apical dendrite near the
surface and sinks (−) near the soma. The surface elec-
trode h̃m will sense the extracellular current source near
the surface and will thus depolarize. The soma potential
h̃e will also depolarize due to the excitatory input;
therefore, in this case, both h̃e and the surface electrode
show a depolarization. On the other hand, suppose that
the pyramidal neuron receives excitatory input due to a
distal synapse in layer 1 (Fig. 5(b)). Because the input
is still excitatory, the neuron will depolarize, and this
will be reflected in the soma potential h̃e. However,
this input will cause an extracellular current dipole
with reverse polarity; there will be a source (+) near

_

+

+

_

+
-

+ +

(a) (b)

h̃e h̃e

h̃m h̃m

Fig. 5 Relationship of the sensed signal h̃m to the mean soma
potential h̃e. In (a), an excitatory input synapses near the soma,
causing a depolarization in h̃e. Similarly, the dipole current gen-
erated by this synaptic event involves current sources near the
cortical surface, which are manifested as a depolarization in the
electrode measurement h̃m. However, when the excitatory input
occurs near the surface as in (b), the current dipole is reversed,
causing opposite deflections in h̃e and h̃m. This f igure is modeled
after Box 46-1 in Kandel et al. (2000)
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the soma and current sinks (−) near the surface. This
means that the voltage sensed by the surface electrode
will show a hyperpolarization. Therefore, in this case,
the deflection of h̃e and the signal seen by the surface
electrode are different (Kandel et al. 2000).

This implies that we should no longer use h̃e as the
measured electrical potential in our expression for the
control effort u. Instead, the measurement will be a
function of the currents in the cortex due to synaptic
inputs, denoted as h̃m. We will refer to this as the sensed
signal. Then, for the purposes of feedback control, the
applied effort u will be a function of h̃m.

4.1 Basic form of model

To determine the composition of the sensed signal, we
must consider the extracellular current flows due to
three types of synaptic input (local intracortical input,
long-range corticocortical input, and subcortical input).
To do this, we need to know whether the inputs are
excitatory or inhibitory and whether they synapse near
the surface or near the soma. In what follows, we
take care to distinguish depolarization in the electrode
measurement from depolarization of the soma.

– Local intracortical inputs, Nβ
e S̃e and Nβ

i S̃i. Within
a cortical macrocolumn, excitatory synapses tend to
occur close to the surface, while inhibitory synapses
are located near the soma (Nunez and Srinivasan
2006; Spruston 2008). Thus, the excitatory inputs are
as depicted in Fig. 5(b), and the inhibitory inputs
have the geometry of Fig. 5(a) but with the opposite
sign (because Fig. 5 depicts excitatory inputs). Each
of these configurations will cause a hyperpolariza-
tion in the electrode measurement; therefore, both
terms will have negative signs in the measurement
model: −ANβ

e S̃e − BNβ

i S̃i, where A and B are pos-
itive constant weights to be determined.

– Long-range corticocortical input, φ̃e. Corticocortical
inputs are exclusively excitatory (Steyn-Ross et al.
2003; Liley et al. 2002; Nunez and Srinivasan 2006)
and tend to synapse near the surface (Nunez and
Srinivasan 2006; Spruston 2008). More specifically,
layers 2 and 3 of the cortex seem to have a higher
density of corticocortical inputs (Kandel et al. 2000;
Nieuwenhuys 1994). As shown in Fig. 5(b), this
input type will cause a hyperpolarization in the elec-
trode signal and will thus have a negative sign in the
measurement model: −Cφ̃e, where C is a positive
constant weighting factor to be determined.

– Subcortical inputs, (Pee + �̃1) and (Pie + �̃3). While
the distribution of these synapses is not clear-cut,
it seems that subcortical inputs terminate most

densely in layer 4 near the soma (Kandel et al. 2000;
Nieuwenhuys 1994). Because Pee is an excitatory
input of the type shown in Fig. 5(a), it will have a
depolarizing effect on the electrode measurement;
therefore, we give it a positive sign: +D(Pee + �̃1),
where D is a positive constant weight. On the other
hand, Pie is inhibitory and will thus have a hyperpo-
larizing effect: −E(Pie + �̃3), where E is a constant
weighting factor. The values of D and E are to be
determined.

Incorporating all three types of synaptic input gives
us this basic expression:

measured current ∼ − ANβ
e S̃e − BNβ

i S̃i − Cφ̃e

+ D
(
Pee + �̃1

)− E
(
Pie + �̃3

)
, (15)

with A, B, C, D, E of positive sign but (so far) un-
known magnitude. The consequence of these inputs
is only evident after synaptic transmission. Therefore,
we include a rate constant for this process by using
an equation similar to that of Ĩee in the SPDE model.
Let Ĩm represent the current measured at the cortical
surface and Tm represent a rate constant. Then

(
1

Tm

∂

∂ t̃
+ 1

)2

Ĩm = F
( − ANβ

e S̃e − BNβ

i S̃i − Cφ̃e

+ D
(
Pee + �̃1

) − E
(
Pie + �̃3

))
,

(16)

where A, B, C, D, E, and F are positive constant
weights. We choose Tm = 12.0 to match the rate con-
stant of the excitatory population Te. The values of
A through E will depend on the number of synapses
of each type and the average distance of the synapse
from the soma. The coefficient F is a gain parameter
that will scale the magnitude of all the synaptic inputs;
this ensures that they have the appropriate amount
of influence over the electrode measurement Ĩm. In
addition, we can think of F as containing the effective
resistance of the cortex. Recall that the electrode mea-
surement is determined by currents in the cortex, yet
the components on the right side of (16) are based on
voltages. Because the currents produced by these volt-
ages can be calculated with Ohm’s Law (Kandel et al.
2000), the gain parameter F provides the necessary
conversion.

To complete the model of the electrode measure-
ment h̃m, we must account for the reversal potential
of the cortical neurons. This determines the direction
of current flow associated with the inputs described
above (we previously assumed that the neurons were



382 J Comput Neurosci (2010) 28:375–387

Table 2 Values of the coefficients for Eq. (16)

Coefficient Input type Lopour/Szeri value Liley/Wright value

A Local excitatory 0.413 0.324
B Local inhibitory 0.092 0.088
C Long-range excitatory 0.458 0.583
D Thalamocortical excitatory 0.034 0.006
E Subcortical inhibitory 0.004 0.000

The first column of values was estimated as described here, while the second column was derived using probabilistic methods in Liley
and Wright (1994)

at resting potential). We once again take our cue from
the SPDE model and define

h̃m ≡ (
he

0 − h̃e
)
Ĩm =

(
45 − he

−70

)
Ĩm . (17)

Thus, (16) and (17) comprise a complete model of the
potential sensed by a cortical surface electrode, h̃m. In
our simulations of feedback control, the applied electric
field u will be a function of this variable.

4.2 Estimation of coefficients

We have not yet assigned numerical values to the
coefficients A through E. To do this, we think of
them as the percentage of pyramidal neuron synapses
due to each source. For example, A will represent the
percentage of synapses on any given pyramidal neuron
that come from other excitatory neurons in the same
macrocolumn. There are three physiological relation-
ships that allow us to determine these values:

1. The number of synapses on pyramidal cells due
to local cortical neurons is roughly equal to the
number of synapses due to cortical neurons in other
macrocolumns or in the contralateral hemisphere
(Abeles 1991). This implies that A + B = C.

2. Approximately 98 percent of synapses on pyra-
midal cells are corticocortical, while 2 percent
are thalamocortical (Abeles 1991; Nunez and
Srinivasan 2006). This implies that A + B + C =
.98 and D + E = .02.

3. Roughly 90 percent of all cortical synapses are
excitatory and 10 percent are inhibitory (Abeles
1991; Braitenberg and Schüz 1998). This implies
that A = 9B and D = 9E.

After solving the above equations, we account for the
fact that synapses near the soma will have a greater
influence on the electrode measurement (Nunez and
Srinivasan 2006) by multiplying B, D, and E by a factor
of two.

While this method of estimation may seem crude,
others have achieved similar results through more de-
tailed probabilistic analysis (Liley and Wright 1994).

Both are listed in Table 2 for comparison; note that
each set of coefficients has been scaled to add to 1.
In simulation, when comparing the two sets of
coefficients A through E, the only difference in the
resulting h̃m appears to be an offset. Because offsets
are not reflected in EEG measurements, this difference
is inconsequential. Hence, two completely independent
approaches provide essentially equivalent coefficients
for the sensed signal.

4.3 Verification of full model

We can verify our model by returning to the hypothet-
ical pyramidal neuron described at the beginning of
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Fig. 6 Comparison of h̃m (solid) and h̃e (dashed) with two sets
of parameters. At typical levels of excitation where Pee = 11.0
and �e = 1.42 × 10−3, the two signals are negatively correlated
(top subf igure), as predicted by our physiological analysis. This
negative correlation is especially noticeable if the synaptic time
delay is taken into account by shifting h̃e slightly to the left. How-
ever, when we simulate a strong excitatory input near the soma
by setting Pee = 1,000.0, the signals become positively correlated
(bottom subf igure). This was also predicted by the physiology of
the cortex, and thus helps justify our model of h̃m. Note that for
both sets of parameters, the signal offsets (means) were removed
to facilitate a direct comparison
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Section 4 and based on Box 46-1 in (Kandel et al. 2000).
As before, say that we are modeling the electrode
measurement of a pyramidal neuron with excitatory
inputs in both cortical layers 1 and 4. If a majority of
the inputs occur in layer 1 near the cortical surface as
in Fig. 5(b), h̃e and h̃m will have similar dynamics, but a
hyperpolarization in one signal will be a depolarization
in the other; the signals will be negatively correlated.
This behavior is seen in our model for h̃m. If we run
a simulation with the typical set of parameters (where
local and corticocortical connections dominate because
Pee is low), we see that h̃e and h̃m are negatively cor-
related (top of Fig. 6). On the other hand, when the
strongest input is near the soma in layer 4 as in Fig. 5(a),
it will have the same effect on both signals, and they
will be positively correlated. This, too, is demonstrated
by the measurement model. We can simulate a large
excitatory input near the soma by increasing the value
of Pee; when we run the simulation with this change, we
see that h̃e and h̃m become positively correlated (bot-
tom of Fig. 6). Thus, the measurement model accurately
reproduces the physiological effects of varying cortical
inputs, and we will use it in subsequent simulations of
feedback control. The applied electric field u will be a
function of h̃m as opposed to h̃e.

For reference, we compare h̃e and h̃m at seizure pa-
rameters (�e = 0.8 × 10−3 and Pee = 548.0) in Fig. 7. In
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Fig. 7 Comparison of the electrode measurement hm (mV, solid)
and the mean soma potential he (mV, dashed) at levels of sub-
cortical excitation that cause seizure-like oscillations, Pee = 548.0
and �e = 0.8 × 10−3. Here we see that the two signals are nega-
tively correlated, but have very similar dynamics. This indicates
that it should be possible to perform feedback control using our
new measurement model h̃m (as we did previously with h̃e in
Kramer et al. 2006), although a positive gain may be necessary

this case, the signals have a large negative correlation,
but very similar dynamics. This suggests that it will
be possible to suppress seizures with feedback control
based on h̃m (as it was with h̃e in Kramer et al. 2006),
although we may need to use a gain of the opposite sign.

5 Simulation of integral control

In choosing a function to represent the applied electric
field u, we start with the concept of proportional feed-
back control. This is the simplest and most common
type of control—intuitively, the applied effort should
be proportional to the error between the measured
signal and its desired value. In this case, we can define
proportional control as

u = a(x, t)
(
h̄m + b

)
, (18)

where a(x, t) is the control gain and h̄m is the measured
electrode potential; it is calculated by taking the spatial
average of h̃m (17) under each electrode. The parame-
ter b is a constant offset that can be tuned to achieve
the desired equilibrium value of h̃e. While this control
algorithm is able to suppress the seizure-like oscilla-
tions of the model, it would be difficult to implement
safely. Whenever stimulation is applied, it is important
that the process be chemically reversible in order to
prevent damage due to the production of new chemical
species. There is a threshold for reversibility called
the “reversible charge injection limit,” which signifies
the maximum allowable charge injection before the
polarity is reversed (Robblee and Rose 1990). Because
a proportional controller does not penalize the amount
of effort used (i.e. the magnitude of the applied electric
field), it relies on large signals of only one sign, which
would exceed this threshold over time. The chemical
processes associated with this type of stimulation would
therefore be irreversible and damaging to cortical tis-
sue. The simulation results based on this type of control
have been presented in previous publications (Kramer
et al. 2006), and we do not repeat them here.

To improve on this method, we may consider adding
a derivative or integral component to the controller,
or even using all three terms to create a proportional-
integral-differential (PID) controller (Franklin et al.
2002). The derivative term increases or decreases the
control effort based on the rate of change of the error.
This can reduce the response time of the controller
because the derivative term “anticipates” the behavior
of the system. Simulation results with a PD controller
were presented in Kramer et al. (2006).
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Because the differential controller utilizes the same
harmful voltages mentioned previously, we choose to
implement a controller with an integral term:

u = a(x, t)
(
h̄m + b

) + c(x, t)
∫

u dt . (19)

Here, c(x, t) is another gain term. It will be negative,
meaning that this new term will oppose the total in-
tegral of the applied voltage u. If the integral of u is
positive, it will add a negative component to the applied
voltage, and vice versa; in this way, it pushes the inte-
gral of u to zero. In other words, it forces the applied
signal to be charge-balanced and thus safe for cortical
tissue. Because we have also included the proportional
control term, this feedback setup will still suppress the
seizure oscillations. Note that this is different than tra-
ditional integral control, which is based on the integral
of the error between the desired value of the signal and
its actual value.

In addition to adding the integral term and using the
new measurement model h̃m, we incorporate the step
sizes determined in Section 3. Because we are using
smaller increments of space, we can make one further
improvement: we add a more detailed electrode profile
to the feedback simulation. We previously assumed
that the electrodes maintained a constant profile across
their surface while measuring or applying the stimulus
(i.e. every point on the electrode sensed or provided
the same value) and that no tissue beyond the edge
of the electrode was affected by its activity. However
it has been shown experimentally that this is not the

case (Suesserman et al. 1991). Here, we take the first
step towards a realistic electrode model by including
a smooth falloff at the electrode edges. The falloff is
incorporated into the function a(x, t), so that the gain
varies between zero (over uncontrolled cortex) and
amax (under the electrodes) via a hyperbolic tangent
function. This gain function is used in the application
of control to indicate that the influence of the electrode
decreases with distance, and it is also applied during
sensing with amax = 1 to indicate that the cortical tissue
has less impact on the electrode measurement as dis-
tance increases. We have not yet included any variation
over the surface of the electrode, but this is certainly an
adjustment that can be considered in the future.

With this approach, we are in a position to simu-
late the suppression of seizure waves using total inte-
gral feedback control as defined in (19). The results
shown here were generated using an Intel Core 2 Duo
2.13 GHz processer, and the calculations took roughly
5 min at the highest spatial and temporal resolutions.
The code was written and executed in MATLAB and
has been provided as supplementary online material
(Online Resource 1).

Figure 8 shows an example of the seizure-like oscil-
lations, represented by the mean soma potential of the
excitatory population he as it varies in space and time.
More specifically, we have simulated an uncontrolled
strip of cortex 200 mm long over 0.5 s, and the value
of he [mV] is represented by grayscale. The seizure
waves occur due to our choice of �e = 0.8 × 10−3 and
a Gaussian Pee distribution with a maximum value
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Fig. 8 (a) Seizure waves traveling on the simulated cortex, with
parameters Pee = 548.0 and �e = 0.8 × 10−3. The characteristics
of the wave are determined by the distribution of Pee; here it is
a Gaussian curve, so the wave starts in the center where Pee is

at its maximum (548.0) and propagates outward until the level
of excitation is too low to support it. In this case, no feedback
control is applied, so the waves will reoccur indefinitely. (b) Plot
of he in time extracted from (a) at 100.8 mm
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Fig. 9 (a) Plot of he [mV] in space and time. In the first 0.25 s,
we see a seizure wave traveling on the simulated cortex because
we have set the excitation parameters to Pee = 548.0 and �e =
0.8 × 10−3. At 0.25 s (dashed line), the integral controller (19) is
turned on, and we see that the seizure-like waves are immediately

suppressed. For this simulation, we used h̃m as the electrode
measurement, and control was applied via five electrodes of
width 11.2 mm with a profile defined by the hyperbolic tangent
function. The controller gains were amax = 8, b = −0.1, and c =
−8. (b) Plot of he in time extracted from (a) at 100.8 mm

of 548.0. They spontaneously arise in locations with
sufficiently high Pee (here, this “hot spot” is at x =
100 mm) and travel outward until the level of excitation
is too low to support them. This is why the waves
terminate before they reach the edges of the simulation
space.

Figure 9 shows the effect of total integral feedback
control on this seizure-like behavior. In the first half

of the time interval, we see a seizure wave emanating
from the center of the space; then, at 0.25 s the control
is switched on, and the pathological seizure activity
quickly disappears. In this case, the feedback stimu-
lation is applied via five electrodes that are 11.2 mm
across. The geometry of these electrodes can be clearly
seen in Fig. 10, which shows the value of the applied
signal u [mV] for the same simulation. Here, we see
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Fig. 10 (a) Plot of applied effort u [mV] in space and time,
corresponding to the simulation of feedback control in Fig. 9.
This shows that the potential applied by the electrodes is zero
until t = 0.25 s, when the controller is turned on (dashed line).
Then each electrode oscillates between positive and negative
signals, indicative of the “charge-balanced” nature of the control.

For this simulation, the average magnitude of total applied effort
over all five electrodes was 0.23 mV. This value will approach
zero as t increases, and it can also be reduced by increasing the
integral control gain, c. Note that, for clarity, the grayscale in
this f igure is the opposite of the ones used in Figs. 8 and 9.
(b) Stimulation applied by the center electrode in (a)
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that the applied voltage is zero for the first half of the
time interval, and then each electrode varies between
positive and negative voltages once the controller is
turned on. While the largest potential applied by a sin-
gle electrode is roughly 60 mV, the total signal applied
by each electrode is very close to zero, due to our choice
of control law u. This is the desired result because it
indicates that each electrode applies a balanced signal.
Lastly, note that it is not necessary to have electrodes
covering the entire length of the seizure wave. When
we place the electrodes at the center of the “hot spot,”
they are able to halt the outward motion of the wave.
For more information on the parameters used to create
the figures, please refer to the figure captions.

Thus, in Figs. 9 and 10 we have demonstrated that
the new model for electrode measurements h̃m can be
used to suppress seizure waves via feedback control. If
the controller u contains the integral of the total applied
effort, then this can be done in a manner that is thought
to be safe for cortical tissue.

6 Discussion

Here we have presented several novel approaches to
exploration of a model of feedback control for epileptic
seizures in humans. We first verified the strong con-
vergence of numerical solutions to the model of the
cortex, paying special attention to discontinuities that
may occur at electrode edges. This allowed us to choose
appropriate step sizes for our simulations; because the
spatial step size x was small relative to the size of the
electrode, we were able to incorporate a more detailed
electrode profile into the simulation. Then, based on
evidence that the mean soma potential h̃e cannot be
used as the measurement for feedback control, we de-
veloped a new model h̃m to represent the measurement
of cortical surface electrodes. This model was based
on the currents flowing in the cortex and was used for
all simulations of feedback control. Those simulations
utilized a new control algorithm containing the total
integral of the applied potential u. Not only did this
succeed in suppressing the seizure-like oscillations, but
it guaranteed that the applied signal would be charge-
balanced and therefore safe for cortical tissue.

Of course, there are always improvements to be
made. In this work, we have assumed that each elec-
trode can be simultaneously sensing and applying the
control signal. This is not realistic; ideally, we would
model separate electrodes for these two tasks, with
the geometric properties chosen to match existing ex-
perimental setups. Also, as mentioned previously, it
would be possible for us to improve the electrode

profile used in simulation. Here, we incorporated a
simple profile to demonstrate our capability to do so,
but it would be more accurate to base our choice on
existing theories of the potential difference across an
electrode surface (Rubinstein et al. 1987). It may also
be possible to account for electrochemical changes that
occur in the vicinity. Lastly, we note that our use of the
phrase “charge-balanced” should be taken lightly. Our
controller measures and applies a voltage, so the inte-
gral term pushes the total voltage (over time) towards
zero. Although, in concept, this is similar to having a
charge-balanced signal, it does not guarantee that the
applied charges will be balanced and safe. This could
be remedied by utilizing a controller that measures
cortical potential and applies a current. Not only would
this be more accurate, but it would facilitate future
comparisons with experiments, most of which are done
in this manner (Colpan et al. 2007; Sunderam et al.
2006).

Validation via experimentation is only one of the
many possible future directions of this work. For ex-
ample, we could extend our model to two dimensions
and use it to study seizure waves, or we could simu-
late experimental phenomena such as irregular, spiral,
and plane cortical waves (Schiff et al. 2007). Related
theoretical work has suggested that pre-processing of
data using a Kalman filter can provide greater flexibility
in the control of waves while minimizing the amount
of energy needed to do so (Schiff and Sauer 2008).
This concept could be readily applied to the simulations
discussed here. Another possible avenue of future work
is the investigation of spatial properties of our feedback
model. We have the capability to do simulations with
any number of electrodes at any size and spacing, which
is a luxury not afforded to experimentalists. Theoretical
work in this area may provide insight into important
questions such as: how does the size of a seizure relate
to the number and sizes of the electrodes needed to
control it successfully? Where should the electrodes
be placed for maximum effectiveness? What are the
necessary resolutions for sensing and actuation? It is
our hope that this work will act as a stepping stone to
such intriguing questions.
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